You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1055 lines
						
					
					
						
							32 KiB
						
					
					
				
			
		
		
	
	
							1055 lines
						
					
					
						
							32 KiB
						
					
					
				/*
 | 
						|
  stepper.c - stepper motor driver: executes motion plans using stepper motors
 | 
						|
  Part of Grbl
 | 
						|
 | 
						|
  Copyright (c) 2009-2011 Simen Svale Skogsrud
 | 
						|
 | 
						|
  Grbl is free software: you can redistribute it and/or modify
 | 
						|
  it under the terms of the GNU General Public License as published by
 | 
						|
  the Free Software Foundation, either version 3 of the License, or
 | 
						|
  (at your option) any later version.
 | 
						|
 | 
						|
  Grbl is distributed in the hope that it will be useful,
 | 
						|
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
  GNU General Public License for more details.
 | 
						|
 | 
						|
  You should have received a copy of the GNU General Public License
 | 
						|
  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
 | 
						|
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | 
						|
   and Philipp Tiefenbacher. */
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
#include "stepper.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "language.h"
 | 
						|
#include "cardreader.h"
 | 
						|
#include "speed_lookuptable.h"
 | 
						|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | 
						|
#include <SPI.h>
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================public variables  ============================
 | 
						|
//===========================================================================
 | 
						|
block_t *current_block;  // A pointer to the block currently being traced
 | 
						|
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================private variables ============================
 | 
						|
//===========================================================================
 | 
						|
//static makes it inpossible to be called from outside of this file by extern.!
 | 
						|
 | 
						|
// Variables used by The Stepper Driver Interrupt
 | 
						|
static unsigned char out_bits;        // The next stepping-bits to be output
 | 
						|
static long counter_x,       // Counter variables for the bresenham line tracer
 | 
						|
            counter_y, 
 | 
						|
            counter_z,       
 | 
						|
            counter_e;
 | 
						|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
 | 
						|
#ifdef ADVANCE
 | 
						|
  static long advance_rate, advance, final_advance = 0;
 | 
						|
  static long old_advance = 0;
 | 
						|
  static long e_steps[3];
 | 
						|
#endif
 | 
						|
static long acceleration_time, deceleration_time;
 | 
						|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 | 
						|
static unsigned short acc_step_rate; // needed for deccelaration start point
 | 
						|
static char step_loops;
 | 
						|
static unsigned short OCR1A_nominal;
 | 
						|
static unsigned short step_loops_nominal;
 | 
						|
 | 
						|
volatile long endstops_trigsteps[3]={0,0,0};
 | 
						|
volatile long endstops_stepsTotal,endstops_stepsDone;
 | 
						|
static volatile bool endstop_x_hit=false;
 | 
						|
static volatile bool endstop_y_hit=false;
 | 
						|
static volatile bool endstop_z_hit=false;
 | 
						|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
bool abort_on_endstop_hit = false;
 | 
						|
#endif
 | 
						|
 | 
						|
static bool old_x_min_endstop=false;
 | 
						|
static bool old_x_max_endstop=false;
 | 
						|
static bool old_y_min_endstop=false;
 | 
						|
static bool old_y_max_endstop=false;
 | 
						|
static bool old_z_min_endstop=false;
 | 
						|
static bool old_z_max_endstop=false;
 | 
						|
 | 
						|
static bool check_endstops = true;
 | 
						|
 | 
						|
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
 | 
						|
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================functions         ============================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
#define CHECK_ENDSTOPS  if(check_endstops)
 | 
						|
 | 
						|
// intRes = intIn1 * intIn2 >> 16
 | 
						|
// uses:
 | 
						|
// r26 to store 0
 | 
						|
// r27 to store the byte 1 of the 24 bit result
 | 
						|
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
 | 
						|
asm volatile ( \
 | 
						|
"clr r26 \n\t" \
 | 
						|
"mul %A1, %B2 \n\t" \
 | 
						|
"movw %A0, r0 \n\t" \
 | 
						|
"mul %A1, %A2 \n\t" \
 | 
						|
"add %A0, r1 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"lsr r0 \n\t" \
 | 
						|
"adc %A0, r26 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"clr r1 \n\t" \
 | 
						|
: \
 | 
						|
"=&r" (intRes) \
 | 
						|
: \
 | 
						|
"d" (charIn1), \
 | 
						|
"d" (intIn2) \
 | 
						|
: \
 | 
						|
"r26" \
 | 
						|
)
 | 
						|
 | 
						|
// intRes = longIn1 * longIn2 >> 24
 | 
						|
// uses:
 | 
						|
// r26 to store 0
 | 
						|
// r27 to store the byte 1 of the 48bit result
 | 
						|
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
 | 
						|
asm volatile ( \
 | 
						|
"clr r26 \n\t" \
 | 
						|
"mul %A1, %B2 \n\t" \
 | 
						|
"mov r27, r1 \n\t" \
 | 
						|
"mul %B1, %C2 \n\t" \
 | 
						|
"movw %A0, r0 \n\t" \
 | 
						|
"mul %C1, %C2 \n\t" \
 | 
						|
"add %B0, r0 \n\t" \
 | 
						|
"mul %C1, %B2 \n\t" \
 | 
						|
"add %A0, r0 \n\t" \
 | 
						|
"adc %B0, r1 \n\t" \
 | 
						|
"mul %A1, %C2 \n\t" \
 | 
						|
"add r27, r0 \n\t" \
 | 
						|
"adc %A0, r1 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"mul %B1, %B2 \n\t" \
 | 
						|
"add r27, r0 \n\t" \
 | 
						|
"adc %A0, r1 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"mul %C1, %A2 \n\t" \
 | 
						|
"add r27, r0 \n\t" \
 | 
						|
"adc %A0, r1 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"mul %B1, %A2 \n\t" \
 | 
						|
"add r27, r1 \n\t" \
 | 
						|
"adc %A0, r26 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"lsr r27 \n\t" \
 | 
						|
"adc %A0, r26 \n\t" \
 | 
						|
"adc %B0, r26 \n\t" \
 | 
						|
"clr r1 \n\t" \
 | 
						|
: \
 | 
						|
"=&r" (intRes) \
 | 
						|
: \
 | 
						|
"d" (longIn1), \
 | 
						|
"d" (longIn2) \
 | 
						|
: \
 | 
						|
"r26" , "r27" \
 | 
						|
)
 | 
						|
 | 
						|
// Some useful constants
 | 
						|
 | 
						|
#define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
 | 
						|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
 | 
						|
 | 
						|
 | 
						|
void checkHitEndstops()
 | 
						|
{
 | 
						|
 if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
 | 
						|
   SERIAL_ECHO_START;
 | 
						|
   SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
 | 
						|
   if(endstop_x_hit) {
 | 
						|
     SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
 | 
						|
     LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
 | 
						|
   }
 | 
						|
   if(endstop_y_hit) {
 | 
						|
     SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
 | 
						|
     LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
 | 
						|
   }
 | 
						|
   if(endstop_z_hit) {
 | 
						|
     SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
 | 
						|
     LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
 | 
						|
   }
 | 
						|
   SERIAL_ECHOLN("");
 | 
						|
   endstop_x_hit=false;
 | 
						|
   endstop_y_hit=false;
 | 
						|
   endstop_z_hit=false;
 | 
						|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
   if (abort_on_endstop_hit)
 | 
						|
   {
 | 
						|
     card.sdprinting = false;
 | 
						|
     card.closefile();
 | 
						|
     quickStop();
 | 
						|
     setTargetHotend0(0);
 | 
						|
     setTargetHotend1(0);
 | 
						|
     setTargetHotend2(0);
 | 
						|
   }
 | 
						|
#endif
 | 
						|
 }
 | 
						|
}
 | 
						|
 | 
						|
void endstops_hit_on_purpose()
 | 
						|
{
 | 
						|
  endstop_x_hit=false;
 | 
						|
  endstop_y_hit=false;
 | 
						|
  endstop_z_hit=false;
 | 
						|
}
 | 
						|
 | 
						|
void enable_endstops(bool check)
 | 
						|
{
 | 
						|
  check_endstops = check;
 | 
						|
}
 | 
						|
 | 
						|
//         __________________________
 | 
						|
//        /|                        |\     _________________         ^
 | 
						|
//       / |                        | \   /|               |\        |
 | 
						|
//      /  |                        |  \ / |               | \       s
 | 
						|
//     /   |                        |   |  |               |  \      p
 | 
						|
//    /    |                        |   |  |               |   \     e
 | 
						|
//   +-----+------------------------+---+--+---------------+----+    e
 | 
						|
//   |               BLOCK 1            |      BLOCK 2          |    d
 | 
						|
//
 | 
						|
//                           time ----->
 | 
						|
// 
 | 
						|
//  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates 
 | 
						|
//  first block->accelerate_until step_events_completed, then keeps going at constant speed until 
 | 
						|
//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | 
						|
//  The slope of acceleration is calculated with the leib ramp alghorithm.
 | 
						|
 | 
						|
void st_wake_up() {
 | 
						|
  //  TCNT1 = 0;
 | 
						|
  ENABLE_STEPPER_DRIVER_INTERRUPT();  
 | 
						|
}
 | 
						|
 | 
						|
void step_wait(){
 | 
						|
    for(int8_t i=0; i < 6; i++){
 | 
						|
    }
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
 | 
						|
  unsigned short timer;
 | 
						|
  if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
 | 
						|
  
