You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							564 lines
						
					
					
						
							23 KiB
						
					
					
				
			
		
		
	
	
							564 lines
						
					
					
						
							23 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| #include "MarlinConfig.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|   #include "Marlin.h"
 | |
|   #include "ubl.h"
 | |
|   #include "planner.h"
 | |
|   #include <avr/io.h>
 | |
|   #include <math.h>
 | |
| 
 | |
|   extern float destination[XYZE];
 | |
|   extern void set_current_to_destination();
 | |
| 
 | |
|   static void debug_echo_axis(const AxisEnum axis) {
 | |
|     if (current_position[axis] == destination[axis])
 | |
|       SERIAL_ECHOPGM("-------------");
 | |
|     else
 | |
|       SERIAL_ECHO_F(destination[X_AXIS], 6);
 | |
|   }
 | |
| 
 | |
|   void debug_current_and_destination(const char *title) {
 | |
| 
 | |
|     // if the title message starts with a '!' it is so important, we are going to
 | |
|     // ignore the status of the g26_debug_flag
 | |
|     if (*title != '!' && !ubl.g26_debug_flag) return;
 | |
| 
 | |
|     const float de = destination[E_AXIS] - current_position[E_AXIS];
 | |
| 
 | |
|     if (de == 0.0) return;
 | |
| 
 | |
|     const float dx = current_position[X_AXIS] - destination[X_AXIS],
 | |
|                 dy = current_position[Y_AXIS] - destination[Y_AXIS],
 | |
|                 xy_dist = HYPOT(dx, dy);
 | |
| 
 | |
|     if (xy_dist == 0.0) {
 | |
|       return;
 | |
|       //SERIAL_ECHOPGM("   FPMM=");
 | |
|       //const float fpmm = de / xy_dist;
 | |
|       //SERIAL_PROTOCOL_F(fpmm, 6);
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ECHOPGM("   fpmm=");
 | |
|       const float fpmm = de / xy_dist;
 | |
|       SERIAL_ECHO_F(fpmm, 6);
 | |
|     }
 | |
| 
 | |
|     SERIAL_ECHOPGM("    current=( ");
 | |
|     SERIAL_ECHO_F(current_position[X_AXIS], 6);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     SERIAL_ECHO_F(current_position[Y_AXIS], 6);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     SERIAL_ECHO_F(current_position[Z_AXIS], 6);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     SERIAL_ECHO_F(current_position[E_AXIS], 6);
 | |
|     SERIAL_ECHOPGM(" )   destination=( ");
 | |
|     debug_echo_axis(X_AXIS);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     debug_echo_axis(Y_AXIS);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     debug_echo_axis(Z_AXIS);
 | |
|     SERIAL_ECHOPGM(", ");
 | |
|     debug_echo_axis(E_AXIS);
 | |
|     SERIAL_ECHOPGM(" )   ");
 | |
|     SERIAL_ECHO(title);
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
 | |
|     /**
 | |
|      * Much of the nozzle movement will be within the same cell. So we will do as little computation
 | |
|      * as possible to determine if this is the case. If this move is within the same cell, we will
 | |
|      * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
 | |
|      */
 | |
|     const float start[XYZE] = {
 | |
|                   current_position[X_AXIS],
 | |
|                   current_position[Y_AXIS],
 | |
|                   current_position[Z_AXIS],
 | |
|                   current_position[E_AXIS]
 | |
|                 },
 | |
|                 end[XYZE] = {
 | |
|                   destination[X_AXIS],
 | |
|                   destination[Y_AXIS],
 | |
|                   destination[Z_AXIS],
 | |
|                   destination[E_AXIS]
 | |
|                 };
 | |
| 
 | |
|     const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
 | |
|               cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
 | |
|               cell_dest_xi  = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
 | |
|               cell_dest_yi  = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
 | |
| 
 | |
|     if (ubl.g26_debug_flag) {
 | |
|       SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
 | |
|       SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
 | |
|       SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
 | |
|       SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL;
 | |
|       debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
 | |
|     }
 | |
| 
 | |
|     if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
 | |
|       /**
 | |
|        * we don't need to break up the move
 | |
|        *
 | |
|        * If we are moving off the print bed, we are going to allow the move at this level.
 | |
|        * But we detect it and isolate it. For now, we just pass along the request.
 | |
|        */
 | |
| 
 | |
|       if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
| 
 | |
|         // Note: There is no Z Correction in this case. We are off the grid and don't know what
 | |
|         // a reasonable correction would be.
 | |
| 
