You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1333 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
	
	
							1333 lines
						
					
					
						
							40 KiB
						
					
					
				| /*
 | |
|   stepper.c - stepper motor driver: executes motion plans using stepper motors
 | |
|   Part of Grbl
 | |
| 
 | |
|   Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
| 
 | |
|   Grbl is free software: you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation, either version 3 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   Grbl is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | |
|    and Philipp Tiefenbacher. */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "stepper.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| #include "cardreader.h"
 | |
| #include "speed_lookuptable.h"
 | |
| #if HAS_DIGIPOTSS
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //============================= public variables ============================
 | |
| //===========================================================================
 | |
| block_t *current_block;  // A pointer to the block currently being traced
 | |
| 
 | |
| 
 | |
| //===========================================================================
 | |
| //============================= private variables ===========================
 | |
| //===========================================================================
 | |
| //static makes it impossible to be called from outside of this file by extern.!
 | |
| 
 | |
| // Variables used by The Stepper Driver Interrupt
 | |
| static unsigned char out_bits;        // The next stepping-bits to be output
 | |
| static unsigned int cleaning_buffer_counter;
 | |
| 
 | |
| #ifdef Z_DUAL_ENDSTOPS
 | |
|   static bool performing_homing = false, 
 | |
|               locked_z_motor = false, 
 | |
|               locked_z2_motor = false;
 | |
| #endif
 | |
| 
 | |
| // Counter variables for the Bresenham line tracer
 | |
| static long counter_x, counter_y, counter_z, counter_e;
 | |
| volatile static unsigned long step_events_completed; // The number of step events executed in the current block
 | |
| 
 | |
| #ifdef ADVANCE
 | |
|   static long advance_rate, advance, final_advance = 0;
 | |
|   static long old_advance = 0;
 | |
|   static long e_steps[4];
 | |
| #endif
 | |
| 
 | |
| static long acceleration_time, deceleration_time;
 | |
| //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 | |
| static unsigned short acc_step_rate; // needed for deceleration start point
 | |
| static char step_loops;
 | |
| static unsigned short OCR1A_nominal;
 | |
| static unsigned short step_loops_nominal;
 | |
| 
 | |
| volatile long endstops_trigsteps[3] = { 0 };
 | |
| volatile long endstops_stepsTotal, endstops_stepsDone;
 | |
| static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
 | |
| 
 | |
| #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
|   bool abort_on_endstop_hit = false;
 | |
| #endif
 | |
| 
 | |
| #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|   int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
 | |
| #endif
 | |
| 
 | |
| #if HAS_X_MIN
 | |
|   static bool old_x_min_endstop = false;
 | |
| #endif
 | |
| #if HAS_X_MAX
 | |
|   static bool old_x_max_endstop = false;
 | |
| #endif
 | |
| #if HAS_Y_MIN
 | |
|   static bool old_y_min_endstop = false;
 | |
| #endif
 | |
| #if HAS_Y_MAX
 | |
|   static bool old_y_max_endstop = false;
 | |
| #endif
 | |
| 
 | |
| static bool old_z_min_endstop = false;
 | |
| static bool old_z_max_endstop = false;
 | |
| 
 | |
| #ifdef Z_DUAL_ENDSTOPS
 | |
|   static bool old_z2_min_endstop = false;
 | |
|   static bool old_z2_max_endstop = false;
 | |
| #endif
 | |
| 
 | |
| #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
 | |
|   static bool old_z_probe_endstop = false;
 | |
| #endif
 | |
| 
 | |
| static bool check_endstops = true;
 | |
| 
 | |
| volatile long count_position[NUM_AXIS] = { 0 };
 | |
| volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
 | |
| 
 | |
| 
 | |
| //===========================================================================
 | |
| //================================ functions ================================
 | |
| //===========================================================================
 | |
| 
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|   #define X_APPLY_DIR(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_DIR_WRITE(v); \
 | |
|       X2_DIR_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
 | |
|     }
 | |
|   #define X_APPLY_STEP(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_STEP_WRITE(v); \
 | |
|       X2_STEP_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
 | |
|     }
 | |
| #else
 | |
|   #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
 | |
|   #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #ifdef Y_DUAL_STEPPER_DRIVERS
 | |
|   #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
 | |
|   #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
 | |
| #else
 | |
|   #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
 | |
|   #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|   #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
 | |
|   #ifdef Z_DUAL_ENDSTOPS
 | |
|     #define Z_APPLY_STEP(v,Q) \
 | |
|     if (performing_homing) { \
 | |
|       if (Z_HOME_DIR > 0) {\
 | |
|         if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } else {\
 | |
|         if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } \
 | |
|     } else { \
 | |
|       Z_STEP_WRITE(v); \
 | |
|       Z2_STEP_WRITE(v); \
 | |
|     }
 | |
|   #else
 | |
|     #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
 | |
|   #endif
 | |
| #else
 | |
|   #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
 | |
|   #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
 | |
| 
 | |
| // intRes = intIn1 * intIn2 >> 16
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store the byte 1 of the 24 bit result
 | |
| #define MultiU16X8toH16(intRes, charIn1, intIn2) \
 | |
|   asm volatile ( \
 | |
|     "clr r26 \n\t" \
 | |
|     "mul %A1, %B2 \n\t" \
 | |
|     "movw %A0, r0 \n\t" \
 | |
|     "mul %A1, %A2 \n\t" \
 | |
|     "add %A0, r1 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "lsr r0 \n\t" \
 | |