 | 
						|
  if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 | 
						|
    step_rate = (step_rate >> 2)&0x3fff;
 | 
						|
    step_loops = 4;
 | 
						|
  }
 | 
						|
  else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 | 
						|
    step_rate = (step_rate >> 1)&0x7fff;
 | 
						|
    step_loops = 2;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    step_loops = 1;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
 | 
						|
  step_rate -= (F_CPU/500000); // Correct for minimal speed
 | 
						|
  if(step_rate >= (8*256)){ // higher step rate 
 | 
						|
    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
 | 
						|
    unsigned char tmp_step_rate = (step_rate & 0x00ff);
 | 
						|
    unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
 | 
						|
    MultiU16X8toH16(timer, tmp_step_rate, gain);
 | 
						|
    timer = (unsigned short)pgm_read_word_near(table_address) - timer;
 | 
						|
  }
 | 
						|
  else { // lower step rates
 | 
						|
    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
 | 
						|
    table_address += ((step_rate)>>1) & 0xfffc;
 | 
						|
    timer = (unsigned short)pgm_read_word_near(table_address);
 | 
						|
    timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
 | 
						|
  }
 | 
						|
  if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
 | 
						|
  return timer;
 | 
						|
}
 | 
						|
 | 
						|
// Initializes the trapezoid generator from the current block. Called whenever a new 
 | 
						|
// block begins.
 | 
						|
FORCE_INLINE void trapezoid_generator_reset() {
 | 
						|
  #ifdef ADVANCE
 | 
						|
    advance = current_block->initial_advance;
 | 
						|
    final_advance = current_block->final_advance;
 | 
						|
    // Do E steps + advance steps
 | 
						|
    e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | 
						|
    old_advance = advance >>8;  
 | 
						|
  #endif
 | 
						|
  deceleration_time = 0;
 | 
						|
  // step_rate to timer interval
 | 
						|
  OCR1A_nominal = calc_timer(current_block->nominal_rate);
 | 
						|
  // make a note of the number of step loops required at nominal speed
 | 
						|
  step_loops_nominal = step_loops;
 | 
						|
  acc_step_rate = current_block->initial_rate;
 | 
						|
  acceleration_time = calc_timer(acc_step_rate);
 | 
						|
  OCR1A = acceleration_time;
 | 
						|
  