 | |
|         planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
 | |
|         set_current_to_destination();
 | |
| 
 | |
|         if (ubl.g26_debug_flag)
 | |
|           debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
 | |
| 
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       FINAL_MOVE:
 | |
| 
 | |
|       /**
 | |
|        * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
 | |
|        * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
 | |
|        * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
 | |
|        * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
 | |
|        * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
 | |
|        * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
 | |
|        */
 | |
| 
 | |
|       const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
 | |
|                   z1 = ubl.z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio *
 | |
|                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi    ] - ubl.z_values[cell_dest_xi][cell_dest_yi    ]),
 | |
|                   z2 = ubl.z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio *
 | |
|                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
 | |
| 
 | |
|       // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
 | |
|       // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
 | |
| 
 | |
|       const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
 | |
| 
 | |
|       float z0 = z1 + (z2 - z1) * yratio;
 | |
| 
 | |
|       /**
 | |
|        * Debug code to use non-optimized get_z_correction() and to do a sanity check
 | |
|        * that the correct value is being passed to planner.buffer_line()
 | |
|        */
 | |
|       /*
 | |
|         z_optimized = z0;
 | |
|         z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]);
 | |
|         if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
 | |
|         debug_current_and_destination(PSTR("FINAL_MOVE: z_correction()"));
 | |
|         if (isnan(z0)) SERIAL_ECHO(" z0==NAN  ");
 | |
|         if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  ");
 | |
|         SERIAL_ECHOPAIR("  end[X_AXIS]=", end[X_AXIS]);
 | |
|         SERIAL_ECHOPAIR("  end[Y_AXIS]=", end[Y_AXIS]);
 | |
|         SERIAL_ECHOPAIR("  z0=", z0);
 | |
|         SERIAL_ECHOPAIR("  z_optimized=", z_optimized);
 | |
|         SERIAL_ECHOPAIR("  err=",fabs(z_optimized - z0));
 | |
|         SERIAL_EOL;
 | |
|         }
 | |
|       */
 | |
| 
 | |
|       z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
 | |
| 
 | |
|       /**
 | |
|        * If part of the Mesh is undefined, it will show up as NAN
 | |
|        * in z_values[][] and propagate through the
 | |
|        * calculations. If our correction is NAN, we throw it out
 | |
|        * because part of the Mesh is undefined and we don't have the
 | |
|        * information we need to complete the height correction.
 | |
|        */
 | |
|       if (isnan(z0)) z0 = 0.0;
 | |
| 
 | |
|       planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
 | |
| 
 | |
|       if (ubl.g26_debug_flag)
 | |
|         debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
 | |
| 
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
 | |
|      * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
 | |
|      * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
 | |
|      * computation and in fact most lines are of this nature. We will check for that in the following
 | |
|      * blocks of code:
 | |
|      */
 | |
| 
 | |
|     const float dx = end[X_AXIS] - start[X_AXIS],
 | |
|                 dy = end[Y_AXIS] - start[Y_AXIS];
 | |
| 
 | |
|     const int left_flag = dx < 0.0 ? 1 : 0,
 | |
|               down_flag = dy < 0.0 ? 1 : 0;
 | |
| 
 | |
|     const float adx = left_flag ? -dx : dx,
 | |
|                 ady = down_flag ? -dy : dy;
 | |
| 
 | |
|     const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
 | |
|               dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
 | |
| 
 | |
|     /**
 | |
|      * Compute the scaling factor for the extruder for each partial move.
 | |
|      * We need to watch out for zero length moves because it will cause us to
 | |
|      * have an infinate scaling factor. We are stuck doing a floating point
 | |
|      * divide to get our scaling factor, but after that, we just multiply by this
 | |
|      * number. We also pick our scaling factor based on whether the X or Y
 | |
|      * component is larger. We use the biggest of the two to preserve precision.
 | |
|      */
 | |
| 
 | |
|     const bool use_x_dist = adx > ady;
 | |
| 
 | |
|     float on_axis_distance = use_x_dist ? dx : dy,
 | |
|           e_position = end[E_AXIS] - start[E_AXIS],
 | |
|           z_position = end[Z_AXIS] - start[Z_AXIS];
