You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1084 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
	
	
							1084 lines
						
					
					
						
							40 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * planner.cpp
 | |
|  *
 | |
|  * Buffer movement commands and manage the acceleration profile plan
 | |
|  *
 | |
|  * Derived from Grbl
 | |
|  * Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
|  *
 | |
|  * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
 | |
|  *
 | |
|  *
 | |
|  * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 | |
|  *
 | |
|  * s == speed, a == acceleration, t == time, d == distance
 | |
|  *
 | |
|  * Basic definitions:
 | |
|  *   Speed[s_, a_, t_] := s + (a*t)
 | |
|  *   Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 | |
|  *
 | |
|  * Distance to reach a specific speed with a constant acceleration:
 | |
|  *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 | |
|  *   d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 | |
|  *
 | |
|  * Speed after a given distance of travel with constant acceleration:
 | |
|  *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 | |
|  *   m -> Sqrt[2 a d + s^2]
 | |
|  *
 | |
|  * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 | |
|  *
 | |
|  * When to start braking (di) to reach a specified destination speed (s2) after accelerating
 | |
|  * from initial speed s1 without ever stopping at a plateau:
 | |
|  *   Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 | |
|  *   di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 | |
|  *
 | |
|  * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "planner.h"
 | |
| #include "stepper.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
|   #include "mesh_bed_leveling.h"
 | |
| #endif
 | |
| 
 | |
| Planner planner;
 | |
| 
 | |
| Planner::Planner() {
 | |
|   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     bed_level_matrix.set_to_identity();
 | |
|   #endif
 | |
|   init();
 | |
| }
 | |
| 
 | |
| void Planner::init() {
 | |
|   block_buffer_head = block_buffer_tail = 0;
 | |
|   memset(position, 0, sizeof(position)); // clear position
 | |
|   for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
 | |
|   previous_nominal_speed = 0.0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
 | |
|  * by the provided factors.
 | |
|  */
 | |
| void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
 | |
|   unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
 | |
|                 final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
 | |
| 
 | |
|   // Limit minimal step rate (Otherwise the timer will overflow.)
 | |
|   NOLESS(initial_rate, 120);
 | |
|   NOLESS(final_rate, 120);
 | |
| 
 | |
|   long acceleration = block->acceleration_st;
 | |
|   int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
 | |
|   int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
 | |
| 
 | |
|   // Calculate the size of Plateau of Nominal Rate.
 | |
|   int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
 | |
| 
 | |
|   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 | |
|   // have to use intersection_distance() to calculate when to abort acceleration and start braking
 | |
|   // in order to reach the final_rate exactly at the end of this block.
 | |
|   if (plateau_steps < 0) {
 | |
|     accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
 | |
|     accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
 | |
|     accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
 | |
|     plateau_steps = 0;
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(ADVANCE)
 | |
|     volatile long initial_advance = block->advance * entry_factor * entry_factor;
 | |
|     volatile long final_advance = block->advance * exit_factor * exit_factor;
 | |
|   #endif // ADVANCE
 | |
| 
 | |
|   // block->accelerate_until = accelerate_steps;
 | |
|   // block->decelerate_after = accelerate_steps+plateau_steps;
 | |
|   CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
 | |
|   if (!block->busy) { // Don't update variables if block is busy.
 | |
|     block->accelerate_until = accelerate_steps;
 | |
|     block->decelerate_after = accelerate_steps + plateau_steps;
 | |
|     block->initial_rate = initial_rate;
 | |
|     block->final_rate = final_rate;
 | |
|     #if ENABLED(ADVANCE)
 | |
|       block->initial_advance = initial_advance;
 | |
|       block->final_advance = final_advance;
 | |
|     #endif
 | |
|   }
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | |
| // This method will calculate the junction jerk as the euclidean distance between the nominal
 | |
| // velocities of the respective blocks.
 | |
| //inline float junction_jerk(block_t *before, block_t *after) {
 | |
| //  return sqrt(
 | |
| //    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
 | |
| //}
 | |
| 
 | |
| 
 | |
| // The kernel called by recalculate() when scanning the plan from last to first entry.
 | |
| void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
 | |
|   if (!current) return;
 | |
|   UNUSED(previous);
 | |
| 
 | |
|   if (next) {
 | |
|     // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 | |
|     // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
 | |
|     // check for maximum allowable speed reductions to ensure maximum possible planned speed.
 | |
|     float max_entry_speed = current->max_entry_speed;
 | |
|     if (current->entry_speed != max_entry_speed) {
 | |
| 
 | |
|       // If nominal length true, max junction speed is guaranteed to be reached. Only compute
 | |
|       // for max allowable speed if block is decelerating and nominal length is false.
 | |
|       if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
 | |
|         current->entry_speed = min(max_entry_speed,
 | |
|                                    max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
 | |
|       }
 | |
|       else {
 | |
|         current->entry_speed = max_entry_speed;
 | |
|       }
 | |
|       current->recalculate_flag = true;
 | |
| 
 | |
|     }
 | |
|   } // Skip last block. Already initialized and set for recalculation.