 | 
						|
//    SERIAL_ECHO_START;
 | 
						|
//    SERIAL_ECHOPGM("advance :");
 | 
						|
//    SERIAL_ECHO(current_block->advance/256.0);
 | 
						|
//    SERIAL_ECHOPGM("advance rate :");
 | 
						|
//    SERIAL_ECHO(current_block->advance_rate/256.0);
 | 
						|
//    SERIAL_ECHOPGM("initial advance :");
 | 
						|
//  SERIAL_ECHO(current_block->initial_advance/256.0);
 | 
						|
//    SERIAL_ECHOPGM("final advance :");
 | 
						|
//    SERIAL_ECHOLN(current_block->final_advance/256.0);
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.  
 | 
						|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. 
 | 
						|
ISR(TIMER1_COMPA_vect)
 | 
						|
{    
 | 
						|
  // If there is no current block, attempt to pop one from the buffer
 | 
						|
  if (current_block == NULL) {
 | 
						|
    // Anything in the buffer?
 | 
						|
    current_block = plan_get_current_block();
 | 
						|
    if (current_block != NULL) {
 | 
						|
      current_block->busy = true;
 | 
						|
      trapezoid_generator_reset();
 | 
						|
      counter_x = -(current_block->step_event_count >> 1);
 | 
						|
      counter_y = counter_x;
 | 
						|
      counter_z = counter_x;
 | 
						|
      counter_e = counter_x;
 | 
						|
      step_events_completed = 0; 
 | 
						|
      
 | 
						|
      #ifdef Z_LATE_ENABLE 
 | 
						|
        if(current_block->steps_z > 0) {
 | 
						|
          enable_z();
 | 
						|
          OCR1A = 2000; //1ms wait
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
      