 | |
| 
 | |
|     const float e_normalized_dist = e_position / on_axis_distance,
 | |
|                 z_normalized_dist = z_position / on_axis_distance;
 | |
| 
 | |
|     int current_xi = cell_start_xi, current_yi = cell_start_yi;
 | |
| 
 | |
|     const float m = dy / dx,
 | |
|                 c = start[Y_AXIS] - m * start[X_AXIS];
 | |
| 
 | |
|     const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
 | |
|                inf_m_flag = NEAR_ZERO(dx);
 | |
| 
 | |
|     /**
 | |
|      * This block handles vertical lines. These are lines that stay within the same
 | |
|      * X Cell column. They do not need to be perfectly vertical. They just can
 | |
|      * not cross into another X Cell column.
 | |
|      */
 | |
|     if (dxi == 0) {       // Check for a vertical line
 | |
|       current_yi += down_flag;  // Line is heading down, we just want to go to the bottom
 | |
|       while (current_yi != cell_dest_yi + down_flag) {
 | |
|         current_yi += dyi;
 | |
|         const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
 | |
| 
 | |
|         /**
 | |
|          * inf_m_flag? the slope of the line is infinite, we won't do the calculations
 | |
|          * else, we know the next X is the same so we can recover and continue!
 | |
|          * Calculate X at the next Y mesh line
 | |
|          */
 | |
|         const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
 | |
| 
 | |
|         float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
 | |
| 
 | |
|         /**
 | |
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check
 | |
|          * that the correct value is being passed to planner.buffer_line()
 | |
|          */
 | |
|         /*
 | |
|           z_optimized = z0;
 | |
|           z0 = ubl.get_z_correction(x, next_mesh_line_y);
 | |
|           if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
 | |
|             debug_current_and_destination(PSTR("VERTICAL z_correction()"));
 | |
|           if (isnan(z0)) SERIAL_ECHO(" z0==NAN  ");
 | |
|             if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  ");
 | |
|           SERIAL_ECHOPAIR("  x=", x);
 | |
|           SERIAL_ECHOPAIR("  next_mesh_line_y=", next_mesh_line_y);
 | |
|           SERIAL_ECHOPAIR("  z0=", z0);
 | |
|           SERIAL_ECHOPAIR("  z_optimized=", z_optimized);
 | |
|           SERIAL_ECHOPAIR("  err=",fabs(z_optimized-z0));
 | |
|           SERIAL_ECHO("\n");
 | |
|           }
 | |
|         */
 | |
| 
 | |
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
 | |
| 
 | |
|         /**
 | |
|          * If part of the Mesh is undefined, it will show up as NAN
 | |
|          * in z_values[][] and propagate through the
 | |
|          * calculations. If our correction is NAN, we throw it out
 | |
|          * because part of the Mesh is undefined and we don't have the
 | |
|          * information we need to complete the height correction.
 | |
|          */
 | |
|         if (isnan(z0)) z0 = 0.0;
 | |
| 
 | |
|         const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
 | |
| 
 | |
|         /**
 | |
|          * Without this check, it is possible for the algorithm to generate a zero length move in the case
 | |
|          * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
 | |
|          * happens, it might be best to remove the check and always 'schedule' the move because
 | |
|          * the planner.buffer_line() routine will filter it if that happens.
 | |
|          */
 | |
|         if (y != start[Y_AXIS]) {
 | |
|           if (!inf_normalized_flag) {
 | |
|             on_axis_distance = y - start[Y_AXIS];                               // we don't need to check if the extruder position
 | |
|             e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a vertical move
 | |
|             z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
 | |
|           }
 | |
|           else {
 | |
|             e_position = start[E_AXIS];
 | |
|             z_position = start[Z_AXIS];
 | |
|           }
 | |
| 
 | |
|           planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
 | |
|         } //else printf("FIRST MOVE PRUNED  ");
 | |
|       }
 | |
| 
 | |
|       if (ubl.g26_debug_flag)
 | |
|         debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
 | |
| 
 | |
|       //
 | |
|       // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
 | |
|       //
 | |
|       if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
 | |
|         goto FINAL_MOVE;
 | |
| 
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      *
 | |
|      * This block handles horizontal lines. These are lines that stay within the same
 | |
|      * Y Cell row. They do not need to be perfectly horizontal. They just can
 | |
|      * not cross into another Y Cell row.
