You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1592 lines
						
					
					
						
							39 KiB
						
					
					
				
			
		
		
	
	
							1592 lines
						
					
					
						
							39 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qr_solve.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| 
 | |
| //# include "r8lib.h"
 | |
| 
 | |
| int i4_min(int i1, int i2)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     I4_MIN returns the smaller of two I4's.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     29 August 2006
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int I1, I2, two integers to be compared.
 | |
| 
 | |
|     Output, int I4_MIN, the smaller of I1 and I2.
 | |
| */
 | |
| {
 | |
|   return (i1 < i2) ? i1 : i2;
 | |
| }
 | |
| 
 | |
| float r8_epsilon(void)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8_EPSILON returns the R8 round off unit.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     R8_EPSILON is a number R which is a power of 2 with the property that,
 | |
|     to the precision of the computer's arithmetic,
 | |
|       1 < 1 + R
 | |
|     but
 | |
|       1 = ( 1 + R / 2 )
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     01 September 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Output, float R8_EPSILON, the R8 round-off unit.
 | |
| */
 | |
| {
 | |
|   const float value = 2.220446049250313E-016;
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| float r8_max(float x, float y)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8_MAX returns the maximum of two R8's.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     07 May 2006
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, float X, Y, the quantities to compare.
 | |
| 
 | |
|     Output, float R8_MAX, the maximum of X and Y.
 | |
| */
 | |
| {
 | |
|   return (y < x) ? x : y;
 | |
| }
 | |
| 
 | |
| float r8_abs(float x)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8_ABS returns the absolute value of an R8.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     07 May 2006
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, float X, the quantity whose absolute value is desired.
 | |
| 
 | |
|     Output, float R8_ABS, the absolute value of X.
 | |
| */
 | |
| {
 | |
|   return (x < 0.0) ? -x : x;
 | |
| }
 | |
| 
 | |
| float r8_sign(float x)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8_SIGN returns the sign of an R8.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     08 May 2006
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, float X, the number whose sign is desired.
 | |
| 
 | |
|     Output, float R8_SIGN, the sign of X.
 | |
| */
 | |
| {
 | |
|   return (x < 0.0) ? -1.0 : 1.0;
 | |
| }
 | |
| 
 | |
| float r8mat_amax(int m, int n, float a[])
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | |
|     in column-major order.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     07 September 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int M, the number of rows in A.
 | |
| 
 | |
|     Input, int N, the number of columns in A.
 | |
| 
 | |
|     Input, float A[M*N], the M by N matrix.
 | |
| 
 | |
|     Output, float R8MAT_AMAX, the maximum absolute value entry of A.
 | |
| */
 | |
| {
 | |
|   float value = r8_abs(a[0 + 0 * m]);
 | |
|   for (int j = 0; j < n; j++) {
 | |
|     for (int i = 0; i < m; i++) {
 | |
|       NOLESS(value, r8_abs(a[i + j * m]));
 | |
|     }
 | |
|   }
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| void r8mat_copy(float a2[], int m, int n, float a1[])
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | |
|     in column-major order.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     26 July 2008
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int M, N, the number of rows and columns.
 | |
| 
 | |
|     Input, float A1[M*N], the matrix to be copied.
 | |
| 
 | |
|     Output, float R8MAT_COPY_NEW[M*N], the copy of A1.
 | |
| */
 | |
| {
 | |
|   for (int j = 0; j < n; j++) {
 | |
|     for (int i = 0; i < m; i++)
 | |
|       a2[i + j * m] = a1[i + j * m];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| void daxpy(int n, float da, float dx[], int incx, float dy[], int incy)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DAXPY computes constant times a vector plus a vector.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     This routine uses unrolled loops for increments equal to one.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     30 March 2007
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979.
 | |
| 
 | |
|     Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | |
|     Basic Linear Algebra Subprograms for Fortran Usage,
 | |
|     Algorithm 539,
 | |
|     ACM Transactions on Mathematical Software,
 | |
|     Volume 5, Number 3, September 1979, pages 308-323.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int N, the number of elements in DX and DY.
 | |
| 
 | |
|     Input, float DA, the multiplier of DX.
 | |
| 
 | |
|     Input, float DX[*], the first vector.
 | |
| 
 | |
|     Input, int INCX, the increment between successive entries of DX.
 | |
| 
 | |
|     Input/output, float DY[*], the second vector.
 | |
|     On output, DY[*] has been replaced by DY[*] + DA * DX[*].
 | |
| 
 | |
|     Input, int INCY, the increment between successive entries of DY.
 | |
| */
 | |
| {
 | |
|   if (n <= 0 || da == 0.0) return;
 | |
| 
 | |
|   int i, ix, iy, m;
 | |
|   /**
 | |
|     Code for unequal increments or equal increments
 | |
|     not equal to 1.
 | |
|   */
 | |
|   if (incx != 1 || incy != 1) {
 | |
|     if (0 <= incx)
 | |
|       ix = 0;
 | |
|     else
 | |
|       ix = (- n + 1) * incx;
 | |
|     if (0 <= incy)
 | |
|       iy = 0;
 | |
|     else
 | |
|       iy = (- n + 1) * incy;
 | |
|     for (i = 0; i < n; i++) {
 | |
|       dy[iy] = dy[iy] + da * dx[ix];
 | |
|       ix = ix + incx;
 | |
|       iy = iy + incy;
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Code for both increments equal to 1.
 | |
|   */
 | |
|   else {
 | |
|     m = n % 4;
 | |
|     for (i = 0; i < m; i++)
 | |
|       dy[i] = dy[i] + da * dx[i];
 | |
|     for (i = m; i < n; i = i + 4) {
 | |
|       dy[i  ] = dy[i  ] + da * dx[i  ];
 | |
|       dy[i + 1] = dy[i + 1] + da * dx[i + 1];
 | |
|       dy[i + 2] = dy[i + 2] + da * dx[i + 2];
 | |
|       dy[i + 3] = dy[i + 3] + da * dx[i + 3];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| float ddot(int n, float dx[], int incx, float dy[], int incy)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DDOT forms the dot product of two vectors.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     This routine uses unrolled loops for increments equal to one.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     30 March 2007
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979.
