You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							5872 lines
						
					
					
						
							182 KiB
						
					
					
				
			
		
		
	
	
							5872 lines
						
					
					
						
							182 KiB
						
					
					
				/* -*- c++ -*- */
 | 
						|
 | 
						|
/*
 | 
						|
    Reprap firmware based on Sprinter and grbl.
 | 
						|
 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 | 
						|
 This program is free software: you can redistribute it and/or modify
 | 
						|
 it under the terms of the GNU General Public License as published by
 | 
						|
 the Free Software Foundation, either version 3 of the License, or
 | 
						|
 (at your option) any later version.
 | 
						|
 | 
						|
 This program is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 GNU General Public License for more details.
 | 
						|
 | 
						|
 You should have received a copy of the GNU General Public License
 | 
						|
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 This firmware is a mashup between Sprinter and grbl.
 | 
						|
  (https://github.com/kliment/Sprinter)
 | 
						|
  (https://github.com/simen/grbl/tree)
 | 
						|
 | 
						|
 It has preliminary support for Matthew Roberts advance algorithm
 | 
						|
    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | 
						|
 */
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
  #if Z_MIN_PIN == -1
 | 
						|
    #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
 | 
						|
  #endif
 | 
						|
  #include "vector_3.h"
 | 
						|
  #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
    #include "qr_solve.h"
 | 
						|
  #endif
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
 | 
						|
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "stepper.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "motion_control.h"
 | 
						|
#include "cardreader.h"
 | 
						|
#include "watchdog.h"
 | 
						|
#include "ConfigurationStore.h"
 | 
						|
#include "language.h"
 | 
						|
#include "pins_arduino.h"
 | 
						|
#include "math.h"
 | 
						|
 | 
						|
#ifdef BLINKM
 | 
						|
  #include "BlinkM.h"
 | 
						|
  #include "Wire.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
  #include "Servo.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAS_DIGIPOTSS
 | 
						|
  #include <SPI.h>
 | 
						|
#endif
 | 
						|
 | 
						|
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
 | 
						|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
 | 
						|
 | 
						|
//Implemented Codes
 | 
						|
//-------------------
 | 
						|
// G0  -> G1
 | 
						|
// G1  - Coordinated Movement X Y Z E
 | 
						|
// G2  - CW ARC
 | 
						|
// G3  - CCW ARC
 | 
						|
// G4  - Dwell S<seconds> or P<milliseconds>
 | 
						|
// G10 - retract filament according to settings of M207
 | 
						|
// G11 - retract recover filament according to settings of M208
 | 
						|
// G28 - Home all Axis
 | 
						|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 | 
						|
// G30 - Single Z Probe, probes bed at current XY location.
 | 
						|
// G31 - Dock sled (Z_PROBE_SLED only)
 | 
						|
// G32 - Undock sled (Z_PROBE_SLED only)
 | 
						|
// G90 - Use Absolute Coordinates
 | 
						|
// G91 - Use Relative Coordinates
 | 
						|
// G92 - Set current position to coordinates given
 | 
						|
 | 
						|
// M Codes
 | 
						|
// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
 | 
						|
// M1   - Same as M0
 | 
						|
// M17  - Enable/Power all stepper motors
 | 
						|
// M18  - Disable all stepper motors; same as M84
 | 
						|
// M20  - List SD card
 | 
						|
// M21  - Init SD card
 | 
						|
// M22  - Release SD card
 | 
						|
// M23  - Select SD file (M23 filename.g)
 | 
						|
// M24  - Start/resume SD print
 | 
						|
// M25  - Pause SD print
 | 
						|
// M26  - Set SD position in bytes (M26 S12345)
 | 
						|
// M27  - Report SD print status
 | 
						|
// M28  - Start SD write (M28 filename.g)
 | 
						|
// M29  - Stop SD write
 | 
						|
// M30  - Delete file from SD (M30 filename.g)
 | 
						|
// M31  - Output time since last M109 or SD card start to serial
 | 
						|
// M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
 | 
						|
//        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
 | 
						|
//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
 | 
						|
//        The '#' is necessary when calling from within sd files, as it stops buffer prereading
 | 
						|
// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
 | 
						|
// M80  - Turn on Power Supply
 | 
						|
// M81  - Turn off Power Supply
 | 
						|
// M82  - Set E codes absolute (default)
 | 
						|
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
 | 
						|
// M84  - Disable steppers until next move,
 | 
						|
//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
 | 
						|
// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | 
						|
// M92  - Set axis_steps_per_unit - same syntax as G92
 | 
						|
// M104 - Set extruder target temp
 | 
						|
// M105 - Read current temp
 | 
						|
// M106 - Fan on
 | 
						|
// M107 - Fan off
 | 
						|
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
 | 
						|
//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
 | 
						|
//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
 | 
						|
// M112 - Emergency stop
 | 
						|
// M114 - Output current position to serial port
 | 
						|
// M115 - Capabilities string
 | 
						|
// M117 - display message
 | 
						|
// M119 - Output Endstop status to serial port
 | 
						|
// M120 - Enable endstop detection
 | 
						|
// M121 - Disable endstop detection
 | 
						|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
 | 
						|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
 | 
						|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | 
						|
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | 
						|
// M140 - Set bed target temp
 | 
						|
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
 | 
						|
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | 
						|
//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | 
						|
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | 
						|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | 
						|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
 | 
						|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
 | 
						|
// M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
 | 
						|
// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
 | 
						|
// M206 - Set additional homing offset
 | 
						|
// M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
 | 
						|
// M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
 | 
						|
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
// M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
// M220 S<factor in percent>- set speed factor override percentage
 | 
						|
// M221 S<factor in percent>- set extrude factor override percentage
 | 
						|
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | 
						|
// M240 - Trigger a camera to take a photograph
 | 
						|
// M250 - Set LCD contrast C<contrast value> (value 0..63)
 | 
						|
// M280 - Set servo position absolute. P: servo index, S: angle or microseconds
 | 
						|
// M300 - Play beep sound S<frequency Hz> P<duration ms>
 | 
						|
// M301 - Set PID parameters P I and D
 | 
						|
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
 | 
						|
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
 | 
						|
// M304 - Set bed PID parameters P I and D
 | 
						|
// M380 - Activate solenoid on active extruder
 | 
						|
// M381 - Disable all solenoids
 | 
						|
// M400 - Finish all moves
 | 
						|
// M401 - Lower z-probe if present
 | 
						|
// M402 - Raise z-probe if present
 | 
						|
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
 | 
						|
// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
 | 
						|
// M406 - Turn off Filament Sensor extrusion control 
 | 
						|
// M407 - Displays measured filament diameter 
 | 
						|
// M500 - Store parameters in EEPROM
 | 
						|
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
 | 
						|
// M502 - Revert to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
 | 
						|
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
 | 
						|
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | 
						|
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | 
						|
// M665 - Set delta configurations
 | 
						|
// M666 - Set delta endstop adjustment
 | 
						|
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
 | 
						|
// M907 - Set digital trimpot motor current using axis codes.
 | 
						|
// M908 - Control digital trimpot directly.
 | 
						|
// M350 - Set microstepping mode.
 | 
						|
// M351 - Toggle MS1 MS2 pins directly.
 | 
						|
 | 
						|
// ************ SCARA Specific - This can change to suit future G-code regulations
 | 
						|
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | 
						|
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | 
						|
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | 
						|
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | 
						|
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | 
						|
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
 | 
						|
//************* SCARA End ***************
 | 
						|
 | 
						|
// M928 - Start SD logging (M928 filename.g) - ended by M29
 | 
						|
// M999 - Restart after being stopped by error
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
  CardReader card;
 | 
						|
#endif
 | 
						|
 | 
						|
float homing_feedrate[] = HOMING_FEEDRATE;
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
int xy_travel_speed = XY_TRAVEL_SPEED;
 | 
						|
#endif
 | 
						|
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
 | 
						|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
 | 
						|
int feedmultiply = 100; //100->1 200->2
 | 
						|
int saved_feedmultiply;
 | 
						|
int extrudemultiply = 100; //100->1 200->2
 | 
						|
int extruder_multiply[EXTRUDERS] = { 100
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
    , 100
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
      , 100
 | 
						|
      #if EXTRUDERS > 3
 | 
						|
        , 100
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
};
 | 
						|
bool volumetric_enabled = false;
 | 
						|
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
      , DEFAULT_NOMINAL_FILAMENT_DIA
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
       , DEFAULT_NOMINAL_FILAMENT_DIA
 | 
						|
      #if EXTRUDERS > 3
 | 
						|
        , DEFAULT_NOMINAL_FILAMENT_DIA
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
};
 | 
						|
float volumetric_multiplier[EXTRUDERS] = {1.0
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
    , 1.0
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
      , 1.0
 | 
						|
      #if EXTRUDERS > 3
 | 
						|
        , 1.0
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
};
 | 
						|
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
 | 
						|
float add_homing[3] = { 0, 0, 0 };
 | 
						|
#ifdef DELTA
 | 
						|
  float endstop_adj[3] = { 0, 0, 0 };
 | 
						|
#endif
 | 
						|
 | 
						|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
 | 
						|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
 | 
						|
bool axis_known_position[3] = { false, false, false };
 | 
						|
float zprobe_zoffset;
 | 
						|
 | 
						|
// Extruder offset
 | 
						|
#if EXTRUDERS > 1
 | 
						|
#ifndef DUAL_X_CARRIAGE
 | 
						|
  #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
 | 
						|
#else
 | 
						|
  #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
 | 
						|
#endif
 | 
						|
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
 | 
						|
  #if defined(EXTRUDER_OFFSET_X)
 | 
						|
    EXTRUDER_OFFSET_X
 | 
						|
  #else
 | 
						|
    0
 | 
						|
  #endif
 | 
						|
  ,
 | 
						|
  #if defined(EXTRUDER_OFFSET_Y)
 | 
						|
    EXTRUDER_OFFSET_Y
 | 
						|
  #else
 | 
						|
    0
 | 
						|
  #endif
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
uint8_t active_extruder = 0;
 | 
						|
int fanSpeed = 0;
 | 
						|
 | 
						|
#ifdef SERVO_ENDSTOPS
 | 
						|
  int servo_endstops[] = SERVO_ENDSTOPS;
 | 
						|
  int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BARICUDA
 | 
						|
  int ValvePressure = 0;
 | 
						|
  int EtoPPressure = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  bool autoretract_enabled = false;
 | 
						|
  bool retracted[EXTRUDERS] = { false
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      , false
 | 
						|
      #if EXTRUDERS > 2
 | 
						|
        , false
 | 
						|
        #if EXTRUDERS > 3
 | 
						|
          , false
 | 
						|
        #endif
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  };
 | 
						|
  bool retracted_swap[EXTRUDERS] = { false
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      , false
 | 
						|
      #if EXTRUDERS > 2
 | 
						|
        , false
 | 
						|
        #if EXTRUDERS > 3
 | 
						|
          , false
 | 
						|
        #endif
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  };
 | 
						|
 | 
						|
  float retract_length = RETRACT_LENGTH;
 | 
						|
  float retract_length_swap = RETRACT_LENGTH_SWAP;
 | 
						|
  float retract_feedrate = RETRACT_FEEDRATE;
 | 
						|
  float retract_zlift = RETRACT_ZLIFT;
 | 
						|
  float retract_recover_length = RETRACT_RECOVER_LENGTH;
 | 
						|
  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | 
						|
  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
 | 
						|
 | 
						|
#endif // FWRETRACT
 | 
						|
 | 
						|
#ifdef ULTIPANEL
 | 
						|
  bool powersupply = 
 | 
						|
    #ifdef PS_DEFAULT_OFF
 | 
						|
      false
 | 
						|
    #else
 | 
						|
      true
 | 
						|
    #endif
 | 
						|
  ;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
  float delta[3] = { 0, 0, 0 };
 | 
						|
  #define SIN_60 0.8660254037844386
 | 
						|
  #define COS_60 0.5
 | 
						|
  // these are the default values, can be overriden with M665
 | 
						|
  float delta_radius = DELTA_RADIUS;
 | 
						|
  float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
 | 
						|
  float delta_tower1_y = -COS_60 * delta_radius;     
 | 
						|
  float delta_tower2_x =  SIN_60 * delta_radius; // front right tower
 | 
						|
  float delta_tower2_y = -COS_60 * delta_radius;     
 | 
						|
  float delta_tower3_x = 0;                      // back middle tower
 | 
						|
  float delta_tower3_y = delta_radius;
 | 
						|
  float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
 | 
						|
  float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
 | 
						|
  float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
 | 
						|
  #endif
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
  float axis_scaling[3] = { 1, 1, 1 };    // Build size scaling, default to 1
 | 
						|
  static float delta[3] = { 0, 0, 0 };		
 | 
						|
#endif        
 | 
						|
 | 
						|
bool cancel_heatup = false;
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
  //Variables for Filament Sensor input 
 | 
						|
  float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
 | 
						|
  bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
 | 
						|
  float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
 | 
						|
  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
 | 
						|
  int delay_index1=0;  //index into ring buffer
 | 
						|
  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
 | 
						|
  float delay_dist=0; //delay distance counter  
 | 
						|
  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
   static bool filrunoutEnqued = false;
 | 
						|
#endif
 | 
						|
 | 
						|
const char errormagic[] PROGMEM = "Error:";
 | 
						|
const char echomagic[] PROGMEM = "echo:";
 | 
						|
 | 
						|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
 | 
						|
static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
 | 
						|
 | 
						|
static float offset[3] = { 0, 0, 0 };
 | 
						|
static bool home_all_axis = true;
 | 
						|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
 | 
						|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
 | 
						|
 | 
						|
static bool relative_mode = false;  //Determines Absolute or Relative Coordinates
 | 
						|
 | 
						|
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
 | 
						|
static bool fromsd[BUFSIZE];
 | 
						|
static int bufindr = 0;
 | 
						|
static int bufindw = 0;
 | 
						|
static int buflen = 0;
 | 
						|
 | 
						|
static char serial_char;
 | 
						|
static int serial_count = 0;
 | 
						|
static boolean comment_mode = false;
 | 
						|
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
 | 
						|
 | 
						|
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
 | 
						|
 | 
						|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
 | 
						|
 | 
						|
// Inactivity shutdown
 | 
						|
static unsigned long previous_millis_cmd = 0;
 | 
						|
static unsigned long max_inactive_time = 0;
 | 
						|
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
 | 
						|
 | 
						|
unsigned long starttime = 0; ///< Print job start time
 | 
						|
unsigned long stoptime = 0;  ///< Print job stop time
 | 
						|
 | 
						|
static uint8_t tmp_extruder;
 | 
						|
 | 
						|
 | 
						|
bool Stopped = false;
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
  Servo servos[NUM_SERVOS];
 | 
						|
#endif
 | 
						|
 | 
						|
bool CooldownNoWait = true;
 | 
						|
bool target_direction;
 | 
						|
 | 
						|
#ifdef CHDK
 | 
						|
  unsigned long chdkHigh = 0;
 | 
						|
  boolean chdkActive = false;
 | 
						|
#endif
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================Routines======================================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
void get_arc_coordinates();
 | 
						|
bool setTargetedHotend(int code);
 | 
						|
 | 
						|
void serial_echopair_P(const char *s_P, float v)
 | 
						|
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
void serial_echopair_P(const char *s_P, double v)
 | 
						|
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
void serial_echopair_P(const char *s_P, unsigned long v)
 | 
						|
    { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
  #include "SdFatUtil.h"
 | 
						|
  int freeMemory() { return SdFatUtil::FreeRam(); }
 | 
						|
#else
 | 
						|
  extern "C" {
 | 
						|
    extern unsigned int __bss_end;
 | 
						|
    extern unsigned int __heap_start;
 | 
						|
    extern void *__brkval;
 | 
						|
 | 
						|
    int freeMemory() {
 | 
						|
      int free_memory;
 | 
						|
 | 
						|
      if ((int)__brkval == 0)
 | 
						|
        free_memory = ((int)&free_memory) - ((int)&__bss_end);
 | 
						|
      else
 | 
						|
        free_memory = ((int)&free_memory) - ((int)__brkval);
 | 
						|
 | 
						|
      return free_memory;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif //!SDSUPPORT
 | 
						|
 | 
						|
//Injects the next command from the pending sequence of commands, when possible
 | 
						|
//Return false if and only if no command was pending
 | 
						|
static bool drain_queued_commands_P()
 | 
						|
{
 | 
						|
  char cmd[30];
 | 
						|
  if(!queued_commands_P)
 | 
						|
    return false;
 | 
						|
  // Get the next 30 chars from the sequence of gcodes to run
 | 
						|
  strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
 | 
						|
  cmd[sizeof(cmd)-1]= 0;
 | 
						|
  // Look for the end of line, or the end of sequence
 | 
						|
  size_t i= 0;
 | 
						|
  char c;
 | 
						|
  while( (c= cmd[i]) && c!='\n' )
 | 
						|
    ++i; // look for the end of this gcode command
 | 
						|
  cmd[i]= 0;
 | 
						|
  if(enquecommand(cmd)) // buffer was not full (else we will retry later)
 | 
						|
  {
 | 
						|
    if(c)
 | 
						|
      queued_commands_P+= i+1; // move to next command
 | 
						|
    else
 | 
						|
      queued_commands_P= NULL; // will have no more commands in the sequence
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//Record one or many commands to run from program memory.
 | 
						|
//Aborts the current queue, if any.
 | 
						|
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
 | 
						|
void enquecommands_P(const char* pgcode)
 | 
						|
{
 | 
						|
    queued_commands_P= pgcode;
 | 
						|
    drain_queued_commands_P(); // first command exectuted asap (when possible)
 | 
						|
}
 | 
						|
 | 
						|
//adds a single command to the main command buffer, from RAM
 | 
						|
//that is really done in a non-safe way.
 | 
						|
//needs overworking someday
 | 
						|
//Returns false if it failed to do so
 | 
						|
bool enquecommand(const char *cmd)
 | 
						|
{
 | 
						|
  if(*cmd==';')
 | 
						|
    return false;
 | 
						|
  if(buflen >= BUFSIZE)
 | 
						|
    return false;
 | 
						|
  //this is dangerous if a mixing of serial and this happens
 | 
						|
  strcpy(&(cmdbuffer[bufindw][0]),cmd);
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPGM(MSG_Enqueing);
 | 
						|
  SERIAL_ECHO(cmdbuffer[bufindw]);
 | 
						|
  SERIAL_ECHOLNPGM("\"");
 | 
						|
  bufindw= (bufindw + 1)%BUFSIZE;
 | 
						|
  buflen += 1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void setup_killpin()
 | 
						|
{
 | 
						|
  #if defined(KILL_PIN) && KILL_PIN > -1
 | 
						|
    SET_INPUT(KILL_PIN);
 | 
						|
    WRITE(KILL_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void setup_filrunoutpin()
 | 
						|
{
 | 
						|
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
 | 
						|
   pinMode(FILRUNOUT_PIN,INPUT);
 | 
						|
   #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
 | 
						|
      WRITE(FILLRUNOUT_PIN,HIGH);
 | 
						|
   #endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Set home pin
 | 
						|
void setup_homepin(void)
 | 
						|
{
 | 
						|
#if defined(HOME_PIN) && HOME_PIN > -1
 | 
						|
   SET_INPUT(HOME_PIN);
 | 
						|
   WRITE(HOME_PIN,HIGH);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void setup_photpin()
 | 
						|
{
 | 
						|
  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
 | 
						|
    OUT_WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void setup_powerhold()
 | 
						|
{
 | 
						|
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | 
						|
    OUT_WRITE(SUICIDE_PIN, HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | 
						|
    #if defined(PS_DEFAULT_OFF)
 | 
						|
      OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | 
						|
    #else
 | 
						|
      OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void suicide()
 | 
						|
{
 | 
						|
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | 
						|
    OUT_WRITE(SUICIDE_PIN, LOW);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void servo_init()
 | 
						|
{
 | 
						|
  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
 | 
						|
    servos[0].attach(SERVO0_PIN);
 | 
						|
  #endif
 | 
						|
  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
 | 
						|
    servos[1].attach(SERVO1_PIN);
 | 
						|
  #endif
 | 
						|
  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
 | 
						|
    servos[2].attach(SERVO2_PIN);
 | 
						|
  #endif
 | 
						|
  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
 | 
						|
    servos[3].attach(SERVO3_PIN);
 | 
						|
  #endif
 | 
						|
  #if (NUM_SERVOS >= 5)
 | 
						|
    #error "TODO: enter initalisation code for more servos"
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Set position of Servo Endstops that are defined
 | 
						|
  #ifdef SERVO_ENDSTOPS
 | 
						|
  for(int8_t i = 0; i < 3; i++)
 | 
						|
  {
 | 
						|
    if(servo_endstops[i] > -1) {
 | 
						|
      servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if SERVO_LEVELING
 | 
						|
    delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | 
						|
    servos[servo_endstops[Z_AXIS]].detach();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void setup()
 | 
						|
{
 | 
						|
  setup_killpin();
 | 
						|
  setup_filrunoutpin();
 | 
						|
  setup_powerhold();
 | 
						|
  MYSERIAL.begin(BAUDRATE);
 | 
						|
  SERIAL_PROTOCOLLNPGM("start");
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
 | 
						|
  // Check startup - does nothing if bootloader sets MCUSR to 0
 | 
						|
  byte mcu = MCUSR;
 | 
						|
  if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
 | 
						|
  if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
 | 
						|
  if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
 | 
						|
  if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
 | 
						|
  if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
 | 
						|
  MCUSR=0;
 | 
						|
 | 
						|
  SERIAL_ECHOPGM(MSG_MARLIN);
 | 
						|
  SERIAL_ECHOLNPGM(STRING_VERSION);
 | 
						|
  #ifdef STRING_VERSION_CONFIG_H
 | 
						|
    #ifdef STRING_CONFIG_H_AUTHOR
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
 | 
						|
      SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
 | 
						|
      SERIAL_ECHOPGM(MSG_AUTHOR);
 | 
						|
      SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
 | 
						|
      SERIAL_ECHOPGM("Compiled: ");
 | 
						|
      SERIAL_ECHOLNPGM(__DATE__);
 | 
						|
    #endif // STRING_CONFIG_H_AUTHOR
 | 
						|
  #endif // STRING_VERSION_CONFIG_H
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPGM(MSG_FREE_MEMORY);
 | 
						|
  SERIAL_ECHO(freeMemory());
 | 
						|
  SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
 | 
						|
  SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
 | 
						|
  for(int8_t i = 0; i < BUFSIZE; i++)
 | 
						|
  {
 | 
						|
    fromsd[i] = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
 | 
						|
  Config_RetrieveSettings();
 | 
						|
 | 
						|
  tp_init();    // Initialize temperature loop
 | 
						|
  plan_init();  // Initialize planner;
 | 
						|
  watchdog_init();
 | 
						|
  st_init();    // Initialize stepper, this enables interrupts!
 | 
						|
  setup_photpin();
 | 
						|
  servo_init();
 | 
						|
  
 | 
						|
 | 
						|
  lcd_init();
 | 
						|
  _delay_ms(1000);  // wait 1sec to display the splash screen
 | 
						|
 | 
						|
  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | 
						|
    SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DIGIPOT_I2C
 | 
						|
    digipot_i2c_init();
 | 
						|
  #endif
 | 
						|
#ifdef Z_PROBE_SLED
 | 
						|
  pinMode(SERVO0_PIN, OUTPUT);
 | 
						|
  digitalWrite(SERVO0_PIN, LOW); // turn it off
 | 
						|
#endif // Z_PROBE_SLED
 | 
						|
  setup_homepin();
 | 
						|
  