|     "adc %A0, r26 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "clr r1 \n\t" \
 | |
|     : \
 | |
|     "=&r" (intRes) \
 | |
|     : \
 | |
|     "d" (charIn1), \
 | |
|     "d" (intIn2) \
 | |
|     : \
 | |
|     "r26" \
 | |
|   )
 | |
| 
 | |
| // intRes = longIn1 * longIn2 >> 24
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
 | |
| // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
 | |
| // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
 | |
| // B0 A0 are bits 24-39 and are the returned value
 | |
| // C1 B1 A1 is longIn1
 | |
| // D2 C2 B2 A2 is longIn2
 | |
| //
 | |
| #define MultiU24X32toH16(intRes, longIn1, longIn2) \
 | |
|   asm volatile ( \
 | |
|     "clr r26 \n\t" \
 | |
|     "mul %A1, %B2 \n\t" \
 | |
|     "mov r27, r1 \n\t" \
 | |
|     "mul %B1, %C2 \n\t" \
 | |
|     "movw %A0, r0 \n\t" \
 | |
|     "mul %C1, %C2 \n\t" \
 | |
|     "add %B0, r0 \n\t" \
 | |
|     "mul %C1, %B2 \n\t" \
 | |
|     "add %A0, r0 \n\t" \
 | |
|     "adc %B0, r1 \n\t" \
 | |
|     "mul %A1, %C2 \n\t" \
 | |
|     "add r27, r0 \n\t" \
 | |
|     "adc %A0, r1 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "mul %B1, %B2 \n\t" \
 | |
|     "add r27, r0 \n\t" \
 | |
|     "adc %A0, r1 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "mul %C1, %A2 \n\t" \
 | |
|     "add r27, r0 \n\t" \
 | |
|     "adc %A0, r1 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "mul %B1, %A2 \n\t" \
 | |
|     "add r27, r1 \n\t" \
 | |
|     "adc %A0, r26 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "lsr r27 \n\t" \
 | |
|     "adc %A0, r26 \n\t" \
 | |
|     "adc %B0, r26 \n\t" \
 | |
|     "mul %D2, %A1 \n\t" \
 | |
|     "add %A0, r0 \n\t" \
 | |
|     "adc %B0, r1 \n\t" \
 | |
|     "mul %D2, %B1 \n\t" \
 | |
|     "add %B0, r0 \n\t" \
 | |
|     "clr r1 \n\t" \
 | |
|     : \
 | |
|     "=&r" (intRes) \
 | |
|     : \
 | |
|     "d" (longIn1), \
 | |
|     "d" (longIn2) \
 | |
|     : \
 | |
|     "r26" , "r27" \
 | |
|   )
 | |
| 
 | |
| // Some useful constants
 | |
| 
 | |
| #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= BIT(OCIE1A)
 | |
| #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
 | |
| 
 | |
| void endstops_hit_on_purpose() {
 | |
|   endstop_hit_bits = 0;
 | |
| }
 | |
| 
 | |
| void checkHitEndstops() {
 | |
|   if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
 | |
|     if (endstop_hit_bits & BIT(X_MIN)) {
 | |
|       SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
 | |
|       LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
 | |
|     }
 | |
|     if (endstop_hit_bits & BIT(Y_MIN)) {
 | |
|       SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
 | |
|       LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
 | |
|     }
 | |
|     if (endstop_hit_bits & BIT(Z_MIN)) {
 | |
|       SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
 | |
|       LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
 | |
|     }
 | |
|     #ifdef Z_PROBE_ENDSTOP
 | |
|     if (endstop_hit_bits & BIT(Z_PROBE)) {
 | |
|       SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
 | |
|       LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
 | |
|     }
 | |
|     #endif
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     endstops_hit_on_purpose();
 | |
| 
 | |
|     #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
 | |
|       if (abort_on_endstop_hit) {
 | |
|         card.sdprinting = false;
 | |
|         card.closefile();
 | |
|         quickStop();
 | |
|         setTargetHotend0(0);
 | |
|         setTargetHotend1(0);
 | |
|         setTargetHotend2(0);
 | |
|         setTargetHotend3(0);
 | |
|         setTargetBed(0);
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| void enable_endstops(bool check) { check_endstops = check; }
 | |
| 
 | |
| //         __________________________
 | |
| //        /|                        |\     _________________         ^
 | |
| //       / |                        | \   /|               |\        |
 | |
| //      /  |                        |  \ / |               | \       s
 | |
| //     /   |                        |   |  |               |  \      p
 | |
| //    /    |                        |   |  |               |   \     e
 | |
| //   +-----+------------------------+---+--+---------------+----+    e
 | |
| //   |               BLOCK 1            |      BLOCK 2          |    d
 | |
| //
 | |
| //                           time ----->
 | |
| //
 | |
| //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 | |
| //  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 | |
| //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | |
| //  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
 | |
| 
 | |
| void st_wake_up() {
 | |
|   //  TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
 | |
|   unsigned short timer;
 | |
|   if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
 | |
| 
 | |
|   if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 | |
|     step_rate = (step_rate >> 2) & 0x3fff;
 | |
|     step_loops = 4;
 | |
|   }
 | |
|   else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 | |
|     step_rate = (step_rate >> 1) & 0x7fff;
 | |
|     step_loops = 2;
 | |
|   }
 | |
|   else {
 | |
|     step_loops = 1;
 | |
|   }
 | |
| 
 | |
|   if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
 | |
|   step_rate -= (F_CPU / 500000); // Correct for minimal speed
 | |
|   if (step_rate >= (8 * 256)) { // higher step rate
 | |
|     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
 | |
|     unsigned char tmp_step_rate = (step_rate & 0x00ff);
 | |
|     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
 | |
|     MultiU16X8toH16(timer, tmp_step_rate, gain);
 | |
|     timer = (unsigned short)pgm_read_word_near(table_address) - timer;
 | |
|   }
 | |
|   else { // lower step rates
 | |
|     unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
 | |
|     table_address += ((step_rate)>>1) & 0xfffc;
 | |
|     timer = (unsigned short)pgm_read_word_near(table_address);
 | |
|     timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
 | |
|   }
 | |
|   if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
 | |
|   return timer;
 | |
| }
 | |
| 
 | |
| // Initializes the trapezoid generator from the current block. Called whenever a new
 | |
| // block begins.