 | 
						|
//      #ifdef ADVANCE
 | 
						|
//      e_steps[current_block->active_extruder] = 0;
 | 
						|
//      #endif
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
        OCR1A=2000; // 1kHz.
 | 
						|
    }    
 | 
						|
  } 
 | 
						|
 | 
						|
  if (current_block != NULL) {
 | 
						|
    // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
 | 
						|
    out_bits = current_block->direction_bits;
 | 
						|
 | 
						|
 | 
						|
    // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
 | 
						|
    if((out_bits & (1<<X_AXIS))!=0){
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (active_extruder != 0)
 | 
						|
        WRITE(X2_DIR_PIN,INVERT_X_DIR);
 | 
						|
      else
 | 
						|
      #endif        
 | 
						|
        WRITE(X_DIR_PIN, INVERT_X_DIR);
 | 
						|
      count_direction[X_AXIS]=-1;
 | 
						|
    }
 | 
						|
    else{
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (active_extruder != 0)
 | 
						|
        WRITE(X2_DIR_PIN,!INVERT_X_DIR);
 | 
						|
      else
 | 
						|
      #endif        
 | 
						|
        WRITE(X_DIR_PIN, !INVERT_X_DIR);
 | 
						|
      count_direction[X_AXIS]=1;
 | 
						|
    }
 | 
						|
    if((out_bits & (1<<Y_AXIS))!=0){
 | 
						|
      WRITE(Y_DIR_PIN, INVERT_Y_DIR);
 | 
						|
      count_direction[Y_AXIS]=-1;
 | 
						|
    }
 | 
						|
    else{
 | 
						|
      WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
 | 
						|
      count_direction[Y_AXIS]=1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Set direction en check limit switches
 | 
						|
    #ifndef COREXY
 | 
						|
    if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis
 | 
						|
    #else
 | 
						|
    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) {   //-X occurs for -A and -B
 | 
						|
    #endif
 | 
						|
      CHECK_ENDSTOPS
 | 
						|
      {
 | 
						|
        #ifdef DUAL_X_CARRIAGE
 | 
						|
        // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | 
						|
        if ((active_extruder == 0 && X_HOME_DIR == -1) || (active_extruder != 0 && X2_HOME_DIR == -1))
 | 
						|
        #endif          
 | 
						|
        {
 | 
						|
          #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | 
						|
            bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
 | 
						|
            if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
 | 
						|
              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 | 
						|
              endstop_x_hit=true;
 | 
						|
              step_events_completed = current_block->step_event_count;
 | 
						|
            }
 | 
						|
            old_x_min_endstop = x_min_endstop;
 | 
						|
          #endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else { // +direction
 | 
						|
      CHECK_ENDSTOPS 
 | 
						|
      {
 | 
						|
        #ifdef DUAL_X_CARRIAGE
 | 
						|
        // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | 
						|
        if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1))
 | 
						|
        #endif          
 | 
						|
        {
 | 
						|
          #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | 
						|
            bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
 | 
						|
            if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
 | 
						|
              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 | 
						|
              endstop_x_hit=true;
 | 
						|
              step_events_completed = current_block->step_event_count;
 | 
						|
            }
 | 
						|
            old_x_max_endstop = x_max_endstop;
 | 
						|
          #endif
 | 
						|
        }  
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    #ifndef COREXY
 | 
						|
    if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
 | 
						|
    #else
 | 
						|
    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) {   // -Y occurs for -A and +B
 | 
						|
    #endif
 | 
						|
      CHECK_ENDSTOPS
 | 
						|
      {
 | 
						|
        #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | 
						|
          bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
 | 
						|
          if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
 | 
						|
            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 | 
						|
            endstop_y_hit=true;
 | 
						|
            step_events_completed = current_block->step_event_count;
 | 
						|
          }
 | 
						|
          old_y_min_endstop = y_min_endstop;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else { // +direction
 | 
						|
      CHECK_ENDSTOPS
 | 
						|
      {
 | 
						|
        #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | 
						|
          bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
 | 
						|
          if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
 | 
						|
            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 | 
						|
            endstop_y_hit=true;
 | 
						|
            step_events_completed = current_block->step_event_count;
 | 
						|
          }
 | 
						|
          old_y_max_endstop = y_max_endstop;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
 | 
						|
      WRITE(Z_DIR_PIN,INVERT_Z_DIR);
 | 
						|
      
 | 
						|
	  #ifdef Z_DUAL_STEPPER_DRIVERS
 | 
						|
        WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
 | 
						|
      #endif
 | 
						|
      
 | 
						|
      count_direction[Z_AXIS]=-1;
 | 
						|
      CHECK_ENDSTOPS
 | 
						|
      {
 | 
						|
        #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | 
						|
          bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
 | 
						|
          if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
 | 
						|
            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | 
						|
            endstop_z_hit=true;
 | 
						|
            step_events_completed = current_block->step_event_count;
 | 
						|
          }
 | 
						|
          old_z_min_endstop = z_min_endstop;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else { // +direction
 | 
						|
      WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
 | 
						|
 | 
						|
	  #ifdef Z_DUAL_STEPPER_DRIVERS
 | 
						|
        WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
 | 
						|
      #endif
 | 
						|
 | 
						|
      count_direction[Z_AXIS]=1;
 | 
						|
      CHECK_ENDSTOPS
 | 
						|
      {
 | 
						|
        #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | 
						|
          bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
 | 
						|
          if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
 | 
						|
            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | 
						|
            endstop_z_hit=true;
 | 
						|
            step_events_completed = current_block->step_event_count;
 | 
						|
          }
 | 
						|
          old_z_max_endstop = z_max_endstop;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    #ifndef ADVANCE
 | 
						|
      if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
 | 
						|
        REV_E_DIR();
 | 
						|
        count_direction[E_AXIS]=-1;
 | 
						|
      }
 | 
						|
      else { // +direction
 | 
						|
        NORM_E_DIR();
 | 
						|
        count_direction[E_AXIS]=1;
 | 
						|
      }
 | 
						|
    #endif //!ADVANCE
 | 
						|
    