 | 
						|
#ifdef STAT_LED_RED
 | 
						|
  pinMode(STAT_LED_RED, OUTPUT);
 | 
						|
  digitalWrite(STAT_LED_RED, LOW); // turn it off
 | 
						|
#endif
 | 
						|
#ifdef STAT_LED_BLUE
 | 
						|
  pinMode(STAT_LED_BLUE, OUTPUT);
 | 
						|
  digitalWrite(STAT_LED_BLUE, LOW); // turn it off
 | 
						|
#endif  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void loop()
 | 
						|
{
 | 
						|
  if(buflen < (BUFSIZE-1))
 | 
						|
    get_command();
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
  card.checkautostart(false);
 | 
						|
  #endif
 | 
						|
  if(buflen)
 | 
						|
  {
 | 
						|
    #ifdef SDSUPPORT
 | 
						|
      if(card.saving)
 | 
						|
      {
 | 
						|
        if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
 | 
						|
        {
 | 
						|
          card.write_command(cmdbuffer[bufindr]);
 | 
						|
          if(card.logging)
 | 
						|
          {
 | 
						|
            process_commands();
 | 
						|
          }
 | 
						|
          else
 | 
						|
          {
 | 
						|
            SERIAL_PROTOCOLLNPGM(MSG_OK);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          card.closefile();
 | 
						|
          SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        process_commands();
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      process_commands();
 | 
						|
    #endif //SDSUPPORT
 | 
						|
    buflen = (buflen-1);
 | 
						|
    bufindr = (bufindr + 1)%BUFSIZE;
 | 
						|
  }
 | 
						|
  //check heater every n milliseconds
 | 
						|
  manage_heater();
 | 
						|
  manage_inactivity();
 | 
						|
  checkHitEndstops();
 | 
						|
  lcd_update();
 | 
						|
}
 | 
						|
 | 
						|
void get_command()
 | 
						|
{
 | 
						|
  if(drain_queued_commands_P()) // priority is given to non-serial commands
 | 
						|
    return;
 | 
						|
  
 | 
						|
  while( MYSERIAL.available() > 0  && buflen < BUFSIZE) {
 | 
						|
    serial_char = MYSERIAL.read();
 | 
						|
    if(serial_char == '\n' ||
 | 
						|
       serial_char == '\r' ||
 | 
						|
       serial_count >= (MAX_CMD_SIZE - 1) )
 | 
						|
    {
 | 
						|
      // end of line == end of comment
 | 
						|
      comment_mode = false;
 | 
						|
 | 
						|
      if(!serial_count) {
 | 
						|
        // short cut for empty lines
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
 | 
						|
 | 
						|
      fromsd[bufindw] = false;
 | 
						|
      if(strchr(cmdbuffer[bufindw], 'N') != NULL)
 | 
						|
      {
 | 
						|
        strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
 | 
						|
        gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
 | 
						|
        if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
 | 
						|
          SERIAL_ERROR_START;
 | 
						|
          SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
 | 
						|
          SERIAL_ERRORLN(gcode_LastN);
 | 
						|
          //Serial.println(gcode_N);
 | 
						|
          FlushSerialRequestResend();
 | 
						|
          serial_count = 0;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        if(strchr(cmdbuffer[bufindw], '*') != NULL)
 | 
						|
        {
 | 
						|
          byte checksum = 0;
 | 
						|
          byte count = 0;
 | 
						|
          while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
 | 
						|
          strchr_pointer = strchr(cmdbuffer[bufindw], '*');
 | 
						|
 | 
						|
          if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
 | 
						|
            SERIAL_ERROR_START;
 | 
						|
            SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
 | 
						|
            SERIAL_ERRORLN(gcode_LastN);
 | 
						|
            FlushSerialRequestResend();
 | 
						|
            serial_count = 0;
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          //if no errors, continue parsing
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          SERIAL_ERROR_START;
 | 
						|
          SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
 | 
						|
          SERIAL_ERRORLN(gcode_LastN);
 | 
						|
          FlushSerialRequestResend();
 | 
						|
          serial_count = 0;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        gcode_LastN = gcode_N;
 | 
						|
        //if no errors, continue parsing
 | 
						|
      }
 | 
						|
      else  // if we don't receive 'N' but still see '*'
 | 
						|
      {
 | 
						|
        if((strchr(cmdbuffer[bufindw], '*') != NULL))
 | 
						|
        {
 | 
						|
          SERIAL_ERROR_START;
 | 
						|
          SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
 | 
						|
          SERIAL_ERRORLN(gcode_LastN);
 | 
						|
          serial_count = 0;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
 | 
						|
        strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
 | 
						|
        switch(strtol(strchr_pointer + 1, NULL, 10)){
 | 
						|
        case 0:
 | 
						|
        case 1:
 | 
						|
        case 2:
 | 
						|
        case 3:
 | 
						|
          if (Stopped == true) {
 | 
						|
            SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | 
						|
            LCD_MESSAGEPGM(MSG_STOPPED);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
 | 
						|
      //If command was e-stop process now
 | 
						|
      if(strcmp(cmdbuffer[bufindw], "M112") == 0)
 | 
						|
        kill();
 | 
						|
 | 
						|
      bufindw = (bufindw + 1)%BUFSIZE;
 | 
						|
      buflen += 1;
 | 
						|
 | 
						|
      serial_count = 0; //clear buffer
 | 
						|
    }
 | 
						|
    else if(serial_char == '\\') {  //Handle escapes
 | 
						|
       
 | 
						|
        if(MYSERIAL.available() > 0  && buflen < BUFSIZE) {
 | 
						|
            // if we have one more character, copy it over
 | 
						|
            serial_char = MYSERIAL.read();
 | 
						|
            cmdbuffer[bufindw][serial_count++] = serial_char;
 | 
						|
        }
 | 
						|
 | 
						|
        //otherwise do nothing        
 | 
						|
    }
 | 
						|
    else { // its not a newline, carriage return or escape char
 | 
						|
        if(serial_char == ';') comment_mode = true;
 | 
						|
        if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
  if(!card.sdprinting || serial_count!=0){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
 | 
						|
  // if it occurs, stop_buffering is triggered and the buffer is ran dry.
 | 
						|
  // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
 | 
						|
 | 
						|
  static bool stop_buffering=false;
 | 
						|
  if(buflen==0) stop_buffering=false;
 | 
						|
 | 
						|
  while( !card.eof()  && buflen < BUFSIZE && !stop_buffering) {
 | 
						|
    int16_t n=card.get();
 | 
						|
    serial_char = (char)n;
 | 
						|
    if(serial_char == '\n' ||
 | 
						|
       serial_char == '\r' ||
 | 
						|
       (serial_char == '#' && comment_mode == false) ||
 | 
						|
       (serial_char == ':' && comment_mode == false) ||
 | 
						|
       serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
 | 
						|
    {
 | 
						|
      if(card.eof()){
 | 
						|
        SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
 | 
						|
        stoptime=millis();
 | 
						|
        char time[30];
 | 
						|
        unsigned long t=(stoptime-starttime)/1000;
 | 
						|
        int hours, minutes;
 | 
						|
        minutes=(t/60)%60;
 | 
						|
        hours=t/60/60;
 | 
						|
        sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLN(time);
 | 
						|
        lcd_setstatus(time);
 | 
						|
        card.printingHasFinished();
 | 
						|
        card.checkautostart(true);
 | 
						|
 | 
						|
      }
 | 
						|
      if(serial_char=='#')
 | 
						|
        stop_buffering=true;
 | 
						|
 | 
						|
      if(!serial_count)
 | 
						|
      {
 | 
						|
        comment_mode = false; //for new command
 | 
						|
        return; //if empty line
 | 
						|
      }
 | 
						|
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
 | 
						|
//      if(!comment_mode){
 | 
						|
        fromsd[bufindw] = true;
 | 
						|
        buflen += 1;
 | 
						|
        bufindw = (bufindw + 1)%BUFSIZE;
 | 
						|
//      }
 | 
						|
      comment_mode = false; //for new command
 | 
						|
      serial_count = 0; //clear buffer
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      if(serial_char == ';') comment_mode = true;
 | 
						|
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  #endif //SDSUPPORT
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float code_value()
 | 
						|
{
 | 
						|
  return (strtod(strchr_pointer + 1, NULL));
 | 
						|
}
 | 
						|
 | 
						|
long code_value_long()
 | 
						|
{
 | 
						|
  return (strtol(strchr_pointer + 1, NULL, 10));
 | 
						|
}
 | 
						|
 | 
						|
bool code_seen(char code)
 | 
						|
{
 | 
						|
  strchr_pointer = strchr(cmdbuffer[bufindr], code);
 | 
						|
  return (strchr_pointer != NULL);  //Return True if a character was found
 | 
						|
}
 | 
						|
 | 
						|
#define DEFINE_PGM_READ_ANY(type, reader)       \
 | 
						|
    static inline type pgm_read_any(const type *p)  \
 | 
						|
    { return pgm_read_##reader##_near(p); }
 | 
						|
 | 
						|
DEFINE_PGM_READ_ANY(float,       float);
 | 
						|
DEFINE_PGM_READ_ANY(signed char, byte);
 | 
						|
 | 
						|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
 | 
						|
static const PROGMEM type array##_P[3] =        \
 | 
						|
    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
 | 
						|
static inline type array(int axis)          \
 | 
						|
    { return pgm_read_any(&array##_P[axis]); }
 | 
						|
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
  #if EXTRUDERS == 1 || defined(COREXY) \
 | 
						|
      || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
 | 
						|
      || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
 | 
						|
      || !defined(X_MAX_PIN) || X_MAX_PIN < 0
 | 
						|
    #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
 | 
						|
  #endif
 | 
						|
  #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
 | 
						|
    #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
 | 
						|
  #endif
 | 
						|
 | 
						|
#define DXC_FULL_CONTROL_MODE 0
 | 
						|
#define DXC_AUTO_PARK_MODE    1
 | 
						|
#define DXC_DUPLICATION_MODE  2
 | 
						|
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | 
						|
 | 
						|
static float x_home_pos(int extruder) {
 | 
						|
  if (extruder == 0)
 | 
						|
    return base_home_pos(X_AXIS) + add_homing[X_AXIS];
 | 
						|
  else
 | 
						|
    // In dual carriage mode the extruder offset provides an override of the
 | 
						|
    // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
 | 
						|
    // This allow soft recalibration of the second extruder offset position without firmware reflash
 | 
						|
    // (through the M218 command).
 | 
						|
    return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
 | 
						|
}
 | 
						|
 | 
						|
static int x_home_dir(int extruder) {
 | 
						|
  return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
 | 
						|
}
 | 
						|
 | 
						|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
 | 
						|
static bool active_extruder_parked = false; // used in mode 1 & 2
 | 
						|
static float raised_parked_position[NUM_AXIS]; // used in mode 1
 | 
						|
static unsigned long delayed_move_time = 0; // used in mode 1
 | 
						|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
 | 
						|
static float duplicate_extruder_temp_offset = 0; // used in mode 2
 | 
						|
bool extruder_duplication_enabled = false; // used in mode 2
 | 
						|
#endif //DUAL_X_CARRIAGE
 | 
						|
 | 
						|
static void axis_is_at_home(int axis) {
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
  if (axis == X_AXIS) {
 | 
						|
    if (active_extruder != 0) {
 | 
						|
      current_position[X_AXIS] = x_home_pos(active_extruder);
 | 
						|
      min_pos[X_AXIS] =          X2_MIN_POS;
 | 
						|
      max_pos[X_AXIS] =          max(extruder_offset[X_AXIS][1], X2_MAX_POS);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
 | 
						|
      current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
 | 
						|
      min_pos[X_AXIS] =          base_min_pos(X_AXIS) + add_homing[X_AXIS];
 | 
						|
      max_pos[X_AXIS] =          min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
 | 
						|
                                  max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
#ifdef SCARA
 | 
						|
   float homeposition[3];
 | 
						|
   char i;
 | 
						|
   
 | 
						|
   if (axis < 2)
 | 
						|
   {
 | 
						|
   
 | 
						|
     for (i=0; i<3; i++)
 | 
						|
     {
 | 
						|
        homeposition[i] = base_home_pos(i); 
 | 
						|
     }  
 | 
						|
  // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
 | 
						|
   //  SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
 | 
						|
   // Works out real Homeposition angles using inverse kinematics, 
 | 
						|
   // and calculates homing offset using forward kinematics
 | 
						|
     calculate_delta(homeposition);
 | 
						|
     
 | 
						|
    // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
     
 | 
						|
     for (i=0; i<2; i++)
 | 
						|
     {
 | 
						|
        delta[i] -= add_homing[i];
 | 
						|
     } 
 | 
						|
     
 | 
						|
    // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
 | 
						|
  // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
 | 
						|
    // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
      
 | 
						|
     calculate_SCARA_forward_Transform(delta);
 | 
						|
     
 | 
						|
    // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
     
 | 
						|
    current_position[axis] = delta[axis];
 | 
						|
    
 | 
						|
    // SCARA home positions are based on configuration since the actual limits are determined by the 
 | 
						|
    // inverse kinematic transform.
 | 
						|
    min_pos[axis] =          base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | 
						|
    max_pos[axis] =          base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | 
						|
   } 
 | 
						|
   else
 | 
						|
   {
 | 
						|
      current_position[axis] = base_home_pos(axis) + add_homing[axis];
 | 
						|
      min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
 | 
						|
      max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
 | 
						|
   }
 | 
						|
#else
 | 
						|
  current_position[axis] = base_home_pos(axis) + add_homing[axis];
 | 
						|
  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
 | 
						|
  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
#ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
#ifndef DELTA
 | 
						|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
 | 
						|
{
 | 
						|
    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
 | 
						|
    planeNormal.debug("planeNormal");
 | 
						|
    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | 
						|
    //bedLevel.debug("bedLevel");
 | 
						|
 | 
						|
    //plan_bed_level_matrix.debug("bed level before");
 | 
						|
    //vector_3 uncorrected_position = plan_get_position_mm();
 | 
						|
    //uncorrected_position.debug("position before");
 | 
						|
 | 
						|
    vector_3 corrected_position = plan_get_position();
 | 
						|
//    corrected_position.debug("position after");
 | 
						|
    current_position[X_AXIS] = corrected_position.x;
 | 
						|
    current_position[Y_AXIS] = corrected_position.y;
 | 
						|
    current_position[Z_AXIS] = corrected_position.z;
 | 
						|
 | 
						|
    // put the bed at 0 so we don't go below it.
 | 
						|
    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
 | 
						|
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#else // not AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
 | 
						|
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
 | 
						|
    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
 | 
						|
    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
 | 
						|
    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
 | 
						|
 | 
						|
    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
 | 
						|
    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
 | 
						|
    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
 | 
						|
    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
 | 
						|
 | 
						|
    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | 
						|
 | 
						|
    vector_3 corrected_position = plan_get_position();
 | 
						|
    current_position[X_AXIS] = corrected_position.x;
 | 
						|
    current_position[Y_AXIS] = corrected_position.y;
 | 
						|
    current_position[Z_AXIS] = corrected_position.z;
 | 
						|
 | 
						|
    // put the bed at 0 so we don't go below it.
 | 
						|
    current_position[Z_AXIS] = zprobe_zoffset;
 | 
						|
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif // AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
static void run_z_probe() {
 | 
						|
  #ifdef DELTA
 | 
						|
    
 | 
						|
    float start_z = current_position[Z_AXIS];
 | 
						|
    long start_steps = st_get_position(Z_AXIS);
 | 
						|
  
 | 
						|
    // move down slowly until you find the bed
 | 
						|
    feedrate = homing_feedrate[Z_AXIS] / 4;
 | 
						|
    destination[Z_AXIS] = -10;
 | 
						|
    prepare_move_raw();
 | 
						|
    st_synchronize();
 | 
						|
    endstops_hit_on_purpose();
 | 
						|
    
 | 
						|
    // we have to let the planner know where we are right now as it is not where we said to go.
 | 
						|
    long stop_steps = st_get_position(Z_AXIS);
 | 
						|
    float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
 | 
						|
    current_position[Z_AXIS] = mm;
 | 
						|
    calculate_delta(current_position);
 | 
						|
    plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
    
 | 
						|
  #else
 | 
						|
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
    feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
    // move down until you find the bed
 | 
						|
    float zPosition = -10;
 | 
						|
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
        // we have to let the planner know where we are right now as it is not where we said to go.
 | 
						|
    zPosition = st_get_position_mm(Z_AXIS);
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
 | 
						|
 | 
						|
    // move up the retract distance
 | 
						|
    zPosition += home_retract_mm(Z_AXIS);
 | 
						|
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    // move back down slowly to find bed
 | 
						|
    
 | 
						|
    if (homing_bump_divisor[Z_AXIS] >= 1)
 | 
						|
    {
 | 
						|
        feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
 | 
						|
    } 
 | 
						|
    else
 | 
						|
    {
 | 
						|
        feedrate = homing_feedrate[Z_AXIS]/10;
 | 
						|
        SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
 | 
						|
    }
 | 
						|
 | 
						|
    
 | 
						|
    zPosition -= home_retract_mm(Z_AXIS) * 2;
 | 
						|
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 | 
						|
    // make sure the planner knows where we are as it may be a bit different than we last said to move to
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
    
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
static void do_blocking_move_to(float x, float y, float z) {
 | 
						|
    float oldFeedRate = feedrate;
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
 | 
						|
    feedrate = XY_TRAVEL_SPEED;
 | 
						|
    
 | 
						|
    destination[X_AXIS] = x;
 | 
						|
    destination[Y_AXIS] = y;
 | 
						|
    destination[Z_AXIS] = z;
 | 
						|
    prepare_move_raw();
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
    feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
    current_position[Z_AXIS] = z;
 | 
						|
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    feedrate = xy_travel_speed;
 | 
						|
 | 
						|
    current_position[X_AXIS] = x;
 | 
						|
    current_position[Y_AXIS] = y;
 | 
						|
    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
    feedrate = oldFeedRate;
 | 
						|
}
 | 
						|
 | 
						|
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
 | 
						|
    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
 | 
						|
}
 | 
						|
 | 
						|
static void setup_for_endstop_move() {
 | 
						|
    saved_feedrate = feedrate;
 | 
						|
    saved_feedmultiply = feedmultiply;
 | 
						|
    feedmultiply = 100;
 | 
						|
    previous_millis_cmd = millis();
 | 
						|
 | 
						|
    enable_endstops(true);
 | 
						|
}
 | 
						|
 | 
						|
static void clean_up_after_endstop_move() {
 | 
						|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
 | 
						|
    enable_endstops(false);
 | 
						|
#endif
 | 
						|
 | 
						|
    feedrate = saved_feedrate;
 | 
						|
    feedmultiply = saved_feedmultiply;
 | 
						|
    previous_millis_cmd = millis();
 | 
						|
}
 | 
						|
 | 
						|
static void engage_z_probe() {
 | 
						|
  // Engage Z Servo endstop if enabled
 | 
						|
  #ifdef SERVO_ENDSTOPS
 | 
						|
    if (servo_endstops[Z_AXIS] > -1) {
 | 
						|
      #if SERVO_LEVELING
 | 
						|
        servos[servo_endstops[Z_AXIS]].attach(0);
 | 
						|
      #endif
 | 
						|
      servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
 | 
						|
      #if SERVO_LEVELING
 | 
						|
        delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | 
						|
        servos[servo_endstops[Z_AXIS]].detach();
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  #elif defined(Z_PROBE_ALLEN_KEY)
 | 
						|
    feedrate = homing_feedrate[X_AXIS];
 | 
						|
    
 | 
						|
    // Move to the start position to initiate deployment
 | 
						|
    destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
 | 
						|
    destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
 | 
						|
    destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
 | 
						|
    prepare_move_raw();
 | 
						|
 | 
						|
    // Home X to touch the belt
 | 
						|
    feedrate = homing_feedrate[X_AXIS]/10;
 | 
						|
    destination[X_AXIS] = 0;
 | 
						|
    prepare_move_raw();
 | 
						|
    
 | 
						|
    // Home Y for safety
 | 
						|
    feedrate = homing_feedrate[X_AXIS]/2;
 | 
						|
    destination[Y_AXIS] = 0;
 | 
						|
    prepare_move_raw();
 | 
						|
    
 | 
						|
    st_synchronize();
 | 
						|
    
 | 
						|
    bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
						|
    if (z_min_endstop)
 | 
						|
    {
 | 
						|
        if (!Stopped)
 | 
						|
        {
 | 
						|
            SERIAL_ERROR_START;
 | 
						|
            SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
 | 
						|
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
						|
        }
 | 
						|
        Stop();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void retract_z_probe() {
 | 
						|
  // Retract Z Servo endstop if enabled
 | 
						|
  #ifdef SERVO_ENDSTOPS
 | 
						|
    if (servo_endstops[Z_AXIS] > -1) {
 | 
						|
      #if SERVO_LEVELING
 | 
						|
        servos[servo_endstops[Z_AXIS]].attach(0);
 | 
						|
      #endif
 | 
						|
      servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
 | 
						|
      #if SERVO_LEVELING
 | 
						|
        delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | 
						|
        servos[servo_endstops[Z_AXIS]].detach();
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  #elif defined(Z_PROBE_ALLEN_KEY)
 | 
						|
    // Move up for safety
 | 
						|
    feedrate = homing_feedrate[X_AXIS];
 | 
						|
    destination[Z_AXIS] = current_position[Z_AXIS] + 20;
 | 
						|
    prepare_move_raw();
 | 
						|
 | 
						|
    // Move to the start position to initiate retraction
 | 
						|
    destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
 | 
						|
    destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
 | 
						|
    destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
 | 
						|
    prepare_move_raw();
 | 
						|
 | 
						|
    // Move the nozzle down to push the probe into retracted position
 | 
						|
    feedrate = homing_feedrate[Z_AXIS]/10;
 | 
						|
    destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
 | 
						|
    prepare_move_raw();
 | 
						|
    
 | 
						|
    // Move up for safety
 | 
						|
    feedrate = homing_feedrate[Z_AXIS]/2;
 | 
						|
    destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
 | 
						|
    prepare_move_raw();
 | 
						|
    
 | 
						|
    // Home XY for safety
 | 
						|
    feedrate = homing_feedrate[X_AXIS]/2;
 | 
						|
    destination[X_AXIS] = 0;
 | 
						|
    destination[Y_AXIS] = 0;
 | 
						|
    prepare_move_raw();
 | 
						|
    