 | |
| 
 | |
|     Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | |
|     Basic Linear Algebra Subprograms for Fortran Usage,
 | |
|     Algorithm 539,
 | |
|     ACM Transactions on Mathematical Software,
 | |
|     Volume 5, Number 3, September 1979, pages 308-323.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int N, the number of entries in the vectors.
 | |
| 
 | |
|     Input, float DX[*], the first vector.
 | |
| 
 | |
|     Input, int INCX, the increment between successive entries in DX.
 | |
| 
 | |
|     Input, float DY[*], the second vector.
 | |
| 
 | |
|     Input, int INCY, the increment between successive entries in DY.
 | |
| 
 | |
|     Output, float DDOT, the sum of the product of the corresponding
 | |
|     entries of DX and DY.
 | |
| */
 | |
| {
 | |
| 
 | |
|   if (n <= 0) return 0.0;
 | |
| 
 | |
|   int i, m;
 | |
|   float dtemp = 0.0;
 | |
| 
 | |
|   /**
 | |
|     Code for unequal increments or equal increments
 | |
|     not equal to 1.
 | |
|   */
 | |
|   if (incx != 1 || incy != 1) {
 | |
|     int ix = (incx >= 0) ? 0 : (-n + 1) * incx,
 | |
|         iy = (incy >= 0) ? 0 : (-n + 1) * incy;
 | |
|     for (i = 0; i < n; i++) {
 | |
|       dtemp += dx[ix] * dy[iy];
 | |
|       ix = ix + incx;
 | |
|       iy = iy + incy;
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Code for both increments equal to 1.
 | |
|   */
 | |
|   else {
 | |
|     m = n % 5;
 | |
|     for (i = 0; i < m; i++)
 | |
|       dtemp += dx[i] * dy[i];
 | |
|     for (i = m; i < n; i = i + 5) {
 | |
|       dtemp += dx[i] * dy[i]
 | |
|               + dx[i + 1] * dy[i + 1]
 | |
|               + dx[i + 2] * dy[i + 2]
 | |
|               + dx[i + 3] * dy[i + 3]
 | |
|               + dx[i + 4] * dy[i + 4];
 | |
|     }
 | |
|   }
 | |
|   return dtemp;
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| float dnrm2(int n, float x[], int incx)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DNRM2 returns the euclidean norm of a vector.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|      DNRM2 ( X ) = sqrt ( X' * X )
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     30 March 2007
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979.
 | |
| 
 | |
|     Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | |
|     Basic Linear Algebra Subprograms for Fortran Usage,
 | |
|     Algorithm 539,
 | |
|     ACM Transactions on Mathematical Software,
 | |
|     Volume 5, Number 3, September 1979, pages 308-323.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int N, the number of entries in the vector.
 | |
| 
 | |
|     Input, float X[*], the vector whose norm is to be computed.
 | |
| 
 | |
|     Input, int INCX, the increment between successive entries of X.
 | |
| 
 | |
|     Output, float DNRM2, the Euclidean norm of X.
 | |
| */
 | |
| {
 | |
|   float norm;
 | |
|   if (n < 1 || incx < 1)
 | |
|     norm = 0.0;
 | |
|   else if (n == 1)
 | |
|     norm = r8_abs(x[0]);
 | |
|   else {
 | |
|     float scale = 0.0, ssq = 1.0;
 | |
|     int ix = 0;
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       if (x[ix] != 0.0) {
 | |
|         float absxi = r8_abs(x[ix]);
 | |
|         if (scale < absxi) {
 | |
|           ssq = 1.0 + ssq * (scale / absxi) * (scale / absxi);
 | |
|           scale = absxi;
 | |
|         }
 | |
|         else
 | |
|           ssq = ssq + (absxi / scale) * (absxi / scale);
 | |
|       }
 | |
|       ix += incx;
 | |
|     }
 | |
|     norm = scale * sqrt(ssq);
 | |
|   }
 | |
|   return norm;
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| void dqrank(float a[], int lda, int m, int n, float tol, int* kr,
 | |
|             int jpvt[], float qraux[])
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DQRANK computes the QR factorization of a rectangular matrix.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     This routine is used in conjunction with DQRLSS to solve
 | |
|     overdetermined, underdetermined and singular linear systems
 | |
|     in a least squares sense.
 | |
| 
 | |
|     DQRANK uses the LINPACK subroutine DQRDC to compute the QR
 | |
|     factorization, with column pivoting, of an M by N matrix A.
 | |
|     The numerical rank is determined using the tolerance TOL.
 | |
| 
 | |
|     Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | |
|     of the condition number of the matrix of independent columns,
 | |
|     and of R.  This estimate will be <= 1/TOL.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     21 April 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt.
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979,
 | |
|     ISBN13: 978-0-898711-72-1,
 | |
|     LC: QA214.L56.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input/output, float A[LDA*N].  On input, the matrix whose
 | |
|     decomposition is to be computed.  On output, the information from DQRDC.
 | |
|     The triangular matrix R of the QR factorization is contained in the
 | |
|     upper triangle and information needed to recover the orthogonal
 | |
|     matrix Q is stored below the diagonal in A and in the vector QRAUX.
 | |
| 
 | |
|     Input, int LDA, the leading dimension of A, which must
 | |
|     be at least M.
 | |
| 
 | |
|     Input, int M, the number of rows of A.
 | |
| 
 | |
|     Input, int N, the number of columns of A.
 | |
| 
 | |
|     Input, float TOL, a relative tolerance used to determine the
 | |
|     numerical rank.  The problem should be scaled so that all the elements
 | |
|     of A have roughly the same absolute accuracy, EPS.  Then a reasonable
 | |
|     value for TOL is roughly EPS divided by the magnitude of the largest
 | |
|     element.