 | 
						|
 | 
						|
    
 | 
						|
    for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) 
 | 
						|
      #ifndef AT90USB
 | 
						|
      MSerial.checkRx(); // Check for serial chars.
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef ADVANCE
 | 
						|
      counter_e += current_block->steps_e;
 | 
						|
      if (counter_e > 0) {
 | 
						|
        counter_e -= current_block->step_event_count;
 | 
						|
        if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
 | 
						|
          e_steps[current_block->active_extruder]--;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          e_steps[current_block->active_extruder]++;
 | 
						|
        }
 | 
						|
      }    
 | 
						|
      #endif //ADVANCE
 | 
						|
 | 
						|
        counter_x += current_block->steps_x;
 | 
						|
        if (counter_x > 0) {
 | 
						|
          #ifdef DUAL_X_CARRIAGE
 | 
						|
          if (active_extruder != 0)
 | 
						|
            WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN);
 | 
						|
          else
 | 
						|
          #endif        
 | 
						|
            WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
 | 
						|
          counter_x -= current_block->step_event_count;
 | 
						|
          count_position[X_AXIS]+=count_direction[X_AXIS];   
 | 
						|
          #ifdef DUAL_X_CARRIAGE
 | 
						|
          if (active_extruder != 0)
 | 
						|
            WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
 | 
						|
          else
 | 
						|
          #endif        
 | 
						|
            WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 | 
						|
        }
 | 
						|
  
 | 
						|
        counter_y += current_block->steps_y;
 | 
						|
        if (counter_y > 0) {
 | 
						|
          WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 | 
						|
          counter_y -= current_block->step_event_count; 
 | 
						|
          count_position[Y_AXIS]+=count_direction[Y_AXIS]; 
 | 
						|
          WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 | 
						|
        }
 | 
						|
  
 | 
						|
      counter_z += current_block->steps_z;
 | 
						|
      if (counter_z > 0) {
 | 
						|
        WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
 | 
						|
        
 | 
						|
		#ifdef Z_DUAL_STEPPER_DRIVERS
 | 
						|
          WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 | 
						|
        #endif
 | 
						|
        
 | 
						|
        counter_z -= current_block->step_event_count;
 | 
						|
        count_position[Z_AXIS]+=count_direction[Z_AXIS];
 | 
						|
        WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | 
						|
        
 | 
						|
		#ifdef Z_DUAL_STEPPER_DRIVERS
 | 
						|
          WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
 | 
						|
      #ifndef ADVANCE
 | 
						|
        counter_e += current_block->steps_e;
 | 
						|
        if (counter_e > 0) {
 | 
						|
          WRITE_E_STEP(!INVERT_E_STEP_PIN);
 | 
						|
          counter_e -= current_block->step_event_count;
 | 
						|
          count_position[E_AXIS]+=count_direction[E_AXIS];
 | 
						|
          WRITE_E_STEP(INVERT_E_STEP_PIN);
 | 
						|
        }
 | 
						|
      #endif //!ADVANCE
 | 
						|
      step_events_completed += 1;  
 | 
						|
      if(step_events_completed >= current_block->step_event_count) break;
 | 
						|
    }
 | 
						|
    // Calculare new timer value
 | 
						|
    unsigned short timer;
 | 
						|
    unsigned short step_rate;
 | 
						|
    if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
 | 
						|
      
 | 
						|
      MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | 
						|
      acc_step_rate += current_block->initial_rate;
 | 
						|
      
 | 
						|
      // upper limit
 | 
						|
      if(acc_step_rate > current_block->nominal_rate)
 | 
						|
        acc_step_rate = current_block->nominal_rate;
 | 
						|
 | 
						|
      // step_rate to timer interval
 | 
						|
      timer = calc_timer(acc_step_rate);
 | 
						|
      OCR1A = timer;
 | 
						|
      acceleration_time += timer;
 | 
						|
      #ifdef ADVANCE
 | 
						|
        for(int8_t i=0; i < step_loops; i++) {
 | 
						|
          advance += advance_rate;
 | 
						|
        }
 | 
						|
        //if(advance > current_block->advance) advance = current_block->advance;
 | 
						|
        // Do E steps + advance steps
 | 
						|
        e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | 
						|
        old_advance = advance >>8;  
 | 
						|
        
 | 
						|
      #endif
 | 
						|
    } 
 | 
						|
    else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {   
 | 
						|
      MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | 
						|
      