 | 
						|
    st_synchronize();
 | 
						|
    
 | 
						|
    bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
						|
    if (!z_min_endstop)
 | 
						|
    {
 | 
						|
        if (!Stopped)
 | 
						|
        {
 | 
						|
            SERIAL_ERROR_START;
 | 
						|
            SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
 | 
						|
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
						|
        }
 | 
						|
        Stop();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
 | 
						|
 | 
						|
/// Probe bed height at position (x,y), returns the measured z value
 | 
						|
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
 | 
						|
  // move to right place
 | 
						|
  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
 | 
						|
  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
 | 
						|
 | 
						|
  #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
 | 
						|
    if (retract_action & ProbeEngage) engage_z_probe();
 | 
						|
  #endif
 | 
						|
 | 
						|
  run_z_probe();
 | 
						|
  float measured_z = current_position[Z_AXIS];
 | 
						|
 | 
						|
  #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
 | 
						|
    if (retract_action & ProbeRetract) retract_z_probe();
 | 
						|
  #endif
 | 
						|
 | 
						|
  if (verbose_level > 2) {
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_BED);
 | 
						|
    SERIAL_PROTOCOLPGM(" X: ");
 | 
						|
    SERIAL_PROTOCOL(x + 0.0001);
 | 
						|
    SERIAL_PROTOCOLPGM(" Y: ");
 | 
						|
    SERIAL_PROTOCOL(y + 0.0001);
 | 
						|
    SERIAL_PROTOCOLPGM(" Z: ");
 | 
						|
    SERIAL_PROTOCOL(measured_z + 0.0001);
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  return measured_z;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
 | 
						|
  if (bed_level[x][y] != 0.0) {
 | 
						|
    return;  // Don't overwrite good values.
 | 
						|
  }
 | 
						|
  float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y];  // Left to right.
 | 
						|
  float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2];  // Front to back.
 | 
						|
  float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2];  // Diagonal.
 | 
						|
  float median = c;  // Median is robust (ignores outliers).
 | 
						|
  if (a < b) {
 | 
						|
    if (b < c) median = b;
 | 
						|
    if (c < a) median = a;
 | 
						|
  } else {  // b <= a
 | 
						|
    if (c < b) median = b;
 | 
						|
    if (a < c) median = a;
 | 
						|
  }
 | 
						|
  bed_level[x][y] = median;
 | 
						|
}
 | 
						|
 | 
						|
// Fill in the unprobed points (corners of circular print surface)
 | 
						|
// using linear extrapolation, away from the center.
 | 
						|
static void extrapolate_unprobed_bed_level() {
 | 
						|
  int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
 | 
						|
  for (int y = 0; y <= half; y++) {
 | 
						|
    for (int x = 0; x <= half; x++) {
 | 
						|
      if (x + y < 3) continue;
 | 
						|
      extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
 | 
						|
      extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
 | 
						|
      extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
 | 
						|
      extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Print calibration results for plotting or manual frame adjustment.
 | 
						|
static void print_bed_level() {
 | 
						|
  for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | 
						|
    for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | 
						|
      SERIAL_PROTOCOL_F(bed_level[x][y], 2);
 | 
						|
      SERIAL_PROTOCOLPGM(" ");
 | 
						|
    }
 | 
						|
    SERIAL_ECHOLN("");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Reset calibration results to zero.
 | 
						|
void reset_bed_level() {
 | 
						|
  for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | 
						|
    for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | 
						|
      bed_level[x][y] = 0.0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#endif // DELTA
 | 
						|
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
static void homeaxis(int axis) {
 | 
						|
#define HOMEAXIS_DO(LETTER) \
 | 
						|
  ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
 | 
						|
 | 
						|
  if (axis==X_AXIS ? HOMEAXIS_DO(X) :
 | 
						|
      axis==Y_AXIS ? HOMEAXIS_DO(Y) :
 | 
						|
      axis==Z_AXIS ? HOMEAXIS_DO(Z) :
 | 
						|
      0) {
 | 
						|
    int axis_home_dir = home_dir(axis);
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
    if (axis == X_AXIS)
 | 
						|
      axis_home_dir = x_home_dir(active_extruder);
 | 
						|
#endif
 | 
						|
 | 
						|
    current_position[axis] = 0;
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
 | 
						|
 | 
						|
#ifndef Z_PROBE_SLED
 | 
						|
    // Engage Servo endstop if enabled
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      #if SERVO_LEVELING
 | 
						|
        if (axis==Z_AXIS) {
 | 
						|
          engage_z_probe();
 | 
						|
        }
 | 
						|
      else
 | 
						|
      #endif
 | 
						|
      if (servo_endstops[axis] > -1) {
 | 
						|
        servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
#endif // Z_PROBE_SLED
 | 
						|
    destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
 | 
						|
    feedrate = homing_feedrate[axis];
 | 
						|
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    current_position[axis] = 0;
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
    destination[axis] = -home_retract_mm(axis) * axis_home_dir;
 | 
						|
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
 | 
						|
 | 
						|
    if (homing_bump_divisor[axis] >= 1)
 | 
						|
    {
 | 
						|
        feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
 | 
						|
    } 
 | 
						|
    else
 | 
						|
    {
 | 
						|
        feedrate = homing_feedrate[axis]/10;
 | 
						|
        SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
 | 
						|
    }
 | 
						|
 | 
						|
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
#ifdef DELTA
 | 
						|
    // retrace by the amount specified in endstop_adj
 | 
						|
    if (endstop_adj[axis] * axis_home_dir < 0) {
 | 
						|
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
      destination[axis] = endstop_adj[axis];
 | 
						|
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
      st_synchronize();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    axis_is_at_home(axis);
 | 
						|
    destination[axis] = current_position[axis];
 | 
						|
    feedrate = 0.0;
 | 
						|
    endstops_hit_on_purpose();
 | 
						|
    axis_known_position[axis] = true;
 | 
						|
 | 
						|
    // Retract Servo endstop if enabled
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      if (servo_endstops[axis] > -1) {
 | 
						|
        servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
#if SERVO_LEVELING
 | 
						|
  #ifndef Z_PROBE_SLED
 | 
						|
    if (axis==Z_AXIS) retract_z_probe();
 | 
						|
  #endif
 | 
						|
#endif
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
 | 
						|
 | 
						|
void refresh_cmd_timeout(void)
 | 
						|
{
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
  void retract(bool retracting, bool swapretract = false) {
 | 
						|
    if(retracting && !retracted[active_extruder]) {
 | 
						|
      destination[X_AXIS]=current_position[X_AXIS];
 | 
						|
      destination[Y_AXIS]=current_position[Y_AXIS];
 | 
						|
      destination[Z_AXIS]=current_position[Z_AXIS];
 | 
						|
      destination[E_AXIS]=current_position[E_AXIS];
 | 
						|
      if (swapretract) {
 | 
						|
        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
 | 
						|
      } else {
 | 
						|
        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
 | 
						|
      }
 | 
						|
      plan_set_e_position(current_position[E_AXIS]);
 | 
						|
      float oldFeedrate = feedrate;
 | 
						|
      feedrate=retract_feedrate*60;
 | 
						|
      retracted[active_extruder]=true;
 | 
						|
      prepare_move();
 | 
						|
      if(retract_zlift > 0.01) {
 | 
						|
         current_position[Z_AXIS]-=retract_zlift;
 | 
						|
#ifdef DELTA
 | 
						|
         calculate_delta(current_position); // change cartesian kinematic to  delta kinematic;
 | 
						|
         plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
#else
 | 
						|
         plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
#endif
 | 
						|
         prepare_move();
 | 
						|
      }
 | 
						|
      feedrate = oldFeedrate;
 | 
						|
    } else if(!retracting && retracted[active_extruder]) {
 | 
						|
      destination[X_AXIS]=current_position[X_AXIS];
 | 
						|
      destination[Y_AXIS]=current_position[Y_AXIS];
 | 
						|
      destination[Z_AXIS]=current_position[Z_AXIS];
 | 
						|
      destination[E_AXIS]=current_position[E_AXIS];
 | 
						|
      if(retract_zlift > 0.01) {
 | 
						|
         current_position[Z_AXIS]+=retract_zlift;
 | 
						|
#ifdef DELTA
 | 
						|
         calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
 | 
						|
         plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
#else
 | 
						|
         plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
#endif
 | 
						|
         //prepare_move();
 | 
						|
      }
 | 
						|
      if (swapretract) {
 | 
						|
        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
 | 
						|
      } else {
 | 
						|
        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
 | 
						|
      }
 | 
						|
      plan_set_e_position(current_position[E_AXIS]);
 | 
						|
      float oldFeedrate = feedrate;
 | 
						|
      feedrate=retract_recover_feedrate*60;
 | 
						|
      retracted[active_extruder]=false;
 | 
						|
      prepare_move();
 | 
						|
      feedrate = oldFeedrate;
 | 
						|
    }
 | 
						|
  } //retract
 | 
						|
#endif //FWRETRACT
 | 
						|
 | 
						|
#ifdef Z_PROBE_SLED
 | 
						|
 | 
						|
  #ifndef SLED_DOCKING_OFFSET
 | 
						|
    #define SLED_DOCKING_OFFSET 0
 | 
						|
  #endif
 | 
						|
 | 
						|
//
 | 
						|
// Method to dock/undock a sled designed by Charles Bell.
 | 
						|
//
 | 
						|
// dock[in]     If true, move to MAX_X and engage the electromagnet
 | 
						|
// offset[in]   The additional distance to move to adjust docking location
 | 
						|
//
 | 
						|
static void dock_sled(bool dock, int offset=0) {
 | 
						|
 int z_loc;
 | 
						|
 
 | 
						|
 if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
 | 
						|
   LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
   SERIAL_ECHO_START;
 | 
						|
   SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
   return;
 | 
						|
 }
 | 
						|
 | 
						|
 if (dock) {
 | 
						|
   do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
 | 
						|
                       current_position[Y_AXIS],
 | 
						|
                       current_position[Z_AXIS]);
 | 
						|
   // turn off magnet
 | 
						|
   digitalWrite(SERVO0_PIN, LOW);
 | 
						|
 } else {
 | 
						|
   if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
 | 
						|
     z_loc = Z_RAISE_BEFORE_PROBING;
 | 
						|
   else
 | 
						|
     z_loc = current_position[Z_AXIS];
 | 
						|
   do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
 | 
						|
                       Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
 | 
						|
   // turn on magnet
 | 
						|
   digitalWrite(SERVO0_PIN, HIGH);
 | 
						|
 }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 *
 | 
						|
 * G-Code Handler functions
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * G0, G1: Coordinated movement of X Y Z E axes
 | 
						|
 */
 | 
						|
inline void gcode_G0_G1() {
 | 
						|
  if (!Stopped) {
 | 
						|
    get_coordinates(); // For X Y Z E F
 | 
						|
    #ifdef FWRETRACT
 | 
						|
      if (autoretract_enabled)
 | 
						|
      if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
 | 
						|
        float echange = destination[E_AXIS] - current_position[E_AXIS];
 | 
						|
        // Is this move an attempt to retract or recover?
 | 
						|
        if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
 | 
						|
          current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
 | 
						|
          plan_set_e_position(current_position[E_AXIS]);  // AND from the planner
 | 
						|
          retract(!retracted[active_extruder]);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    #endif //FWRETRACT
 | 
						|
    prepare_move();
 | 
						|
    //ClearToSend();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * G2: Clockwise Arc
 | 
						|
 * G3: Counterclockwise Arc
 | 
						|
 */
 | 
						|
inline void gcode_G2_G3(bool clockwise) {
 | 
						|
  if (!Stopped) {
 | 
						|
    get_arc_coordinates();
 | 
						|
    prepare_arc_move(clockwise);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * G4: Dwell S<seconds> or P<milliseconds>
 | 
						|
 */
 | 
						|
inline void gcode_G4() {
 | 
						|
  unsigned long codenum=0;
 | 
						|
 | 
						|
  LCD_MESSAGEPGM(MSG_DWELL);
 | 
						|
 | 
						|
  if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
 | 
						|
  if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
 | 
						|
 | 
						|
  st_synchronize();
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
  codenum += previous_millis_cmd;  // keep track of when we started waiting
 | 
						|
  while(millis() < codenum) {
 | 
						|
    manage_heater();
 | 
						|
    manage_inactivity();
 | 
						|
    lcd_update();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  /**
 | 
						|
   * G10 - Retract filament according to settings of M207
 | 
						|
   * G11 - Recover filament according to settings of M208
 | 
						|
   */
 | 
						|
  inline void gcode_G10_G11(bool doRetract=false) {
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (doRetract) {
 | 
						|
        retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
    retract(doRetract
 | 
						|
     #if EXTRUDERS > 1
 | 
						|
      , retracted_swap[active_extruder]
 | 
						|
     #endif
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
#endif //FWRETRACT
 | 
						|
 | 
						|
/**
 | 
						|
 * G28: Home all axes, one at a time
 | 
						|
 */
 | 
						|
inline void gcode_G28() {
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    #ifdef DELTA
 | 
						|
      reset_bed_level();
 | 
						|
    #else
 | 
						|
      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  saved_feedrate = feedrate;
 | 
						|
  saved_feedmultiply = feedmultiply;
 | 
						|
  feedmultiply = 100;
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
 | 
						|
  enable_endstops(true);
 | 
						|
 | 
						|
  for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
 | 
						|
 | 
						|
  feedrate = 0.0;
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    // A delta can only safely home all axis at the same time
 | 
						|
    // all axis have to home at the same time
 | 
						|
 | 
						|
    // Move all carriages up together until the first endstop is hit.
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
 | 
						|
    feedrate = 1.732 * homing_feedrate[X_AXIS];
 | 
						|
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
    endstops_hit_on_purpose();
 | 
						|
 | 
						|
    // Destination reached
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
 | 
						|
 | 
						|
    // take care of back off and rehome now we are all at the top
 | 
						|
    HOMEAXIS(X);
 | 
						|
    HOMEAXIS(Y);
 | 
						|
    HOMEAXIS(Z);
 | 
						|
 | 
						|
    calculate_delta(current_position);
 | 
						|
    plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
 | 
						|
  #else // NOT DELTA
 | 
						|
 | 
						|
    home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
 | 
						|
 | 
						|
    #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
 | 
						|
      if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
 | 
						|
        HOMEAXIS(Z);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef QUICK_HOME
 | 
						|
      if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) {  //first diagonal move
 | 
						|
        current_position[X_AXIS] = current_position[Y_AXIS] = 0;
 | 
						|
 | 
						|
        #ifndef DUAL_X_CARRIAGE
 | 
						|
          int x_axis_home_dir = home_dir(X_AXIS);
 | 
						|
        #else
 | 
						|
          int x_axis_home_dir = x_home_dir(active_extruder);
 | 
						|
          extruder_duplication_enabled = false;
 | 
						|
        #endif
 | 
						|
 | 
						|
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
 | 
						|
        destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
 | 
						|
        feedrate = homing_feedrate[X_AXIS];
 | 
						|
        if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
 | 
						|
        if (max_length(X_AXIS) > max_length(Y_AXIS)) {
 | 
						|
          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
 | 
						|
        } else {
 | 
						|
          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
 | 
						|
        }
 | 
						|
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
        axis_is_at_home(X_AXIS);
 | 
						|
        axis_is_at_home(Y_AXIS);
 | 
						|
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
        destination[X_AXIS] = current_position[X_AXIS];
 | 
						|
        destination[Y_AXIS] = current_position[Y_AXIS];
 | 
						|
        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
        feedrate = 0.0;
 | 
						|
        st_synchronize();
 | 
						|
        endstops_hit_on_purpose();
 | 
						|
 | 
						|
        current_position[X_AXIS] = destination[X_AXIS];
 | 
						|
        current_position[Y_AXIS] = destination[Y_AXIS];
 | 
						|
        #ifndef SCARA
 | 
						|
          current_position[Z_AXIS] = destination[Z_AXIS];
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    #endif //QUICK_HOME
 | 
						|
 | 
						|
    if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        int tmp_extruder = active_extruder;
 | 
						|
        extruder_duplication_enabled = false;
 | 
						|
        active_extruder = !active_extruder;
 | 
						|
        HOMEAXIS(X);
 | 
						|
        inactive_extruder_x_pos = current_position[X_AXIS];
 | 
						|
        active_extruder = tmp_extruder;
 | 
						|
        HOMEAXIS(X);
 | 
						|
        // reset state used by the different modes
 | 
						|
        memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | 
						|
        delayed_move_time = 0;
 | 
						|
        active_extruder_parked = true;
 | 
						|
      #else
 | 
						|
        HOMEAXIS(X);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
 | 
						|
 | 
						|
    if (code_seen(axis_codes[X_AXIS])) {
 | 
						|
      if (code_value_long() != 0) {
 | 
						|
          current_position[X_AXIS] = code_value()
 | 
						|
            #ifndef SCARA
 | 
						|
              + add_homing[X_AXIS]
 | 
						|
            #endif
 | 
						|
          ;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
 | 
						|
      current_position[Y_AXIS] = code_value()
 | 
						|
        #ifndef SCARA
 | 
						|
          + add_homing[Y_AXIS]
 | 
						|
        #endif
 | 
						|
      ;
 | 
						|
    }
 | 
						|
 | 
						|
    #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
 | 
						|
 | 
						|
      #ifndef Z_SAFE_HOMING
 | 
						|
 | 
						|
        if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
 | 
						|
          #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
 | 
						|
            destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
 | 
						|
            feedrate = max_feedrate[Z_AXIS];
 | 
						|
            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | 
						|
            st_synchronize();
 | 
						|
          #endif
 | 
						|
          HOMEAXIS(Z);
 | 
						|
        }
 | 
						|
 | 
						|
      #else // Z_SAFE_HOMING
 | 
						|
 | 
						|
        if (home_all_axis) {
 | 
						|
          destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
 | 
						|
          destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
 | 
						|
          destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
 | 
						|
          feedrate = XY_TRAVEL_SPEED / 60;
 | 
						|
          current_position[Z_AXIS] = 0;
 | 
						|
 | 
						|
          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
          plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | 
						|
          st_synchronize();
 | 
						|
          current_position[X_AXIS] = destination[X_AXIS];
 | 
						|
          current_position[Y_AXIS] = destination[Y_AXIS];
 | 
						|
 | 
						|
          HOMEAXIS(Z);
 | 
						|
        }
 | 
						|
 | 
						|
        // Let's see if X and Y are homed and probe is inside bed area.
 | 
						|
        if (code_seen(axis_codes[Z_AXIS])) {
 | 
						|
 | 
						|
          if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
 | 
						|
 | 
						|
            float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
 | 
						|
            if (   cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
 | 
						|
              current_position[Z_AXIS] = 0;
 | 
						|
              plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
              destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
 | 
						|
              feedrate = max_feedrate[Z_AXIS];
 | 
						|
              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | 
						|
              st_synchronize();
 | 
						|
              HOMEAXIS(Z);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
 | 
						|
                SERIAL_ECHO_START;
 | 
						|
                SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
            SERIAL_ECHO_START;
 | 
						|
            SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      #endif // Z_SAFE_HOMING
 | 
						|
 | 
						|
    #endif // Z_HOME_DIR < 0
 | 
						|
 | 
						|
 | 
						|
    if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
 | 
						|
      current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
 | 
						|
 | 
						|
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
      if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
 | 
						|
        current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
 | 
						|
    #endif
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
 | 
						|
  #endif // else DELTA
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    calculate_delta(current_position);
 | 
						|
    plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef ENDSTOPS_ONLY_FOR_HOMING
 | 
						|
    enable_endstops(false);
 | 
						|
  #endif
 | 
						|
 | 
						|
  feedrate = saved_feedrate;
 | 
						|
  feedmultiply = saved_feedmultiply;
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
  endstops_hit_on_purpose();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
  // Define the possible boundaries for probing based on set limits
 | 
						|
  #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
 | 
						|
  #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
 | 
						|
  #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
 | 
						|
  #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
 | 
						|
 | 
						|
  #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    // Make sure probing points are reachable
 | 
						|
 | 
						|
    #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
 | 
						|
      #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
 | 
						|
    #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
 | 
						|
      #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
 | 
						|
    #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
 | 
						|
      #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
 | 
						|
    #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
 | 
						|
      #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
 | 
						|
    #endif
 | 
						|
 | 
						|
  #else // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
 | 
						|
      #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
 | 
						|
    #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
 | 
						|
      #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
 | 
						|
    #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
 | 
						|
      #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
 | 
						|
    #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
 | 
						|
      #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
 | 
						|
    #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
 | 
						|
      #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
 | 
						|
    #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
 | 
						|
      #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
 | 
						|
    #endif
 | 
						|
 | 
						|
  #endif // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
  /**
 | 
						|
   * G29: Detailed Z-Probe, probes the bed at 3 or more points.
 | 
						|
   *      Will fail if the printer has not been homed with G28.
 | 
						|
   *
 | 
						|
   * Enhanced G29 Auto Bed Leveling Probe Routine
 | 
						|
   * 
 | 
						|
   * Parameters With AUTO_BED_LEVELING_GRID:
 | 
						|
   *
 | 
						|
   *  P  Set the size of the grid that will be probed (P x P points).
 | 
						|
   *     Not supported by non-linear delta printer bed leveling.
 | 
						|
   *     Example: "G29 P4"
 | 
						|
   *
 | 
						|
   *  S  Set the XY travel speed between probe points (in mm/min)
 | 
						|
   *
 | 
						|
   *  V  Set the verbose level (0-4). Example: "G29 V3"
 | 
						|
   *
 | 
						|
   *  T  Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
 | 
						|
   *     This is useful for manual bed leveling and finding flaws in the bed (to
 | 
						|
   *     assist with part placement).
 | 
						|
   *     Not supported by non-linear delta printer bed leveling.
 | 
						|
   *
 | 
						|
   *  F  Set the Front limit of the probing grid
 | 
						|
   *  B  Set the Back limit of the probing grid
 | 
						|
   *  L  Set the Left limit of the probing grid
 | 
						|
   *  R  Set the Right limit of the probing grid
 | 
						|
   *
 | 
						|
   * Global Parameters:
 | 
						|
   *
 | 
						|
   * E/e By default G29 engages / disengages the probe for each point.
 | 
						|
   *     Include "E" to engage and disengage the probe just once.
 | 
						|
   *     There's no extra effect if you have a fixed probe.
 | 
						|
   *     Usage: "G29 E" or "G29 e"
 | 
						|
   *
 | 
						|
   */
 | 
						|
  inline void gcode_G29() {
 | 
						|
 | 
						|
    // Prevent user from running a G29 without first homing in X and Y
 | 
						|
    if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
 | 
						|
      LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    int verbose_level = 1;
 | 
						|
    float x_tmp, y_tmp, z_tmp, real_z;
 | 
						|
 | 
						|
    if (code_seen('V') || code_seen('v')) {
 | 
						|
      verbose_level = code_value_long();
 | 
						|
      if (verbose_level < 0 || verbose_level > 4) {
 | 
						|
        SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool enhanced_g29 = code_seen('E') || code_seen('e');
 | 
						|
 | 
						|
    #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #ifndef DELTA
 | 
						|
      bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
 | 
						|
    #endif
 | 
						|
 | 
						|
      if (verbose_level > 0)
 | 
						|
        SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
 | 
						|
 | 
						|
      int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
 | 
						|
      #ifndef DELTA
 | 
						|
        if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
 | 
						|
        if (auto_bed_leveling_grid_points < 2) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
 | 
						|
      xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
 | 
						|
 | 
						|
      int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
 | 
						|
          right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
 | 
						|
          front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
 | 
						|
          back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
 | 
						|
 | 
						|
      bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
 | 
						|
           left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
 | 
						|
           right_out_r = right_probe_bed_position > MAX_PROBE_X,
 | 
						|
           right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
 | 
						|
           front_out_f = front_probe_bed_position < MIN_PROBE_Y,
 | 
						|
           front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
 | 
						|
           back_out_b = back_probe_bed_position > MAX_PROBE_Y,
 | 
						|
           back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
 | 
						|
      if (left_out || right_out || front_out || back_out) {
 | 
						|
        if (left_out) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
 | 
						|
          left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (right_out) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
 | 
						|
          right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (front_out) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
 | 
						|
          front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (back_out) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
 | 
						|
          back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #ifdef Z_PROBE_SLED
 | 
						|
      dock_sled(false); // engage (un-dock) the probe
 | 
						|
    #elif not defined(SERVO_ENDSTOPS)
 | 
						|
      engage_z_probe();
 | 
						|
    #endif
 | 
						|
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    reset_bed_level();
 | 
						|
  #else
 | 
						|
    // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
 | 
						|
    //vector_3 corrected_position = plan_get_position_mm();
 | 
						|
    //corrected_position.debug("position before G29");
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
    vector_3 uncorrected_position = plan_get_position();
 | 
						|
    //uncorrected_position.debug("position during G29");
 | 
						|
    current_position[X_AXIS] = uncorrected_position.x;
 | 
						|
    current_position[Y_AXIS] = uncorrected_position.y;
 | 
						|
    current_position[Z_AXIS] = uncorrected_position.z;
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
  #endif
 | 
						|
 | 
						|
    setup_for_endstop_move();
 | 
						|
 | 
						|
    feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
    #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
      // probe at the points of a lattice grid
 | 
						|
      const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
 | 
						|
      const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
 | 
						|
 | 
						|
    #ifndef DELTA
 | 
						|
      // solve the plane equation ax + by + d = z
 | 
						|
      // A is the matrix with rows [x y 1] for all the probed points
 | 
						|
      // B is the vector of the Z positions
 | 
						|
      // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | 
						|
      // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | 
						|
 | 
						|
      int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
 | 
						|
 | 
						|
      double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
 | 
						|
             eqnBVector[abl2],     // "B" vector of Z points
 | 
						|
             mean = 0.0;
 | 
						|
 | 
						|
    #else
 | 
						|
      delta_grid_spacing[0] = xGridSpacing;
 | 
						|
      delta_grid_spacing[1] = yGridSpacing;
 | 
						|
 | 
						|
      float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (code_seen(axis_codes[Z_AXIS])) {
 | 
						|
        z_offset += code_value();
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
      int probePointCounter = 0;
 | 
						|
      bool zig = true;
 | 
						|
 | 
						|
      for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
 | 
						|
      {
 | 
						|
        double yProbe = front_probe_bed_position + yGridSpacing * yCount;
 | 
						|
        int xStart, xStop, xInc;
 | 
						|
 | 
						|
        if (zig)
 | 
						|
        {
 | 
						|
          xStart = 0;
 | 
						|
          xStop = auto_bed_leveling_grid_points;
 | 
						|
          xInc = 1;
 | 
						|
          zig = false;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          xStart = auto_bed_leveling_grid_points - 1;
 | 
						|
          xStop = -1;
 | 
						|
          xInc = -1;
 | 
						|
          zig = true;
 | 
						|
        }
 | 
						|
 | 
						|
      #ifndef DELTA
 | 
						|
        // If topo_flag is set then don't zig-zag. Just scan in one direction.
 | 
						|
        // This gets the probe points in more readable order.
 | 
						|
        if (!topo_flag) zig = !zig;
 | 
						|
      #endif
 | 
						|
 | 
						|
        for (int xCount=xStart; xCount != xStop; xCount += xInc)
 | 
						|
        {
 | 
						|
          double xProbe = left_probe_bed_position + xGridSpacing * xCount;
 | 
						|
 | 
						|
          // raise extruder
 | 
						|
          float measured_z,
 | 
						|
                z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
 | 
						|
 | 
						|
        #ifdef DELTA
 | 
						|
          // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
 | 
						|
          float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
 | 
						|
          if (distance_from_center > DELTA_PROBABLE_RADIUS)
 | 
						|
            continue;
 | 
						|
        #endif //DELTA
 | 
						|
 | 
						|
          // Enhanced G29 - Do not retract servo between probes
 | 
						|
          ProbeAction act;
 | 
						|
          if (enhanced_g29) {
 | 
						|
            if (yProbe == front_probe_bed_position && xCount == 0)
 | 
						|
              act = ProbeEngage;
 | 
						|
            else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
 | 
						|
              act = ProbeRetract;
 | 
						|
            else
 | 
						|
              act = ProbeStay;
 | 
						|
          }
 | 
						|
          else
 | 
						|
            act = ProbeEngageRetract;
 | 
						|
 | 
						|
          measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
 | 
						|
 | 
						|
        #ifndef DELTA
 | 
						|
          mean += measured_z;
 | 
						|
 | 
						|
          eqnBVector[probePointCounter] = measured_z;
 | 
						|
          eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
 | 
						|
          eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
 | 
						|
          eqnAMatrix[probePointCounter + 2 * abl2] = 1;
 | 
						|
        #else
 | 
						|
          bed_level[xCount][yCount] = measured_z + z_offset;
 | 
						|
        #endif
 | 
						|
 | 
						|
          probePointCounter++;
 | 
						|
        } //xProbe
 | 
						|
      } //yProbe
 | 
						|
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
 | 
						|
    #ifndef DELTA
 | 
						|
      // solve lsq problem
 | 
						|
      double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
 | 
						|
 | 
						|
      mean /= abl2;
 | 
						|
 | 
						|
      if (verbose_level) {
 | 
						|
        SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | 
						|
        SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
 | 
						|
        SERIAL_PROTOCOLPGM(" b: ");
 | 
						|
        SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
 | 
						|
        SERIAL_PROTOCOLPGM(" d: ");
 | 
						|
        SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
 | 
						|
        SERIAL_EOL;
 | 
						|
        if (verbose_level > 2) {
 | 
						|
          SERIAL_PROTOCOLPGM("Mean of sampled points: ");
 | 
						|
          SERIAL_PROTOCOL_F(mean, 8);
 | 
						|
          SERIAL_EOL;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (topo_flag) {
 | 
						|
 | 
						|
        int xx, yy;
 | 
						|
 | 
						|
        SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
 | 
						|
        #if TOPO_ORIGIN == OriginFrontLeft
 | 
						|
          SERIAL_PROTOCOLPGM("+-----------+\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|...Back....|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|Left..Right|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|...Front...|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("+-----------+\n");
 | 
						|
          for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
 | 
						|
        #else
 | 
						|
          for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
 | 
						|
        #endif
 | 
						|
          {
 | 
						|
            #if TOPO_ORIGIN == OriginBackRight
 | 
						|
              for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
 | 
						|
            #else
 | 
						|
              for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
 | 
						|
            #endif
 | 
						|
              {
 | 
						|
                int ind =
 | 
						|
                  #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
 | 
						|
                    yy * auto_bed_leveling_grid_points + xx
 | 
						|
                  #elif TOPO_ORIGIN == OriginBackLeft
 | 
						|
                    xx * auto_bed_leveling_grid_points + yy
 | 
						|
                  #elif TOPO_ORIGIN == OriginFrontRight
 | 
						|
                    abl2 - xx * auto_bed_leveling_grid_points - yy - 1
 | 
						|
                  #endif
 | 
						|
                ;
 | 
						|
                float diff = eqnBVector[ind] - mean;
 | 
						|
                if (diff >= 0.0)
 | 
						|
                  SERIAL_PROTOCOLPGM(" +");   // Include + for column alignment
 | 
						|
                else
 | 
						|
                  SERIAL_PROTOCOLPGM(" ");
 | 
						|
                SERIAL_PROTOCOL_F(diff, 5);
 | 
						|
              } // xx
 | 
						|
              SERIAL_EOL;
 | 
						|
          } // yy
 | 
						|
          SERIAL_EOL;
 | 
						|
 | 
						|
      } //topo_flag
 | 
						|
 | 
						|
 | 
						|
      set_bed_level_equation_lsq(plane_equation_coefficients);
 | 
						|
      free(plane_equation_coefficients);
 | 
						|
    #else
 | 
						|
      extrapolate_unprobed_bed_level();
 | 
						|
      print_bed_level();
 | 
						|
    #endif
 | 
						|
 | 
						|
    #else // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
      // Probe at 3 arbitrary points
 | 
						|
      float z_at_pt_1, z_at_pt_2, z_at_pt_3;
 | 
						|
 | 
						|
      if (enhanced_g29) {
 | 
						|
        // Basic Enhanced G29
 | 
						|
        z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
 | 
						|
        z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
 | 
						|
        z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level);
 | 
						|
        z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
 | 
						|
        z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
 | 
						|
      }
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
      set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
 | 
						|
 | 
						|
    #endif // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
  #ifndef DELTA
 | 
						|
    if (verbose_level > 0)
 | 
						|
      plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
 | 
						|
 | 
						|
    // Correct the Z height difference from z-probe position and hotend tip position.
 | 
						|
    // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
 | 
						|
    // When the bed is uneven, this height must be corrected.
 | 
						|
    real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
 | 
						|
    x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
    y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
    z_tmp = current_position[Z_AXIS];
 | 
						|
 | 
						|
    apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
 | 
						|
    current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
 | 
						|
    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef Z_PROBE_SLED
 | 
						|
    dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
 | 
						|
  #elif not defined(SERVO_ENDSTOPS)
 | 
						|
    retract_z_probe();
 | 
						|
  #endif
 | 
						|
    