 | |
| 
 | |
|     Output, int *KR, the numerical rank.
 | |
| 
 | |
|     Output, int JPVT[N], the pivot information from DQRDC.
 | |
|     Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | |
|     independent to within the tolerance TOL and the remaining columns
 | |
|     are linearly dependent.
 | |
| 
 | |
|     Output, float QRAUX[N], will contain extra information defining
 | |
|     the QR factorization.
 | |
| */
 | |
| {
 | |
|   float work[n];
 | |
| 
 | |
|   for (int i = 0; i < n; i++)
 | |
|     jpvt[i] = 0;
 | |
| 
 | |
|   int job = 1;
 | |
| 
 | |
|   dqrdc(a, lda, m, n, qraux, jpvt, work, job);
 | |
| 
 | |
|   *kr = 0;
 | |
|   int k = i4_min(m, n);
 | |
|   for (int j = 0; j < k; j++) {
 | |
|     if (r8_abs(a[j + j * lda]) <= tol * r8_abs(a[0 + 0 * lda]))
 | |
|       return;
 | |
|     *kr = j + 1;
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| void dqrdc(float a[], int lda, int n, int p, float qraux[], int jpvt[],
 | |
|            float work[], int job)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DQRDC computes the QR factorization of a real rectangular matrix.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     DQRDC uses Householder transformations.
 | |
| 
 | |
|     Column pivoting based on the 2-norms of the reduced columns may be
 | |
|     performed at the user's option.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     07 June 2005
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt.
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, (Society for Industrial and Applied Mathematics),
 | |
|     3600 University City Science Center,
 | |
|     Philadelphia, PA, 19104-2688.
 | |
|     ISBN 0-89871-172-X
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input/output, float A(LDA,P).  On input, the N by P matrix
 | |
|     whose decomposition is to be computed.  On output, A contains in
 | |
|     its upper triangle the upper triangular matrix R of the QR
 | |
|     factorization.  Below its diagonal A contains information from
 | |
|     which the orthogonal part of the decomposition can be recovered.
 | |
|     Note that if pivoting has been requested, the decomposition is not that
 | |
|     of the original matrix A but that of A with its columns permuted
 | |
|     as described by JPVT.
 | |
| 
 | |
|     Input, int LDA, the leading dimension of the array A.  LDA must
 | |
|     be at least N.
 | |
| 
 | |
|     Input, int N, the number of rows of the matrix A.
 | |
| 
 | |
|     Input, int P, the number of columns of the matrix A.
 | |
| 
 | |
|     Output, float QRAUX[P], contains further information required
 | |
|     to recover the orthogonal part of the decomposition.
 | |
| 
 | |
|     Input/output, integer JPVT[P].  On input, JPVT contains integers that
 | |
|     control the selection of the pivot columns.  The K-th column A(*,K) of A
 | |
|     is placed in one of three classes according to the value of JPVT(K).
 | |
|       > 0, then A(K) is an initial column.
 | |
|       = 0, then A(K) is a free column.
 | |
|       < 0, then A(K) is a final column.
 | |
|     Before the decomposition is computed, initial columns are moved to
 | |
|     the beginning of the array A and final columns to the end.  Both
 | |
|     initial and final columns are frozen in place during the computation
 | |
|     and only free columns are moved.  At the K-th stage of the
 | |
|     reduction, if A(*,K) is occupied by a free column it is interchanged
 | |
|     with the free column of largest reduced norm.  JPVT is not referenced
 | |
|     if JOB == 0.  On output, JPVT(K) contains the index of the column of the
 | |
|     original matrix that has been interchanged into the K-th column, if
 | |
|     pivoting was requested.
 | |
| 
 | |
|     Workspace, float WORK[P].  WORK is not referenced if JOB == 0.
 | |
| 
 | |
|     Input, int JOB, initiates column pivoting.
 | |
|     0, no pivoting is done.
 | |
|     nonzero, pivoting is done.
 | |
| */
 | |
| {
 | |
|   int jp;
 | |
|   int j;
 | |
|   int lup;
 | |
|   int maxj;
 | |
|   float maxnrm, nrmxl, t, tt;
 | |
| 
 | |
|   int pl = 1, pu = 0;
 | |
|   /**
 | |
|     If pivoting is requested, rearrange the columns.
 | |
|   */
 | |
|   if (job != 0) {
 | |
|     for (j = 1; j <= p; j++) {
 | |
|       int swapj = (0 < jpvt[j - 1]);
 | |
|       jpvt[j - 1] = (jpvt[j - 1] < 0) ? -j : j;
 | |
|       if (swapj) {
 | |
|         if (j != pl)
 | |
|           dswap(n, a + 0 + (pl - 1)*lda, 1, a + 0 + (j - 1), 1);
 | |
|         jpvt[j - 1] = jpvt[pl - 1];
 | |
|         jpvt[pl - 1] = j;
 | |
|         pl++;
 | |
|       }
 | |
|     }
 | |
|     pu = p;
 | |
|     for (j = p; 1 <= j; j--) {
 | |
|       if (jpvt[j - 1] < 0) {
 | |
|         jpvt[j - 1] = -jpvt[j - 1];
 | |
|         if (j != pu) {
 | |
|           dswap(n, a + 0 + (pu - 1)*lda, 1, a + 0 + (j - 1)*lda, 1);
 | |
|           jp = jpvt[pu - 1];
 | |
|           jpvt[pu - 1] = jpvt[j - 1];
 | |
|           jpvt[j - 1] = jp;
 | |
|         }
 | |
|         pu = pu - 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Compute the norms of the free columns.
 | |
|   */
 | |
|   for (j = pl; j <= pu; j++)
 | |
|     qraux[j - 1] = dnrm2(n, a + 0 + (j - 1) * lda, 1);
 | |
|   for (j = pl; j <= pu; j++)
 | |
|     work[j - 1] = qraux[j - 1];
 | |
|   /**
 | |
|     Perform the Householder reduction of A.