 | 
						|
      if(step_rate > acc_step_rate) { // Check step_rate stays positive
 | 
						|
        step_rate = current_block->final_rate;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 | 
						|
      }
 | 
						|
 | 
						|
      // lower limit
 | 
						|
      if(step_rate < current_block->final_rate)
 | 
						|
        step_rate = current_block->final_rate;
 | 
						|
 | 
						|
      // step_rate to timer interval
 | 
						|
      timer = calc_timer(step_rate);
 | 
						|
      OCR1A = timer;
 | 
						|
      deceleration_time += timer;
 | 
						|
      #ifdef ADVANCE
 | 
						|
        for(int8_t i=0; i < step_loops; i++) {
 | 
						|
          advance -= advance_rate;
 | 
						|
        }
 | 
						|
        if(advance < final_advance) advance = final_advance;
 | 
						|
        // Do E steps + advance steps
 | 
						|
        e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | 
						|
        old_advance = advance >>8;  
 | 
						|
      #endif //ADVANCE
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      OCR1A = OCR1A_nominal;
 | 
						|
      // ensure we're running at the correct step rate, even if we just came off an acceleration
 | 
						|
      step_loops = step_loops_nominal;
 | 
						|
    }
 | 
						|
 | 
						|
    // If current block is finished, reset pointer 
 | 
						|
    if (step_events_completed >= current_block->step_event_count) {
 | 
						|
      current_block = NULL;
 | 
						|
      plan_discard_current_block();
 | 
						|
    }   
 | 
						|
  } 
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ADVANCE
 | 
						|
  unsigned char old_OCR0A;
 | 
						|
  // Timer interrupt for E. e_steps is set in the main routine;
 | 
						|
  // Timer 0 is shared with millies
 | 
						|
  ISR(TIMER0_COMPA_vect)
 | 
						|
  {
 | 
						|
    old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
 | 
						|
    OCR0A = old_OCR0A;
 | 
						|
    // Set E direction (Depends on E direction + advance)
 | 
						|
    for(unsigned char i=0; i<4;i++) {
 | 
						|
      if (e_steps[0] != 0) {
 | 
						|
        WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | 
						|
        if (e_steps[0] < 0) {
 | 
						|
          WRITE(E0_DIR_PIN, INVERT_E0_DIR);
 | 
						|
          e_steps[0]++;
 | 
						|
          WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        } 
 | 
						|
        else if (e_steps[0] > 0) {
 | 
						|
          WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
 | 
						|
          e_steps[0]--;
 | 
						|
          WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 #if EXTRUDERS > 1
 | 
						|
      if (e_steps[1] != 0) {
 | 
						|
        WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
 | 
						|
        if (e_steps[1] < 0) {
 | 
						|
          WRITE(E1_DIR_PIN, INVERT_E1_DIR);
 | 
						|
          e_steps[1]++;
 | 
						|
          WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        } 
 | 
						|
        else if (e_steps[1] > 0) {
 | 
						|
          WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
 | 
						|
          e_steps[1]--;
 | 
						|
          WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 #endif
 | 
						|
 #if EXTRUDERS > 2
 | 
						|
      if (e_steps[2] != 0) {
 | 
						|
        WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
 | 
						|
        if (e_steps[2] < 0) {
 | 
						|
          WRITE(E2_DIR_PIN, INVERT_E2_DIR);
 | 
						|
          e_steps[2]++;
 | 
						|
          WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        } 
 | 
						|
        else if (e_steps[2] > 0) {
 | 
						|
          WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
 | 
						|
          e_steps[2]--;
 | 
						|
          WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 #endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif // ADVANCE
 | 
						|
 | 
						|
void st_init()
 | 
						|
{
 | 
						|
  digipot_init(); //Initialize Digipot Motor Current
 | 
						|
  microstep_init(); //Initialize Microstepping Pins
 | 
						|
  
 | 
						|
  //Initialize Dir Pins
 | 
						|
  #if defined(X_DIR_PIN) && X_DIR_PIN > -1
 | 
						|
    SET_OUTPUT(X_DIR_PIN);
 | 
						|
  #endif
 | 
						|
  #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
 | 
						|
    SET_OUTPUT(X2_DIR_PIN);
 | 
						|
  #endif
 | 
						|
  #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 
 | 
						|
    SET_OUTPUT(Y_DIR_PIN);
 | 
						|
  #endif
 | 
						|
  #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 
 | 
						|
    SET_OUTPUT(Z_DIR_PIN);
 | 
						|
 | 
						|
    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
 | 
						|
      SET_OUTPUT(Z2_DIR_PIN);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 
 | 
						|
    SET_OUTPUT(E0_DIR_PIN);
 | 
						|
  #endif
 | 
						|
  #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
 | 
						|
    SET_OUTPUT(E1_DIR_PIN);
 | 
						|
  #endif
 | 
						|
  #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
 | 
						|
    SET_OUTPUT(E2_DIR_PIN);
 | 
						|
  #endif
 | 
						|
 | 
						|
  //Initialize Enable Pins - steppers default to disabled.
 | 
						|
 | 
						|
  #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
 | 
						|
    SET_OUTPUT(X_ENABLE_PIN);
 | 
						|
    if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 | 
						|
    SET_OUTPUT(X2_ENABLE_PIN);
 | 
						|
    if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
 | 
						|
    SET_OUTPUT(Y_ENABLE_PIN);
 | 
						|
    if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
 | 
						|
    SET_OUTPUT(Z_ENABLE_PIN);
 | 
						|
    if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
 | 
						|
    
 | 
						|
    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
 | 
						|
      SET_OUTPUT(Z2_ENABLE_PIN);
 | 
						|
      if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
 | 
						|
    SET_OUTPUT(E0_ENABLE_PIN);
 | 
						|
    if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
 | 
						|
    SET_OUTPUT(E1_ENABLE_PIN);
 | 
						|
    if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
  #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
 | 
						|
    SET_OUTPUT(E2_ENABLE_PIN);
 | 
						|
    if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
 | 
						|
  #endif
 | 
						|
 | 
						|
  //endstops and pullups
 | 
						|
  
 | 
						|
  #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | 
						|
    SET_INPUT(X_MIN_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_XMIN
 | 
						|
      WRITE(X_MIN_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
      