 | 
						|
  #ifdef Z_PROBE_END_SCRIPT
 | 
						|
    enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
 | 
						|
    st_synchronize();
 | 
						|
  #endif
 | 
						|
  }
 | 
						|
 | 
						|
  #ifndef Z_PROBE_SLED
 | 
						|
 | 
						|
    inline void gcode_G30() {
 | 
						|
      engage_z_probe(); // Engage Z Servo endstop if available
 | 
						|
      st_synchronize();
 | 
						|
      // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
 | 
						|
      setup_for_endstop_move();
 | 
						|
 | 
						|
      feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
      run_z_probe();
 | 
						|
      SERIAL_PROTOCOLPGM(MSG_BED);
 | 
						|
      SERIAL_PROTOCOLPGM(" X: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
 | 
						|
      SERIAL_PROTOCOLPGM(" Y: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
 | 
						|
      SERIAL_PROTOCOLPGM(" Z: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
 | 
						|
      SERIAL_EOL;
 | 
						|
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
      retract_z_probe(); // Retract Z Servo endstop if available
 | 
						|
    }
 | 
						|
 | 
						|
  #endif //!Z_PROBE_SLED
 | 
						|
 | 
						|
#endif //ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
/**
 | 
						|
 * G92: Set current position to given X Y Z E
 | 
						|
 */
 | 
						|
inline void gcode_G92() {
 | 
						|
  if (!code_seen(axis_codes[E_AXIS]))
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
  for (int i=0;i<NUM_AXIS;i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      if (i == E_AXIS) {
 | 
						|
        current_position[i] = code_value();
 | 
						|
        plan_set_e_position(current_position[E_AXIS]);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        current_position[i] = code_value() +
 | 
						|
          #ifdef SCARA
 | 
						|
            ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
 | 
						|
          #else
 | 
						|
            add_homing[i]
 | 
						|
          #endif
 | 
						|
        ;
 | 
						|
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ULTIPANEL
 | 
						|
 | 
						|
  /**
 | 
						|
   * M0: // M0 - Unconditional stop - Wait for user button press on LCD
 | 
						|
   * M1: // M1 - Conditional stop - Wait for user button press on LCD
 | 
						|
   */
 | 
						|
  inline void gcode_M0_M1() {
 | 
						|
    char *src = strchr_pointer + 2;
 | 
						|
 | 
						|
    unsigned long codenum = 0;
 | 
						|
    bool hasP = false, hasS = false;
 | 
						|
    if (code_seen('P')) {
 | 
						|
      codenum = code_value(); // milliseconds to wait
 | 
						|
      hasP = codenum > 0;
 | 
						|
    }
 | 
						|
    if (code_seen('S')) {
 | 
						|
      codenum = code_value() * 1000; // seconds to wait
 | 
						|
      hasS = codenum > 0;
 | 
						|
    }
 | 
						|
    char* starpos = strchr(src, '*');
 | 
						|
    if (starpos != NULL) *(starpos) = '\0';
 | 
						|
    while (*src == ' ') ++src;
 | 
						|
    if (!hasP && !hasS && *src != '\0')
 | 
						|
      lcd_setstatus(src);
 | 
						|
    else
 | 
						|
      LCD_MESSAGEPGM(MSG_USERWAIT);
 | 
						|
 | 
						|
    lcd_ignore_click();
 | 
						|
    st_synchronize();
 | 
						|
    previous_millis_cmd = millis();
 | 
						|
    if (codenum > 0) {
 | 
						|
      codenum += previous_millis_cmd;  // keep track of when we started waiting
 | 
						|
      while(millis() < codenum && !lcd_clicked()) {
 | 
						|
        manage_heater();
 | 
						|
        manage_inactivity();
 | 
						|
        lcd_update();
 | 
						|
      }
 | 
						|
      lcd_ignore_click(false);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (!lcd_detected()) return;
 | 
						|
      while (!lcd_clicked()) {
 | 
						|
        manage_heater();
 | 
						|
        manage_inactivity();
 | 
						|
        lcd_update();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (IS_SD_PRINTING)
 | 
						|
      LCD_MESSAGEPGM(MSG_RESUMING);
 | 
						|
    else
 | 
						|
      LCD_MESSAGEPGM(WELCOME_MSG);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ULTIPANEL
 | 
						|
 | 
						|
/**
 | 
						|
 * M17: Enable power on all stepper motors
 | 
						|
 */
 | 
						|
inline void gcode_M17() {
 | 
						|
  LCD_MESSAGEPGM(MSG_NO_MOVE);
 | 
						|
  enable_x();
 | 
						|
  enable_y();
 | 
						|
  enable_z();
 | 
						|
  enable_e0();
 | 
						|
  enable_e1();
 | 
						|
  enable_e2();
 | 
						|
  enable_e3();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M20: List SD card to serial output
 | 
						|
   */
 | 
						|
  inline void gcode_M20() {
 | 
						|
    SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
 | 
						|
    card.ls();
 | 
						|
    SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M21: Init SD Card
 | 
						|
   */
 | 
						|
  inline void gcode_M21() {
 | 
						|
    card.initsd();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M22: Release SD Card
 | 
						|
   */
 | 
						|
  inline void gcode_M22() {
 | 
						|
    card.release();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M23: Select a file
 | 
						|
   */
 | 
						|
  inline void gcode_M23() {
 | 
						|
    char* codepos = strchr_pointer + 4;
 | 
						|
    char* starpos = strchr(codepos, '*');
 | 
						|
    if (starpos) *starpos = '\0';
 | 
						|
    card.openFile(codepos, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M24: Start SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M24() {
 | 
						|
    card.startFileprint();
 | 
						|
    starttime = millis();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M25: Pause SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M25() {
 | 
						|
    card.pauseSDPrint();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M26: Set SD Card file index
 | 
						|
   */
 | 
						|
  inline void gcode_M26() {
 | 
						|
    if (card.cardOK && code_seen('S'))
 | 
						|
      card.setIndex(code_value_long());
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M27: Get SD Card status
 | 
						|
   */
 | 
						|
  inline void gcode_M27() {
 | 
						|
    card.getStatus();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M28: Start SD Write
 | 
						|
   */
 | 
						|
  inline void gcode_M28() {
 | 
						|
    char* codepos = strchr_pointer + 4;
 | 
						|
    char* starpos = strchr(codepos, '*');
 | 
						|
    if (starpos) {
 | 
						|
      char* npos = strchr(cmdbuffer[bufindr], 'N');
 | 
						|
      strchr_pointer = strchr(npos, ' ') + 1;
 | 
						|
      *(starpos) = '\0';
 | 
						|
    }
 | 
						|
    card.openFile(codepos, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M29: Stop SD Write
 | 
						|
   * Processed in write to file routine above
 | 
						|
   */
 | 
						|
  inline void gcode_M29() {
 | 
						|
    // card.saving = false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M30 <filename>: Delete SD Card file
 | 
						|
   */
 | 
						|
  inline void gcode_M30() {
 | 
						|
    if (card.cardOK) {
 | 
						|
      card.closefile();
 | 
						|
      char* starpos = strchr(strchr_pointer + 4, '*');
 | 
						|
      if (starpos) {
 | 
						|
        char* npos = strchr(cmdbuffer[bufindr], 'N');
 | 
						|
        strchr_pointer = strchr(npos, ' ') + 1;
 | 
						|
        *(starpos) = '\0';
 | 
						|
      }
 | 
						|
      card.removeFile(strchr_pointer + 4);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * M31: Get the time since the start of SD Print (or last M109)
 | 
						|
 */
 | 
						|
inline void gcode_M31() {
 | 
						|
  stoptime = millis();
 | 
						|
  unsigned long t = (stoptime - starttime) / 1000;
 | 
						|
  int min = t / 60, sec = t % 60;
 | 
						|
  char time[30];
 | 
						|
  sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOLN(time);
 | 
						|
  lcd_setstatus(time);
 | 
						|
  autotempShutdown();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M32: Select file and start SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M32() {
 | 
						|
    if (card.sdprinting)
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
    char* codepos = strchr_pointer + 4;
 | 
						|
 | 
						|
    char* namestartpos = strchr(codepos, '!');   //find ! to indicate filename string start.
 | 
						|
    if (! namestartpos)
 | 
						|
      namestartpos = codepos; //default name position, 4 letters after the M
 | 
						|
    else
 | 
						|
      namestartpos++; //to skip the '!'
 | 
						|
 | 
						|
    char* starpos = strchr(codepos, '*');
 | 
						|
    if (starpos) *(starpos) = '\0';
 | 
						|
 | 
						|
    bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
 | 
						|
 | 
						|
    if (card.cardOK) {
 | 
						|
      card.openFile(namestartpos, true, !call_procedure);
 | 
						|
 | 
						|
      if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
 | 
						|
        card.setIndex(code_value_long());
 | 
						|
 | 
						|
      card.startFileprint();
 | 
						|
      if (!call_procedure)
 | 
						|
        starttime = millis(); //procedure calls count as normal print time.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M928: Start SD Write
 | 
						|
   */
 | 
						|
  inline void gcode_M928() {
 | 
						|
    char* starpos = strchr(strchr_pointer + 5, '*');
 | 
						|
    if (starpos) {
 | 
						|
      char* npos = strchr(cmdbuffer[bufindr], 'N');
 | 
						|
      strchr_pointer = strchr(npos, ' ') + 1;
 | 
						|
      *(starpos) = '\0';
 | 
						|
    }
 | 
						|
    card.openLogFile(strchr_pointer + 5);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // SDSUPPORT
 | 
						|
 | 
						|
/**
 | 
						|
 * M42: Change pin status via GCode
 | 
						|
 */
 | 
						|
inline void gcode_M42() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    int pin_status = code_value(),
 | 
						|
        pin_number = LED_PIN;
 | 
						|
 | 
						|
    if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
 | 
						|
      pin_number = code_value();
 | 
						|
 | 
						|
    for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
 | 
						|
      if (sensitive_pins[i] == pin_number) {
 | 
						|
        pin_number = -1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    #if defined(FAN_PIN) && FAN_PIN > -1
 | 
						|
      if (pin_number == FAN_PIN) fanSpeed = pin_status;
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (pin_number > -1) {
 | 
						|
      pinMode(pin_number, OUTPUT);
 | 
						|
      digitalWrite(pin_number, pin_status);
 | 
						|
      analogWrite(pin_number, pin_status);
 | 
						|
    }
 | 
						|
  } // code_seen('S')
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
 | 
						|
 | 
						|
  #if Z_MIN_PIN == -1
 | 
						|
    #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
 | 
						|
  #endif
 | 
						|
 | 
						|
  /**
 | 
						|
   * M48: Z-Probe repeatability measurement function.
 | 
						|
   *
 | 
						|
   * Usage:
 | 
						|
   *   M48 <n#> <X#> <Y#> <V#> <E> <L#>
 | 
						|
   *     n = Number of samples (4-50, default 10)
 | 
						|
   *     X = Sample X position
 | 
						|
   *     Y = Sample Y position
 | 
						|
   *     V = Verbose level (0-4, default=1)
 | 
						|
   *     E = Engage probe for each reading
 | 
						|
   *     L = Number of legs of movement before probe
 | 
						|
   *  
 | 
						|
   * This function assumes the bed has been homed.  Specificaly, that a G28 command
 | 
						|
   * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
 | 
						|
   * Any information generated by a prior G29 Bed leveling command will be lost and need to be
 | 
						|
   * regenerated.
 | 
						|
   *
 | 
						|
   * The number of samples will default to 10 if not specified.  You can use upper or lower case
 | 
						|
   * letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
 | 
						|
   * N for its communication protocol and will get horribly confused if you send it a capital N.
 | 
						|
   */
 | 
						|
  inline void gcode_M48() {
 | 
						|
 | 
						|
    double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
 | 
						|
    int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
 | 
						|
    double X_current, Y_current, Z_current;
 | 
						|
    double X_probe_location, Y_probe_location, Z_start_location, ext_position;
 | 
						|
    