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * recalculate() needs to go over the current plan twice.
 | |
|  * Once in reverse and once forward. This implements the reverse pass.
 | |
|  */
 | |
| void Planner::reverse_pass() {
 | |
| 
 | |
|   if (movesplanned() > 3) {
 | |
| 
 | |
|     block_t* block[3] = { NULL, NULL, NULL };
 | |
| 
 | |
|     // Make a local copy of block_buffer_tail, because the interrupt can alter it
 | |
|     CRITICAL_SECTION_START;
 | |
|       uint8_t tail = block_buffer_tail;
 | |
|     CRITICAL_SECTION_END
 | |
| 
 | |
|     uint8_t b = BLOCK_MOD(block_buffer_head - 3);
 | |
|     while (b != tail) {
 | |
|       b = prev_block_index(b);
 | |
|       block[2] = block[1];
 | |
|       block[1] = block[0];
 | |
|       block[0] = &block_buffer[b];
 | |
|       reverse_pass_kernel(block[0], block[1], block[2]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The kernel called by recalculate() when scanning the plan from first to last entry.
 | |
| void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
 | |
|   if (!previous) return;
 | |
|   UNUSED(next);
 | |
| 
 | |
|   // If the previous block is an acceleration block, but it is not long enough to complete the
 | |
|   // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 | |
|   // speeds have already been reset, maximized, and reverse planned by reverse planner.
 | |
|   // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
 | |
|   if (!previous->nominal_length_flag) {
 | |
|     if (previous->entry_speed < current->entry_speed) {
 | |
|       double entry_speed = min(current->entry_speed,
 | |
|                                max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
 | |
|       // Check for junction speed change
 | |
|       if (current->entry_speed != entry_speed) {
 | |
|         current->entry_speed = entry_speed;
 | |
|         current->recalculate_flag = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * recalculate() needs to go over the current plan twice.
 | |
|  * Once in reverse and once forward. This implements the forward pass.
 | |
|  */
 | |
| void Planner::forward_pass() {
 | |
|   block_t* block[3] = { NULL, NULL, NULL };
 | |
| 
 | |
|   for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | |
|     block[0] = block[1];
 | |
|     block[1] = block[2];
 | |
|     block[2] = &block_buffer[b];
 | |
|     forward_pass_kernel(block[0], block[1], block[2]);
 | |
|   }
 | |
|   forward_pass_kernel(block[1], block[2], NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Recalculate the trapezoid speed profiles for all blocks in the plan
 | |
|  * according to the entry_factor for each junction. Must be called by
 | |
|  * recalculate() after updating the blocks.
 | |
|  */
 | |
| void Planner::recalculate_trapezoids() {
 | |
|   int8_t block_index = block_buffer_tail;
 | |
|   block_t* current;
 | |
|   block_t* next = NULL;
 | |
| 
 | |
|   while (block_index != block_buffer_head) {
 | |
|     current = next;
 | |
|     next = &block_buffer[block_index];
 | |
|     if (current) {
 | |
|       // Recalculate if current block entry or exit junction speed has changed.
 | |
|       if (current->recalculate_flag || next->recalculate_flag) {
 | |
|         // NOTE: Entry and exit factors always > 0 by all previous logic operations.
 | |
|         float nom = current->nominal_speed;
 | |
|         calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
 | |
|         current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
 | |
|       }
 | |
|     }
 | |
|     block_index = next_block_index(block_index);
 | |
|   }
 | |
|   // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
 | |
|   if (next) {
 | |
|     float nom = next->nominal_speed;
 | |
|     calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
 | |
|     next->recalculate_flag = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recalculate the motion plan according to the following algorithm:
 | |
|  *
 | |
|  *   1. Go over every block in reverse order...
 | |
|  *
 | |
|  *      Calculate a junction speed reduction (block_t.entry_factor) so:
 | |
|  *
 | |
|  *      a. The junction jerk is within the set limit, and
 | |
|  *
 | |
|  *      b. No speed reduction within one block requires faster
 | |
|  *         deceleration than the one, true constant acceleration.
 | |
|  *
 | |
|  *   2. Go over every block in chronological order...
 | |
|  *
 | |
|  *      Dial down junction speed reduction values if:
 | |
|  *      a. The speed increase within one block would require faster
 | |
|  *         acceleration than the one, true constant acceleration.
 | |
|  *
 | |
|  * After that, all blocks will have an entry_factor allowing all speed changes to
 | |
|  * be performed using only the one, true constant acceleration, and where no junction
 | |
|  * jerk is jerkier than the set limit, Jerky. Finally it will:
 | |
|  *
 | |
|  *   3. Recalculate "trapezoids" for all blocks.