 | |
| FORCE_INLINE void trapezoid_generator_reset() {
 | |
|   #ifdef ADVANCE
 | |
|     advance = current_block->initial_advance;
 | |
|     final_advance = current_block->final_advance;
 | |
|     // Do E steps + advance steps
 | |
|     e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|     old_advance = advance >>8;
 | |
|   #endif
 | |
|   deceleration_time = 0;
 | |
|   // step_rate to timer interval
 | |
|   OCR1A_nominal = calc_timer(current_block->nominal_rate);
 | |
|   // make a note of the number of step loops required at nominal speed
 | |
|   step_loops_nominal = step_loops;
 | |
|   acc_step_rate = current_block->initial_rate;
 | |
|   acceleration_time = calc_timer(acc_step_rate);
 | |
|   OCR1A = acceleration_time;
 | |
| 
 | |
|   // SERIAL_ECHO_START;
 | |
|   // SERIAL_ECHOPGM("advance :");
 | |
|   // SERIAL_ECHO(current_block->advance/256.0);
 | |
|   // SERIAL_ECHOPGM("advance rate :");
 | |
|   // SERIAL_ECHO(current_block->advance_rate/256.0);
 | |
|   // SERIAL_ECHOPGM("initial advance :");
 | |
|   // SERIAL_ECHO(current_block->initial_advance/256.0);
 | |
|   // SERIAL_ECHOPGM("final advance :");
 | |
|   // SERIAL_ECHOLN(current_block->final_advance/256.0);
 | |
| }
 | |
| 
 | |
| // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 | |
| // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 | |
| ISR(TIMER1_COMPA_vect) {
 | |
| 
 | |
|   if(cleaning_buffer_counter)
 | |
|   {
 | |
|     current_block = NULL;
 | |
|     plan_discard_current_block();
 | |
|     #ifdef SD_FINISHED_RELEASECOMMAND
 | |
|       if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
 | |
|     #endif
 | |
|     cleaning_buffer_counter--;
 | |
|     OCR1A = 200;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there is no current block, attempt to pop one from the buffer
 | |
|   if (!current_block) {
 | |
|     // Anything in the buffer?
 | |
|     current_block = plan_get_current_block();
 | |
|     if (current_block) {
 | |
|       current_block->busy = true;
 | |
|       trapezoid_generator_reset();
 | |
|       counter_x = -(current_block->step_event_count >> 1);
 | |
|       counter_y = counter_z = counter_e = counter_x;
 | |
|       step_events_completed = 0;
 | |
| 
 | |
|       #ifdef Z_LATE_ENABLE
 | |
|         if (current_block->steps[Z_AXIS] > 0) {
 | |
|           enable_z();
 | |
|           OCR1A = 2000; //1ms wait
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       // #ifdef ADVANCE
 | |
|       //   e_steps[current_block->active_extruder] = 0;
 | |
|       // #endif
 | |
|     }
 | |
|     else {
 | |
|       OCR1A = 2000; // 1kHz.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (current_block != NULL) {
 | |
|     // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
 | |
|     out_bits = current_block->direction_bits;
 | |
| 
 | |
|     // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
 | |
|     if (TEST(out_bits, X_AXIS)) {
 | |
|       X_APPLY_DIR(INVERT_X_DIR,0);
 | |
|       count_direction[X_AXIS] = -1;
 | |
|     }
 | |
|     else {
 | |
|       X_APPLY_DIR(!INVERT_X_DIR,0);
 | |
|       count_direction[X_AXIS] = 1;
 | |
|     }
 | |
| 
 | |
|     if (TEST(out_bits, Y_AXIS)) {
 | |
|       Y_APPLY_DIR(INVERT_Y_DIR,0);
 | |
|       count_direction[Y_AXIS] = -1;
 | |
|     }
 | |
|     else {
 | |
|       Y_APPLY_DIR(!INVERT_Y_DIR,0);
 | |
|       count_direction[Y_AXIS] = 1;
 | |
|     }
 | |
| 
 | |
|     #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
 | |
|     #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
 | |
|     #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
 | |
|     #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
 | |
|     #define _AXIS(AXIS) AXIS ##_AXIS
 | |
|     #define _HIT_BIT(AXIS) AXIS ##_MIN
 | |
|     #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
 | |
| 
 | |
|     #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
 | |
|       bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
 | |
|       if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
 | |
|         endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
 | |
|           _ENDSTOP_HIT(AXIS); \
 | |
|         step_events_completed = current_block->step_event_count; \
 | |
|       } \
 | |
|       _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
 | |
| 
 | |
| 
 | |
|     // Check X and Y endstops
 | |
|     if (check_endstops) {
 | |
|       #ifdef COREXY
 | |
|         // Head direction in -X axis for CoreXY bots.