 | 
						|
  #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | 
						|
    SET_INPUT(Y_MIN_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_YMIN
 | 
						|
      WRITE(Y_MIN_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | 
						|
    SET_INPUT(Z_MIN_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_ZMIN
 | 
						|
      WRITE(Z_MIN_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
      
 | 
						|
  #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | 
						|
    SET_INPUT(X_MAX_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_XMAX
 | 
						|
      WRITE(X_MAX_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
      
 | 
						|
  #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | 
						|
    SET_INPUT(Y_MAX_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_YMAX
 | 
						|
      WRITE(Y_MAX_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | 
						|
    SET_INPUT(Z_MAX_PIN); 
 | 
						|
    #ifdef ENDSTOPPULLUP_ZMAX
 | 
						|
      WRITE(Z_MAX_PIN,HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 
 | 
						|
 | 
						|
  //Initialize Step Pins
 | 
						|
  #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(X_STEP_PIN);
 | 
						|
    WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
 | 
						|
    disable_x();
 | 
						|
  #endif  
 | 
						|
  #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(X2_STEP_PIN);
 | 
						|
    WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
 | 
						|
    disable_x();
 | 
						|
  #endif  
 | 
						|
  #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(Y_STEP_PIN);
 | 
						|
    WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
 | 
						|
    disable_y();
 | 
						|
  #endif  
 | 
						|
  #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(Z_STEP_PIN);
 | 
						|
    WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
 | 
						|
    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
 | 
						|
      SET_OUTPUT(Z2_STEP_PIN);
 | 
						|
      WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
 | 
						|
    #endif
 | 
						|
    disable_z();
 | 
						|
  #endif  
 | 
						|
  #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(E0_STEP_PIN);
 | 
						|
    WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
 | 
						|
    disable_e0();
 | 
						|
  #endif  
 | 
						|
  #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(E1_STEP_PIN);
 | 
						|
    WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
 | 
						|
    disable_e1();
 | 
						|
  #endif  
 | 
						|
  #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) 
 | 
						|
    SET_OUTPUT(E2_STEP_PIN);
 | 
						|
    WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
 | 
						|
    disable_e2();
 | 
						|
  #endif  
 | 
						|
 | 
						|
  // waveform generation = 0100 = CTC
 | 
						|
  TCCR1B &= ~(1<<WGM13);
 | 
						|
  TCCR1B |=  (1<<WGM12);
 | 
						|
  TCCR1A &= ~(1<<WGM11); 
 | 
						|
  TCCR1A &= ~(1<<WGM10);
 | 
						|
 | 
						|
  // output mode = 00 (disconnected)
 | 
						|
  TCCR1A &= ~(3<<COM1A0); 
 | 
						|
  TCCR1A &= ~(3<<COM1B0); 
 | 
						|
  
 | 
						|
  // Set the timer pre-scaler
 | 
						|
  // Generally we use a divider of 8, resulting in a 2MHz timer
 | 
						|
  // frequency on a 16MHz MCU. If you are going to change this, be
 | 
						|
  // sure to regenerate speed_lookuptable.h with
 | 
						|
  // create_speed_lookuptable.py
 | 
						|
  TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
 | 
						|
 | 
						|
  OCR1A = 0x4000;
 | 
						|
  TCNT1 = 0;
 | 
						|
  ENABLE_STEPPER_DRIVER_INTERRUPT();  
 | 
						|
 | 
						|
  #ifdef ADVANCE
 | 
						|
  #if defined(TCCR0A) && defined(WGM01)
 | 
						|
    TCCR0A &= ~(1<<WGM01);
 | 
						|
    TCCR0A &= ~(1<<WGM00);
 | 
						|
  #endif  
 | 
						|
    e_steps[0] = 0;
 | 
						|
    e_steps[1] = 0;
 | 
						|
    e_steps[2] = 0;
 | 
						|
    TIMSK0 |= (1<<OCIE0A);
 | 
						|
  #endif //ADVANCE
 | 
						|
  