 | |
|  */
 | |
| void Planner::recalculate() {
 | |
|   reverse_pass();
 | |
|   forward_pass();
 | |
|   recalculate_trapezoids();
 | |
| }
 | |
| 
 | |
| 
 | |
| #if ENABLED(AUTOTEMP)
 | |
| 
 | |
|   void Planner::getHighESpeed() {
 | |
|     static float oldt = 0;
 | |
| 
 | |
|     if (!autotemp_enabled) return;
 | |
|     if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
 | |
| 
 | |
|     float high = 0.0;
 | |
|     for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | |
|       block_t* block = &block_buffer[b];
 | |
|       if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
 | |
|         float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
 | |
|         NOLESS(high, se);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     float t = autotemp_min + high * autotemp_factor;
 | |
|     t = constrain(t, autotemp_min, autotemp_max);
 | |
|     if (oldt > t) {
 | |
|       t *= (1 - (AUTOTEMP_OLDWEIGHT));
 | |
|       t += (AUTOTEMP_OLDWEIGHT) * oldt;
 | |
|     }
 | |
|     oldt = t;
 | |
|     thermalManager.setTargetHotend(t, 0);
 | |
|   }
 | |
| 
 | |
| #endif //AUTOTEMP
 | |
| 
 | |
| /**
 | |
|  * Maintain fans, paste extruder pressure, 
 | |
|  */
 | |
| void Planner::check_axes_activity() {
 | |
|   unsigned char axis_active[NUM_AXIS] = { 0 },
 | |
|                 tail_fan_speed[FAN_COUNT];
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
|     for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(BARICUDA)
 | |
|     unsigned char tail_valve_pressure = baricuda_valve_pressure,
 | |
|                   tail_e_to_p_pressure = baricuda_e_to_p_pressure;
 | |
|   #endif
 | |
| 
 | |
|   if (blocks_queued()) {
 | |
| 
 | |
|     #if FAN_COUNT > 0
 | |
|       for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
 | |
|     #endif
 | |
| 
 | |
|     block_t* block;
 | |
| 
 | |
|     #if ENABLED(BARICUDA)
 | |
|       block = &block_buffer[block_buffer_tail];
 | |
|       tail_valve_pressure = block->valve_pressure;
 | |
|       tail_e_to_p_pressure = block->e_to_p_pressure;
 | |
|     #endif
 | |
| 
 | |
|     for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | |
|       block = &block_buffer[b];
 | |
|       for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
 | |
|     }
 | |
|   }
 | |
|   #if ENABLED(DISABLE_X)
 | |
|     if (!axis_active[X_AXIS]) disable_x();
 | |
|   #endif
 | |
|   #if ENABLED(DISABLE_Y)
 | |
|     if (!axis_active[Y_AXIS]) disable_y();
 | |
|   #endif
 | |
|   #if ENABLED(DISABLE_Z)
 | |
|     if (!axis_active[Z_AXIS]) disable_z();
 | |
|   #endif
 | |
|   #if ENABLED(DISABLE_E)
 | |
|     if (!axis_active[E_AXIS]) {
 | |
|       disable_e0();
 | |
|       disable_e1();
 | |
|       disable_e2();
 | |
|       disable_e3();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
| 
 | |
|     #if defined(FAN_MIN_PWM)
 | |
|       #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
 | |
|     #else
 | |
|       #define CALC_FAN_SPEED(f) tail_fan_speed[f]
 | |
|     #endif
 | |
| 
 | |
|     #ifdef FAN_KICKSTART_TIME
 | |
| 
 | |
|       static millis_t fan_kick_end[FAN_COUNT] = { 0 };
 | |
| 
 | |
|       #define KICKSTART_FAN(f) \
 | |
|         if (tail_fan_speed[f]) { \
 | |
|           millis_t ms = millis(); \
 | |
|           if (fan_kick_end[f] == 0) { \
 | |
|             fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
 | |
|             tail_fan_speed[f] = 255; \
 | |
|           } else { \
 | |
|             if (PENDING(ms, fan_kick_end[f])) { \
 | |
|               tail_fan_speed[f] = 255; \
 | |
|             } \
 | |
|           } \
 | |
|         } else { \
 | |
|           fan_kick_end[f] = 0; \
 | |
|         }
 | |
| 
 | |
|       #if HAS_FAN0
 | |
|         KICKSTART_FAN(0);
 | |
|       #endif
 | |
|       #if HAS_FAN1
 | |
|         KICKSTART_FAN(1);
 | |
|       #endif
 | |
|       #if HAS_FAN2
 | |
|         KICKSTART_FAN(2);
 | |
|       #endif
 | |
| 
 | |
|     #endif //FAN_KICKSTART_TIME
 | |
| 
 | |
|     #if ENABLED(FAN_SOFT_PWM)
 | |
|       #if HAS_FAN0
 | |
|         thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
 | |
|       #endif
 | |
|       #if HAS_FAN1
 | |
|         thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
 | |
|       #endif
 | |
|       #if HAS_FAN2
 | |
|         thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
 | |
|       #endif
 | |
|     #else
 | |
|       #if HAS_FAN0
 | |
|         analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
 | |
|       #endif
 | |
|       #if HAS_FAN1
 | |
|         analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
 | |
|       #endif
 | |
|       #if HAS_FAN2
 | |
|         analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|   #endif // FAN_COUNT > 0
 | |
| 
 | |
|   #if ENABLED(AUTOTEMP)
 | |
|     getHighESpeed();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(BARICUDA)
 | |
|     #if HAS_HEATER_1
 | |
|       analogWrite(HEATER_1_PIN, tail_valve_pressure);
 | |
|     #endif
 | |
|     #if HAS_HEATER_2
 | |
|       analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
 | |
|     #endif
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Planner::buffer_line
 | |
|  *
 | |
|  * Add a new linear movement to the buffer.