 | |
|         // If DeltaX == -DeltaY, the movement is only in Y axis
 | |
|         if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
 | |
|           if (TEST(out_bits, X_HEAD))
 | |
|       #else
 | |
|           if (TEST(out_bits, X_AXIS))   // stepping along -X axis (regular Cartesian bot)
 | |
|       #endif
 | |
|           { // -direction
 | |
|             #ifdef DUAL_X_CARRIAGE
 | |
|               // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | |
|               if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
 | |
|             #endif
 | |
|               {
 | |
|                 #if HAS_X_MIN
 | |
|                   UPDATE_ENDSTOP(x, X, min, MIN);
 | |
|                 #endif
 | |
|               }
 | |
|           }
 | |
|           else { // +direction
 | |
|             #ifdef DUAL_X_CARRIAGE
 | |
|               // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | |
|               if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
 | |
|             #endif
 | |
|               {
 | |
|                 #if HAS_X_MAX
 | |
|                   UPDATE_ENDSTOP(x, X, max, MAX);
 | |
|                 #endif
 | |
|               }
 | |
|           }
 | |
|       #ifdef COREXY
 | |
|         }
 | |
|         // Head direction in -Y axis for CoreXY bots.
 | |
|         // If DeltaX == DeltaY, the movement is only in X axis
 | |
|         if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
 | |
|           if (TEST(out_bits, Y_HEAD))
 | |
|       #else
 | |
|           if (TEST(out_bits, Y_AXIS))   // -direction
 | |
|       #endif
 | |
|           { // -direction
 | |
|             #if HAS_Y_MIN
 | |
|               UPDATE_ENDSTOP(y, Y, min, MIN);
 | |
|             #endif
 | |
|           }
 | |
|           else { // +direction
 | |
|             #if HAS_Y_MAX
 | |
|               UPDATE_ENDSTOP(y, Y, max, MAX);
 | |
|             #endif
 | |
|           }
 | |
|       #ifdef COREXY
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     if (TEST(out_bits, Z_AXIS)) {   // -direction
 | |
| 
 | |
|       Z_APPLY_DIR(INVERT_Z_DIR,0);
 | |
|       count_direction[Z_AXIS] = -1;
 | |
| 
 | |
|       if (check_endstops) {
 | |
| 
 | |
|         #if HAS_Z_MIN
 | |
| 
 | |
|           #ifdef Z_DUAL_ENDSTOPS
 | |
| 
 | |
|             bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
 | |
|                 z2_min_endstop =
 | |
|                   #if HAS_Z2_MIN
 | |
|                     READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
 | |
|                   #else
 | |
|                     z_min_endstop
 | |
|                   #endif
 | |
|                 ;
 | |
| 
 | |
|             bool z_min_both = z_min_endstop && old_z_min_endstop,
 | |
|                 z2_min_both = z2_min_endstop && old_z2_min_endstop;
 | |
|             if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
 | |
|               endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|               endstop_hit_bits |= BIT(Z_MIN);
 | |
|               if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
 | |
|                 step_events_completed = current_block->step_event_count;
 | |
|             }
 | |
|             old_z_min_endstop = z_min_endstop;
 | |
|             old_z2_min_endstop = z2_min_endstop;
 | |
| 
 | |
|           #else // !Z_DUAL_ENDSTOPS
 | |
| 
 | |
|             UPDATE_ENDSTOP(z, Z, min, MIN);
 | |
| 
 | |
|           #endif // !Z_DUAL_ENDSTOPS
 | |
| 
 | |
|         #endif // Z_MIN_PIN
 | |
| 
 | |
|         #ifdef Z_PROBE_ENDSTOP
 | |
|           UPDATE_ENDSTOP(z, Z, probe, PROBE);
 | |
|           z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | |
|           if(z_probe_endstop && old_z_probe_endstop)
 | |
|           {
 | |
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|             endstop_hit_bits |= BIT(Z_PROBE);
 | |
| 
 | |
| //            if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
 | |
|           }
 | |
|           old_z_probe_endstop = z_probe_endstop;
 | |
|         #endif
 | |
| 
 | |
|       } // check_endstops
 | |
| 
 | |
|     }
 | |
|     else { // +direction
 | |
| 
 | |
|       Z_APPLY_DIR(!INVERT_Z_DIR,0);
 | |
|       count_direction[Z_AXIS] = 1;
 | |
| 
 | |
|       if (check_endstops) {
 | |
| 
 | |
|         #if HAS_Z_MAX
 | |
| 
 | |
|           #ifdef Z_DUAL_ENDSTOPS
 | |
| 
 | |
|             bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
 | |
|                 z2_max_endstop =
 | |
|                   #if HAS_Z2_MAX
 | |
|                     READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
 | |
|                   #else
 | |
|                     z_max_endstop
 | |
|                   #endif
 | |
|                 ;
 | |
| 
 | |
|             bool z_max_both = z_max_endstop && old_z_max_endstop,
 | |
|                 z2_max_both = z2_max_endstop && old_z2_max_endstop;
 | |
|             if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
 | |
|               endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|               endstop_hit_bits |= BIT(Z_MIN);
 | |
| 
 | |
|              // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
 | |
|              // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
 | |
| 
 | |
|               if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
 | |
|                 step_events_completed = current_block->step_event_count;
 | |
|             }
 | |
|             old_z_max_endstop = z_max_endstop;
 | |
|             old_z2_max_endstop = z2_max_endstop;
 | |
| 
 | |
|           #else // !Z_DUAL_ENDSTOPS
 | |
| 
 | |
|             UPDATE_ENDSTOP(z, Z, max, MAX);
 | |
| 
 | |
|           #endif // !Z_DUAL_ENDSTOPS
 | |
| 
 | |
|         #endif // Z_MAX_PIN
 | |
| 
 | |
|         #ifdef Z_PROBE_ENDSTOP
 | |
|           UPDATE_ENDSTOP(z, Z, probe, PROBE);
 | |
|           z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | |
|           if(z_probe_endstop && old_z_probe_endstop)
 | |
|           {
 | |
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|             endstop_hit_bits |= BIT(Z_PROBE);
 | |
| //            if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
 | |
|           }
 | |
|           old_z_probe_endstop = z_probe_endstop;
 | |
|         #endif
 | |
| 
 | |
|       } // check_endstops
 | |
| 
 | |
|     } // +direction
 | |
| 
 | |
|     #ifndef ADVANCE
 | |
|       if (TEST(out_bits, E_AXIS)) {  // -direction
 | |
|         REV_E_DIR();
 | |
|         count_direction[E_AXIS] = -1;
 | |
|       }
 | |
|       else { // +direction
 | |
|         NORM_E_DIR();
 | |
|         count_direction[E_AXIS] = 1;
 | |
|       }
 | |
|     #endif //!ADVANCE
 | |
| 
 | |
|     // Take multiple steps per interrupt (For high speed moves)
 | |
|     for (int8_t i = 0; i < step_loops; i++) {
 | |
|       #ifndef AT90USB
 | |
|         MSerial.checkRx(); // Check for serial chars.