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     if (dyi == 0) {             // Check for a horizontal line
 | |
|       current_xi += left_flag;  // Line is heading left, we just want to go to the left
 | |
|                                 // edge of this cell for the first move.
 | |
|       while (current_xi != cell_dest_xi + left_flag) {
 | |
|         current_xi += dxi;
 | |
|         const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
 | |
|                     y = m * next_mesh_line_x + c;   // Calculate X at the next Y mesh line
 | |
| 
 | |
|         float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
 | |
| 
 | |
|         /**
 | |
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check
 | |
|          * that the correct value is being passed to planner.buffer_line()
 | |
|          */
 | |
|         /*
 | |
|           z_optimized = z0;
 | |
|           z0 = ubl.get_z_correction(next_mesh_line_x, y);
 | |
|           if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
 | |
|             debug_current_and_destination(PSTR("HORIZONTAL z_correction()"));
 | |
|           if (isnan(z0)) SERIAL_ECHO(" z0==NAN  ");
 | |
|             if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  ");
 | |
|           SERIAL_ECHOPAIR("  next_mesh_line_x=", next_mesh_line_x);
 | |
|           SERIAL_ECHOPAIR("  y=", y);
 | |
|           SERIAL_ECHOPAIR("  z0=", z0);
 | |
|           SERIAL_ECHOPAIR("  z_optimized=", z_optimized);
 | |
|           SERIAL_ECHOPAIR("  err=",fabs(z_optimized-z0));
 | |
|           SERIAL_ECHO("\n");
 | |
|           }
 | |
|         */
 | |
| 
 | |
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
 | |
| 
 | |
|         /**
 | |
|          * If part of the Mesh is undefined, it will show up as NAN
 | |
|          * in z_values[][] and propagate through the
 | |
|          * calculations. If our correction is NAN, we throw it out
 | |
|          * because part of the Mesh is undefined and we don't have the
 | |
|          * information we need to complete the height correction.
 | |
|          */
 | |
|         if (isnan(z0)) z0 = 0.0;
 | |
| 
 | |
|         const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
 | |
| 
 | |
|         /**
 | |
|          * Without this check, it is possible for the algorithm to generate a zero length move in the case
 | |
|          * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
 | |
|          * that happens, it might be best to remove the check and always 'schedule' the move because
 | |
|          * the planner.buffer_line() routine will filter it if that happens.
 | |
|          */
 | |
|         if (x != start[X_AXIS]) {
 | |
|           if (!inf_normalized_flag) {
 | |
|             on_axis_distance = x - start[X_AXIS];                               // we don't need to check if the extruder position
 | |
|             e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a horizontal move
 | |
|             z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
 | |
|           }
 | |
|           else {
 | |
|             e_position = start[E_AXIS];
 | |
|             z_position = start[Z_AXIS];
 | |
|           }
 | |
| 
 | |
|           planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
 | |
|         } //else printf("FIRST MOVE PRUNED  ");
 | |
|       }
 | |
| 
 | |
|       if (ubl.g26_debug_flag)
 | |
|         debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
 | |
| 
 | |
|       if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
 | |
|         goto FINAL_MOVE;
 | |
| 
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      *
 | |
|      * This block handles the generic case of a line crossing both X and Y Mesh lines.
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     int xi_cnt = cell_start_xi - cell_dest_xi,
 | |
|         yi_cnt = cell_start_yi - cell_dest_yi;
 | |
| 
 | |
|     if (xi_cnt < 0) xi_cnt = -xi_cnt;
 | |
|     if (yi_cnt < 0) yi_cnt = -yi_cnt;
 | |
| 
 | |
|     current_xi += left_flag;
 | |
|     current_yi += down_flag;
 | |
| 
 | |
|     while (xi_cnt > 0 || yi_cnt > 0) {
 | |
| 
 | |
|       const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
 | |
|                   next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
 | |
|                   y = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
 | |
|                   x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
 | |
|                                                   // (No need to worry about m being zero.
 | |
|                                                   //  If that was the case, it was already detected
 | |
|                                                   //  as a vertical line move above.)
 | |
| 
 | |
|       if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
 | |
|         //