 | |
|  *
 | |
|  *  x,y,z,e   - target position in mm
 | |
|  *  feed_rate - (target) speed of the move
 | |
|  *  extruder  - target extruder
 | |
|  */
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
 | |
|   void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
 | |
| #else
 | |
|   void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
 | |
| #endif  // AUTO_BED_LEVELING_FEATURE
 | |
| {
 | |
|   // Calculate the buffer head after we push this byte
 | |
|   int next_buffer_head = next_block_index(block_buffer_head);
 | |
| 
 | |
|   // If the buffer is full: good! That means we are well ahead of the robot.
 | |
|   // Rest here until there is room in the buffer.
 | |
|   while (block_buffer_tail == next_buffer_head) idle();
 | |
| 
 | |
|   #if ENABLED(MESH_BED_LEVELING)
 | |
|     if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
 | |
|   #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     apply_rotation_xyz(bed_level_matrix, x, y, z);
 | |
|   #endif
 | |
| 
 | |
|   // The target position of the tool in absolute steps
 | |
|   // Calculate target position in absolute steps
 | |
|   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | |
|   long target[NUM_AXIS] = {
 | |
|     lround(x * axis_steps_per_unit[X_AXIS]),
 | |
|     lround(y * axis_steps_per_unit[Y_AXIS]),
 | |
|     lround(z * axis_steps_per_unit[Z_AXIS]),
 | |
|     lround(e * axis_steps_per_unit[E_AXIS])
 | |
|   };
 | |
| 
 | |
|   long dx = target[X_AXIS] - position[X_AXIS],
 | |
|        dy = target[Y_AXIS] - position[Y_AXIS],
 | |
|        dz = target[Z_AXIS] - position[Z_AXIS];
 | |
| 
 | |
|   // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
 | |
|   if (DEBUGGING(DRYRUN))
 | |
|     position[E_AXIS] = target[E_AXIS];
 | |
| 
 | |
|   long de = target[E_AXIS] - position[E_AXIS];
 | |
| 
 | |
|   #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | |
|     if (de) {
 | |
|       if (thermalManager.tooColdToExtrude(extruder)) {
 | |
|         position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | |
|         de = 0; // no difference
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | |
|       }
 | |
|       #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | |
|         if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
 | |
|           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | |
|           de = 0; // no difference
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Prepare to set up new block
 | |
|   block_t* block = &block_buffer[block_buffer_head];
 | |
| 
 | |
|   // Mark block as not busy (Not executed by the stepper interrupt)
 | |
|   block->busy = false;
 | |
| 
 | |
|   // Number of steps for each axis
 | |
|   #if ENABLED(COREXY)
 | |
|     // corexy planning
 | |
|     // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | |
|     block->steps[A_AXIS] = labs(dx + dy);
 | |
|     block->steps[B_AXIS] = labs(dx - dy);
 | |
|     block->steps[Z_AXIS] = labs(dz);
 | |
|   #elif ENABLED(COREXZ)
 | |
|     // corexz planning
 | |
|     block->steps[A_AXIS] = labs(dx + dz);
 | |
|     block->steps[Y_AXIS] = labs(dy);
 | |
|     block->steps[C_AXIS] = labs(dx - dz);
 | |
|   #else
 | |
|     // default non-h-bot planning
 | |
|     block->steps[X_AXIS] = labs(dx);
 | |
|     block->steps[Y_AXIS] = labs(dy);
 | |
|     block->steps[Z_AXIS] = labs(dz);
 | |
|   #endif
 | |
| 
 | |
|   block->steps[E_AXIS] = labs(de);
 | |
|   block->steps[E_AXIS] *= volumetric_multiplier[extruder];
 | |
|   block->steps[E_AXIS] *= extruder_multiplier[extruder];
 | |
|   block->steps[E_AXIS] /= 100;
 | |
|   block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
 | |
| 
 | |
|   // Bail if this is a zero-length block
 | |
|   if (block->step_event_count <= dropsegments) return;
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
|     for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(BARICUDA)
 | |
|     block->valve_pressure = baricuda_valve_pressure;
 | |
|     block->e_to_p_pressure = baricuda_e_to_p_pressure;
 | |
|   #endif
 | |
| 
 | |
|   // Compute direction bits for this block
 | |
|   uint8_t db = 0;
 | |
|   #if ENABLED(COREXY)
 | |
|     if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
 | |
|     if (dy < 0) SBI(db, Y_HEAD); // ...and Y
 | |
|     if (dz < 0) SBI(db, Z_AXIS);
 | |
|     if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
 | |
|     if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
 | |
|   #elif ENABLED(COREXZ)