 | |
|       #endif
 | |
| 
 | |
|       #ifdef ADVANCE
 | |
|         counter_e += current_block->steps[E_AXIS];
 | |
|         if (counter_e > 0) {
 | |
|           counter_e -= current_block->step_event_count;
 | |
|           e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
 | |
|         }
 | |
|       #endif //ADVANCE
 | |
| 
 | |
|       #define _COUNTER(axis) counter_## axis
 | |
|       #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
 | |
|       #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
 | |
| 
 | |
|       #define STEP_ADD(axis, AXIS) \
 | |
|         _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
 | |
|         if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
 | |
| 
 | |
|       STEP_ADD(x,X);
 | |
|       STEP_ADD(y,Y);
 | |
|       STEP_ADD(z,Z);
 | |
|       #ifndef ADVANCE
 | |
|         STEP_ADD(e,E);
 | |
|       #endif
 | |
| 
 | |
|       #define STEP_IF_COUNTER(axis, AXIS) \
 | |
|         if (_COUNTER(axis) > 0) { \
 | |
|           _COUNTER(axis) -= current_block->step_event_count; \
 | |
|           count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
 | |
|           _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
 | |
|         }
 | |
| 
 | |
|       STEP_IF_COUNTER(x, X);
 | |
|       STEP_IF_COUNTER(y, Y);
 | |
|       STEP_IF_COUNTER(z, Z);
 | |
|       #ifndef ADVANCE
 | |
|         STEP_IF_COUNTER(e, E);
 | |
|       #endif
 | |
| 
 | |
|       step_events_completed++;
 | |
|       if (step_events_completed >= current_block->step_event_count) break;
 | |
|     }
 | |
|     // Calculate new timer value
 | |
|     unsigned short timer;
 | |
|     unsigned short step_rate;
 | |
|     if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
 | |
| 
 | |
|       MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | |
|       acc_step_rate += current_block->initial_rate;
 | |
| 
 | |
|       // upper limit
 | |
|       if (acc_step_rate > current_block->nominal_rate)
 | |
|         acc_step_rate = current_block->nominal_rate;
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(acc_step_rate);
 | |
|       OCR1A = timer;
 | |
|       acceleration_time += timer;
 | |
|       #ifdef ADVANCE
 | |
|         for(int8_t i=0; i < step_loops; i++) {
 | |
|           advance += advance_rate;
 | |
|         }
 | |
|         //if (advance > current_block->advance) advance = current_block->advance;
 | |
|         // Do E steps + advance steps
 | |
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|         old_advance = advance >>8;
 | |
| 
 | |
|       #endif
 | |
|     }
 | |
|     else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
 | |
|       MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | |
| 
 | |
|       if (step_rate > acc_step_rate) { // Check step_rate stays positive
 | |
|         step_rate = current_block->final_rate;
 | |
|       }
 | |
|       else {
 | |
|         step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 | |
|       }
 | |
| 
 | |
|       // lower limit
 | |
|       if (step_rate < current_block->final_rate)
 | |
|         step_rate = current_block->final_rate;
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(step_rate);
 | |
|       OCR1A = timer;
 | |
|       deceleration_time += timer;
 | |
|       #ifdef ADVANCE
 | |
|         for(int8_t i=0; i < step_loops; i++) {
 | |
|           advance -= advance_rate;
 | |
|         }
 | |
|         if (advance < final_advance) advance = final_advance;
 | |
|         // Do E steps + advance steps
 | |
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|         old_advance = advance >>8;
 | |
|       #endif //ADVANCE
 | |
|     }
 | |
|     else {
 | |
|       OCR1A = OCR1A_nominal;
 | |
|       // ensure we're running at the correct step rate, even if we just came off an acceleration
 | |
|       step_loops = step_loops_nominal;
 | |
|     }
 | |
| 
 | |
|     // If current block is finished, reset pointer
 | |
|     if (step_events_completed >= current_block->step_event_count) {
 | |
|       current_block = NULL;
 | |
|       plan_discard_current_block();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef ADVANCE
 | |
|   unsigned char old_OCR0A;
 | |
|   // Timer interrupt for E. e_steps is set in the main routine;
 | |
|   // Timer 0 is shared with millies
 | |
|   ISR(TIMER0_COMPA_vect)
 | |
|   {
 | |
|     old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
 | |
|     OCR0A = old_OCR0A;
 | |
|     // Set E direction (Depends on E direction + advance)
 | |
|     for(unsigned char i=0; i<4;i++) {
 | |
|       if (e_steps[0] != 0) {
 | |
|         E0_STEP_WRITE(INVERT_E_STEP_PIN);
 | |
|         if (e_steps[0] < 0) {
 | |
|           E0_DIR_WRITE(INVERT_E0_DIR);
 | |
|           e_steps[0]++;
 | |
|           E0_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[0] > 0) {
 | |
|           E0_DIR_WRITE(!INVERT_E0_DIR);
 | |
|           e_steps[0]--;
 | |
|           E0_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #if EXTRUDERS > 1
 | |
|       if (e_steps[1] != 0) {
 | |
|         E1_STEP_WRITE(INVERT_E_STEP_PIN);
 | |
|         if (e_steps[1] < 0) {
 | |
|           E1_DIR_WRITE(INVERT_E1_DIR);
 | |
|           e_steps[1]++;
 | |
|           E1_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[1] > 0) {
 | |
|           E1_DIR_WRITE(!INVERT_E1_DIR);
 | |
|           e_steps[1]--;
 | |
|           E1_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
|  #if EXTRUDERS > 2
 | |
|       if (e_steps[2] != 0) {
 | |