 | 
						|
    if (code_seen('V') || code_seen('v')) {
 | 
						|
      verbose_level = code_value();
 | 
						|
      if (verbose_level < 0 || verbose_level > 4 ) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose_level > 0)
 | 
						|
      SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
 | 
						|
 | 
						|
    if (code_seen('n')) {
 | 
						|
      n_samples = code_value();
 | 
						|
      if (n_samples < 4 || n_samples > 50) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    X_current = X_probe_location = st_get_position_mm(X_AXIS);
 | 
						|
    Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
 | 
						|
    Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
    Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
 | 
						|
    ext_position = st_get_position_mm(E_AXIS);
 | 
						|
 | 
						|
    if (code_seen('E') || code_seen('e'))
 | 
						|
      engage_probe_for_each_reading++;
 | 
						|
 | 
						|
    if (code_seen('X') || code_seen('x')) {
 | 
						|
      X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (code_seen('Y') || code_seen('y')) {
 | 
						|
      Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (code_seen('L') || code_seen('l')) {
 | 
						|
      n_legs = code_value();
 | 
						|
      if (n_legs == 1) n_legs = 2;
 | 
						|
      if (n_legs < 0 || n_legs > 15) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Do all the preliminary setup work.   First raise the probe.
 | 
						|
    //
 | 
						|
 | 
						|
    st_synchronize();
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
    plan_buffer_line(X_current, Y_current, Z_start_location,
 | 
						|
        ext_position,
 | 
						|
        homing_feedrate[Z_AXIS] / 60,
 | 
						|
        active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    //
 | 
						|
    // Now get everything to the specified probe point So we can safely do a probe to
 | 
						|
    // get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
 | 
						|
    // use that as a starting point for each probe.
 | 
						|
    //
 | 
						|
    if (verbose_level > 2)
 | 
						|
      SERIAL_PROTOCOL("Positioning probe for the test.\n");
 | 
						|
 | 
						|
    plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | 
						|
        ext_position,
 | 
						|
        homing_feedrate[X_AXIS]/60,
 | 
						|
        active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
 | 
						|
    current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
    current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
 | 
						|
 | 
						|
    // 
 | 
						|
    // OK, do the inital probe to get us close to the bed.
 | 
						|
    // Then retrace the right amount and use that in subsequent probes
 | 
						|
    //
 | 
						|
 | 
						|
    engage_z_probe();
 | 
						|
 | 
						|
    setup_for_endstop_move();
 | 
						|
    run_z_probe();
 | 
						|
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
    Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
 | 
						|
 | 
						|
    plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | 
						|
        ext_position,
 | 
						|
        homing_feedrate[X_AXIS]/60,
 | 
						|
        active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
 | 
						|
    if (engage_probe_for_each_reading) retract_z_probe();
 | 
						|
 | 
						|
    for (n=0; n < n_samples; n++) {
 | 
						|
 | 
						|
      do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
 | 
						|
 | 
						|
      if (n_legs) {
 | 
						|
        double radius=0.0, theta=0.0, x_sweep, y_sweep;
 | 
						|
        int l;
 | 
						|
        int rotational_direction = (unsigned long) millis() & 0x0001;     // clockwise or counter clockwise
 | 
						|
        radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4);      // limit how far out to go
 | 
						|
        theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
 | 
						|
 | 
						|
        //SERIAL_ECHOPAIR("starting radius: ",radius);
 | 
						|
        //SERIAL_ECHOPAIR("   theta: ",theta);
 | 
						|
        //SERIAL_ECHOPAIR("   direction: ",rotational_direction);
 | 
						|
        //SERIAL_PROTOCOLLNPGM("");
 | 
						|
 | 
						|
        float dir = rotational_direction ? 1 : -1;
 | 
						|
        for (l = 0; l < n_legs - 1; l++) {
 | 
						|
          theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
 | 
						|
 | 
						|
          radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
 | 
						|
          if (radius < 0.0) radius = -radius;
 | 
						|
 | 
						|
          X_current = X_probe_location + cos(theta) * radius;
 | 
						|
          Y_current = Y_probe_location + sin(theta) * radius;
 | 
						|
 | 
						|
          // Make sure our X & Y are sane
 | 
						|
          X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
 | 
						|
          Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
 | 
						|
 | 
						|
          if (verbose_level > 3) {
 | 
						|
            SERIAL_ECHOPAIR("x: ", X_current);
 | 
						|
            SERIAL_ECHOPAIR("y: ", Y_current);
 | 
						|
            SERIAL_PROTOCOLLNPGM("");
 | 
						|
          }
 | 
						|
 | 
						|
          do_blocking_move_to( X_current, Y_current, Z_current );
 | 
						|
        }
 | 
						|
        do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
 | 
						|
      }
 | 
						|
 | 
						|
      if (engage_probe_for_each_reading)  {
 | 
						|
        engage_z_probe(); 
 | 
						|
        delay(1000);
 | 
						|
      }
 | 
						|
 | 
						|
      setup_for_endstop_move();
 | 
						|
      run_z_probe();
 | 
						|
 | 
						|
      sample_set[n] = current_position[Z_AXIS];
 | 
						|
 | 
						|
      //
 | 
						|
      // Get the current mean for the data points we have so far
 | 
						|
      //
 | 
						|
      sum = 0.0;
 | 
						|
      for (j=0; j<=n; j++) sum += sample_set[j];
 | 
						|
      mean = sum / (double (n+1));
 | 
						|
 | 
						|
      //
 | 
						|
      // Now, use that mean to calculate the standard deviation for the
 | 
						|
      // data points we have so far
 | 
						|
      //
 | 
						|
      sum = 0.0;
 | 
						|
      for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
 | 
						|
      sigma = sqrt( sum / (double (n+1)) );
 | 
						|
 | 
						|
      if (verbose_level > 1) {
 | 
						|
        SERIAL_PROTOCOL(n+1);
 | 
						|
        SERIAL_PROTOCOL(" of ");
 | 
						|
        SERIAL_PROTOCOL(n_samples);
 | 
						|
        SERIAL_PROTOCOLPGM("   z: ");
 | 
						|
        SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
 | 
						|
      }
 | 
						|
 | 
						|
      if (verbose_level > 2) {
 | 
						|
        SERIAL_PROTOCOL(" mean: ");
 | 
						|
        SERIAL_PROTOCOL_F(mean,6);
 | 
						|
        SERIAL_PROTOCOL("   sigma: ");
 | 
						|
        SERIAL_PROTOCOL_F(sigma,6);
 | 
						|
      }
 | 
						|
 | 
						|
      if (verbose_level > 0) SERIAL_EOL;
 | 
						|
 | 
						|
      plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
 | 
						|
          current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      if (engage_probe_for_each_reading) {
 | 
						|
        retract_z_probe();  
 | 
						|
        delay(1000);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    retract_z_probe();
 | 
						|
    delay(1000);
 | 
						|
 | 
						|
    clean_up_after_endstop_move();
 | 
						|
 | 
						|
    // enable_endstops(true);
 | 
						|
 | 
						|
    if (verbose_level > 0) {
 | 
						|
      SERIAL_PROTOCOLPGM("Mean: ");
 | 
						|
      SERIAL_PROTOCOL_F(mean, 6);
 | 
						|
      SERIAL_EOL;
 | 
						|
    }
 | 
						|
 | 
						|
    SERIAL_PROTOCOLPGM("Standard Deviation: ");
 | 
						|
    SERIAL_PROTOCOL_F(sigma, 6);
 | 
						|
    SERIAL_EOL; SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
 | 
						|
 | 
						|
/**
 | 
						|
 * M104: Set hot end temperature
 | 
						|
 */
 | 
						|
inline void gcode_M104() {
 | 
						|
  if (setTargetedHotend(104)) return;
 | 
						|
 | 
						|
  if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
 | 
						|
  #ifdef DUAL_X_CARRIAGE
 | 
						|
    if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
 | 
						|
      setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
 | 
						|
  #endif
 | 
						|
  setWatch();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M105: Read hot end and bed temperature
 | 
						|
 */
 | 
						|
inline void gcode_M105() {
 | 
						|
  if (setTargetedHotend(105)) return;
 | 
						|
 | 
						|
  #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM("ok T:");
 | 
						|
    SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
 | 
						|
    SERIAL_PROTOCOLPGM(" /");
 | 
						|
    SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
 | 
						|
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
      SERIAL_PROTOCOLPGM(" B:");
 | 
						|
      SERIAL_PROTOCOL_F(degBed(),1);
 | 
						|
      SERIAL_PROTOCOLPGM(" /");
 | 
						|
      SERIAL_PROTOCOL_F(degTargetBed(),1);
 | 
						|
    #endif //TEMP_BED_PIN
 | 
						|
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | 
						|
      SERIAL_PROTOCOLPGM(" T");
 | 
						|
      SERIAL_PROTOCOL(cur_extruder);
 | 
						|
      SERIAL_PROTOCOLPGM(":");
 | 
						|
      SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
 | 
						|
      SERIAL_PROTOCOLPGM(" /");
 | 
						|
      SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
 | 
						|
    }
 | 
						|
  #else
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(" @:");
 | 
						|
  #ifdef EXTRUDER_WATTS
 | 
						|
    SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
 | 
						|
    SERIAL_PROTOCOLPGM("W");
 | 
						|
  #else
 | 
						|
    SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(" B@:");
 | 
						|
  #ifdef BED_WATTS
 | 
						|
    SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
 | 
						|
    SERIAL_PROTOCOLPGM("W");
 | 
						|
  #else
 | 
						|
    SERIAL_PROTOCOL(getHeaterPower(-1));
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef SHOW_TEMP_ADC_VALUES
 | 
						|
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
      SERIAL_PROTOCOLPGM("    ADC B:");
 | 
						|
      SERIAL_PROTOCOL_F(degBed(),1);
 | 
						|
      SERIAL_PROTOCOLPGM("C->");
 | 
						|
      SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
 | 
						|
    #endif
 | 
						|
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | 
						|
      SERIAL_PROTOCOLPGM("  T");
 | 
						|
      SERIAL_PROTOCOL(cur_extruder);
 | 
						|
      SERIAL_PROTOCOLPGM(":");
 | 
						|
      SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
 | 
						|
      SERIAL_PROTOCOLPGM("C->");
 | 
						|
      SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_PROTOCOLLN("");
 | 
						|
}
 | 
						|
 | 
						|
#if defined(FAN_PIN) && FAN_PIN > -1
 | 
						|
 | 
						|
  /**
 | 
						|
   * M106: Set Fan Speed
 | 
						|
   */
 | 
						|
  inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M107: Fan Off
 | 
						|
   */
 | 
						|
  inline void gcode_M107() { fanSpeed = 0; }
 | 
						|
 | 
						|
#endif //FAN_PIN
 | 
						|
 | 
						|
/**
 | 
						|
 * M109: Wait for extruder(s) to reach temperature
 | 
						|
 */
 | 
						|
inline void gcode_M109() {
 | 
						|
  if (setTargetedHotend(109)) return;
 | 
						|
 | 
						|
  LCD_MESSAGEPGM(MSG_HEATING);
 | 
						|
 | 
						|
  CooldownNoWait = code_seen('S');
 | 
						|
  if (CooldownNoWait || code_seen('R')) {
 | 
						|
    setTargetHotend(code_value(), tmp_extruder);
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
 | 
						|
        setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef AUTOTEMP
 | 
						|
    autotemp_enabled = code_seen('F');
 | 
						|
    if (autotemp_enabled) autotemp_factor = code_value();
 | 
						|
    if (code_seen('S')) autotemp_min = code_value();
 | 
						|
    if (code_seen('B')) autotemp_max = code_value();
 | 
						|
  #endif
 | 
						|
 | 
						|
  setWatch();
 | 
						|
 | 
						|
  unsigned long timetemp = millis();
 | 
						|
 | 
						|
  /* See if we are heating up or cooling down */
 | 
						|
  target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
 | 
						|
 | 
						|
  cancel_heatup = false;
 | 
						|
 | 
						|
  #ifdef TEMP_RESIDENCY_TIME
 | 
						|
    long residencyStart = -1;
 | 
						|
    /* continue to loop until we have reached the target temp
 | 
						|
      _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
 | 
						|
    while((!cancel_heatup)&&((residencyStart == -1) ||
 | 
						|
          (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
 | 
						|
  #else
 | 
						|
    while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
 | 
						|
  #endif //TEMP_RESIDENCY_TIME
 | 
						|
 | 
						|
    { // while loop
 | 
						|
      if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
 | 
						|
        SERIAL_PROTOCOLPGM("T:");
 | 
						|
        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
 | 
						|
        SERIAL_PROTOCOLPGM(" E:");
 | 
						|
        SERIAL_PROTOCOL((int)tmp_extruder);
 | 
						|
        #ifdef TEMP_RESIDENCY_TIME
 | 
						|
          SERIAL_PROTOCOLPGM(" W:");
 | 
						|
          if (residencyStart > -1) {
 | 
						|
            timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
 | 
						|
            SERIAL_PROTOCOLLN( timetemp );
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            SERIAL_PROTOCOLLN( "?" );
 | 
						|
          }
 | 
						|
        #else
 | 
						|
          SERIAL_PROTOCOLLN("");
 | 
						|
        #endif
 | 
						|
        timetemp = millis();
 | 
						|
      }
 | 
						|
      manage_heater();
 | 
						|
      manage_inactivity();
 | 
						|
      lcd_update();
 | 
						|
      #ifdef TEMP_RESIDENCY_TIME
 | 
						|
        // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
 | 
						|
        // or when current temp falls outside the hysteresis after target temp was reached
 | 
						|
        if ((residencyStart == -1 &&  target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
 | 
						|
            (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
 | 
						|
            (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
 | 
						|
        {
 | 
						|
          residencyStart = millis();
 | 
						|
        }
 | 
						|
      #endif //TEMP_RESIDENCY_TIME
 | 
						|
    }
 | 
						|
 | 
						|
  LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
 | 
						|
  starttime = previous_millis_cmd = millis();
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
 | 
						|
  /**
 | 
						|
   * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | 
						|
   *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | 
						|
   */
 | 
						|
  inline void gcode_M190() {
 | 
						|
    LCD_MESSAGEPGM(MSG_BED_HEATING);
 | 
						|
    CooldownNoWait = code_seen('S');
 | 
						|
    if (CooldownNoWait || code_seen('R'))
 | 
						|
      setTargetBed(code_value());
 | 
						|
 | 
						|
    unsigned long timetemp = millis();
 | 
						|
    
 | 
						|
    cancel_heatup = false;
 | 
						|
    target_direction = isHeatingBed(); // true if heating, false if cooling
 | 
						|
 | 
						|
    while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
 | 
						|
      unsigned long ms = millis();
 | 
						|
      if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
 | 
						|
        timetemp = ms;
 | 
						|
        float tt = degHotend(active_extruder);
 | 
						|
        SERIAL_PROTOCOLPGM("T:");
 | 
						|
        SERIAL_PROTOCOL(tt);
 | 
						|
        SERIAL_PROTOCOLPGM(" E:");
 | 
						|
        SERIAL_PROTOCOL((int)active_extruder);
 | 
						|
        SERIAL_PROTOCOLPGM(" B:");
 | 
						|
        SERIAL_PROTOCOL_F(degBed(), 1);
 | 
						|
        SERIAL_PROTOCOLLN("");
 | 
						|
      }
 | 
						|
      manage_heater();
 | 
						|
      manage_inactivity();
 | 
						|
      lcd_update();
 | 
						|
    }
 | 
						|
    LCD_MESSAGEPGM(MSG_BED_DONE);
 | 
						|
    previous_millis_cmd = millis();
 | 
						|
  }
 | 
						|
 | 
						|
#endif // TEMP_BED_PIN > -1
 | 
						|
 | 
						|
/**
 | 
						|
 * M112: Emergency Stop
 | 
						|
 */
 | 
						|
inline void gcode_M112() {
 | 
						|
  kill();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef BARICUDA
 | 
						|
 | 
						|
  #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
 | 
						|
    /**
 | 
						|
     * M126: Heater 1 valve open
 | 
						|
     */
 | 
						|
    inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
 | 
						|
    /**
 | 
						|
     * M127: Heater 1 valve close
 | 
						|
     */
 | 
						|
    inline void gcode_M127() { ValvePressure = 0; }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
 | 
						|
    /**
 | 
						|
     * M128: Heater 2 valve open
 | 
						|
     */
 | 
						|
    inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
 | 
						|
    /**
 | 
						|
     * M129: Heater 2 valve close
 | 
						|
     */
 | 
						|
    inline void gcode_M129() { EtoPPressure = 0; }
 | 
						|
  #endif
 | 
						|
 | 
						|
#endif //BARICUDA
 | 
						|
 | 
						|
/**
 | 
						|
 * M140: Set bed temperature
 | 
						|
 */
 | 
						|
inline void gcode_M140() {
 | 
						|
  if (code_seen('S')) setTargetBed(code_value());
 | 
						|
}
 | 
						|
 | 
						|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | 
						|
 | 
						|
  /**
 | 
						|
   * M80: Turn on Power Supply
 | 
						|
   */
 | 
						|
  inline void gcode_M80() {
 | 
						|
    OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
 | 
						|
 | 
						|
    // If you have a switch on suicide pin, this is useful
 | 
						|
    // if you want to start another print with suicide feature after
 | 
						|
    // a print without suicide...
 | 
						|
    #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | 
						|
      OUT_WRITE(SUICIDE_PIN, HIGH);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef ULTIPANEL
 | 
						|
      powersupply = true;
 | 
						|
      LCD_MESSAGEPGM(WELCOME_MSG);
 | 
						|
      lcd_update();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PS_ON_PIN
 | 
						|
 | 
						|
/**
 | 
						|
 * M81: Turn off Power Supply
 | 
						|
 */
 | 
						|
inline void gcode_M81() {
 | 
						|
  disable_heater();
 | 
						|
  st_synchronize();
 | 
						|
  disable_e0();
 | 
						|
  disable_e1();
 | 
						|
  disable_e2();
 | 
						|
  disable_e3();
 | 
						|
  finishAndDisableSteppers();
 | 
						|
  fanSpeed = 0;
 | 
						|
  delay(1000); // Wait 1 second before switching off
 | 
						|
  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | 
						|
    st_synchronize();
 | 
						|
    suicide();
 | 
						|
  #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
 | 
						|
    OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | 
						|
  #endif
 | 
						|
  #ifdef ULTIPANEL
 | 
						|
    powersupply = false;
 | 
						|
    LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
 | 
						|
    lcd_update();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M82: Set E codes absolute (default)
 | 
						|
 */
 | 
						|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
 | 
						|
 | 
						|
/**
 | 
						|
 * M82: Set E codes relative while in Absolute Coordinates (G90) mode
 | 
						|
 */
 | 
						|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
 | 
						|
 | 
						|
/**
 | 
						|
 * M18, M84: Disable all stepper motors
 | 
						|
 */
 | 
						|
inline void gcode_M18_M84() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    stepper_inactive_time = code_value() * 1000;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
 | 
						|
    if (all_axis) {
 | 
						|
      st_synchronize();
 | 
						|
      disable_e0();
 | 
						|
      disable_e1();
 | 
						|
      disable_e2();
 | 
						|
      disable_e3();
 | 
						|
      finishAndDisableSteppers();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      st_synchronize();
 | 
						|
      if (code_seen('X')) disable_x();
 | 
						|
      if (code_seen('Y')) disable_y();
 | 
						|
      if (code_seen('Z')) disable_z();
 | 
						|
      #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
 | 
						|
        if (code_seen('E')) {
 | 
						|
          disable_e0();
 | 
						|
          disable_e1();
 | 
						|
          disable_e2();
 | 
						|
          disable_e3();
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | 
						|
 */
 | 
						|
inline void gcode_M85() {
 | 
						|
  if (code_seen('S')) max_inactive_time = code_value() * 1000;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | 
						|
 */
 | 
						|
inline void gcode_M92() {
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      if (i == E_AXIS) {
 | 
						|
        float value = code_value();
 | 
						|
        if (value < 20.0) {
 | 
						|
          float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
 | 
						|
          max_e_jerk *= factor;
 | 
						|
          max_feedrate[i] *= factor;
 | 
						|
          axis_steps_per_sqr_second[i] *= factor;
 | 
						|
        }
 | 
						|
        axis_steps_per_unit[i] = value;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        axis_steps_per_unit[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M114: Output current position to serial port
 | 
						|
 */
 | 
						|
inline void gcode_M114() {
 | 
						|
  SERIAL_PROTOCOLPGM("X:");
 | 
						|
  SERIAL_PROTOCOL(current_position[X_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Y:");
 | 
						|
  SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Z:");
 | 
						|
  SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" E:");
 | 
						|
  SERIAL_PROTOCOL(current_position[E_AXIS]);
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_COUNT_X);
 | 
						|
  SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Y:");
 | 
						|
  SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Z:");
 | 
						|
  SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
 | 
						|
 | 
						|
  SERIAL_PROTOCOLLN("");
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[Y_AXIS]);
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
    
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
 | 
						|
    SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
    