 | |
|     if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
 | |
|     if (dy < 0) SBI(db, Y_AXIS);
 | |
|     if (dz < 0) SBI(db, Z_HEAD); // ...and Z
 | |
|     if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
 | |
|     if (dx - dz < 0) SBI(db, C_AXIS); // Motor B direction
 | |
|   #else
 | |
|     if (dx < 0) SBI(db, X_AXIS);
 | |
|     if (dy < 0) SBI(db, Y_AXIS);
 | |
|     if (dz < 0) SBI(db, Z_AXIS);
 | |
|   #endif
 | |
|   if (de < 0) SBI(db, E_AXIS);
 | |
|   block->direction_bits = db;
 | |
| 
 | |
|   block->active_extruder = extruder;
 | |
| 
 | |
|   //enable active axes
 | |
|   #if ENABLED(COREXY)
 | |
|     if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
 | |
|       enable_x();
 | |
|       enable_y();
 | |
|     }
 | |
|     #if DISABLED(Z_LATE_ENABLE)
 | |
|       if (block->steps[Z_AXIS]) enable_z();
 | |
|     #endif
 | |
|   #elif ENABLED(COREXZ)
 | |
|     if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
 | |
|       enable_x();
 | |
|       enable_z();
 | |
|     }
 | |
|     if (block->steps[Y_AXIS]) enable_y();
 | |
|   #else
 | |
|     if (block->steps[X_AXIS]) enable_x();
 | |
|     if (block->steps[Y_AXIS]) enable_y();
 | |
|     #if DISABLED(Z_LATE_ENABLE)
 | |
|       if (block->steps[Z_AXIS]) enable_z();
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   // Enable extruder(s)
 | |
|   if (block->steps[E_AXIS]) {
 | |
| 
 | |
|     #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
 | |
| 
 | |
|       for (int i = 0; i < EXTRUDERS; i++)
 | |
|         if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
 | |
| 
 | |
|       switch(extruder) {
 | |
|         case 0:
 | |
|           enable_e0();
 | |
|           #if ENABLED(DUAL_X_CARRIAGE)
 | |
|             if (extruder_duplication_enabled) {
 | |
|               enable_e1();
 | |
|               g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
 | |
|             }
 | |
|           #endif
 | |
|           g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
 | |
|           #if EXTRUDERS > 1
 | |
|             if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | |
|             #if EXTRUDERS > 2
 | |
|               if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | |
|               #if EXTRUDERS > 3
 | |
|                 if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | |
|               #endif
 | |
|             #endif
 | |
|           #endif
 | |
|         break;
 | |
|         #if EXTRUDERS > 1
 | |
|           case 1:
 | |
|             enable_e1();
 | |
|             g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
 | |
|             if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | |
|             #if EXTRUDERS > 2
 | |
|               if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | |
|               #if EXTRUDERS > 3
 | |
|                 if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | |
|               #endif
 | |
|             #endif
 | |
|           break;
 | |
|           #if EXTRUDERS > 2
 | |
|             case 2:
 | |
|               enable_e2();
 | |
|               g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
 | |
|               if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | |
|               if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | |
|               #if EXTRUDERS > 3
 | |
|                 if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | |
|               #endif
 | |
|             break;
 | |
|             #if EXTRUDERS > 3
 | |
|               case 3:
 | |
|                 enable_e3();
 | |
|                 g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
 | |
|                 if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | |
|                 if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | |
|                 if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | |
|               break;
 | |
|             #endif // EXTRUDERS > 3
 | |
|           #endif // EXTRUDERS > 2
 | |
|         #endif // EXTRUDERS > 1
 | |
|       }
 | |
|     #else
 | |
|       enable_e0();
 | |
|       enable_e1();
 | |
|       enable_e2();
 | |
|       enable_e3();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   if (block->steps[E_AXIS])
 | |
|     NOLESS(feed_rate, min_feedrate);
 | |
|   else
 | |
|     NOLESS(feed_rate, min_travel_feedrate);
 | |
| 
 | |
|   /**
 | |
|    * This part of the code calculates the total length of the movement.
