You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
403 lines
17 KiB
403 lines
17 KiB
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#ifndef UNIFIED_BED_LEVELING_H
|
|
#define UNIFIED_BED_LEVELING_H
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#include "math.h"
|
|
#include "vector_3.h"
|
|
#include "configuration_store.h"
|
|
|
|
#define UBL_VERSION "1.01"
|
|
#define UBL_OK false
|
|
#define UBL_ERR true
|
|
|
|
#define USE_NOZZLE_AS_REFERENCE 0
|
|
#define USE_PROBE_AS_REFERENCE 1
|
|
|
|
typedef struct {
|
|
int8_t x_index, y_index;
|
|
float distance; // When populated, the distance from the search location
|
|
} mesh_index_pair;
|
|
|
|
// ubl.cpp
|
|
|
|
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
|
|
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
|
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
|
|
|
// ubl_motion.cpp
|
|
|
|
void debug_current_and_destination(const char * const title);
|
|
|
|
// ubl_G29.cpp
|
|
|
|
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
|
|
|
// External references
|
|
|
|
char *ftostr43sign(const float&, char);
|
|
bool ubl_lcd_clicked();
|
|
void home_all_axes();
|
|
|
|
extern uint8_t ubl_cnt;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
extern char lcd_status_message[];
|
|
void lcd_quick_feedback();
|
|
#endif
|
|
|
|
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
|
|
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
|
|
|
|
typedef struct {
|
|
bool active = false;
|
|
float z_offset = 0.0;
|
|
int8_t storage_slot = -1;
|
|
} ubl_state;
|
|
|
|
class unified_bed_leveling {
|
|
private:
|
|
|
|
static float last_specified_z;
|
|
|
|
static int g29_verbose_level,
|
|
g29_phase_value,
|
|
g29_repetition_cnt,
|
|
g29_storage_slot,
|
|
g29_map_type,
|
|
g29_grid_size;
|
|
static bool g29_c_flag, g29_x_flag, g29_y_flag;
|
|
static float g29_x_pos, g29_y_pos,
|
|
g29_card_thickness,
|
|
g29_constant;
|
|
|
|
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
|
static float g26_extrusion_multiplier,
|
|
g26_retraction_multiplier,
|
|
g26_nozzle,
|
|
g26_filament_diameter,
|
|
g26_prime_length,
|
|
g26_x_pos, g26_y_pos,
|
|
g26_ooze_amount,
|
|
g26_layer_height;
|
|
static int16_t g26_bed_temp,
|
|
g26_hotend_temp,
|
|
g26_repeats;
|
|
static int8_t g26_prime_flag;
|
|
static bool g26_continue_with_closest, g26_keep_heaters_on;
|
|
#endif
|
|
|
|
static float measure_point_with_encoder();
|
|
static float measure_business_card_thickness(float&);
|
|
static bool g29_parameter_parsing();
|
|
static void find_mean_mesh_height();
|
|
static void shift_mesh_height();
|
|
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
|
|
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
|
|
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
|
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
|
static void g29_what_command();
|
|
static void g29_eeprom_dump();
|
|
static void g29_compare_current_mesh_to_stored_mesh();
|
|
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
|
|
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
|
static void smart_fill_mesh();
|
|
|
|
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
|
static bool exit_from_g26();
|
|
static bool parse_G26_parameters();
|
|
static void G26_line_to_destination(const float &feed_rate);
|
|
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
|
static bool look_for_lines_to_connect();
|
|
static bool turn_on_heaters();
|
|
static bool prime_nozzle();
|
|
static void retract_filament(float where[XYZE]);
|
|
static void recover_filament(float where[XYZE]);
|
|
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
|
static void move_to(const float&, const float&, const float&, const float&);
|
|
#endif
|
|
|
|
public:
|
|
|
|
static void echo_name();
|
|
static void report_state();
|
|
static void save_ubl_active_state_and_disable();
|
|
static void restore_ubl_active_state_and_leave();
|
|
static void display_map(const int);
|
|
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
|
|
static void reset();
|
|
static void invalidate();
|
|
static bool sanity_check();
|
|
|
|
static void G29() _O0; // O0 for no optimization
|
|
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
|
|
|
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
|
static void G26();
|
|
#endif
|
|
|
|
static ubl_state state;
|
|
|
|
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
|
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
|
// until determinism prevails
|
|
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
|
|
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
|
|
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
|
|
};
|
|
|
|
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
|
|
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
|
|
UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
|
|
};
|
|
|
|
static bool g26_debug_flag, has_control_of_lcd_panel;
|
|
|
|
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
|
|
|
unified_bed_leveling();
|
|
|
|
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
|
|
|
static int8_t get_cell_index_x(const float &x) {
|
|
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
|
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
|
} // position. But with this defined this way, it is possible
|
|
// to extrapolate off of this point even further out. Probably
|
|
// that is OK because something else should be keeping that from
|
|
// happening and should not be worried about at this level.