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | 
						|
    SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M115: Capabilities string
 | 
						|
 */
 | 
						|
inline void gcode_M115() {
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M117: Set LCD Status Message
 | 
						|
 */
 | 
						|
inline void gcode_M117() {
 | 
						|
  char* codepos = strchr_pointer + 5;
 | 
						|
  char* starpos = strchr(codepos, '*');
 | 
						|
  if (starpos) *starpos = '\0';
 | 
						|
  lcd_setstatus(codepos);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M119: Output endstop states to serial output
 | 
						|
 */
 | 
						|
inline void gcode_M119() {
 | 
						|
  SERIAL_PROTOCOLLN(MSG_M119_REPORT);
 | 
						|
  #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_X_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_X_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Y_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Y_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M120: Enable endstops
 | 
						|
 */
 | 
						|
inline void gcode_M120() { enable_endstops(false); }
 | 
						|
 | 
						|
/**
 | 
						|
 * M121: Disable endstops
 | 
						|
 */
 | 
						|
inline void gcode_M121() { enable_endstops(true); }
 | 
						|
 | 
						|
#ifdef BLINKM
 | 
						|
 | 
						|
  /**
 | 
						|
   * M150: Set Status LED Color - Use R-U-B for R-G-B
 | 
						|
   */
 | 
						|
  inline void gcode_M150() {
 | 
						|
    SendColors(
 | 
						|
      code_seen('R') ? (byte)code_value() : 0,
 | 
						|
      code_seen('U') ? (byte)code_value() : 0,
 | 
						|
      code_seen('B') ? (byte)code_value() : 0
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
#endif // BLINKM
 | 
						|
 | 
						|
/**
 | 
						|
 * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | 
						|
 *       T<extruder>
 | 
						|
 *       D<millimeters>
 | 
						|
 */
 | 
						|
inline void gcode_M200() {
 | 
						|
  tmp_extruder = active_extruder;
 | 
						|
  if (code_seen('T')) {
 | 
						|
    tmp_extruder = code_value();
 | 
						|
    if (tmp_extruder >= EXTRUDERS) {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  float area = .0;
 | 
						|
  if (code_seen('D')) {
 | 
						|
    float diameter = code_value();
 | 
						|
    // setting any extruder filament size disables volumetric on the assumption that
 | 
						|
    // slicers either generate in extruder values as cubic mm or as as filament feeds
 | 
						|
    // for all extruders
 | 
						|
    volumetric_enabled = (diameter != 0.0);
 | 
						|
    if (volumetric_enabled) {
 | 
						|
      filament_size[tmp_extruder] = diameter;
 | 
						|
      // make sure all extruders have some sane value for the filament size
 | 
						|
      for (int i=0; i<EXTRUDERS; i++)
 | 
						|
        if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    //reserved for setting filament diameter via UFID or filament measuring device
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  calculate_volumetric_multipliers();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | 
						|
 */
 | 
						|
inline void gcode_M201() {
 | 
						|
  for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      max_acceleration_units_per_sq_second[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | 
						|
  reset_acceleration_rates();
 | 
						|
}
 | 
						|
 | 
						|
#if 0 // Not used for Sprinter/grbl gen6
 | 
						|
  inline void gcode_M202() {
 | 
						|
    for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
      if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
 | 
						|
 */
 | 
						|
inline void gcode_M203() {
 | 
						|
  for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      max_feedrate[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
 | 
						|
 *
 | 
						|
 *    P = Printing moves
 | 
						|
 *    R = Retract only (no X, Y, Z) moves
 | 
						|
 *    T = Travel (non printing) moves
 | 
						|
 *
 | 
						|
 *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 | 
						|
 */
 | 
						|
inline void gcode_M204() {
 | 
						|
  if (code_seen('S'))   // Kept for legacy compatibility. Should NOT BE USED for new developments.
 | 
						|
  {
 | 
						|
    acceleration = code_value();
 | 
						|
    travel_acceleration = acceleration;
 | 
						|
    SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('P'))
 | 
						|
  {
 | 
						|
    acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('R'))
 | 
						|
  {
 | 
						|
    retract_acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('T'))
 | 
						|
  {
 | 
						|
    travel_acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M205: Set Advanced Settings
 | 
						|
 *
 | 
						|
 *    S = Min Feed Rate (mm/s)
 | 
						|
 *    T = Min Travel Feed Rate (mm/s)
 | 
						|
 *    B = Min Segment Time (µs)
 | 
						|
 *    X = Max XY Jerk (mm/s/s)
 | 
						|
 *    Z = Max Z Jerk (mm/s/s)
 | 
						|
 *    E = Max E Jerk (mm/s/s)
 | 
						|
 */
 | 
						|
inline void gcode_M205() {
 | 
						|
  if (code_seen('S')) minimumfeedrate = code_value();
 | 
						|
  if (code_seen('T')) mintravelfeedrate = code_value();
 | 
						|
  if (code_seen('B')) minsegmenttime = code_value();
 | 
						|
  if (code_seen('X')) max_xy_jerk = code_value();
 | 
						|
  if (code_seen('Z')) max_z_jerk = code_value();
 | 
						|
  if (code_seen('E')) max_e_jerk = code_value();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
 | 
						|
 */
 | 
						|
inline void gcode_M206() {
 | 
						|
  for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      add_homing[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  #ifdef SCARA
 | 
						|
    if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
 | 
						|
    if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
  /**
 | 
						|
   * M665: Set delta configurations
 | 
						|
   *
 | 
						|
   *    L = diagonal rod
 | 
						|
   *    R = delta radius
 | 
						|
   *    S = segments per second
 | 
						|
   */
 | 
						|
  inline void gcode_M665() {
 | 
						|
    if (code_seen('L')) delta_diagonal_rod = code_value();
 | 
						|
    if (code_seen('R')) delta_radius = code_value();
 | 
						|
    if (code_seen('S')) delta_segments_per_second = code_value();
 | 
						|
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * M666: Set delta endstop adjustment
 | 
						|
   */
 | 
						|
  inline void gcode_M666() {
 | 
						|
    for (int8_t i = 0; i < 3; i++) {
 | 
						|
      if (code_seen(axis_codes[i])) {
 | 
						|
        endstop_adj[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif // DELTA
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
 | 
						|
   */
 | 
						|
  inline void gcode_M207() {
 | 
						|
    if (code_seen('S')) retract_length = code_value();
 | 
						|
    if (code_seen('F')) retract_feedrate = code_value() / 60;
 | 
						|
    if (code_seen('Z')) retract_zlift = code_value();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
 | 
						|
   */
 | 
						|
  inline void gcode_M208() {
 | 
						|
    if (code_seen('S')) retract_recover_length = code_value();
 | 
						|
    if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M209: Enable automatic retract (M209 S1)
 | 
						|
   *       detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
   */
 | 
						|
  inline void gcode_M209() {
 | 
						|
    if (code_seen('S')) {
 | 
						|
      int t = code_value();
 | 
						|
      switch(t) {
 | 
						|
        case 0:
 | 
						|
          autoretract_enabled = false;
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          autoretract_enabled = true;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          SERIAL_ECHO_START;
 | 
						|
          SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | 
						|
          SERIAL_ECHO(cmdbuffer[bufindr]);
 | 
						|
          SERIAL_ECHOLNPGM("\"");
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FWRETRACT
 | 
						|
 | 
						|
#if EXTRUDERS > 1
 | 
						|
 | 
						|
  /**
 | 
						|
   * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
   */
 | 
						|
  inline void gcode_M218() {
 | 
						|
    if (setTargetedHotend(218)) return;
 | 
						|
 | 
						|
    if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
 | 
						|
    if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
 | 
						|
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
 | 
						|
    #endif
 | 
						|
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | 
						|
    for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
 | 
						|
      SERIAL_ECHO(" ");
 | 
						|
      SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
 | 
						|
      SERIAL_ECHO(",");
 | 
						|
      SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        SERIAL_ECHO(",");
 | 
						|
        SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // EXTRUDERS > 1
 | 
						|
 | 
						|
/**
 | 
						|
 * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 | 
						|
 */
 | 
						|
inline void gcode_M220() {
 | 
						|
  if (code_seen('S')) feedmultiply = code_value();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M221: Set extrusion percentage (M221 T0 S95)
 | 
						|
 */
 | 
						|
inline void gcode_M221() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    int sval = code_value();
 | 
						|
    if (code_seen('T')) {
 | 
						|
      if (setTargetedHotend(221)) return;
 | 
						|
      extruder_multiply[tmp_extruder] = sval;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      extrudemultiply = sval;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
 | 
						|
 */
 | 
						|
inline void gcode_M226() {
 | 
						|
  if (code_seen('P')) {
 | 
						|
    int pin_number = code_value();
 | 
						|
 | 
						|
    int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
 | 
						|
 | 
						|
    if (pin_state >= -1 && pin_state <= 1) {
 | 
						|
 | 
						|
      for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
 | 
						|
        if (sensitive_pins[i] == pin_number) {
 | 
						|
          pin_number = -1;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (pin_number > -1) {
 | 
						|
        int target = LOW;
 | 
						|
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
        pinMode(pin_number, INPUT);
 | 
						|
 | 
						|
        switch(pin_state){
 | 
						|
          case 1:
 | 
						|
            target = HIGH;
 | 
						|
            break;
 | 
						|
 | 
						|
          case 0:
 | 
						|
            target = LOW;
 | 
						|
            break;
 | 
						|
 | 
						|
          case -1:
 | 
						|
            target = !digitalRead(pin_number);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        while(digitalRead(pin_number) != target) {
 | 
						|
          manage_heater();
 | 
						|
          manage_inactivity();
 | 
						|
          lcd_update();
 | 
						|
        }
 | 
						|
 | 
						|
      } // pin_number > -1
 | 
						|
    } // pin_state -1 0 1
 | 
						|
  } // code_seen('P')
 | 
						|
}
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
 | 
						|
  /**
 | 
						|
   * M280: Set servo position absolute. P: servo index, S: angle or microseconds
 | 
						|
   */
 | 
						|
  inline void gcode_M280() {
 | 
						|
    int servo_index = code_seen('P') ? code_value() : -1;
 | 
						|
    int servo_position = 0;
 | 
						|
    if (code_seen('S')) {
 | 
						|
      servo_position = code_value();
 | 
						|
      if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
 | 
						|
        #if SERVO_LEVELING
 | 
						|
          servos[servo_index].attach(0);
 | 
						|
        #endif
 | 
						|
        servos[servo_index].write(servo_position);
 | 
						|
        #if SERVO_LEVELING
 | 
						|
          delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | 
						|
          servos[servo_index].detach();
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHO("Servo ");
 | 
						|
        SERIAL_ECHO(servo_index);
 | 
						|
        SERIAL_ECHOLN(" out of range");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (servo_index >= 0) {
 | 
						|
      SERIAL_PROTOCOL(MSG_OK);
 | 
						|
      SERIAL_PROTOCOL(" Servo ");
 | 
						|
      SERIAL_PROTOCOL(servo_index);
 | 
						|
      SERIAL_PROTOCOL(": ");
 | 
						|
      SERIAL_PROTOCOL(servos[servo_index].read());
 | 
						|
      SERIAL_PROTOCOLLN("");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // NUM_SERVOS > 0
 | 
						|
 | 
						|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
 | 
						|
 | 
						|
  /**
 | 
						|
   * M300: Play beep sound S<frequency Hz> P<duration ms>
 | 
						|
   */
 | 
						|
  inline void gcode_M300() {
 | 
						|
    int beepS = code_seen('S') ? code_value() : 110;
 | 
						|
    int beepP = code_seen('P') ? code_value() : 1000;
 | 
						|
    if (beepS > 0) {
 | 
						|
      #if BEEPER > 0
 | 
						|
        tone(BEEPER, beepS);
 | 
						|
        delay(beepP);
 | 
						|
        noTone(BEEPER);
 | 
						|
      #elif defined(ULTRALCD)
 | 
						|
        lcd_buzz(beepS, beepP);
 | 
						|
      #elif defined(LCD_USE_I2C_BUZZER)
 | 
						|
        lcd_buzz(beepP, beepS);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      delay(beepP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
 | 
						|
  /**
 | 
						|
   * M301: Set PID parameters P I D (and optionally C)
 | 
						|
   */
 | 
						|
  inline void gcode_M301() {
 | 
						|
 | 
						|
    // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
 | 
						|
    // default behaviour (omitting E parameter) is to update for extruder 0 only
 | 
						|
    int e = code_seen('E') ? code_value() : 0; // extruder being updated
 | 
						|
 | 
						|
    if (e < EXTRUDERS) { // catch bad input value
 | 
						|
      if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
 | 
						|
      if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
 | 
						|
      if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
 | 
						|
      #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
        if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
 | 
						|
      #endif      
 | 
						|
 | 
						|
      updatePID();
 | 
						|
      SERIAL_PROTOCOL(MSG_OK);
 | 
						|
      #ifdef PID_PARAMS_PER_EXTRUDER
 | 
						|
        SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
 | 
						|
        SERIAL_PROTOCOL(e);
 | 
						|
      #endif // PID_PARAMS_PER_EXTRUDER
 | 
						|
      SERIAL_PROTOCOL(" p:");
 | 
						|
      SERIAL_PROTOCOL(PID_PARAM(Kp, e));
 | 
						|
      SERIAL_PROTOCOL(" i:");
 | 
						|
      SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
 | 
						|
      SERIAL_PROTOCOL(" d:");
 | 
						|
      SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
 | 
						|
      #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
        SERIAL_PROTOCOL(" c:");
 | 
						|
        //Kc does not have scaling applied above, or in resetting defaults
 | 
						|
        SERIAL_PROTOCOL(PID_PARAM(Kc, e));
 | 
						|
      #endif
 | 
						|
      SERIAL_PROTOCOLLN("");    
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PIDTEMP
 | 
						|
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
 | 
						|
  inline void gcode_M304() {
 | 
						|
    if (code_seen('P')) bedKp = code_value();
 | 
						|
    if (code_seen('I')) bedKi = scalePID_i(code_value());
 | 
						|
    if (code_seen('D')) bedKd = scalePID_d(code_value());
 | 
						|
 | 
						|
    updatePID();
 | 
						|
    SERIAL_PROTOCOL(MSG_OK);
 | 
						|
    SERIAL_PROTOCOL(" p:");
 | 
						|
    SERIAL_PROTOCOL(bedKp);
 | 
						|
    SERIAL_PROTOCOL(" i:");
 | 
						|
    SERIAL_PROTOCOL(unscalePID_i(bedKi));
 | 
						|
    SERIAL_PROTOCOL(" d:");
 | 
						|
    SERIAL_PROTOCOL(unscalePID_d(bedKd));
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PIDTEMPBED
 | 
						|
 | 
						|
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
 | 
						|
 | 
						|
  /**
 | 
						|
   * M240: Trigger a camera by emulating a Canon RC-1
 | 
						|
   *       See http://www.doc-diy.net/photo/rc-1_hacked/
 | 
						|
   */
 | 
						|
  inline void gcode_M240() {
 | 
						|
    #ifdef CHDK
 | 
						|
     
 | 
						|
       OUT_WRITE(CHDK, HIGH);
 | 
						|
       chdkHigh = millis();
 | 
						|
       chdkActive = true;
 | 
						|
     
 | 
						|
    #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
 | 
						|
 | 
						|
      const uint8_t NUM_PULSES = 16;
 | 
						|
      const float PULSE_LENGTH = 0.01524;
 | 
						|
      for (int i = 0; i < NUM_PULSES; i++) {
 | 
						|
        WRITE(PHOTOGRAPH_PIN, HIGH);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
        WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
      }
 | 
						|
      delay(7.33);
 | 
						|
      for (int i = 0; i < NUM_PULSES; i++) {
 | 
						|
        WRITE(PHOTOGRAPH_PIN, HIGH);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
        WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // !CHDK && PHOTOGRAPH_PIN > -1
 | 
						|
  }
 | 
						|
 | 
						|
#endif // CHDK || PHOTOGRAPH_PIN
 | 
						|
 | 
						|
#ifdef DOGLCD
 | 
						|
 | 
						|
  /**
 | 
						|
   * M250: Read and optionally set the LCD contrast
 | 
						|
   */
 | 
						|
  inline void gcode_M250() {
 | 
						|
    if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
 | 
						|
    SERIAL_PROTOCOLPGM("lcd contrast value: ");
 | 
						|
    SERIAL_PROTOCOL(lcd_contrast);
 | 
						|
    SERIAL_PROTOCOLLN("");
 | 
						|
  }
 | 
						|
 | 
						|
#endif // DOGLCD
 | 
						|
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
  /**
 | 
						|
   * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
 | 
						|
   */
 | 
						|
  inline void gcode_M302() {
 | 
						|
    set_extrude_min_temp(code_seen('S') ? code_value() : 0);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
/**
 | 
						|
 * M303: PID relay autotune
 | 
						|
 *       S<temperature> sets the target temperature. (default target temperature = 150C)
 | 
						|
 *       E<extruder> (-1 for the bed)
 | 
						|
 *       C<cycles>
 | 
						|
 */
 | 
						|
inline void gcode_M303() {
 | 
						|
  int e = code_seen('E') ? code_value_long() : 0;
 | 
						|
  int c = code_seen('C') ? code_value_long() : 5;
 | 
						|
  float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
 | 
						|
  PID_autotune(temp, e, c);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
 | 
						|
  /**
 | 
						|
   * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | 
						|
   */
 | 
						|
  inline bool gcode_M360() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta 0 ");
 | 
						|
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (! Stopped) {
 | 
						|
      //get_coordinates(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = 0;
 | 
						|
      delta[Y_AXIS] = 120;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ClearToSend();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | 
						|
   */
 | 
						|
  inline bool gcode_M361() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta 90 ");
 | 
						|
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (! Stopped) {
 | 
						|
      //get_coordinates(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = 90;
 | 
						|
      delta[Y_AXIS] = 130;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ClearToSend();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | 
						|
   */
 | 
						|
  inline bool gcode_M362() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Psi 0 ");
 | 
						|
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (! Stopped) {
 | 
						|
      //get_coordinates(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = 60;
 | 
						|
      delta[Y_AXIS] = 180;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ClearToSend();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | 
						|
   */
 | 
						|
  inline bool gcode_M363() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Psi 90 ");
 | 
						|
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (! Stopped) {
 | 
						|
      //get_coordinates(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = 50;
 | 
						|
      delta[Y_AXIS] = 90;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ClearToSend();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | 
						|
   */
 | 
						|
  inline bool gcode_M364() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
 | 
						|
   // SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (! Stopped) {
 | 
						|
      //get_coordinates(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = 45;
 | 
						|
      delta[Y_AXIS] = 135;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ClearToSend();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M365: SCARA calibration: Scaling factor, X, Y, Z axis
 | 
						|
   */
 | 
						|
  inline void gcode_M365() {
 | 
						|
    for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
      if (code_seen(axis_codes[i])) {
 | 
						|
        axis_scaling[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // SCARA
 | 
						|
 | 
						|
#ifdef EXT_SOLENOID
 | 
						|
 | 
						|
  void enable_solenoid(uint8_t num) {
 | 
						|
    switch(num) {
 | 
						|
      case 0:
 | 
						|
        OUT_WRITE(SOL0_PIN, HIGH);
 | 
						|
        break;
 | 
						|
        #if defined(SOL1_PIN) && SOL1_PIN > -1
 | 
						|
          case 1:
 | 
						|
            OUT_WRITE(SOL1_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
        #if defined(SOL2_PIN) && SOL2_PIN > -1
 | 
						|
          case 2:
 | 
						|
            OUT_WRITE(SOL2_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
        #if defined(SOL3_PIN) && SOL3_PIN > -1
 | 
						|
          case 3:
 | 
						|
            OUT_WRITE(SOL3_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
      default:
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
 | 
						|
 | 
						|
  void disable_all_solenoids() {
 | 
						|
    OUT_WRITE(SOL0_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL1_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL2_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL3_PIN, LOW);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M380: Enable solenoid on the active extruder
 | 
						|
   */
 | 
						|
  inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M381: Disable all solenoids
 | 
						|
   */
 | 
						|
  inline void gcode_M381() { disable_all_solenoids(); }
 | 
						|
 | 
						|
#endif // EXT_SOLENOID
 | 
						|
 | 
						|
/**
 | 
						|
 * M400: Finish all moves
 | 
						|
 */
 | 
						|
inline void gcode_M400() { st_synchronize(); }
 | 
						|
 | 
						|
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
 | 
						|
 | 
						|
  /**
 | 
						|
   * M401: Engage Z Servo endstop if available
 | 
						|
   */
 | 
						|
  inline void gcode_M401() { engage_z_probe(); }
 | 
						|
  /**
 | 
						|
   * M402: Retract Z Servo endstop if enabled
 | 
						|
   */
 | 
						|
  inline void gcode_M402() { retract_z_probe(); }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
 | 
						|
  /**
 | 
						|
   * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
 | 
						|
   */
 | 
						|
  inline void gcode_M404() {
 | 
						|
    #if FILWIDTH_PIN > -1
 | 
						|
      if (code_seen('W')) {
 | 
						|
        filament_width_nominal = code_value();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
 | 
						|
        SERIAL_PROTOCOLLN(filament_width_nominal);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
    
 | 
						|
  /**
 | 
						|
   * M405: Turn on filament sensor for control
 | 
						|
   */
 | 
						|
  inline void gcode_M405() {
 | 
						|
    if (code_seen('D')) meas_delay_cm = code_value();
 | 
						|
    if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
 | 
						|
 | 
						|
    if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
 | 
						|
      int temp_ratio = widthFil_to_size_ratio();
 | 
						|
 | 
						|
      for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
 | 
						|
        measurement_delay[delay_index1] = temp_ratio - 100;  //subtract 100 to scale within a signed byte
 | 
						|
 | 
						|
      delay_index1 = delay_index2 = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    filament_sensor = true;
 | 
						|
 | 
						|
    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | 
						|
    //SERIAL_PROTOCOL(filament_width_meas);
 | 
						|
    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
 | 
						|
    //SERIAL_PROTOCOL(extrudemultiply);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M406: Turn off filament sensor for control
 | 
						|
   */
 | 
						|
  inline void gcode_M406() { filament_sensor = false; }
 | 
						|
  