 | |
|    * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
 | |
|    * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
 | |
|    * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
 | |
|    * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
 | |
|    * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
 | |
|    */
 | |
|   #if ENABLED(COREXY)
 | |
|     float delta_mm[6];
 | |
|     delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
 | |
|     delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
 | |
|     delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
 | |
|     delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
 | |
|     delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
 | |
|   #elif ENABLED(COREXZ)
 | |
|     float delta_mm[6];
 | |
|     delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
 | |
|     delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
 | |
|     delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
 | |
|     delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
 | |
|     delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
 | |
|   #else
 | |
|     float delta_mm[4];
 | |
|     delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
 | |
|     delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
 | |
|     delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
 | |
|   #endif
 | |
|   delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
 | |
| 
 | |
|   if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
 | |
|     block->millimeters = fabs(delta_mm[E_AXIS]);
 | |
|   }
 | |
|   else {
 | |
|     block->millimeters = sqrt(
 | |
|       #if ENABLED(COREXY)
 | |
|         square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
 | |
|       #elif ENABLED(COREXZ)
 | |
|         square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
 | |
|       #else
 | |
|         square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
 | |
|       #endif
 | |
|     );
 | |
|   }
 | |
|   float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
 | |
| 
 | |
|   // Calculate moves/second for this move. No divide by zero due to previous checks.
 | |
|   float inverse_second = feed_rate * inverse_millimeters;
 | |
| 
 | |
|   int moves_queued = movesplanned();
 | |
| 
 | |
|   // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
 | |
|   #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
 | |
|     bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
 | |
|     #if ENABLED(OLD_SLOWDOWN)
 | |
|       if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
 | |
|     #endif
 | |
|     #if ENABLED(SLOWDOWN)
 | |
|       //  segment time im micro seconds
 | |
|       unsigned long segment_time = lround(1000000.0/inverse_second);
 | |
|       if (mq) {
 | |
|         if (segment_time < min_segment_time) {
 | |
|           // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | |
|           inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
 | |
|           #ifdef XY_FREQUENCY_LIMIT
 | |
|             segment_time = lround(1000000.0 / inverse_second);
 | |
|           #endif
 | |
|         }
 | |
|       }
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
 | |
|   block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
 | |
| 
 | |
|   #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
|     static float filwidth_e_count = 0, filwidth_delay_dist = 0;
 | |
| 
 | |
|     //FMM update ring buffer used for delay with filament measurements
 | |
|     if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index2 >= 0) {  //only for extruder with filament sensor and if ring buffer is initialized
 | |
| 
 | |
|       const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
 | |
| 
 | |
|       // increment counters with next move in e axis
 | |
|       filwidth_e_count += delta_mm[E_AXIS];
 | |
|       filwidth_delay_dist += delta_mm[E_AXIS];
 | |
| 
 | |
|       // Only get new measurements on forward E movement
 | |
|       if (filwidth_e_count > 0.0001) {
 | |
| 
 | |
|         // Loop the delay distance counter (modulus by the mm length)
 | |
|         while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
 | |
| 
 | |
|         // Convert into an index into the measurement array
 | |
|         filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001);
 | |
| 
 | |
|         // If the index has changed (must have gone forward)...
 | |
|         if (filwidth_delay_index1 != filwidth_delay_index2) {
 | |
|           filwidth_e_count = 0; // Reset the E movement counter
 | |
|           int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
 | |
|           do {
 | |
|             filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
 | |
|             measurement_delay[filwidth_delay_index2] = meas_sample;       // Store the measurement
 | |
|           } while (filwidth_delay_index1 != filwidth_delay_index2);       // More slots to fill?
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Calculate and limit speed in mm/sec for each axis
 | |
|   float current_speed[NUM_AXIS];
 | |
|   float speed_factor = 1.0; //factor <=1 do decrease speed
 | |
|   for (int i = 0; i < NUM_AXIS; i++) {
 | |
|     current_speed[i] = delta_mm[i] * inverse_second;
 | |
|     float cs = fabs(current_speed[i]), mf = max_feedrate[i];
 | |
|     if (cs > mf) speed_factor = min(speed_factor, mf / cs);
 | |
|   }
 | |
| 
 | |
|   // Max segement time in us.