|         E2_STEP_WRITE(INVERT_E_STEP_PIN);
 | |
|         if (e_steps[2] < 0) {
 | |
|           E2_DIR_WRITE(INVERT_E2_DIR);
 | |
|           e_steps[2]++;
 | |
|           E2_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[2] > 0) {
 | |
|           E2_DIR_WRITE(!INVERT_E2_DIR);
 | |
|           e_steps[2]--;
 | |
|           E2_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
|  #if EXTRUDERS > 3
 | |
|       if (e_steps[3] != 0) {
 | |
|         E3_STEP_WRITE(INVERT_E_STEP_PIN);
 | |
|         if (e_steps[3] < 0) {
 | |
|           E3_DIR_WRITE(INVERT_E3_DIR);
 | |
|           e_steps[3]++;
 | |
|           E3_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[3] > 0) {
 | |
|           E3_DIR_WRITE(!INVERT_E3_DIR);
 | |
|           e_steps[3]--;
 | |
|           E3_STEP_WRITE(!INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
| 
 | |
|     }
 | |
|   }
 | |
| #endif // ADVANCE
 | |
| 
 | |
| void st_init() {
 | |
|   digipot_init(); //Initialize Digipot Motor Current
 | |
|   microstep_init(); //Initialize Microstepping Pins
 | |
| 
 | |
|   // initialise TMC Steppers
 | |
|   #ifdef HAVE_TMCDRIVER
 | |
|     tmc_init();
 | |
|   #endif
 | |
|     // initialise L6470 Steppers
 | |
|   #ifdef HAVE_L6470DRIVER
 | |
|     L6470_init();
 | |
|   #endif
 | |
| 
 | |
|   // Initialize Dir Pins
 | |
|   #if HAS_X_DIR
 | |
|     X_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_X2_DIR
 | |
|     X2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_Y_DIR
 | |
|     Y_DIR_INIT;
 | |
|     #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
 | |
|       Y2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_Z_DIR
 | |
|     Z_DIR_INIT;
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
 | |
|       Z2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_DIR
 | |
|     E0_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E1_DIR
 | |
|     E1_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E2_DIR
 | |
|     E2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E3_DIR
 | |
|     E3_DIR_INIT;
 | |
|   #endif
 | |
| 
 | |
|   //Initialize Enable Pins - steppers default to disabled.
 | |
| 
 | |
|   #if HAS_X_ENABLE
 | |
|     X_ENABLE_INIT;
 | |
|     if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_X2_ENABLE
 | |
|     X2_ENABLE_INIT;
 | |
|     if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_Y_ENABLE
 | |
|     Y_ENABLE_INIT;
 | |
|     if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
 | |
| 
 | |
|   #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
 | |
|     Y2_ENABLE_INIT;
 | |
|     if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #endif
 | |
|   #if HAS_Z_ENABLE
 | |
|     Z_ENABLE_INIT;
 | |
|     if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
 | |
| 
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
 | |
|       Z2_ENABLE_INIT;
 | |
|       if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_ENABLE
 | |
|     E0_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E1_ENABLE
 | |
|     E1_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E2_ENABLE
 | |
|     E2_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E3_ENABLE
 | |
|     E3_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
| 
 | |
|   //endstops and pullups
 | |
| 
 | |
|   #if HAS_X_MIN
 | |
|     SET_INPUT(X_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_XMIN
 | |
|       WRITE(X_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Y_MIN
 | |
|     SET_INPUT(Y_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_YMIN
 | |
|       WRITE(Y_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z_MIN
 | |
|     SET_INPUT(Z_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_ZMIN
 | |
|       WRITE(Z_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_X_MAX
 | |
|     SET_INPUT(X_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_XMAX
 | |
|       WRITE(X_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Y_MAX
 | |
|     SET_INPUT(Y_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_YMAX
 | |
|       WRITE(Y_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z_MAX
 | |
|     SET_INPUT(Z_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_ZMAX
 | |
|       WRITE(Z_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z2_MAX
 | |
|     SET_INPUT(Z2_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_ZMAX
 | |
|       WRITE(Z2_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
| #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
 | |
|   SET_INPUT(Z_PROBE_PIN);
 | |
|   #ifdef ENDSTOPPULLUP_ZPROBE
 | |
|     WRITE(Z_PROBE_PIN,HIGH);
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
|   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
 | |
|   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
 | |
|   #define _DISABLE(axis) disable_## axis()
 | |
| 
 | |
|   #define AXIS_INIT(axis, AXIS, PIN) \
 | |
|     _STEP_INIT(AXIS); \
 | |
|     _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
 | |
|     _DISABLE(axis)
 | |
| 
 | |
|   #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
 | |
| 
 | |
|   // Initialize Step Pins
 | |
|   #if HAS_X_STEP
 | |
|     AXIS_INIT(x, X, X);
 | |
|   #endif
 | |
|   #if HAS_X2_STEP
 | |
|     AXIS_INIT(x, X2, X);
 | |
|   #endif
 | |
|   #if HAS_Y_STEP
 | |
|     #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
 | |
|       Y2_STEP_INIT;
 | |
|       Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(y, Y, Y);
 | |
|   #endif
 | |
|   #if HAS_Z_STEP
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