 | |
|   */
 | |
|   lup = i4_min(n, p);
 | |
|   for (int l = 1; l <= lup; l++) {
 | |
|     /**
 | |
|       Bring the column of largest norm into the pivot position.
 | |
|     */
 | |
|     if (pl <= l && l < pu) {
 | |
|       maxnrm = 0.0;
 | |
|       maxj = l;
 | |
|       for (j = l; j <= pu; j++) {
 | |
|         if (maxnrm < qraux[j - 1]) {
 | |
|           maxnrm = qraux[j - 1];
 | |
|           maxj = j;
 | |
|         }
 | |
|       }
 | |
|       if (maxj != l) {
 | |
|         dswap(n, a + 0 + (l - 1)*lda, 1, a + 0 + (maxj - 1)*lda, 1);
 | |
|         qraux[maxj - 1] = qraux[l - 1];
 | |
|         work[maxj - 1] = work[l - 1];
 | |
|         jp = jpvt[maxj - 1];
 | |
|         jpvt[maxj - 1] = jpvt[l - 1];
 | |
|         jpvt[l - 1] = jp;
 | |
|       }
 | |
|     }
 | |
|     /**
 | |
|       Compute the Householder transformation for column L.
 | |
|     */
 | |
|     qraux[l - 1] = 0.0;
 | |
|     if (l != n) {
 | |
|       nrmxl = dnrm2(n - l + 1, a + l - 1 + (l - 1) * lda, 1);
 | |
|       if (nrmxl != 0.0) {
 | |
|         if (a[l - 1 + (l - 1)*lda] != 0.0)
 | |
|           nrmxl = nrmxl * r8_sign(a[l - 1 + (l - 1) * lda]);
 | |
|         dscal(n - l + 1, 1.0 / nrmxl, a + l - 1 + (l - 1)*lda, 1);
 | |
|         a[l - 1 + (l - 1)*lda] = 1.0 + a[l - 1 + (l - 1) * lda];
 | |
|         /**
 | |
|           Apply the transformation to the remaining columns, updating the norms.
 | |
|         */
 | |
|         for (j = l + 1; j <= p; j++) {
 | |
|           t = -ddot(n - l + 1, a + l - 1 + (l - 1) * lda, 1, a + l - 1 + (j - 1) * lda, 1)
 | |
|               / a[l - 1 + (l - 1) * lda];
 | |
|           daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
 | |
|           if (pl <= j && j <= pu) {
 | |
|             if (qraux[j - 1] != 0.0) {
 | |
|               tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
 | |
|               tt = r8_max(tt, 0.0);
 | |
|               t = tt;
 | |
|               tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
 | |
|               if (tt != 1.0)
 | |
|                 qraux[j - 1] = qraux[j - 1] * sqrt(t);
 | |
|               else {
 | |
|                 qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
 | |
|                 work[j - 1] = qraux[j - 1];
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         /**
 | |
|           Save the transformation.
 | |
|         */
 | |
|         qraux[l - 1] = a[l - 1 + (l - 1) * lda];
 | |
|         a[l - 1 + (l - 1)*lda] = -nrmxl;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| int dqrls(float a[], int lda, int m, int n, float tol, int* kr, float b[],
 | |
|           float x[], float rsd[], int jpvt[], float qraux[], int itask)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DQRLS factors and solves a linear system in the least squares sense.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     The linear system may be overdetermined, underdetermined or singular.
 | |
|     The solution is obtained using a QR factorization of the
 | |
|     coefficient matrix.
 | |
| 
 | |
|     DQRLS can be efficiently used to solve several least squares
 | |
|     problems with the same matrix A.  The first system is solved
 | |
|     with ITASK = 1.  The subsequent systems are solved with
 | |
|     ITASK = 2, to avoid the recomputation of the matrix factors.
 | |
|     The parameters KR, JPVT, and QRAUX must not be modified
 | |
|     between calls to DQRLS.
 | |
| 
 | |
|     DQRLS is used to solve in a least squares sense
 | |
|     overdetermined, underdetermined and singular linear systems.
 | |
|     The system is A*X approximates B where A is M by N.
 | |
|     B is a given M-vector, and X is the N-vector to be computed.
 | |
|     A solution X is found which minimimzes the sum of squares (2-norm)
 | |
|     of the residual,  A*X - B.
 | |
| 
 | |
|     The numerical rank of A is determined using the tolerance TOL.
 | |
| 
 | |
|     DQRLS uses the LINPACK subroutine DQRDC to compute the QR
 | |
|     factorization, with column pivoting, of an M by N matrix A.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     10 September 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt.
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     David Kahaner, Cleve Moler, Steven Nash,
 | |
|     Numerical Methods and Software,
 | |
|     Prentice Hall, 1989,
 | |
|     ISBN: 0-13-627258-4,
 | |
|     LC: TA345.K34.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input/output, float A[LDA*N], an M by N matrix.
 | |
|     On input, the matrix whose decomposition is to be computed.
 | |
|     In a least squares data fitting problem, A(I,J) is the
 | |
|     value of the J-th basis (model) function at the I-th data point.
 | |
|     On output, A contains the output from DQRDC.  The triangular matrix R
 | |
|     of the QR factorization is contained in the upper triangle and
 | |
|     information needed to recover the orthogonal matrix Q is stored
 | |
|     below the diagonal in A and in the vector QRAUX.
 | |
| 
 | |
|     Input, int LDA, the leading dimension of A.
 | |
| 
 | |
|     Input, int M, the number of rows of A.
 | |
| 
 | |
|     Input, int N, the number of columns of A.