 | |
|   #ifdef XY_FREQUENCY_LIMIT
 | |
| 
 | |
|     // Check and limit the xy direction change frequency
 | |
|     unsigned char direction_change = block->direction_bits ^ old_direction_bits;
 | |
|     old_direction_bits = block->direction_bits;
 | |
|     segment_time = lround((float)segment_time / speed_factor);
 | |
| 
 | |
|     long xs0 = axis_segment_time[X_AXIS][0],
 | |
|          xs1 = axis_segment_time[X_AXIS][1],
 | |
|          xs2 = axis_segment_time[X_AXIS][2],
 | |
|          ys0 = axis_segment_time[Y_AXIS][0],
 | |
|          ys1 = axis_segment_time[Y_AXIS][1],
 | |
|          ys2 = axis_segment_time[Y_AXIS][2];
 | |
| 
 | |
|     if (TEST(direction_change, X_AXIS)) {
 | |
|       xs2 = axis_segment_time[X_AXIS][2] = xs1;
 | |
|       xs1 = axis_segment_time[X_AXIS][1] = xs0;
 | |
|       xs0 = 0;
 | |
|     }
 | |
|     xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
 | |
| 
 | |
|     if (TEST(direction_change, Y_AXIS)) {
 | |
|       ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
 | |
|       ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
 | |
|       ys0 = 0;
 | |
|     }
 | |
|     ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
 | |
| 
 | |
|     long max_x_segment_time = max(xs0, max(xs1, xs2)),
 | |
|          max_y_segment_time = max(ys0, max(ys1, ys2)),
 | |
|          min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
 | |
|     if (min_xy_segment_time < MAX_FREQ_TIME) {
 | |
|       float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
 | |
|       speed_factor = min(speed_factor, low_sf);
 | |
|     }
 | |
|   #endif // XY_FREQUENCY_LIMIT
 | |
| 
 | |
|   // Correct the speed
 | |
|   if (speed_factor < 1.0) {
 | |
|     for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
 | |
|     block->nominal_speed *= speed_factor;
 | |
|     block->nominal_rate *= speed_factor;
 | |
|   }
 | |
| 
 | |
|   // Compute and limit the acceleration rate for the trapezoid generator.
 | |
|   float steps_per_mm = block->step_event_count / block->millimeters;
 | |
|   long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
 | |
|   if (bsx == 0 && bsy == 0 && bsz == 0) {
 | |
|     block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | |
|   }
 | |
|   else if (bse == 0) {
 | |
|     block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | |
|   }
 | |
|   else {
 | |
|     block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | |
|   }
 | |
|   // Limit acceleration per axis
 | |
|   unsigned long acc_st = block->acceleration_st,
 | |
|                 xsteps = axis_steps_per_sqr_second[X_AXIS],
 | |
|                 ysteps = axis_steps_per_sqr_second[Y_AXIS],
 | |
|                 zsteps = axis_steps_per_sqr_second[Z_AXIS],
 | |
|                 esteps = axis_steps_per_sqr_second[E_AXIS],
 | |
|                 allsteps = block->step_event_count;
 | |
|   if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx;
 | |
|   if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy;
 | |
|   if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz;
 | |
|   if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse;
 | |
| 
 | |
|   block->acceleration_st = acc_st;
 | |
|   block->acceleration = acc_st / steps_per_mm;
 | |
|   block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
 | |
| 
 | |
|   #if 0  // Use old jerk for now
 | |
| 
 | |
|     float junction_deviation = 0.1;
 | |
| 
 | |
|     // Compute path unit vector
 | |
|     double unit_vec[3];
 | |
| 
 | |
|     unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
 | |
|     unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
 | |
|     unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
 | |
| 
 | |
|     // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
 | |
|     // Let a circle be tangent to both previous and current path line segments, where the junction
 | |
|     // deviation is defined as the distance from the junction to the closest edge of the circle,
 | |
|     // collinear with the circle center. The circular segment joining the two paths represents the
 | |
|     // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
 | |
|     // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
 | |
|     // path width or max_jerk in the previous grbl version. This approach does not actually deviate
 | |
|     // from path, but used as a robust way to compute cornering speeds, as it takes into account the
 | |
|     // nonlinearities of both the junction angle and junction velocity.
 | |
|     double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
 | |
| 
 | |
|     // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
 | |
|     if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
 | |
|       // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
 | |
|       // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
 | |
|       double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
 | |
|                          - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
 | |
|                          - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
 | |
|       // Skip and use default max junction speed for 0 degree acute junction.
 | |
|       if (cos_theta < 0.95) {
 | |
|         vmax_junction = min(previous_nominal_speed, block->nominal_speed);
 | |
|         // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
 | |
|         if (cos_theta > -0.95) {
 | |
|           // Compute maximum junction velocity based on maximum acceleration and junction deviation
 | |
|           double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
 | |
|           vmax_junction = min(vmax_junction,
 | |
|                               sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Start with a safe speed
 | |
|   float vmax_junction = max_xy_jerk / 2;
 | |
|   float vmax_junction_factor = 1.0;
 | |
|   float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
 | |
|   float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
 | |
|   if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
 | |
|   if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
 | |
|   vmax_junction = min(vmax_junction, block->nominal_speed);
 | |
|   float safe_speed = vmax_junction;
 | |
| 
 | |
|   if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
 | |
|     float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
 | |
|           dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
 | |
|           dsz = fabs(csz - previous_speed[Z_AXIS]),
 | |
|           dse = fabs(cse - previous_speed[E_AXIS]),
 | |
|           jerk = sqrt(dsx * dsx + dsy * dsy);
 | |
| 
 | |
|     //    if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
 | |
|     vmax_junction = block->nominal_speed;
 | |
|     //    }
 | |
|     if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
 | |
|     if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
 | |
|     if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
 | |
| 
 | |
|     vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
 | |
|   }
 | |
|   block->max_entry_speed = vmax_junction;
 | |
| 
 | |
|   // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
 | |
|   double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
 | |
|   block->entry_speed = min(vmax_junction, v_allowable);
 | |
| 
 | |
|   // Initialize planner efficiency flags
 | |
|   // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
 | |
|   // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
 | |
|   // the current block and next block junction speeds are guaranteed to always be at their maximum
 | |
|   // junction speeds in deceleration and acceleration, respectively. This is due to how the current
 | |
|   // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 | |
|   // the reverse and forward planners, the corresponding block junction speed will always be at the
 | |
|   // the maximum junction speed and may always be ignored for any speed reduction checks.