|
|
static int8_t get_cell_index_y(const float &y) {
|
|
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
|
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
|
} // position. But with this defined this way, it is possible
|
|
// to extrapolate off of this point even further out. Probably
|
|
// that is OK because something else should be keeping that from
|
|
// happening and should not be worried about at this level.
|
|
|
|
static int8_t find_closest_x_index(const float &x) {
|
|
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
|
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
|
}
|
|
|
|
static int8_t find_closest_y_index(const float &y) {
|
|
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
|
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
|
}
|
|
|
|
/**
|
|
* z2 --|
|
|
* z0 | |
|
|
* | | + (z2-z1)
|
|
* z1 | | |
|
|
* ---+-------------+--------+-- --|
|
|
* a1 a0 a2
|
|
* |<---delta_a---------->|
|
|
*
|
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
|
* find the expected Z Height at a position between two known Z-Height locations.
|
|
*
|
|
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
|
* multiplications.
|
|
*/
|
|
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
|
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
|
}
|
|
|
|
/**
|
|
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
|
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
|
|
*/
|
|
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
|
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
|
|
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
|
|
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
|
SERIAL_ECHOPAIR(",yi=", yi);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
return NAN;
|
|
}
|
|
|
|
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
|
|
z1 = z_values[x1_i][yi];
|
|
|
|
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
|
|
}
|
|
|
|
//
|
|
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
|
//
|
|
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
|
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
|
|
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
|
|
SERIAL_ECHOPAIR(", xi=", xi);
|
|
SERIAL_ECHOPAIR(", y1_i=", y1_i);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
return NAN;
|
|
}
|
|
|
|
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
|
|
z1 = z_values[xi][y1_i];
|
|
|
|
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
|
|
}
|
|
|
|
/**
|
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
|
* on the Y position within the cell.
|
|
*/
|
|
static float get_z_correction(const float &lx0, const float &ly0) {
|
|
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
|
|
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
|
|
|
|
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
|
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
|
|
SERIAL_ECHOPAIR(", ly0=", ly0);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
|
lcd_quick_feedback();
|
|
#endif
|
|
return 0.0; // this used to return state.z_offset
|
|
}
|
|
|
|
const float z1 = calc_z0(RAW_X_POSITION(lx0),
|
|
mesh_index_to_xpos(cx), z_values[cx][cy],
|
|
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
|
|
|
|
const float z2 = calc_z0(RAW_X_POSITION(lx0),
|
|
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
|
|
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
|
|
|
|
float z0 = calc_z0(RAW_Y_POSITION(ly0),
|
|
mesh_index_to_ypos(cy), z1,
|
|
mesh_index_to_ypos(cy + 1), z2);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(MESH_ADJUST)) {
|
|
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(ly0);
|
|
SERIAL_ECHOPGM(") = ");
|
|
SERIAL_ECHO_F(z0, 6);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(MESH_ADJUST)) {
|
|
SERIAL_ECHOPGM(" >>>---> ");
|
|
SERIAL_ECHO_F(z0, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
|
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
|
// calculations. If our correction is NAN, we throw it out
|
|
// because part of the Mesh is undefined and we don't have the
|
|
// information we need to complete the height correction.
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(MESH_ADJUST)) {
|
|
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(ly0);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
return z0; // there used to be a +state.z_offset on this line
|
|
}
|
|
|
|
/**
|
|
* This function sets the Z leveling fade factor based on the given Z height,
|
|
* only re-calculating when necessary.
|
|
*
|
|
* Returns 1.0 if planner.z_fade_height is 0.0.
|
|
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
|
*/
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
static inline float fade_scaling_factor_for_z(const float &lz) {
|
|
if (planner.z_fade_height == 0.0) return 1.0;
|
|
static float fade_scaling_factor = 1.0;
|
|
const float rz = RAW_Z_POSITION(lz);
|
|
if (last_specified_z != rz) {
|
|
last_specified_z = rz;
|
|
fade_scaling_factor =
|
|
rz < planner.z_fade_height
|
|
? 1.0 - (rz * planner.inverse_z_fade_height)
|
|
: 0.0;
|
|
}
|
|
return fade_scaling_factor;
|
|
}
|
|
#else
|
|
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
|
|
#endif
|
|
|
|
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); }
|
|
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); }
|
|
|
|
static bool prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate);
|
|
static void line_to_destination_cartesian(const float &fr, uint8_t e);
|
|
|
|
}; // class unified_bed_leveling
|
|
|
|
extern unified_bed_leveling ubl;
|
|
|
|
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
|
FORCE_INLINE void gcode_G26() { ubl.G26(); }
|
|
#endif
|
|
|
|
FORCE_INLINE void gcode_G29() { ubl.G29(); }
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
#endif // UNIFIED_BED_LEVELING_H
|