 | |
| 
 | |
|     Input, float TOL, a relative tolerance used to determine the
 | |
|     numerical rank.  The problem should be scaled so that all the elements
 | |
|     of A have roughly the same absolute accuracy EPS.  Then a reasonable
 | |
|     value for TOL is roughly EPS divided by the magnitude of the largest
 | |
|     element.
 | |
| 
 | |
|     Output, int *KR, the numerical rank.
 | |
| 
 | |
|     Input, float B[M], the right hand side of the linear system.
 | |
| 
 | |
|     Output, float X[N], a least squares solution to the linear
 | |
|     system.
 | |
| 
 | |
|     Output, float RSD[M], the residual, B - A*X.  RSD may
 | |
|     overwrite B.
 | |
| 
 | |
|     Workspace, int JPVT[N], required if ITASK = 1.
 | |
|     Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | |
|     independent to within the tolerance TOL and the remaining columns
 | |
|     are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | |
|     of the condition number of the matrix of independent columns,
 | |
|     and of R.  This estimate will be <= 1/TOL.
 | |
| 
 | |
|     Workspace, float QRAUX[N], required if ITASK = 1.
 | |
| 
 | |
|     Input, int ITASK.
 | |
|     1, DQRLS factors the matrix A and solves the least squares problem.
 | |
|     2, DQRLS assumes that the matrix A was factored with an earlier
 | |
|        call to DQRLS, and only solves the least squares problem.
 | |
| 
 | |
|     Output, int DQRLS, error code.
 | |
|     0:  no error
 | |
|     -1: LDA < M   (fatal error)
 | |
|     -2: N < 1     (fatal error)
 | |
|     -3: ITASK < 1 (fatal error)
 | |
| */
 | |
| {
 | |
|   int ind;
 | |
|   if (lda < m) {
 | |
|     /*fprintf ( stderr, "\n" );
 | |
|     fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | |
|     fprintf ( stderr, "  LDA < M.\n" );*/
 | |
|     ind = -1;
 | |
|     return ind;
 | |
|   }
 | |
| 
 | |
|   if (n <= 0) {
 | |
|     /*fprintf ( stderr, "\n" );
 | |
|     fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | |
|     fprintf ( stderr, "  N <= 0.\n" );*/
 | |
|     ind = -2;
 | |
|     return ind;
 | |
|   }
 | |
| 
 | |
|   if (itask < 1) {
 | |
|     /*fprintf ( stderr, "\n" );
 | |
|     fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | |
|     fprintf ( stderr, "  ITASK < 1.\n" );*/
 | |
|     ind = -3;
 | |
|     return ind;
 | |
|   }
 | |
| 
 | |
|   ind = 0;
 | |
|   /**
 | |
|     Factor the matrix.
 | |
|   */
 | |
|   if (itask == 1)
 | |
|     dqrank(a, lda, m, n, tol, kr, jpvt, qraux);
 | |
|   /**
 | |
|     Solve the least-squares problem.
 | |
|   */
 | |
|   dqrlss(a, lda, m, n, *kr, b, x, rsd, jpvt, qraux);
 | |
|   return ind;
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| void dqrlss(float a[], int lda, int m, int n, int kr, float b[], float x[],
 | |
|             float rsd[], int jpvt[], float qraux[])
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DQRLSS solves a linear system in a least squares sense.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     DQRLSS must be preceded by a call to DQRANK.
 | |
| 
 | |
|     The system is to be solved is
 | |
|       A * X = B
 | |
|     where
 | |
|       A is an M by N matrix with rank KR, as determined by DQRANK,
 | |
|       B is a given M-vector,
 | |
|       X is the N-vector to be computed.
 | |
| 
 | |
|     A solution X, with at most KR nonzero components, is found which
 | |
|     minimizes the 2-norm of the residual (A*X-B).
 | |
| 
 | |
|     Once the matrix A has been formed, DQRANK should be
 | |
|     called once to decompose it.  Then, for each right hand
 | |
|     side B, DQRLSS should be called once to obtain the
 | |
|     solution and residual.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     10 September 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, float A[LDA*N], the QR factorization information
 | |
|     from DQRANK.  The triangular matrix R of the QR factorization is
 | |
|     contained in the upper triangle and information needed to recover
 | |
|     the orthogonal matrix Q is stored below the diagonal in A and in
 | |
|     the vector QRAUX.
 | |
| 
 | |
|     Input, int LDA, the leading dimension of A, which must
 | |
|     be at least M.
 | |
| 
 | |
|     Input, int M, the number of rows of A.
 | |
| 
 | |
|     Input, int N, the number of columns of A.
 | |
| 
 | |
|     Input, int KR, the rank of the matrix, as estimated by DQRANK.
 | |
| 
 | |
|     Input, float B[M], the right hand side of the linear system.
 | |
| 
 | |
|     Output, float X[N], a least squares solution to the
 | |
|     linear system.
 | |
| 
 | |
|     Output, float RSD[M], the residual, B - A*X.  RSD may
 | |
|     overwrite B.
 | |
| 
 | |
|     Input, int JPVT[N], the pivot information from DQRANK.
 | |
|     Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
 | |
|     independent to within the tolerance TOL and the remaining columns
 | |
|     are linearly dependent.
 | |
| 
 | |
|     Input, float QRAUX[N], auxiliary information from DQRANK
 | |
|     defining the QR factorization.
 | |
| */
 | |
| {
 | |
|   int i;
 | |
|   int info;
 | |
|   int j;
 | |
|   int job;
 | |
|   int k;
 | |
|   float t;
 | |
| 
 | |
|   if (kr != 0) {
 | |
|     job = 110;
 | |
|     info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job); UNUSED(info);
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < n; i++)
 | |
|     jpvt[i] = - jpvt[i];
 | |
| 
 | |
|   for (i = kr; i < n; i++)
 | |
|     x[i] = 0.0;
 | |
| 
 | |
|   for (j = 1; j <= n; j++) {
 | |
|     if (jpvt[j - 1] <= 0) {
 | |
|       k = - jpvt[j - 1];
 | |
|       jpvt[j - 1] = k;
 | |
| 
 | |
|       while (k != j) {
 | |
|         t = x[j - 1];
 | |
|         x[j - 1] = x[k - 1];
 | |
|         x[k - 1] = t;
 | |
|         jpvt[k - 1] = -jpvt[k - 1];
 | |
|         k = jpvt[k - 1];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| int dqrsl(float a[], int lda, int n, int k, float qraux[], float y[],
 | |
|           float qy[], float qty[], float b[], float rsd[], float ab[], int job)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DQRSL computes transformations, projections, and least squares solutions.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     DQRSL requires the output of DQRDC.