 | |
|   block->nominal_length_flag = (block->nominal_speed <= v_allowable);
 | |
|   block->recalculate_flag = true; // Always calculate trapezoid for new block
 | |
| 
 | |
|   // Update previous path unit_vector and nominal speed
 | |
|   for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
 | |
|   previous_nominal_speed = block->nominal_speed;
 | |
| 
 | |
|   #if ENABLED(ADVANCE)
 | |
|     // Calculate advance rate
 | |
|     if (!bse || (!bsx && !bsy && !bsz)) {
 | |
|       block->advance_rate = 0;
 | |
|       block->advance = 0;
 | |
|     }
 | |
|     else {
 | |
|       long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
 | |
|       float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
 | |
|       block->advance = advance;
 | |
|       block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
 | |
|     }
 | |
|     /**
 | |
|       SERIAL_ECHO_START;
 | |
|      SERIAL_ECHOPGM("advance :");
 | |
|      SERIAL_ECHO(block->advance/256.0);
 | |
|      SERIAL_ECHOPGM("advance rate :");
 | |
|      SERIAL_ECHOLN(block->advance_rate/256.0);
 | |
|      */
 | |
|   #endif // ADVANCE
 | |
| 
 | |
|   calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
 | |
| 
 | |
|   // Move buffer head
 | |
|   block_buffer_head = next_buffer_head;
 | |
| 
 | |
|   // Update position
 | |
|   for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
 | |
| 
 | |
|   recalculate();
 | |
| 
 | |
|   stepper.wake_up();
 | |
| 
 | |
| } // buffer_line()
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
 | |
| 
 | |
|   /**
 | |
|    * Get the XYZ position of the steppers as a vector_3.
 | |
|    *
 | |
|    * On CORE machines XYZ is derived from ABC.
 | |
|    */
 | |
|   vector_3 Planner::adjusted_position() {
 | |
|     vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
 | |
| 
 | |
|     //pos.debug("in Planner::adjusted_position");
 | |
|     //bed_level_matrix.debug("in Planner::adjusted_position");
 | |
| 
 | |
|     matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
 | |
|     //inverse.debug("in Planner::inverse");
 | |
| 
 | |
|     pos.apply_rotation(inverse);
 | |
|     //pos.debug("after rotation");
 | |
| 
 | |
|     return pos;
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
 | |
| 
 | |
| /**
 | |
|  * Directly set the planner XYZ position (hence the stepper positions).
 | |
|  *
 | |
|  * On CORE machines stepper ABC will be translated from the given XYZ.
 | |
|  */
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
 | |
|   void Planner::set_position(float x, float y, float z, const float& e)
 | |
| #else
 | |
|   void Planner::set_position(const float& x, const float& y, const float& z, const float& e)
 | |
| #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
 | |
|   {
 | |
|     #if ENABLED(MESH_BED_LEVELING)
 | |
|       if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|       apply_rotation_xyz(bed_level_matrix, x, y, z);
 | |
|     #endif
 | |
| 
 | |
|     long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
 | |
|          ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
 | |
|          nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
 | |
|          ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
 | |
|     stepper.set_position(nx, ny, nz, ne);
 | |
|     previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | |
| 
 | |
|     for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
 | |
|   }
 | |
| 
 | |
| /**
 | |
|  * Directly set the planner E position (hence the stepper E position).
 | |
|  */
 | |
| void Planner::set_e_position(const float& e) {
 | |
|   position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
 | |
|   stepper.set_e_position(position[E_AXIS]);
 | |
| }
 | |
| 
 | |
| // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
 | |
| void Planner::reset_acceleration_rates() {
 | |
|   for (int i = 0; i < NUM_AXIS; i++)
 | |
|     axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
 | |
| }
 | |
| 
 | |
| #if ENABLED(AUTOTEMP)
 | |
| 
 | |
|   void Planner::autotemp_M109() {
 | |
|     autotemp_enabled = code_seen('F');
 | |
|     if (autotemp_enabled) autotemp_factor = code_value();
 | |
|     if (code_seen('S')) autotemp_min = code_value();
 | |
|     if (code_seen('B')) autotemp_max = code_value();
 | |
|   }
 | |
| 
 | |
| #endif
 |