 | |
|       Z2_STEP_INIT;
 | |
|       Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(z, Z, Z);
 | |
|   #endif
 | |
|   #if HAS_E0_STEP
 | |
|     E_AXIS_INIT(0);
 | |
|   #endif
 | |
|   #if HAS_E1_STEP
 | |
|     E_AXIS_INIT(1);
 | |
|   #endif
 | |
|   #if HAS_E2_STEP
 | |
|     E_AXIS_INIT(2);
 | |
|   #endif
 | |
|   #if HAS_E3_STEP
 | |
|     E_AXIS_INIT(3);
 | |
|   #endif
 | |
| 
 | |
|   // waveform generation = 0100 = CTC
 | |
|   TCCR1B &= ~BIT(WGM13);
 | |
|   TCCR1B |=  BIT(WGM12);
 | |
|   TCCR1A &= ~BIT(WGM11);
 | |
|   TCCR1A &= ~BIT(WGM10);
 | |
| 
 | |
|   // output mode = 00 (disconnected)
 | |
|   TCCR1A &= ~(3<<COM1A0);
 | |
|   TCCR1A &= ~(3<<COM1B0);
 | |
| 
 | |
|   // Set the timer pre-scaler
 | |
|   // Generally we use a divider of 8, resulting in a 2MHz timer
 | |
|   // frequency on a 16MHz MCU. If you are going to change this, be
 | |
|   // sure to regenerate speed_lookuptable.h with
 | |
|   // create_speed_lookuptable.py
 | |
|   TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
 | |
| 
 | |
|   OCR1A = 0x4000;
 | |
|   TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| 
 | |
|   #ifdef ADVANCE
 | |
|     #if defined(TCCR0A) && defined(WGM01)
 | |
|       TCCR0A &= ~BIT(WGM01);
 | |
|       TCCR0A &= ~BIT(WGM00);
 | |
|     #endif
 | |
|     e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
 | |
|     TIMSK0 |= BIT(OCIE0A);
 | |
|   #endif //ADVANCE
 | |
| 
 | |
|   enable_endstops(true); // Start with endstops active. After homing they can be disabled
 | |
|   sei();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Block until all buffered steps are executed
 | |
| void st_synchronize() {
 | |
|   while (blocks_queued()) {
 | |
|     manage_heater();
 | |
|     manage_inactivity();
 | |
|     lcd_update();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void st_set_position(const long &x, const long &y, const long &z, const long &e) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[X_AXIS] = x;
 | |
|   count_position[Y_AXIS] = y;
 | |
|   count_position[Z_AXIS] = z;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| void st_set_e_position(const long &e) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| long st_get_position(uint8_t axis) {
 | |
|   long count_pos;
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_pos = count_position[axis];
 | |
|   CRITICAL_SECTION_END;
 | |
|   return count_pos;
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
|   float st_get_position_mm(uint8_t axis) {
 | |
|     float steper_position_in_steps = st_get_position(axis);
 | |
|     return steper_position_in_steps / axis_steps_per_unit[axis];
 | |
|   }
 | |
| 
 | |
| #endif  // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| void finishAndDisableSteppers() {
 | |
|   st_synchronize();
 | |
|   disable_all_steppers();
 | |
| }
 | |
| 
 | |
| void quickStop() {
 | |
|   cleaning_buffer_counter = 5000;
 | |
|   DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|   while (blocks_queued()) plan_discard_current_block();
 | |
|   current_block = NULL;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| #ifdef BABYSTEPPING
 | |
| 
 | |
|   // MUST ONLY BE CALLED BY AN ISR,
 | |
|   // No other ISR should ever interrupt this!
 | |
|   void babystep(const uint8_t axis, const bool direction) {
 | |
| 
 | |
|     #define _ENABLE(axis) enable_## axis()
 | |
|     #define _READ_DIR(AXIS) AXIS ##_DIR_READ
 | |
|     #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
 | |
|     #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
 | |
| 
 | |
|     #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
 | |
|         _ENABLE(axis); \
 | |
|         uint8_t old_pin = _READ_DIR(AXIS); \
 | |
|         _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
 | |
|         _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
 | |
|         delayMicroseconds(2); \
 | |
|         _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
 | |
|         _APPLY_DIR(AXIS, old_pin); \
 | |
|       }
 | |
| 
 | |
|     switch(axis) {
 | |
| 
 | |
|       case X_AXIS:
 | |
|         BABYSTEP_AXIS(x, X, false);
 | |
|         break;
 | |
| 
 | |
|       case Y_AXIS:
 | |
|         BABYSTEP_AXIS(y, Y, false);
 | |
|         break;
 | |
|  
 | |
|       case Z_AXIS: {
 | |
| 
 | |
|         #ifndef DELTA
 | |
| 
 | |
|           BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
 | |
| 
 | |
|         #else // DELTA
 | |
| 
 | |
|           bool z_direction = direction ^ BABYSTEP_INVERT_Z;
 | |
| 
 | |
|           enable_x();
 | |
|           enable_y();
 | |
|           enable_z();
 | |
|           uint8_t old_x_dir_pin = X_DIR_READ,
 | |
|                   old_y_dir_pin = Y_DIR_READ,
 | |
|                   old_z_dir_pin = Z_DIR_READ;
 | |
|           //setup new step
 | |
|           X_DIR_WRITE(INVERT_X_DIR^z_direction);
 | |
|           Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
 | |
|           Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
 | |
|           //perform step 
 | |
|           X_STEP_WRITE(!INVERT_X_STEP_PIN);
 | |
|           Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
 | |
|           Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
 | |
|           delayMicroseconds(2);
 | |
|           X_STEP_WRITE(INVERT_X_STEP_PIN); 
 | |
|           Y_STEP_WRITE(INVERT_Y_STEP_PIN); 
 | |
|           Z_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
|           //get old pin state back.