 | |
| 
 | |
|     For K <= min(N,P), let AK be the matrix
 | |
| 
 | |
|       AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )
 | |
| 
 | |
|     formed from columns JPVT[0], ..., JPVT(K) of the original
 | |
|     N by P matrix A that was input to DQRDC.  If no pivoting was
 | |
|     done, AK consists of the first K columns of A in their
 | |
|     original order.  DQRDC produces a factored orthogonal matrix Q
 | |
|     and an upper triangular matrix R such that
 | |
| 
 | |
|       AK = Q * (R)
 | |
|                (0)
 | |
| 
 | |
|     This information is contained in coded form in the arrays
 | |
|     A and QRAUX.
 | |
| 
 | |
|     The parameters QY, QTY, B, RSD, and AB are not referenced
 | |
|     if their computation is not requested and in this case
 | |
|     can be replaced by dummy variables in the calling program.
 | |
|     To save storage, the user may in some cases use the same
 | |
|     array for different parameters in the calling sequence.  A
 | |
|     frequently occurring example is when one wishes to compute
 | |
|     any of B, RSD, or AB and does not need Y or QTY.  In this
 | |
|     case one may identify Y, QTY, and one of B, RSD, or AB, while
 | |
|     providing separate arrays for anything else that is to be
 | |
|     computed.
 | |
| 
 | |
|     Thus the calling sequence
 | |
| 
 | |
|       dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )
 | |
| 
 | |
|     will result in the computation of B and RSD, with RSD
 | |
|     overwriting Y.  More generally, each item in the following
 | |
|     list contains groups of permissible identifications for
 | |
|     a single calling sequence.
 | |
| 
 | |
|       1. (Y,QTY,B) (RSD) (AB) (QY)
 | |
| 
 | |
|       2. (Y,QTY,RSD) (B) (AB) (QY)
 | |
| 
 | |
|       3. (Y,QTY,AB) (B) (RSD) (QY)
 | |
| 
 | |
|       4. (Y,QY) (QTY,B) (RSD) (AB)
 | |
| 
 | |
|       5. (Y,QY) (QTY,RSD) (B) (AB)
 | |
| 
 | |
|       6. (Y,QY) (QTY,AB) (B) (RSD)
 | |
| 
 | |
|     In any group the value returned in the array allocated to
 | |
|     the group corresponds to the last member of the group.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     07 June 2005
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt.
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, (Society for Industrial and Applied Mathematics),
 | |
|     3600 University City Science Center,
 | |
|     Philadelphia, PA, 19104-2688.
 | |
|     ISBN 0-89871-172-X
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, float A[LDA*P], contains the output of DQRDC.
 | |
| 
 | |
|     Input, int LDA, the leading dimension of the array A.
 | |
| 
 | |
|     Input, int N, the number of rows of the matrix AK.  It must
 | |
|     have the same value as N in DQRDC.
 | |
| 
 | |
|     Input, int K, the number of columns of the matrix AK.  K
 | |
|     must not be greater than min(N,P), where P is the same as in the
 | |
|     calling sequence to DQRDC.
 | |
| 
 | |
|     Input, float QRAUX[P], the auxiliary output from DQRDC.
 | |
| 
 | |
|     Input, float Y[N], a vector to be manipulated by DQRSL.
 | |
| 
 | |
|     Output, float QY[N], contains Q * Y, if requested.
 | |
| 
 | |
|     Output, float QTY[N], contains Q' * Y, if requested.
 | |
| 
 | |
|     Output, float B[K], the solution of the least squares problem
 | |
|       minimize norm2 ( Y - AK * B),
 | |
|     if its computation has been requested.  Note that if pivoting was
 | |
|     requested in DQRDC, the J-th component of B will be associated with
 | |
|     column JPVT(J) of the original matrix A that was input into DQRDC.
 | |
| 
 | |
|     Output, float RSD[N], the least squares residual Y - AK * B,
 | |
|     if its computation has been requested.  RSD is also the orthogonal
 | |
|     projection of Y onto the orthogonal complement of the column space
 | |
|     of AK.
 | |
| 
 | |
|     Output, float AB[N], the least squares approximation Ak * B,
 | |
|     if its computation has been requested.  AB is also the orthogonal
 | |
|     projection of Y onto the column space of A.
 | |
| 
 | |
|     Input, integer JOB, specifies what is to be computed.  JOB has
 | |
|     the decimal expansion ABCDE, with the following meaning:
 | |
| 
 | |
|       if A != 0, compute QY.
 | |
|       if B != 0, compute QTY.
 | |
|       if C != 0, compute QTY and B.
 | |
|       if D != 0, compute QTY and RSD.
 | |
|       if E != 0, compute QTY and AB.
 | |
| 
 | |
|     Note that a request to compute B, RSD, or AB automatically triggers
 | |
|     the computation of QTY, for which an array must be provided in the
 | |
|     calling sequence.
 | |
| 
 | |
|     Output, int DQRSL, is zero unless the computation of B has
 | |
|     been requested and R is exactly singular.  In this case, INFO is the
 | |
|     index of the first zero diagonal element of R, and B is left unaltered.