 | |
|         // Yes!  Crossing a Y Mesh Line next
 | |
|         //
 | |
|         float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
 | |
| 
 | |
|         /**
 | |
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check
 | |
|          * that the correct value is being passed to planner.buffer_line()
 | |
|          */
 | |
|         /*
 | |
|           z_optimized = z0;
 | |
|           z0 = ubl.get_z_correction(x, next_mesh_line_y);
 | |
|           if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
 | |
|             debug_current_and_destination(PSTR("General_1: z_correction()"));
 | |
|             if (isnan(z0)) SERIAL_ECHO(" z0==NAN  ");
 | |
|             if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  "); {
 | |
|               SERIAL_ECHOPAIR("  x=", x);
 | |
|             }
 | |
|             SERIAL_ECHOPAIR("  next_mesh_line_y=", next_mesh_line_y);
 | |
|             SERIAL_ECHOPAIR("  z0=", z0);
 | |
|             SERIAL_ECHOPAIR("  z_optimized=", z_optimized);
 | |
|             SERIAL_ECHOPAIR("  err=",fabs(z_optimized-z0));
 | |
|             SERIAL_ECHO("\n");
 | |
|           }
 | |
|         */
 | |
| 
 | |
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
 | |
| 
 | |
|         /**
 | |
|          * If part of the Mesh is undefined, it will show up as NAN
 | |
|          * in z_values[][] and propagate through the
 | |
|          * calculations. If our correction is NAN, we throw it out
 | |
|          * because part of the Mesh is undefined and we don't have the
 | |
|          * information we need to complete the height correction.
 | |
|          */
 | |
|         if (isnan(z0)) z0 = 0.0;
 | |
| 
 | |
|         if (!inf_normalized_flag) {
 | |
|           on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
 | |
|           e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
 | |
|           z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
 | |
|         }
 | |
|         else {
 | |
|           e_position = start[E_AXIS];
 | |
|           z_position = start[Z_AXIS];
 | |
|         }
 | |
|         planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
 | |
|         current_yi += dyi;
 | |
|         yi_cnt--;
 | |
|       }
 | |
|       else {
 | |
|         //
 | |
|         // Yes!  Crossing a X Mesh Line next
 | |
|         //
 | |
|         float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
 | |
| 
 | |
|         /**
 | |
|          * Debug code to use non-optimized get_z_correction() and to do a sanity check
 | |
|          * that the correct value is being passed to planner.buffer_line()
 | |
|          */
 | |
|         /*
 | |
|           z_optimized = z0;
 | |
|           z0 = ubl.get_z_correction(next_mesh_line_x, y);
 | |
|           if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
 | |
|           debug_current_and_destination(PSTR("General_2: z_correction()"));
 | |
|           if (isnan(z0)) SERIAL_ECHO(" z0==NAN  ");
 | |
|           if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN  ");
 | |
|           SERIAL_ECHOPAIR("  next_mesh_line_x=", next_mesh_line_x);
 | |
|           SERIAL_ECHOPAIR("  y=", y);
 | |
|           SERIAL_ECHOPAIR("  z0=", z0);
 | |
|           SERIAL_ECHOPAIR("  z_optimized=", z_optimized);
 | |
|           SERIAL_ECHOPAIR("  err=",fabs(z_optimized-z0));
 | |
|           SERIAL_ECHO("\n");
 | |
|           }
 | |
|         */
 | |
| 
 | |
|         z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
 | |
| 
 | |
|         /**
 | |
|          * If part of the Mesh is undefined, it will show up as NAN
 | |
|          * in z_values[][] and propagate through the
 | |
|          * calculations. If our correction is NAN, we throw it out
 | |
|          * because part of the Mesh is undefined and we don't have the
 | |
|          * information we need to complete the height correction.
 | |
|          */
 | |
|         if (isnan(z0)) z0 = 0.0;
 | |
| 
 | |
|         if (!inf_normalized_flag) {
 | |
|           on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
 | |
|           e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
 | |
|           z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
 | |
|         }
 | |
|         else {
 | |
|           e_position = start[E_AXIS];
 | |
|           z_position = start[Z_AXIS];
 | |
|         }
 | |
| 
 | |
|         planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
 | |
|         current_xi += dxi;
 | |
|         xi_cnt--;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ubl.g26_debug_flag)
 | |
|       debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
 | |
| 
 | |
|     if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
 | |
|       goto FINAL_MOVE;
 | |
| 
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| 
 | |
| #endif
 |