 | 
						|
  /**
 | 
						|
   * M407: Get measured filament diameter on serial output
 | 
						|
   */
 | 
						|
  inline void gcode_M407() {
 | 
						|
    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
 | 
						|
    SERIAL_PROTOCOLLN(filament_width_meas);   
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FILAMENT_SENSOR
 | 
						|
 | 
						|
/**
 | 
						|
 * M500: Store settings in EEPROM
 | 
						|
 */
 | 
						|
inline void gcode_M500() {
 | 
						|
  Config_StoreSettings();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M501: Read settings from EEPROM
 | 
						|
 */
 | 
						|
inline void gcode_M501() {
 | 
						|
  Config_RetrieveSettings();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M502: Revert to default settings
 | 
						|
 */
 | 
						|
inline void gcode_M502() {
 | 
						|
  Config_ResetDefault();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M503: print settings currently in memory
 | 
						|
 */
 | 
						|
inline void gcode_M503() {
 | 
						|
  Config_PrintSettings(code_seen('S') && code_value == 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
 | 
						|
  /**
 | 
						|
   * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
 | 
						|
   */
 | 
						|
  inline void gcode_M540() {
 | 
						|
    if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
 | 
						|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
  inline void gcode_SET_Z_PROBE_OFFSET() {
 | 
						|
    float value;
 | 
						|
    if (code_seen('Z')) {
 | 
						|
      value = code_value();
 | 
						|
      if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
 | 
						|
        zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
 | 
						|
        SERIAL_PROTOCOLLN("");
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
 | 
						|
        SERIAL_ECHOPGM(MSG_Z_MIN);
 | 
						|
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
 | 
						|
        SERIAL_ECHOPGM(MSG_Z_MAX);
 | 
						|
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
 | 
						|
        SERIAL_PROTOCOLLN("");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
 | 
						|
      SERIAL_ECHO(-zprobe_zoffset);
 | 
						|
      SERIAL_PROTOCOLLN("");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
#ifdef FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
  /**
 | 
						|
   * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | 
						|
   */
 | 
						|
  inline void gcode_M600() {
 | 
						|
    float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
 | 
						|
    for (int i=0; i<NUM_AXIS; i++)
 | 
						|
      target[i] = lastpos[i] = current_position[i];
 | 
						|
 | 
						|
    #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
 | 
						|
    #ifdef DELTA
 | 
						|
      #define RUNPLAN calculate_delta(target); BASICPLAN
 | 
						|
    #else
 | 
						|
      #define RUNPLAN BASICPLAN
 | 
						|
    #endif
 | 
						|
 | 
						|
    //retract by E
 | 
						|
    if (code_seen('E')) target[E_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FIRSTRETRACT
 | 
						|
      else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //lift Z
 | 
						|
    if (code_seen('Z')) target[Z_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_ZADD
 | 
						|
      else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //move xy
 | 
						|
    if (code_seen('X')) target[X_AXIS] = code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_XPOS
 | 
						|
      else target[X_AXIS] = FILAMENTCHANGE_XPOS;
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (code_seen('Y')) target[Y_AXIS] = code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_YPOS
 | 
						|
      else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    if (code_seen('L')) target[E_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FINALRETRACT
 | 
						|
      else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //finish moves
 | 
						|
    st_synchronize();
 | 
						|
    //disable extruder steppers so filament can be removed
 | 
						|
    disable_e0();
 | 
						|
    disable_e1();
 | 
						|
    disable_e2();
 | 
						|
    disable_e3();
 | 
						|
    delay(100);
 | 
						|
    LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
 | 
						|
    uint8_t cnt = 0;
 | 
						|
    while (!lcd_clicked()) {
 | 
						|
      cnt++;
 | 
						|
      manage_heater();
 | 
						|
      manage_inactivity(true);
 | 
						|
      lcd_update();
 | 
						|
      if (cnt == 0) {
 | 
						|
        #if BEEPER > 0
 | 
						|
          OUT_WRITE(BEEPER,HIGH);
 | 
						|
          delay(3);
 | 
						|
          WRITE(BEEPER,LOW);
 | 
						|
          delay(3);
 | 
						|
        #else
 | 
						|
          #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
 | 
						|
            lcd_buzz(1000/6, 100);
 | 
						|
          #else
 | 
						|
            lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
 | 
						|
          #endif
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    } // while(!lcd_clicked)
 | 
						|
 | 
						|
    //return to normal
 | 
						|
    if (code_seen('L')) target[E_AXIS] -= code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FINALRETRACT
 | 
						|
      else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
 | 
						|
    plan_set_e_position(current_position[E_AXIS]);
 | 
						|
 | 
						|
    RUNPLAN; //should do nothing
 | 
						|
 | 
						|
    lcd_reset_alert_level();
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
      calculate_delta(lastpos);
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
 | 
						|
    #else
 | 
						|
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
 | 
						|
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
 | 
						|
      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
 | 
						|
    #endif        
 | 
						|
 | 
						|
    #ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
      filrunoutEnqued = false;
 | 
						|
    #endif
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
 | 
						|
  /**
 | 
						|
   * M605: Set dual x-carriage movement mode
 | 
						|
   *
 | 
						|
   *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
 | 
						|
   *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
 | 
						|
   *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
 | 
						|
   *                         millimeters x-offset and an optional differential hotend temperature of
 | 
						|
   *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
 | 
						|
   *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
 | 
						|
   *
 | 
						|
   *    Note: the X axis should be homed after changing dual x-carriage mode.
 | 
						|
   */
 | 
						|
  inline void gcode_M605() {
 | 
						|
    st_synchronize();
 | 
						|
    if (code_seen('S')) dual_x_carriage_mode = code_value();
 | 
						|
    switch(dual_x_carriage_mode) {
 | 
						|
      case DXC_DUPLICATION_MODE:
 | 
						|
        if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
 | 
						|
        if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | 
						|
        SERIAL_ECHO(" ");
 | 
						|
        SERIAL_ECHO(extruder_offset[X_AXIS][0]);
 | 
						|
        SERIAL_ECHO(",");
 | 
						|
        SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
 | 
						|
        SERIAL_ECHO(" ");
 | 
						|
        SERIAL_ECHO(duplicate_extruder_x_offset);
 | 
						|
        SERIAL_ECHO(",");
 | 
						|
        SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
 | 
						|
        break;
 | 
						|
      case DXC_FULL_CONTROL_MODE:
 | 
						|
      case DXC_AUTO_PARK_MODE:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    active_extruder_parked = false;
 | 
						|
    extruder_duplication_enabled = false;
 | 
						|
    delayed_move_time = 0;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // DUAL_X_CARRIAGE
 | 
						|
 | 
						|
/**
 | 
						|
 * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 | 
						|
 */
 | 
						|
inline void gcode_M907() {
 | 
						|
  #if HAS_DIGIPOTSS
 | 
						|
    for (int i=0;i<NUM_AXIS;i++)
 | 
						|
      if (code_seen(axis_codes[i])) digipot_current(i, code_value());
 | 
						|
    if (code_seen('B')) digipot_current(4, code_value());
 | 
						|
    if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | 
						|
    if (code_seen('X')) digipot_current(0, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_Z_PIN
 | 
						|
    if (code_seen('Z')) digipot_current(1, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_E_PIN
 | 
						|
    if (code_seen('E')) digipot_current(2, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef DIGIPOT_I2C
 | 
						|
    // this one uses actual amps in floating point
 | 
						|
    for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
 | 
						|
    // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
 | 
						|
    for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#if HAS_DIGIPOTSS
 | 
						|
 | 
						|
  /**
 | 
						|
   * M908: Control digital trimpot directly (M908 P<pin> S<current>)
 | 
						|
   */
 | 
						|
  inline void gcode_M908() {
 | 
						|
      digitalPotWrite(
 | 
						|
        code_seen('P') ? code_value() : 0,
 | 
						|
        code_seen('S') ? code_value() : 0
 | 
						|
      );
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_DIGIPOTSS
 | 
						|
 | 
						|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | 
						|
inline void gcode_M350() {
 | 
						|
  #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | 
						|
    if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
 | 
						|
    for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
 | 
						|
    if(code_seen('B')) microstep_mode(4,code_value());
 | 
						|
    microstep_readings();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
 | 
						|
 *       S# determines MS1 or MS2, X# sets the pin high/low.
 | 
						|
 */
 | 
						|
inline void gcode_M351() {
 | 
						|
  #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | 
						|
    if (code_seen('S')) switch(code_value_long()) {
 | 
						|
      case 1:
 | 
						|
        for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
 | 
						|
        if (code_seen('B')) microstep_ms(4, code_value(), -1);
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
 | 
						|
        if (code_seen('B')) microstep_ms(4, -1, code_value());
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    microstep_readings();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M999: Restart after being stopped
 | 
						|
 */
 | 
						|
inline void gcode_M999() {
 | 
						|
  Stopped = false;
 | 
						|
  lcd_reset_alert_level();
 | 
						|
  gcode_LastN = Stopped_gcode_LastN;
 | 
						|
  FlushSerialRequestResend();
 | 
						|
}
 | 
						|
 | 
						|
inline void gcode_T() {
 | 
						|
  tmp_extruder = code_value();
 | 
						|
  if (tmp_extruder >= EXTRUDERS) {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHO("T");
 | 
						|
    SERIAL_ECHO(tmp_extruder);
 | 
						|
    SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    boolean make_move = false;
 | 
						|
    if (code_seen('F')) {
 | 
						|
      make_move = true;
 | 
						|
      next_feedrate = code_value();
 | 
						|
      if (next_feedrate > 0.0) feedrate = next_feedrate;
 | 
						|
    }
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (tmp_extruder != active_extruder) {
 | 
						|
        // Save current position to return to after applying extruder offset
 | 
						|
        memcpy(destination, current_position, sizeof(destination));
 | 
						|
        #ifdef DUAL_X_CARRIAGE
 | 
						|
          if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
 | 
						|
                (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
 | 
						|
            // Park old head: 1) raise 2) move to park position 3) lower
 | 
						|
            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | 
						|
                  current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
            plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | 
						|
                  current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
 | 
						|
            plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
 | 
						|
                  current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
            st_synchronize();
 | 
						|
          }
 | 
						|
 | 
						|
          // apply Y & Z extruder offset (x offset is already used in determining home pos)
 | 
						|
          current_position[Y_AXIS] = current_position[Y_AXIS] -
 | 
						|
                       extruder_offset[Y_AXIS][active_extruder] +
 | 
						|
                       extruder_offset[Y_AXIS][tmp_extruder];
 | 
						|
          current_position[Z_AXIS] = current_position[Z_AXIS] -
 | 
						|
                       extruder_offset[Z_AXIS][active_extruder] +
 | 
						|
                       extruder_offset[Z_AXIS][tmp_extruder];
 | 
						|
 | 
						|
          active_extruder = tmp_extruder;
 | 
						|
 | 
						|
          // This function resets the max/min values - the current position may be overwritten below.
 | 
						|
          axis_is_at_home(X_AXIS);
 | 
						|
 | 
						|
          if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
 | 
						|
            current_position[X_AXIS] = inactive_extruder_x_pos;
 | 
						|
            inactive_extruder_x_pos = destination[X_AXIS];
 | 
						|
          }
 | 
						|
          else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
 | 
						|
            active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
 | 
						|
            if (active_extruder == 0 || active_extruder_parked)
 | 
						|
              current_position[X_AXIS] = inactive_extruder_x_pos;
 | 
						|
            else
 | 
						|
              current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
 | 
						|
            inactive_extruder_x_pos = destination[X_AXIS];
 | 
						|
            extruder_duplication_enabled = false;
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            // record raised toolhead position for use by unpark
 | 
						|
            memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | 
						|
            raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
 | 
						|
            active_extruder_parked = true;
 | 
						|
            delayed_move_time = 0;
 | 
						|
          }
 | 
						|
        #else // !DUAL_X_CARRIAGE
 | 
						|
          // Offset extruder (only by XY)
 | 
						|
          for (int i=X_AXIS; i<=Y_AXIS; i++)
 | 
						|
            current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
 | 
						|
          // Set the new active extruder and position
 | 
						|
          active_extruder = tmp_extruder;
 | 
						|
        #endif // !DUAL_X_CARRIAGE
 | 
						|
        #ifdef DELTA
 | 
						|
          calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
 | 
						|
          //sent position to plan_set_position();
 | 
						|
          plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
 | 
						|
        #else
 | 
						|
          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
        #endif
 | 
						|
        // Move to the old position if 'F' was in the parameters
 | 
						|
        if (make_move && !Stopped) prepare_move();
 | 
						|
      }
 | 
						|
 | 
						|
      #ifdef EXT_SOLENOID
 | 
						|
        st_synchronize();
 | 
						|
        disable_all_solenoids();
 | 
						|
        enable_solenoid_on_active_extruder();
 | 
						|
      #endif // EXT_SOLENOID
 | 
						|
 | 
						|
    #endif // EXTRUDERS > 1
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
 | 
						|
    SERIAL_PROTOCOLLN((int)active_extruder);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Process Commands and dispatch them to handlers
 | 
						|
 */
 | 
						|
void process_commands() {
 | 
						|
  if (code_seen('G')) {
 | 
						|
 | 
						|
    int gCode = code_value_long();
 | 
						|
 | 
						|
    switch(gCode) {
 | 
						|
 | 
						|
    // G0, G1
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      gcode_G0_G1();
 | 
						|
      break;
 | 
						|
 | 
						|
    // G2, G3
 | 
						|
    #ifndef SCARA
 | 
						|
      case 2: // G2  - CW ARC
 | 
						|
      case 3: // G3  - CCW ARC
 | 
						|
        gcode_G2_G3(gCode == 2);
 | 
						|
        break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    // G4 Dwell
 | 
						|
    case 4:
 | 
						|
      gcode_G4();
 | 
						|
      break;
 | 
						|
 | 
						|
    #ifdef FWRETRACT
 | 
						|
 | 
						|
      case 10: // G10: retract
 | 
						|
      case 11: // G11: retract_recover
 | 
						|
        gcode_G10_G11(gCode == 10);
 | 
						|
        break;
 | 
						|
 | 
						|
    #endif //FWRETRACT
 | 
						|
 | 
						|
    case 28: // G28: Home all axes, one at a time
 | 
						|
      gcode_G28();
 | 
						|
      break;
 | 
						|
 | 
						|
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
      case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
 | 
						|
        gcode_G29();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifndef Z_PROBE_SLED
 | 
						|
 | 
						|
        case 30: // G30 Single Z Probe
 | 
						|
          gcode_G30();
 | 
						|
          break;
 | 
						|
 | 
						|
      #else // Z_PROBE_SLED
 | 
						|
 | 
						|
          case 31: // G31: dock the sled
 | 
						|
          case 32: // G32: undock the sled
 | 
						|
            dock_sled(gCode == 31);
 | 
						|
            break;
 | 
						|
 | 
						|
      #endif // Z_PROBE_SLED
 | 
						|
 | 
						|
    #endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
    case 90: // G90
 | 
						|
      relative_mode = false;
 | 
						|
      break;
 | 
						|
    case 91: // G91
 | 
						|
      relative_mode = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case 92: // G92
 | 
						|
      gcode_G92();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  else if (code_seen('M')) {
 | 
						|
    switch( code_value_long() ) {
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        case 0: // M0 - Unconditional stop - Wait for user button press on LCD
 | 
						|
        case 1: // M1 - Conditional stop - Wait for user button press on LCD
 | 
						|
          gcode_M0_M1();
 | 
						|
          break;
 | 
						|
      #endif // ULTIPANEL
 | 
						|
 | 
						|
      case 17:
 | 
						|
        gcode_M17();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef SDSUPPORT
 | 
						|
 | 
						|
        case 20: // M20 - list SD card
 | 
						|
          gcode_M20(); break;
 | 
						|
        case 21: // M21 - init SD card
 | 
						|
          gcode_M21(); break;
 | 
						|
        case 22: //M22 - release SD card
 | 
						|
          gcode_M22(); break;
 | 
						|
        case 23: //M23 - Select file
 | 
						|
          gcode_M23(); break;
 | 
						|
        case 24: //M24 - Start SD print
 | 
						|
          gcode_M24(); break;
 | 
						|
        case 25: //M25 - Pause SD print
 | 
						|
          gcode_M25(); break;
 | 
						|
        case 26: //M26 - Set SD index
 | 
						|
          gcode_M26(); break;
 | 
						|
        case 27: //M27 - Get SD status
 | 
						|
          gcode_M27(); break;
 | 
						|
        case 28: //M28 - Start SD write
 | 
						|
          gcode_M28(); break;
 | 
						|
        case 29: //M29 - Stop SD write
 | 
						|
          gcode_M29(); break;
 | 
						|
        case 30: //M30 <filename> Delete File
 | 
						|
          gcode_M30(); break;
 | 
						|
        case 32: //M32 - Select file and start SD print
 | 
						|
          gcode_M32(); break;
 | 
						|
        case 928: //M928 - Start SD write
 | 
						|
          gcode_M928(); break;
 | 
						|
 | 
						|
      #endif //SDSUPPORT
 | 
						|
 | 
						|
      case 31: //M31 take time since the start of the SD print or an M109 command
 | 
						|
        gcode_M31();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 42: //M42 -Change pin status via gcode
 | 
						|
        gcode_M42();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
 | 
						|
        case 48: // M48 Z-Probe repeatability
 | 
						|
          gcode_M48();
 | 
						|
          break;
 | 
						|
      #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
 | 
						|
 | 
						|
      case 104: // M104
 | 
						|
        gcode_M104();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 112: //  M112 Emergency Stop
 | 
						|
        gcode_M112();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 140: // M140 Set bed temp
 | 
						|
        gcode_M140();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 105: // M105 Read current temperature
 | 
						|
        gcode_M105();
 | 
						|
        return;
 | 
						|
        break;
 | 
						|
 | 
						|
      case 109: // M109 Wait for temperature
 | 
						|
        gcode_M109();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
        case 190: // M190 - Wait for bed heater to reach target.
 | 
						|
          gcode_M190();
 | 
						|
          break;
 | 
						|
      #endif //TEMP_BED_PIN
 | 
						|
 | 
						|
      #if defined(FAN_PIN) && FAN_PIN > -1
 | 
						|
        case 106: //M106 Fan On
 | 
						|
          gcode_M106();
 | 
						|
          break;
 | 
						|
        case 107: //M107 Fan Off
 | 
						|
          gcode_M107();
 | 
						|
          break;
 | 
						|
      #endif //FAN_PIN
 | 
						|
 | 
						|
      #ifdef BARICUDA
 | 
						|
        // PWM for HEATER_1_PIN
 | 
						|
        #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
 | 
						|
          case 126: // M126 valve open
 | 
						|
            gcode_M126();
 | 
						|
            break;
 | 
						|
          case 127: // M127 valve closed
 | 
						|
            gcode_M127();
 | 
						|
            break;
 | 
						|
        #endif //HEATER_1_PIN
 | 
						|
 | 
						|
        // PWM for HEATER_2_PIN
 | 
						|
        #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
 | 
						|
          case 128: // M128 valve open
 | 
						|
            gcode_M128();
 | 
						|
            break;
 | 
						|
          case 129: // M129 valve closed
 | 
						|
            gcode_M129();
 | 
						|
            break;
 | 
						|
        #endif //HEATER_2_PIN
 | 
						|
      #endif //BARICUDA
 | 
						|
 | 
						|
      #if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | 
						|
 | 
						|
        case 80: // M80 - Turn on Power Supply
 | 
						|
          gcode_M80();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif // PS_ON_PIN
 | 
						|
 | 
						|
      case 81: // M81 - Turn off Power Supply
 | 
						|
        gcode_M81();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 82:
 | 
						|
        gcode_M82();
 | 
						|
        break;
 | 
						|
      case 83:
 | 
						|
        gcode_M83();
 | 
						|
        break;
 | 
						|
      case 18: //compatibility
 | 
						|
      case 84: // M84
 | 
						|
        gcode_M18_M84();
 | 
						|
        break;
 | 
						|
      case 85: // M85
 | 
						|
        gcode_M85();
 | 
						|
        break;
 | 
						|
      case 92: // M92
 | 
						|
        gcode_M92();
 | 
						|
        break;
 | 
						|
      case 115: // M115
 | 
						|
        gcode_M115();
 | 
						|
        break;
 | 
						|
      case 117: // M117 display message
 | 
						|
        gcode_M117();
 | 
						|
        break;
 | 
						|
      case 114: // M114
 | 
						|
        gcode_M114();
 | 
						|
        break;
 | 
						|
      case 120: // M120
 | 
						|
        gcode_M120();
 | 
						|
        break;
 | 
						|
      case 121: // M121
 | 
						|
        gcode_M121();
 | 
						|
        break;
 | 
						|
      case 119: // M119
 | 
						|
        gcode_M119();
 | 
						|
        break;
 | 
						|
        //TODO: update for all axis, use for loop
 | 
						|
 | 
						|
      #ifdef BLINKM
 | 
						|
 | 
						|
        case 150: // M150
 | 
						|
          gcode_M150();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif //BLINKM
 | 
						|
 | 
						|
      case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | 
						|
        gcode_M200();
 | 
						|
        break;
 | 
						|
      case 201: // M201
 | 
						|
        gcode_M201();
 | 
						|
        break;
 | 
						|
      #if 0 // Not used for Sprinter/grbl gen6
 | 
						|
      case 202: // M202
 | 
						|
        gcode_M202();
 | 
						|
        break;
 | 
						|
      #endif
 | 
						|
      case 203: // M203 max feedrate mm/sec
 | 
						|
        gcode_M203();
 | 
						|
        break;
 | 
						|
      case 204: // M204 acclereration S normal moves T filmanent only moves
 | 
						|
        gcode_M204();
 | 
						|
        break;
 | 
						|
      case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
 | 
						|
        gcode_M205();
 | 
						|
        break;
 | 
						|
      case 206: // M206 additional homing offset
 | 
						|
        gcode_M206();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef DELTA
 | 
						|
        case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
 | 
						|
          gcode_M665();
 | 
						|
          break;
 | 
						|
        case 666: // M666 set delta endstop adjustment
 | 
						|
          gcode_M666();
 | 
						|
          break;
 | 
						|
      #endif // DELTA
 | 
						|
 | 
						|
      #ifdef FWRETRACT
 | 
						|
        case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
 | 
						|
          gcode_M207();
 | 
						|
          break;
 | 
						|
        case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
 | 
						|
          gcode_M208();
 | 
						|
          break;
 | 
						|
        case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
          gcode_M209();
 | 
						|
          break;
 | 
						|
      #endif // FWRETRACT
 | 
						|
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
          gcode_M218();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      case 220: // M220 S<factor in percent>- set speed factor override percentage
 | 
						|
        gcode_M220();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 221: // M221 S<factor in percent>- set extrude factor override percentage
 | 
						|
        gcode_M221();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | 
						|
        gcode_M226();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if NUM_SERVOS > 0
 | 
						|
        case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
 | 
						|
          gcode_M280();
 | 
						|
          break;
 | 
						|
      #endif // NUM_SERVOS > 0
 | 
						|
 | 
						|
      #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
 | 
						|
        case 300: // M300 - Play beep tone
 | 
						|
          gcode_M300();
 | 
						|
          break;
 | 
						|
      #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
 | 
						|
 | 
						|
      #ifdef PIDTEMP
 | 
						|
        case 301: // M301
 | 
						|
          gcode_M301();
 | 
						|
          break;
 | 
						|
      #endif // PIDTEMP
 | 
						|
 | 
						|
      #ifdef PIDTEMPBED
 | 
						|
        case 304: // M304
 | 
						|
          gcode_M304();
 | 
						|
          break;
 | 
						|
      #endif // PIDTEMPBED
 | 
						|
 | 
						|
      #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
 | 
						|
        case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
 | 
						|
          gcode_M240();
 | 
						|
          break;
 | 
						|
      #endif // CHDK || PHOTOGRAPH_PIN
 | 
						|
 | 
						|
      #ifdef DOGLCD
 | 
						|
        case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
 | 
						|
          gcode_M250();
 | 
						|
          break;
 | 
						|
      #endif // DOGLCD
 | 
						|
 | 
						|
      #ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
        case 302: // allow cold extrudes, or set the minimum extrude temperature
 | 
						|
          gcode_M302();
 | 
						|
          break;
 | 
						|
      #endif // PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
      case 303: // M303 PID autotune
 | 
						|
        gcode_M303();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef SCARA
 | 
						|
        case 360:  // M360 SCARA Theta pos1
 | 
						|
          if (gcode_M360()) return;
 | 
						|
          break;
 | 
						|
        case 361:  // M361 SCARA Theta pos2
 | 
						|
          if (gcode_M361()) return;
 | 
						|
          break;
 | 
						|
        case 362:  // M362 SCARA Psi pos1
 | 
						|
          if (gcode_M362()) return;
 | 
						|
          break;
 | 
						|
        case 363:  // M363 SCARA Psi pos2
 | 
						|
          if (gcode_M363()) return;
 | 
						|
          break;
 | 
						|
        case 364:  // M364 SCARA Psi pos3 (90 deg to Theta)
 | 
						|
          if (gcode_M364()) return;
 | 
						|
          break;
 | 
						|
        case 365: // M365 Set SCARA scaling for X Y Z
 | 
						|
          gcode_M365();
 | 
						|
          break;
 | 
						|
      #endif // SCARA
 | 
						|
 | 
						|
      case 400: // M400 finish all moves
 | 
						|
        gcode_M400();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
 | 
						|
        case 401:
 | 
						|
          gcode_M401();
 | 
						|
          break;
 | 
						|
        case 402:
 | 
						|
          gcode_M402();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef FILAMENT_SENSOR
 | 
						|
        case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
 | 
						|
          gcode_M404();
 | 
						|
          break;
 | 
						|
        case 405:  //M405 Turn on filament sensor for control
 | 
						|
          gcode_M405();
 | 
						|
          break;
 | 
						|
        case 406:  //M406 Turn off filament sensor for control
 | 
						|
          gcode_M406();
 | 
						|
          break;
 | 
						|
        case 407:   //M407 Display measured filament diameter
 | 
						|
          gcode_M407();
 | 
						|
          break;
 | 
						|
      #endif // FILAMENT_SENSOR
 | 
						|
 | 
						|
      case 500: // M500 Store settings in EEPROM
 | 
						|
        gcode_M500();
 | 
						|
        break;
 | 
						|
      case 501: // M501 Read settings from EEPROM
 | 
						|
        gcode_M501();
 | 
						|
        break;
 | 
						|
      case 502: // M502 Revert to default settings
 | 
						|
        gcode_M502();
 | 
						|
        break;
 | 
						|
      case 503: // M503 print settings currently in memory
 | 
						|
        gcode_M503();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
        case 540:
 | 
						|
          gcode_M540();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
        case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
 | 
						|
          gcode_SET_Z_PROBE_OFFSET();
 | 
						|
          break;
 | 
						|
      #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
      #ifdef FILAMENTCHANGEENABLE
 | 
						|
        case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | 
						|
          gcode_M600();
 | 
						|
          break;
 | 
						|
      #endif // FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        case 605:
 | 
						|
          gcode_M605();
 | 
						|
          break;
 | 
						|
      #endif // DUAL_X_CARRIAGE
 | 
						|
 | 
						|
      case 907: // M907 Set digital trimpot motor current using axis codes.
 | 
						|
        gcode_M907();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if HAS_DIGIPOTSS
 | 
						|
        case 908: // M908 Control digital trimpot directly.
 | 
						|
          gcode_M908();
 | 
						|
          break;
 | 
						|
      #endif // HAS_DIGIPOTSS
 | 
						|
 | 
						|
      case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | 
						|
        gcode_M350();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
 | 
						|
        gcode_M351();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 999: // M999: Restart after being Stopped
 | 
						|
        gcode_M999();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  else if (code_seen('T')) {
 | 
						|
    gcode_T();
 | 
						|
  }
 | 
						|
 | 
						|
  else {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | 
						|
    SERIAL_ECHO(cmdbuffer[bufindr]);
 | 
						|
    SERIAL_ECHOLNPGM("\"");
 | 
						|
  }
 | 
						|
 | 
						|
  ClearToSend();
 | 
						|
}
 | 
						|
 | 
						|
void FlushSerialRequestResend()
 | 
						|
{
 | 
						|
  //char cmdbuffer[bufindr][100]="Resend:";
 | 
						|
  MYSERIAL.flush();
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_RESEND);
 | 
						|
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
 | 
						|
  ClearToSend();
 | 
						|
}
 | 
						|
 | 
						|
void ClearToSend()
 | 
						|
{
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
  if(fromsd[bufindr])
 | 
						|
    return;
 | 
						|
  #endif //SDSUPPORT
 | 
						|
  SERIAL_PROTOCOLLNPGM(MSG_OK);
 | 
						|
}
 | 
						|
 | 
						|
void get_coordinates()
 | 
						|
{
 | 
						|
  bool seen[4]={false,false,false,false};
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if(code_seen(axis_codes[i]))
 | 
						|
    {
 | 
						|
      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
 | 
						|
      seen[i]=true;
 | 
						|
    }
 | 
						|
    else destination[i] = current_position[i]; //Are these else lines really needed?
 | 
						|
  }
 | 
						|
  if(code_seen('F')) {
 | 
						|
    next_feedrate = code_value();
 | 
						|
    if(next_feedrate > 0.0) feedrate = next_feedrate;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void get_arc_coordinates()
 | 
						|
{
 | 
						|
#ifdef SF_ARC_FIX
 | 
						|
   bool relative_mode_backup = relative_mode;
 | 
						|
   relative_mode = true;
 | 
						|
#endif
 | 
						|
   get_coordinates();
 | 
						|
#ifdef SF_ARC_FIX
 | 
						|
   relative_mode=relative_mode_backup;
 | 
						|
#endif
 | 
						|
 | 
						|
   if(code_seen('I')) {
 | 
						|
     offset[0] = code_value();
 | 
						|
   }
 | 
						|
   else {
 | 
						|
     offset[0] = 0.0;
 | 
						|
   }
 | 
						|
   if(code_seen('J')) {
 | 
						|
     offset[1] = code_value();
 | 
						|
   }
 | 
						|
   else {
 | 
						|
     offset[1] = 0.0;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
void clamp_to_software_endstops(float target[3])
 | 
						|
{
 | 
						|
  if (min_software_endstops) {
 | 
						|
    if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
 | 
						|
    if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
 | 
						|
    