 | |
| */
 | |
| {
 | |
|   int cab;
 | |
|   int cb;
 | |
|   int cqty;
 | |
|   int cqy;
 | |
|   int cr;
 | |
|   int i;
 | |
|   int info;
 | |
|   int j;
 | |
|   int jj;
 | |
|   int ju;
 | |
|   float t;
 | |
|   float temp;
 | |
|   /**
 | |
|     Set INFO flag.
 | |
|   */
 | |
|   info = 0;
 | |
| 
 | |
|   /**
 | |
|     Determine what is to be computed.
 | |
|   */
 | |
|   cqy  = ( job / 10000        != 0);
 | |
|   cqty = ((job % 10000)       != 0);
 | |
|   cb   = ((job %  1000) / 100 != 0);
 | |
|   cr   = ((job %   100) /  10 != 0);
 | |
|   cab  = ((job %    10)       != 0);
 | |
|   ju = i4_min(k, n - 1);
 | |
| 
 | |
|   /**
 | |
|     Special action when N = 1.
 | |
|   */
 | |
|   if (ju == 0) {
 | |
|     if (cqy)
 | |
|       qy[0] = y[0];
 | |
|     if (cqty)
 | |
|       qty[0] = y[0];
 | |
|     if (cab)
 | |
|       ab[0] = y[0];
 | |
|     if (cb) {
 | |
|       if (a[0 + 0 * lda] == 0.0)
 | |
|         info = 1;
 | |
|       else
 | |
|         b[0] = y[0] / a[0 + 0 * lda];
 | |
|     }
 | |
|     if (cr)
 | |
|       rsd[0] = 0.0;
 | |
|     return info;
 | |
|   }
 | |
|   /**
 | |
|     Set up to compute QY or QTY.
 | |
|   */
 | |
|   if (cqy) {
 | |
|     for (i = 1; i <= n; i++)
 | |
|       qy[i - 1] = y[i - 1];
 | |
|   }
 | |
|   if (cqty) {
 | |
|     for (i = 1; i <= n; i++)
 | |
|       qty[i - 1] = y[i - 1];
 | |
|   }
 | |
|   /**
 | |
|     Compute QY.
 | |
|   */
 | |
|   if (cqy) {
 | |
|     for (jj = 1; jj <= ju; jj++) {
 | |
|       j = ju - jj + 1;
 | |
|       if (qraux[j - 1] != 0.0) {
 | |
|         temp = a[j - 1 + (j - 1) * lda];
 | |
|         a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | |
|         t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qy + j - 1, 1) / a[j - 1 + (j - 1) * lda];
 | |
|         daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qy + j - 1, 1);
 | |
|         a[j - 1 + (j - 1)*lda] = temp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Compute Q'*Y.
 | |
|   */
 | |
|   if (cqty) {
 | |
|     for (j = 1; j <= ju; j++) {
 | |
|       if (qraux[j - 1] != 0.0) {
 | |
|         temp = a[j - 1 + (j - 1) * lda];
 | |
|         a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | |
|         t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qty + j - 1, 1) / a[j - 1 + (j - 1) * lda];
 | |
|         daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qty + j - 1, 1);
 | |
|         a[j - 1 + (j - 1)*lda] = temp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Set up to compute B, RSD, or AB.
 | |
|   */
 | |
|   if (cb) {
 | |
|     for (i = 1; i <= k; i++)
 | |
|       b[i - 1] = qty[i - 1];
 | |
|   }
 | |
|   if (cab) {
 | |
|     for (i = 1; i <= k; i++)
 | |
|       ab[i - 1] = qty[i - 1];
 | |
|   }
 | |
|   if (cr && k < n) {
 | |
|     for (i = k + 1; i <= n; i++)
 | |
|       rsd[i - 1] = qty[i - 1];
 | |
|   }
 | |
|   if (cab && k + 1 <= n) {
 | |
|     for (i = k + 1; i <= n; i++)
 | |
|       ab[i - 1] = 0.0;
 | |
|   }
 | |
|   if (cr) {
 | |
|     for (i = 1; i <= k; i++)
 | |
|       rsd[i - 1] = 0.0;
 | |
|   }
 | |
|   /**
 | |
|     Compute B.
 | |
|   */
 | |
|   if (cb) {
 | |
|     for (jj = 1; jj <= k; jj++) {
 | |
|       j = k - jj + 1;
 | |
|       if (a[j - 1 + (j - 1)*lda] == 0.0) {
 | |
|         info = j;
 | |
|         break;
 | |
|       }
 | |
|       b[j - 1] = b[j - 1] / a[j - 1 + (j - 1) * lda];
 | |
|       if (j != 1) {
 | |
|         t = -b[j - 1];
 | |
|         daxpy(j - 1, t, a + 0 + (j - 1)*lda, 1, b, 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /**
 | |
|     Compute RSD or AB as required.
 | |
|   */
 | |
|   if (cr || cab) {
 | |
|     for (jj = 1; jj <= ju; jj++) {
 | |
|       j = ju - jj + 1;
 | |
|       if (qraux[j - 1] != 0.0) {
 | |
|         temp = a[j - 1 + (j - 1) * lda];
 | |
|         a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | |
|         if (cr) {
 | |
|           t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, rsd + j - 1, 1)
 | |
|               / a[j - 1 + (j - 1) * lda];
 | |
|           daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, rsd + j - 1, 1);
 | |
|         }
 | |
|         if (cab) {
 | |
|           t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, ab + j - 1, 1)
 | |
|               / a[j - 1 + (j - 1) * lda];
 | |
|           daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, ab + j - 1, 1);
 | |
|         }
 | |
|         a[j - 1 + (j - 1)*lda] = temp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return info;
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| void dscal(int n, float sa, float x[], int incx)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DSCAL scales a vector by a constant.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     30 March 2007
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979.
 | |
| 
 | |
|     Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | |
|     Basic Linear Algebra Subprograms for Fortran Usage,
 | |
|     Algorithm 539,
 | |
|     ACM Transactions on Mathematical Software,
 | |
|     Volume 5, Number 3, September 1979, pages 308-323.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int N, the number of entries in the vector.