 | |
|           X_DIR_WRITE(old_x_dir_pin);
 | |
|           Y_DIR_WRITE(old_y_dir_pin);
 | |
|           Z_DIR_WRITE(old_z_dir_pin);
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|       } break;
 | |
|  
 | |
|       default: break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif //BABYSTEPPING
 | |
| 
 | |
| // From Arduino DigitalPotControl example
 | |
| void digitalPotWrite(int address, int value) {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
 | |
|     SPI.transfer(address); //  send in the address and value via SPI:
 | |
|     SPI.transfer(value);
 | |
|     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 | |
|     //delay(10);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| // Initialize Digipot Motor Current
 | |
| void digipot_init() {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 | |
| 
 | |
|     SPI.begin();
 | |
|     pinMode(DIGIPOTSS_PIN, OUTPUT);
 | |
|     for (int i = 0; i <= 4; i++) {
 | |
|       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | |
|       digipot_current(i,digipot_motor_current[i]);
 | |
|     }
 | |
|   #endif
 | |
|   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|     pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
 | |
|     pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
 | |
|     pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
 | |
|     digipot_current(0, motor_current_setting[0]);
 | |
|     digipot_current(1, motor_current_setting[1]);
 | |
|     digipot_current(2, motor_current_setting[2]);
 | |
|     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | |
|     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void digipot_current(uint8_t driver, int current) {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 | |
|     digitalPotWrite(digipot_ch[driver], current);
 | |
|   #endif
 | |
|   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|     switch(driver) {
 | |
|       case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
 | |
|       case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
 | |
|       case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void microstep_init() {
 | |
|   #if HAS_MICROSTEPS_E1
 | |
|     pinMode(E1_MS1_PIN,OUTPUT);
 | |
|     pinMode(E1_MS2_PIN,OUTPUT);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_MICROSTEPS
 | |
|     pinMode(X_MS1_PIN,OUTPUT);
 | |
|     pinMode(X_MS2_PIN,OUTPUT);
 | |
|     pinMode(Y_MS1_PIN,OUTPUT);
 | |
|     pinMode(Y_MS2_PIN,OUTPUT);
 | |
|     pinMode(Z_MS1_PIN,OUTPUT);
 | |
|     pinMode(Z_MS2_PIN,OUTPUT);
 | |
|     pinMode(E0_MS1_PIN,OUTPUT);
 | |
|     pinMode(E0_MS2_PIN,OUTPUT);
 | |
|     const uint8_t microstep_modes[] = MICROSTEP_MODES;
 | |
|     for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
 | |
|       microstep_mode(i, microstep_modes[i]);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
 | |
|   if (ms1 >= 0) switch(driver) {
 | |
|     case 0: digitalWrite(X_MS1_PIN, ms1); break;
 | |
|     case 1: digitalWrite(Y_MS1_PIN, ms1); break;
 | |
|     case 2: digitalWrite(Z_MS1_PIN, ms1); break;
 | |
|     case 3: digitalWrite(E0_MS1_PIN, ms1); break;
 | |
|     #if HAS_MICROSTEPS_E1
 | |
|       case 4: digitalWrite(E1_MS1_PIN, ms1); break;
 | |
|     #endif
 | |
|   }
 | |
|   if (ms2 >= 0) switch(driver) {
 | |
|     case 0: digitalWrite(X_MS2_PIN, ms2); break;
 | |
|     case 1: digitalWrite(Y_MS2_PIN, ms2); break;
 | |
|     case 2: digitalWrite(Z_MS2_PIN, ms2); break;
 | |
|     case 3: digitalWrite(E0_MS2_PIN, ms2); break;
 | |
|     #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
 | |
|       case 4: digitalWrite(E1_MS2_PIN, ms2); break;
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
 | |
|   switch(stepping_mode) {
 | |
|     case 1: microstep_ms(driver,MICROSTEP1); break;
 | |
|     case 2: microstep_ms(driver,MICROSTEP2); break;
 | |
|     case 4: microstep_ms(driver,MICROSTEP4); break;
 | |
|     case 8: microstep_ms(driver,MICROSTEP8); break;
 | |
|     case 16: microstep_ms(driver,MICROSTEP16); break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void microstep_readings() {
 | |
|   SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 | |
|   SERIAL_PROTOCOLPGM("X: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("Y: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("Z: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("E0: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
 | |
|   #if HAS_MICROSTEPS_E1
 | |
|     SERIAL_PROTOCOLPGM("E1: ");
 | |
|     SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
 | |
|     SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #ifdef Z_DUAL_ENDSTOPS
 | |
|   void In_Homing_Process(bool state) { performing_homing = state; }
 | |
|   void Lock_z_motor(bool state) { locked_z_motor = state; }
 | |
|   void Lock_z2_motor(bool state) { locked_z2_motor = state; }
 | |
| #endif
 |