 | 
						|
  enable_endstops(true); // Start with endstops active. After homing they can be disabled
 | 
						|
  sei();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Block until all buffered steps are executed
 | 
						|
void st_synchronize()
 | 
						|
{
 | 
						|
    while( blocks_queued()) {
 | 
						|
    manage_heater();
 | 
						|
    manage_inactivity();
 | 
						|
    lcd_update();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void st_set_position(const long &x, const long &y, const long &z, const long &e)
 | 
						|
{
 | 
						|
  CRITICAL_SECTION_START;
 | 
						|
  count_position[X_AXIS] = x;
 | 
						|
  count_position[Y_AXIS] = y;
 | 
						|
  count_position[Z_AXIS] = z;
 | 
						|
  count_position[E_AXIS] = e;
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
}
 | 
						|
 | 
						|
void st_set_e_position(const long &e)
 | 
						|
{
 | 
						|
  CRITICAL_SECTION_START;
 | 
						|
  count_position[E_AXIS] = e;
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
}
 | 
						|
 | 
						|
long st_get_position(uint8_t axis)
 | 
						|
{
 | 
						|
  long count_pos;
 | 
						|
  CRITICAL_SECTION_START;
 | 
						|
  count_pos = count_position[axis];
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
  return count_pos;
 | 
						|
}
 | 
						|
 | 
						|
void finishAndDisableSteppers()
 | 
						|
{
 | 
						|
  st_synchronize(); 
 | 
						|
  disable_x(); 
 | 
						|
  disable_y(); 
 | 
						|
  disable_z(); 
 | 
						|
  disable_e0(); 
 | 
						|
  disable_e1(); 
 | 
						|
  disable_e2(); 
 | 
						|
}
 | 
						|
 | 
						|
void quickStop()
 | 
						|
{
 | 
						|
  DISABLE_STEPPER_DRIVER_INTERRUPT();
 | 
						|
  while(blocks_queued())
 | 
						|
    plan_discard_current_block();
 | 
						|
  current_block = NULL;
 | 
						|
  ENABLE_STEPPER_DRIVER_INTERRUPT();
 | 
						|
}
 | 
						|
 | 
						|
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
 | 
						|
{
 | 
						|
  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | 
						|
    digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
 | 
						|
    SPI.transfer(address); //  send in the address and value via SPI:
 | 
						|
    SPI.transfer(value);
 | 
						|
    digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 | 
						|
    //delay(10);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void digipot_init() //Initialize Digipot Motor Current
 | 
						|
{
 | 
						|
  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | 
						|
    const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 | 
						|
    
 | 
						|
    SPI.begin(); 
 | 
						|
    pinMode(DIGIPOTSS_PIN, OUTPUT);    
 | 
						|
    for(int i=0;i<=4;i++) 
 | 
						|
      //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | 
						|
      digipot_current(i,digipot_motor_current[i]);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void digipot_current(uint8_t driver, int current)
 | 
						|
{
 | 
						|
  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | 
						|
    const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 | 
						|
    digitalPotWrite(digipot_ch[driver], current);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void microstep_init()
 | 
						|
{
 | 
						|
  #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | 
						|
  const uint8_t microstep_modes[] = MICROSTEP_MODES;
 | 
						|
  pinMode(X_MS2_PIN,OUTPUT);
 | 
						|
  pinMode(Y_MS2_PIN,OUTPUT);
 | 
						|
  pinMode(Z_MS2_PIN,OUTPUT);
 | 
						|
  pinMode(E0_MS2_PIN,OUTPUT);
 | 
						|
  pinMode(E1_MS2_PIN,OUTPUT);
 | 
						|
  for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
 | 
						|
{
 | 
						|
  if(ms1 > -1) switch(driver)
 | 
						|
  {
 | 
						|
    case 0: digitalWrite( X_MS1_PIN,ms1); break;
 | 
						|
    case 1: digitalWrite( Y_MS1_PIN,ms1); break;
 | 
						|
    case 2: digitalWrite( Z_MS1_PIN,ms1); break;
 | 
						|
    case 3: digitalWrite(E0_MS1_PIN,ms1); break;
 | 
						|
    case 4: digitalWrite(E1_MS1_PIN,ms1); break;
 | 
						|
  }
 | 
						|
  if(ms2 > -1) switch(driver)
 | 
						|
  {
 | 
						|
    case 0: digitalWrite( X_MS2_PIN,ms2); break;
 | 
						|
    case 1: digitalWrite( Y_MS2_PIN,ms2); break;
 | 
						|
    case 2: digitalWrite( Z_MS2_PIN,ms2); break;
 | 
						|
    case 3: digitalWrite(E0_MS2_PIN,ms2); break;
 | 
						|
    case 4: digitalWrite(E1_MS2_PIN,ms2); break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
 | 
						|
{
 | 
						|
  switch(stepping_mode)
 | 
						|
  {
 | 
						|
    case 1: microstep_ms(driver,MICROSTEP1); break;
 | 
						|
    case 2: microstep_ms(driver,MICROSTEP2); break;
 | 
						|
    case 4: microstep_ms(driver,MICROSTEP4); break;
 | 
						|
    case 8: microstep_ms(driver,MICROSTEP8); break;
 | 
						|
    case 16: microstep_ms(driver,MICROSTEP16); break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void microstep_readings()
 | 
						|
{
 | 
						|
      SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 | 
						|
      SERIAL_PROTOCOLPGM("X: ");
 | 
						|
      SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));
 | 
						|
      SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
 | 
						|
      SERIAL_PROTOCOLPGM("Y: ");
 | 
						|
      SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));
 | 
						|
      SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
 | 
						|
      SERIAL_PROTOCOLPGM("Z: ");
 | 
						|
      SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));
 | 
						|
      SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
 | 
						|
      SERIAL_PROTOCOLPGM("E0: ");
 | 
						|
      SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));
 | 
						|
      SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
 | 
						|
      SERIAL_PROTOCOLPGM("E1: ");
 | 
						|
      SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));
 | 
						|
      SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
 | 
						|
}
 | 
						|
 |