 | |
| 
 | |
|     Input, float SA, the multiplier.
 | |
| 
 | |
|     Input/output, float X[*], the vector to be scaled.
 | |
| 
 | |
|     Input, int INCX, the increment between successive entries of X.
 | |
| */
 | |
| {
 | |
|   int i;
 | |
|   int ix;
 | |
|   int m;
 | |
| 
 | |
|   if (n <= 0) return;
 | |
| 
 | |
|   if (incx == 1) {
 | |
|     m = n % 5;
 | |
|     for (i = 0; i < m; i++)
 | |
|       x[i] = sa * x[i];
 | |
|     for (i = m; i < n; i = i + 5) {
 | |
|       x[i]   = sa * x[i];
 | |
|       x[i + 1] = sa * x[i + 1];
 | |
|       x[i + 2] = sa * x[i + 2];
 | |
|       x[i + 3] = sa * x[i + 3];
 | |
|       x[i + 4] = sa * x[i + 4];
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     if (0 <= incx)
 | |
|       ix = 0;
 | |
|     else
 | |
|       ix = (- n + 1) * incx;
 | |
|     for (i = 0; i < n; i++) {
 | |
|       x[ix] = sa * x[ix];
 | |
|       ix = ix + incx;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| 
 | |
| void dswap(int n, float x[], int incx, float y[], int incy)
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     DSWAP interchanges two vectors.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     30 March 2007
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     C version by John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | |
|     LINPACK User's Guide,
 | |
|     SIAM, 1979.
 | |
| 
 | |
|     Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | |
|     Basic Linear Algebra Subprograms for Fortran Usage,
 | |
|     Algorithm 539,
 | |
|     ACM Transactions on Mathematical Software,
 | |
|     Volume 5, Number 3, September 1979, pages 308-323.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int N, the number of entries in the vectors.
 | |
| 
 | |
|     Input/output, float X[*], one of the vectors to swap.
 | |
| 
 | |
|     Input, int INCX, the increment between successive entries of X.
 | |
| 
 | |
|     Input/output, float Y[*], one of the vectors to swap.
 | |
| 
 | |
|     Input, int INCY, the increment between successive elements of Y.
 | |
| */
 | |
| {
 | |
|   if (n <= 0) return;
 | |
| 
 | |
|   int i, ix, iy, m;
 | |
|   float temp;
 | |
| 
 | |
|   if (incx == 1 && incy == 1) {
 | |
|     m = n % 3;
 | |
|     for (i = 0; i < m; i++) {
 | |
|       temp = x[i];
 | |
|       x[i] = y[i];
 | |
|       y[i] = temp;
 | |
|     }
 | |
|     for (i = m; i < n; i = i + 3) {
 | |
|       temp = x[i];
 | |
|       x[i] = y[i];
 | |
|       y[i] = temp;
 | |
|       temp = x[i + 1];
 | |
|       x[i + 1] = y[i + 1];
 | |
|       y[i + 1] = temp;
 | |
|       temp = x[i + 2];
 | |
|       x[i + 2] = y[i + 2];
 | |
|       y[i + 2] = temp;
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     ix = (incx >= 0) ? 0 : (-n + 1) * incx;
 | |
|     iy = (incy >= 0) ? 0 : (-n + 1) * incy;
 | |
|     for (i = 0; i < n; i++) {
 | |
|       temp = x[ix];
 | |
|       x[ix] = y[iy];
 | |
|       y[iy] = temp;
 | |
|       ix = ix + incx;
 | |
|       iy = iy + incy;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| void qr_solve(float x[], int m, int n, float a[], float b[])
 | |
| 
 | |
| /******************************************************************************/
 | |
| /**
 | |
|   Purpose:
 | |
| 
 | |
|     QR_SOLVE solves a linear system in the least squares sense.
 | |
| 
 | |
|   Discussion:
 | |
| 
 | |
|     If the matrix A has full column rank, then the solution X should be the
 | |
|     unique vector that minimizes the Euclidean norm of the residual.
 | |
| 
 | |
|     If the matrix A does not have full column rank, then the solution is
 | |
|     not unique; the vector X will minimize the residual norm, but so will
 | |
|     various other vectors.
 | |
| 
 | |
|   Licensing:
 | |
| 
 | |
|     This code is distributed under the GNU LGPL license.
 | |
| 
 | |
|   Modified:
 | |
| 
 | |
|     11 September 2012
 | |
| 
 | |
|   Author:
 | |
| 
 | |
|     John Burkardt
 | |
| 
 | |
|   Reference:
 | |
| 
 | |
|     David Kahaner, Cleve Moler, Steven Nash,
 | |
|     Numerical Methods and Software,
 | |
|     Prentice Hall, 1989,
 | |
|     ISBN: 0-13-627258-4,
 | |
|     LC: TA345.K34.
 | |
| 
 | |
|   Parameters:
 | |
| 
 | |
|     Input, int M, the number of rows of A.
 | |
| 
 | |
|     Input, int N, the number of columns of A.
 | |
| 
 | |
|     Input, float A[M*N], the matrix.
 | |
| 
 | |
|     Input, float B[M], the right hand side.
 | |
| 
 | |
|     Output, float QR_SOLVE[N], the least squares solution.
 | |
| */
 | |
| {
 | |
|   float a_qr[n * m], qraux[n], r[m], tol;
 | |
|   int ind, itask, jpvt[n], kr, lda;
 | |
| 
 | |
|   r8mat_copy(a_qr, m, n, a);
 | |
|   lda = m;
 | |
|   tol = r8_epsilon() / r8mat_amax(m, n, a_qr);
 | |
|   itask = 1;
 | |
| 
 | |
|   ind = dqrls(a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask); UNUSED(ind);
 | |
| }
 | |
| /******************************************************************************/
 | |
| 
 | |
| #endif
 |