 | 
						|
    float negative_z_offset = 0;
 | 
						|
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
      if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
 | 
						|
    #endif
 | 
						|
    
 | 
						|
    if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  if (max_software_endstops) {
 | 
						|
    if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
 | 
						|
    if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
 | 
						|
    if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
void recalc_delta_settings(float radius, float diagonal_rod)
 | 
						|
{
 | 
						|
   delta_tower1_x= -SIN_60*radius; // front left tower
 | 
						|
   delta_tower1_y= -COS_60*radius;     
 | 
						|
   delta_tower2_x=  SIN_60*radius; // front right tower
 | 
						|
   delta_tower2_y= -COS_60*radius;     
 | 
						|
   delta_tower3_x= 0.0;                  // back middle tower
 | 
						|
   delta_tower3_y= radius;
 | 
						|
   delta_diagonal_rod_2= sq(diagonal_rod);
 | 
						|
}
 | 
						|
 | 
						|
void calculate_delta(float cartesian[3])
 | 
						|
{
 | 
						|
  delta[X_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                       - sq(delta_tower1_x-cartesian[X_AXIS])
 | 
						|
                       - sq(delta_tower1_y-cartesian[Y_AXIS])
 | 
						|
                       ) + cartesian[Z_AXIS];
 | 
						|
  delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                       - sq(delta_tower2_x-cartesian[X_AXIS])
 | 
						|
                       - sq(delta_tower2_y-cartesian[Y_AXIS])
 | 
						|
                       ) + cartesian[Z_AXIS];
 | 
						|
  delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                       - sq(delta_tower3_x-cartesian[X_AXIS])
 | 
						|
                       - sq(delta_tower3_y-cartesian[Y_AXIS])
 | 
						|
                       ) + cartesian[Z_AXIS];
 | 
						|
  /*
 | 
						|
  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
						|
 | 
						|
  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
  */
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
// Adjust print surface height by linear interpolation over the bed_level array.
 | 
						|
int delta_grid_spacing[2] = { 0, 0 };
 | 
						|
void adjust_delta(float cartesian[3])
 | 
						|
{
 | 
						|
  if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
 | 
						|
    return; // G29 not done
 | 
						|
 | 
						|
  int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
 | 
						|
  float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
 | 
						|
  float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
 | 
						|
  int floor_x = floor(grid_x);
 | 
						|
  int floor_y = floor(grid_y);
 | 
						|
  float ratio_x = grid_x - floor_x;
 | 
						|
  float ratio_y = grid_y - floor_y;
 | 
						|
  float z1 = bed_level[floor_x+half][floor_y+half];
 | 
						|
  float z2 = bed_level[floor_x+half][floor_y+half+1];
 | 
						|
  float z3 = bed_level[floor_x+half+1][floor_y+half];
 | 
						|
  float z4 = bed_level[floor_x+half+1][floor_y+half+1];
 | 
						|
  float left = (1-ratio_y)*z1 + ratio_y*z2;
 | 
						|
  float right = (1-ratio_y)*z3 + ratio_y*z4;
 | 
						|
  float offset = (1-ratio_x)*left + ratio_x*right;
 | 
						|
 | 
						|
  delta[X_AXIS] += offset;
 | 
						|
  delta[Y_AXIS] += offset;
 | 
						|
  delta[Z_AXIS] += offset;
 | 
						|
 | 
						|
  /*
 | 
						|
  SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
 | 
						|
  SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
 | 
						|
  SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
 | 
						|
  SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
 | 
						|
  SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
 | 
						|
  SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
 | 
						|
  SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
 | 
						|
  SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
 | 
						|
  SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
 | 
						|
  SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
 | 
						|
  SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
 | 
						|
  SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
 | 
						|
  SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
 | 
						|
  */
 | 
						|
}
 | 
						|
#endif //ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
void prepare_move_raw()
 | 
						|
{
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
  calculate_delta(destination);
 | 
						|
  plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
 | 
						|
                   destination[E_AXIS], feedrate*feedmultiply/60/100.0,
 | 
						|
                   active_extruder);
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    current_position[i] = destination[i];
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif //DELTA
 | 
						|
 | 
						|
void prepare_move()
 | 
						|
{
 | 
						|
  clamp_to_software_endstops(destination);
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
  
 | 
						|
  #ifdef SCARA //for now same as delta-code
 | 
						|
 | 
						|
float difference[NUM_AXIS];
 | 
						|
for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
  difference[i] = destination[i] - current_position[i];
 | 
						|
}
 | 
						|
 | 
						|
float cartesian_mm = sqrt(  sq(difference[X_AXIS]) +
 | 
						|
              sq(difference[Y_AXIS]) +
 | 
						|
              sq(difference[Z_AXIS]));
 | 
						|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
 | 
						|
if (cartesian_mm < 0.000001) { return; }
 | 
						|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
 | 
						|
int steps = max(1, int(scara_segments_per_second * seconds));
 | 
						|
 //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | 
						|
 //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | 
						|
 //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | 
						|
for (int s = 1; s <= steps; s++) {
 | 
						|
  float fraction = float(s) / float(steps);
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    destination[i] = current_position[i] + difference[i] * fraction;
 | 
						|
  }
 | 
						|
 | 
						|
  
 | 
						|
  calculate_delta(destination);
 | 
						|
         //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
 | 
						|
         //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
 | 
						|
         //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
 | 
						|
         //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
 | 
						|
         //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
         //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
         
 | 
						|
  plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
 | 
						|
  destination[E_AXIS], feedrate*feedmultiply/60/100.0,
 | 
						|
  active_extruder);
 | 
						|
}
 | 
						|
#endif // SCARA
 | 
						|
  
 | 
						|
#ifdef DELTA
 | 
						|
  float difference[NUM_AXIS];
 | 
						|
  for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    difference[i] = destination[i] - current_position[i];
 | 
						|
  }
 | 
						|
  float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
 | 
						|
                            sq(difference[Y_AXIS]) +
 | 
						|
                            sq(difference[Z_AXIS]));
 | 
						|
  if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
 | 
						|
  if (cartesian_mm < 0.000001) { return; }
 | 
						|
  float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
 | 
						|
  int steps = max(1, int(delta_segments_per_second * seconds));
 | 
						|
  // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | 
						|
  // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | 
						|
  // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | 
						|
  for (int s = 1; s <= steps; s++) {
 | 
						|
    float fraction = float(s) / float(steps);
 | 
						|
    for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
      destination[i] = current_position[i] + difference[i] * fraction;
 | 
						|
    }
 | 
						|
    calculate_delta(destination);
 | 
						|
    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
 | 
						|
                     destination[E_AXIS], feedrate*feedmultiply/60/100.0,
 | 
						|
                     active_extruder);
 | 
						|
  }
 | 
						|
  
 | 
						|
#endif // DELTA
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
  if (active_extruder_parked)
 | 
						|
  {
 | 
						|
    if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
 | 
						|
    {
 | 
						|
      // move duplicate extruder into correct duplication position.
 | 
						|
      plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
      plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
 | 
						|
          current_position[E_AXIS], max_feedrate[X_AXIS], 1);
 | 
						|
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
      st_synchronize();
 | 
						|
      extruder_duplication_enabled = true;
 | 
						|
      active_extruder_parked = false;
 | 
						|
    }
 | 
						|
    else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
 | 
						|
    {
 | 
						|
      if (current_position[E_AXIS] == destination[E_AXIS])
 | 
						|
      {
 | 
						|
        // this is a travel move - skit it but keep track of current position (so that it can later
 | 
						|
        // be used as start of first non-travel move)
 | 
						|
        if (delayed_move_time != 0xFFFFFFFFUL)
 | 
						|
        {
 | 
						|
          memcpy(current_position, destination, sizeof(current_position));
 | 
						|
          if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
 | 
						|
            raised_parked_position[Z_AXIS] = destination[Z_AXIS];
 | 
						|
          delayed_move_time = millis();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      delayed_move_time = 0;
 | 
						|
      // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
 | 
						|
      plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS],    current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
 | 
						|
          current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
 | 
						|
      plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
 | 
						|
          current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
      active_extruder_parked = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif //DUAL_X_CARRIAGE
 | 
						|
 | 
						|
#if ! (defined DELTA || defined SCARA)
 | 
						|
  // Do not use feedmultiply for E or Z only moves
 | 
						|
  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
 | 
						|
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
 | 
						|
  }
 | 
						|
#endif // !(DELTA || SCARA)
 | 
						|
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    current_position[i] = destination[i];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void prepare_arc_move(char isclockwise) {
 | 
						|
  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
 | 
						|
 | 
						|
  // Trace the arc
 | 
						|
  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
 | 
						|
 | 
						|
  // As far as the parser is concerned, the position is now == target. In reality the
 | 
						|
  // motion control system might still be processing the action and the real tool position
 | 
						|
  // in any intermediate location.
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    current_position[i] = destination[i];
 | 
						|
  }
 | 
						|
  previous_millis_cmd = millis();
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | 
						|
 | 
						|
#if defined(FAN_PIN)
 | 
						|
  #if CONTROLLERFAN_PIN == FAN_PIN
 | 
						|
    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
 | 
						|
  #endif
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long lastMotor = 0; // Last time a motor was turned on
 | 
						|
unsigned long lastMotorCheck = 0; // Last time the state was checked
 | 
						|
 | 
						|
void controllerFan() {
 | 
						|
  uint32_t ms = millis();
 | 
						|
  if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
 | 
						|
    lastMotorCheck = ms;
 | 
						|
    if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
 | 
						|
      || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        || E1_ENABLE_READ == E_ENABLE_ON
 | 
						|
        #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 | 
						|
          || X2_ENABLE_READ == X_ENABLE_ON
 | 
						|
        #endif
 | 
						|
        #if EXTRUDERS > 2
 | 
						|
          || E2_ENABLE_READ == E_ENABLE_ON
 | 
						|
          #if EXTRUDERS > 3
 | 
						|
            || E3_ENABLE_READ == E_ENABLE_ON
 | 
						|
          #endif
 | 
						|
        #endif
 | 
						|
      #endif
 | 
						|
    ) {
 | 
						|
      lastMotor = ms; //... set time to NOW so the fan will turn on
 | 
						|
    }
 | 
						|
    uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
 | 
						|
    // allows digital or PWM fan output to be used (see M42 handling)
 | 
						|
    digitalWrite(CONTROLLERFAN_PIN, speed);
 | 
						|
    analogWrite(CONTROLLERFAN_PIN, speed);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
void calculate_SCARA_forward_Transform(float f_scara[3])
 | 
						|
{
 | 
						|
  // Perform forward kinematics, and place results in delta[3]
 | 
						|
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
						|
  
 | 
						|
  float x_sin, x_cos, y_sin, y_cos;
 | 
						|
  
 | 
						|
    //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
 | 
						|
    //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
 | 
						|
  
 | 
						|
    x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
						|
    x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
						|
    y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
						|
    y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
						|
   
 | 
						|
  //  SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | 
						|
  //  SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | 
						|
  //  SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | 
						|
  //  SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | 
						|
  
 | 
						|
    delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
 | 
						|
    delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
 | 
						|
  
 | 
						|
    //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
}  
 | 
						|
 | 
						|
void calculate_delta(float cartesian[3]){
 | 
						|
  //reverse kinematics.
 | 
						|
  // Perform reversed kinematics, and place results in delta[3]
 | 
						|
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
						|
  
 | 
						|
  float SCARA_pos[2];
 | 
						|
  static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
 | 
						|
  
 | 
						|
  SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | 
						|
  SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | 
						|
  
 | 
						|
  #if (Linkage_1 == Linkage_2)
 | 
						|
    SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
 | 
						|
  #else
 | 
						|
    SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
 | 
						|
  
 | 
						|
  SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | 
						|
  SCARA_K2 = Linkage_2 * SCARA_S2;
 | 
						|
  
 | 
						|
  SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
 | 
						|
  SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
 | 
						|
  
 | 
						|
  delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | 
						|
  delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | 
						|
  delta[Z_AXIS] = cartesian[Z_AXIS];
 | 
						|
  
 | 
						|
  /*
 | 
						|
  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
						|
  
 | 
						|
  SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | 
						|
  
 | 
						|
  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
  
 | 
						|
  SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | 
						|
  SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | 
						|
  SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | 
						|
  SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | 
						|
  SERIAL_ECHOLN(" ");*/
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef TEMP_STAT_LEDS
 | 
						|
static bool blue_led = false;
 | 
						|
static bool red_led = false;
 | 
						|
static uint32_t stat_update = 0;
 | 
						|
 | 
						|
void handle_status_leds(void) {
 | 
						|
  float max_temp = 0.0;
 | 
						|
  if(millis() > stat_update) {
 | 
						|
    stat_update += 500; // Update every 0.5s
 | 
						|
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | 
						|
       max_temp = max(max_temp, degHotend(cur_extruder));
 | 
						|
       max_temp = max(max_temp, degTargetHotend(cur_extruder));
 | 
						|
    }
 | 
						|
    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
      max_temp = max(max_temp, degTargetBed());
 | 
						|
      max_temp = max(max_temp, degBed());
 | 
						|
    #endif
 | 
						|
    if((max_temp > 55.0) && (red_led == false)) {
 | 
						|
      digitalWrite(STAT_LED_RED, 1);
 | 
						|
      digitalWrite(STAT_LED_BLUE, 0);
 | 
						|
      red_led = true;
 | 
						|
      blue_led = false;
 | 
						|
    }
 | 
						|
    if((max_temp < 54.0) && (blue_led == false)) {
 | 
						|
      digitalWrite(STAT_LED_RED, 0);
 | 
						|
      digitalWrite(STAT_LED_BLUE, 1);
 | 
						|
      red_led = false;
 | 
						|
      blue_led = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
 | 
						|
{
 | 
						|
  
 | 
						|
#if defined(KILL_PIN) && KILL_PIN > -1
 | 
						|
  static int killCount = 0;   // make the inactivity button a bit less responsive
 | 
						|
   const int KILL_DELAY = 750;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
 | 
						|
    if(card.sdprinting) {
 | 
						|
      if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
 | 
						|
      filrunout();        }
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HOME_PIN) && HOME_PIN > -1
 | 
						|
   static int homeDebounceCount = 0;   // poor man's debouncing count
 | 
						|
   const int HOME_DEBOUNCE_DELAY = 750;
 | 
						|
#endif
 | 
						|
   
 | 
						|
  
 | 
						|
  if(buflen < (BUFSIZE-1))
 | 
						|
    get_command();
 | 
						|
 | 
						|
  if( (millis() - previous_millis_cmd) >  max_inactive_time )
 | 
						|
    if(max_inactive_time)
 | 
						|
      kill();
 | 
						|
  if(stepper_inactive_time)  {
 | 
						|
    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
 | 
						|
    {
 | 
						|
      if(blocks_queued() == false && ignore_stepper_queue == false) {
 | 
						|
        disable_x();
 | 
						|
        disable_y();
 | 
						|
        disable_z();
 | 
						|
        disable_e0();
 | 
						|
        disable_e1();
 | 
						|
        disable_e2();
 | 
						|
        disable_e3();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
 | 
						|
    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
 | 
						|
    {
 | 
						|
      chdkActive = false;
 | 
						|
      WRITE(CHDK, LOW);
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  #if defined(KILL_PIN) && KILL_PIN > -1
 | 
						|
    
 | 
						|
    // Check if the kill button was pressed and wait just in case it was an accidental
 | 
						|
    // key kill key press
 | 
						|
    // -------------------------------------------------------------------------------
 | 
						|
    if( 0 == READ(KILL_PIN) )
 | 
						|
    {
 | 
						|
       killCount++;
 | 
						|
    }
 | 
						|
    else if (killCount > 0)
 | 
						|
    {
 | 
						|
       killCount--;
 | 
						|
    }
 | 
						|
    // Exceeded threshold and we can confirm that it was not accidental
 | 
						|
    // KILL the machine
 | 
						|
    // ----------------------------------------------------------------
 | 
						|
    if ( killCount >= KILL_DELAY)
 | 
						|
    {
 | 
						|
       kill();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
#if defined(HOME_PIN) && HOME_PIN > -1
 | 
						|
    // Check to see if we have to home, use poor man's debouncer
 | 
						|
    // ---------------------------------------------------------
 | 
						|
    if ( 0 == READ(HOME_PIN) )
 | 
						|
    {
 | 
						|
       if (homeDebounceCount == 0)
 | 
						|
       {
 | 
						|
          enquecommands_P((PSTR("G28")));
 | 
						|
          homeDebounceCount++;
 | 
						|
          LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
 | 
						|
       }
 | 
						|
       else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
 | 
						|
       {
 | 
						|
          homeDebounceCount++;
 | 
						|
       }
 | 
						|
       else
 | 
						|
       {
 | 
						|
          homeDebounceCount = 0;
 | 
						|
       }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    
 | 
						|
  #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | 
						|
    controllerFan(); //Check if fan should be turned on to cool stepper drivers down
 | 
						|
  #endif
 | 
						|
  #ifdef EXTRUDER_RUNOUT_PREVENT
 | 
						|
    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
 | 
						|
    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
 | 
						|
    {
 | 
						|
     bool oldstatus=E0_ENABLE_READ;
 | 
						|
     enable_e0();
 | 
						|
     float oldepos=current_position[E_AXIS];
 | 
						|
     float oldedes=destination[E_AXIS];
 | 
						|
     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
 | 
						|
                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
 | 
						|
                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
 | 
						|
     current_position[E_AXIS]=oldepos;
 | 
						|
     destination[E_AXIS]=oldedes;
 | 
						|
     plan_set_e_position(oldepos);
 | 
						|
     previous_millis_cmd=millis();
 | 
						|
     st_synchronize();
 | 
						|
     E0_ENABLE_WRITE(oldstatus);
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  #if defined(DUAL_X_CARRIAGE)
 | 
						|
    // handle delayed move timeout
 | 
						|
    if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
 | 
						|
    {
 | 
						|
      // travel moves have been received so enact them
 | 
						|
      delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
 | 
						|
      memcpy(destination,current_position,sizeof(destination));
 | 
						|
      prepare_move();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  #ifdef TEMP_STAT_LEDS
 | 
						|
      handle_status_leds();
 | 
						|
  #endif
 | 
						|
  check_axes_activity();
 | 
						|
}
 | 
						|
 | 
						|
void kill()
 | 
						|
{
 | 
						|
  cli(); // Stop interrupts
 | 
						|
  disable_heater();
 | 
						|
 | 
						|
  disable_x();
 | 
						|
  disable_y();
 | 
						|
  disable_z();
 | 
						|
  disable_e0();
 | 
						|
  disable_e1();
 | 
						|
  disable_e2();
 | 
						|
  disable_e3();
 | 
						|
 | 
						|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | 
						|
  pinMode(PS_ON_PIN,INPUT);
 | 
						|
#endif
 | 
						|
  SERIAL_ERROR_START;
 | 
						|
  SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
 | 
						|
  LCD_ALERTMESSAGEPGM(MSG_KILLED);
 | 
						|
  
 | 
						|
  // FMC small patch to update the LCD before ending
 | 
						|
  sei();   // enable interrupts
 | 
						|
  for ( int i=5; i--; lcd_update())
 | 
						|
  {
 | 
						|
     delay(200);  
 | 
						|
  }
 | 
						|
  cli();   // disable interrupts
 | 
						|
  suicide();
 | 
						|
  while(1) { /* Intentionally left empty */ } // Wait for reset
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
   void filrunout()
 | 
						|
   {
 | 
						|
      if filrunoutEnqued == false {
 | 
						|
         filrunoutEnqued = true;
 | 
						|
         enquecommand("M600");
 | 
						|
      }
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 | 
						|
void Stop()
 | 
						|
{
 | 
						|
  disable_heater();
 | 
						|
  if(Stopped == false) {
 | 
						|
    Stopped = true;
 | 
						|
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | 
						|
    LCD_MESSAGEPGM(MSG_STOPPED);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool IsStopped() { return Stopped; };
 | 
						|
 | 
						|
#ifdef FAST_PWM_FAN
 | 
						|
void setPwmFrequency(uint8_t pin, int val)
 | 
						|
{
 | 
						|
  val &= 0x07;
 | 
						|
  switch(digitalPinToTimer(pin))
 | 
						|
  {
 | 
						|
 | 
						|
    #if defined(TCCR0A)
 | 
						|
    case TIMER0A:
 | 
						|
    case TIMER0B:
 | 
						|
//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | 
						|
//         TCCR0B |= val;
 | 
						|
         break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if defined(TCCR1A)
 | 
						|
    case TIMER1A:
 | 
						|
    case TIMER1B:
 | 
						|
//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
						|
//         TCCR1B |= val;
 | 
						|
         break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if defined(TCCR2)
 | 
						|
    case TIMER2:
 | 
						|
    case TIMER2:
 | 
						|
         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
						|
         TCCR2 |= val;
 | 
						|
         break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if defined(TCCR2A)
 | 
						|
    case TIMER2A:
 | 
						|
    case TIMER2B:
 | 
						|
         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | 
						|
         TCCR2B |= val;
 | 
						|
         break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if defined(TCCR3A)
 | 
						|
    case TIMER3A:
 | 
						|
    case TIMER3B:
 | 
						|
    case TIMER3C:
 | 
						|
         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | 
						|
         TCCR3B |= val;
 | 
						|
         break;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if defined(TCCR4A)
 | 
						|
    case TIMER4A:
 | 
						|
    case TIMER4B:
 | 
						|
    case TIMER4C:
 | 
						|
         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | 
						|
         TCCR4B |= val;
 | 
						|
         break;
 | 
						|
   #endif
 | 
						|
 | 
						|
    #if defined(TCCR5A)
 | 
						|
    case TIMER5A:
 | 
						|
    case TIMER5B:
 | 
						|
    case TIMER5C:
 | 
						|
         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | 
						|
         TCCR5B |= val;
 | 
						|
         break;
 | 
						|
   #endif
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif //FAST_PWM_FAN
 | 
						|
 | 
						|
bool setTargetedHotend(int code){
 | 
						|
  tmp_extruder = active_extruder;
 | 
						|
  if(code_seen('T')) {
 | 
						|
    tmp_extruder = code_value();
 | 
						|
    if(tmp_extruder >= EXTRUDERS) {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      switch(code){
 | 
						|
        case 104:
 | 
						|
          SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
 | 
						|
          break;
 | 
						|
        case 105:
 | 
						|
          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
 | 
						|
          break;
 | 
						|
        case 109:
 | 
						|
          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
 | 
						|
          break;
 | 
						|
        case 218:
 | 
						|
          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
 | 
						|
          break;
 | 
						|
        case 221:
 | 
						|
          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      SERIAL_ECHOLN(tmp_extruder);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
float calculate_volumetric_multiplier(float diameter) {
 | 
						|
  if (!volumetric_enabled || diameter == 0) return 1.0;
 | 
						|
  float d2 = diameter * 0.5;
 | 
						|
  return 1.0 / (M_PI * d2 * d2);
 | 
						|
}
 | 
						|
 | 
						|
void calculate_volumetric_multipliers() {
 | 
						|
  for (int i=0; i<EXTRUDERS; i++)
 | 
						|
    volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
 | 
						|
}
 |