You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1401 lines
						
					
					
						
							40 KiB
						
					
					
				
			
		
		
	
	
							1401 lines
						
					
					
						
							40 KiB
						
					
					
				/*
 | 
						|
  temperature.c - temperature control
 | 
						|
  Part of Marlin
 | 
						|
  
 | 
						|
 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 
 | 
						|
 This program is free software: you can redistribute it and/or modify
 | 
						|
 it under the terms of the GNU General Public License as published by
 | 
						|
 the Free Software Foundation, either version 3 of the License, or
 | 
						|
 (at your option) any later version.
 | 
						|
 
 | 
						|
 This program is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 GNU General Public License for more details.
 | 
						|
 
 | 
						|
 You should have received a copy of the GNU General Public License
 | 
						|
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 This firmware is a mashup between Sprinter and grbl.
 | 
						|
  (https://github.com/kliment/Sprinter)
 | 
						|
  (https://github.com/simen/grbl/tree)
 | 
						|
 
 | 
						|
 It has preliminary support for Matthew Roberts advance algorithm 
 | 
						|
    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | 
						|
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "watchdog.h"
 | 
						|
 | 
						|
#include "Sd2PinMap.h"
 | 
						|
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================public variables============================
 | 
						|
//===========================================================================
 | 
						|
int target_temperature[EXTRUDERS] = { 0 };
 | 
						|
int target_temperature_bed = 0;
 | 
						|
int current_temperature_raw[EXTRUDERS] = { 0 };
 | 
						|
float current_temperature[EXTRUDERS] = { 0.0 };
 | 
						|
int current_temperature_bed_raw = 0;
 | 
						|
float current_temperature_bed = 0.0;
 | 
						|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
  int redundant_temperature_raw = 0;
 | 
						|
  float redundant_temperature = 0.0;
 | 
						|
#endif
 | 
						|
#ifdef PIDTEMP
 | 
						|
  float Kp=DEFAULT_Kp;
 | 
						|
  float Ki=(DEFAULT_Ki*PID_dT);
 | 
						|
  float Kd=(DEFAULT_Kd/PID_dT);
 | 
						|
  #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
    float Kc=DEFAULT_Kc;
 | 
						|
  #endif
 | 
						|
#endif //PIDTEMP
 | 
						|
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
  float bedKp=DEFAULT_bedKp;
 | 
						|
  float bedKi=(DEFAULT_bedKi*PID_dT);
 | 
						|
  float bedKd=(DEFAULT_bedKd/PID_dT);
 | 
						|
#endif //PIDTEMPBED
 | 
						|
  
 | 
						|
#ifdef FAN_SOFT_PWM
 | 
						|
  unsigned char fanSpeedSoftPwm;
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned char soft_pwm_bed;
 | 
						|
  
 | 
						|
#ifdef BABYSTEPPING
 | 
						|
  volatile int babystepsTodo[3]={0,0,0};
 | 
						|
#endif
 | 
						|
  
 | 
						|
//===========================================================================
 | 
						|
//=============================private variables============================
 | 
						|
//===========================================================================
 | 
						|
static volatile bool temp_meas_ready = false;
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
  //static cannot be external:
 | 
						|
  static float temp_iState[EXTRUDERS] = { 0 };
 | 
						|
  static float temp_dState[EXTRUDERS] = { 0 };
 | 
						|
  static float pTerm[EXTRUDERS];
 | 
						|
  static float iTerm[EXTRUDERS];
 | 
						|
  static float dTerm[EXTRUDERS];
 | 
						|
  //int output;
 | 
						|
  static float pid_error[EXTRUDERS];
 | 
						|
  static float temp_iState_min[EXTRUDERS];
 | 
						|
  static float temp_iState_max[EXTRUDERS];
 | 
						|
  // static float pid_input[EXTRUDERS];
 | 
						|
  // static float pid_output[EXTRUDERS];
 | 
						|
  static bool pid_reset[EXTRUDERS];
 | 
						|
#endif //PIDTEMP
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
  //static cannot be external:
 | 
						|
  static float temp_iState_bed = { 0 };
 | 
						|
  static float temp_dState_bed = { 0 };
 | 
						|
  static float pTerm_bed;
 | 
						|
  static float iTerm_bed;
 | 
						|
  static float dTerm_bed;
 | 
						|
  //int output;
 | 
						|
  static float pid_error_bed;
 | 
						|
  static float temp_iState_min_bed;
 | 
						|
  static float temp_iState_max_bed;
 | 
						|
#else //PIDTEMPBED
 | 
						|
	static unsigned long  previous_millis_bed_heater;
 | 
						|
#endif //PIDTEMPBED
 | 
						|
  static unsigned char soft_pwm[EXTRUDERS];
 | 
						|
 | 
						|
#ifdef FAN_SOFT_PWM
 | 
						|
  static unsigned char soft_pwm_fan;
 | 
						|
#endif
 | 
						|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | 
						|
    (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | 
						|
    (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | 
						|
  static unsigned long extruder_autofan_last_check;
 | 
						|
#endif  
 | 
						|
 | 
						|
#if EXTRUDERS > 3
 | 
						|
  # error Unsupported number of extruders
 | 
						|
#elif EXTRUDERS > 2
 | 
						|
  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
 | 
						|
#elif EXTRUDERS > 1
 | 
						|
  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
 | 
						|
#else
 | 
						|
  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
 | 
						|
#endif
 | 
						|
 | 
						|
// Init min and max temp with extreme values to prevent false errors during startup
 | 
						|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
 | 
						|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
 | 
						|
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
 | 
						|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
 | 
						|
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
 | 
						|
#ifdef BED_MAXTEMP
 | 
						|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
  static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
 | 
						|
  static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
 | 
						|
#else
 | 
						|
  static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
 | 
						|
  static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
 | 
						|
#endif
 | 
						|
 | 
						|
static float analog2temp(int raw, uint8_t e);
 | 
						|
static float analog2tempBed(int raw);
 | 
						|
static void updateTemperaturesFromRawValues();
 | 
						|
 | 
						|
#ifdef WATCH_TEMP_PERIOD
 | 
						|
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
 | 
						|
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
 | 
						|
#endif //WATCH_TEMP_PERIOD
 | 
						|
 | 
						|
#ifndef SOFT_PWM_SCALE
 | 
						|
#define SOFT_PWM_SCALE 0
 | 
						|
#endif
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================   functions      ============================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
void PID_autotune(float temp, int extruder, int ncycles)
 | 
						|
{
 | 
						|
  float input = 0.0;
 | 
						|
  int cycles=0;
 | 
						|
  bool heating = true;
 | 
						|
 | 
						|
  unsigned long temp_millis = millis();
 | 
						|
  unsigned long t1=temp_millis;
 | 
						|
  unsigned long t2=temp_millis;
 | 
						|
  long t_high = 0;
 | 
						|
  long t_low = 0;
 | 
						|
 | 
						|
  long bias, d;
 | 
						|
  float Ku, Tu;
 | 
						|
  float Kp, Ki, Kd;
 | 
						|
  float max = 0, min = 10000;
 | 
						|
 | 
						|
  if ((extruder >= EXTRUDERS)
 | 
						|
  #if (TEMP_BED_PIN <= -1)
 | 
						|
       ||(extruder < 0)
 | 
						|
  #endif
 | 
						|
       ){
 | 
						|
          SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
	
 | 
						|
  SERIAL_ECHOLN("PID Autotune start");
 | 
						|
  
 | 
						|
  disable_heater(); // switch off all heaters.
 | 
						|
 | 
						|
  if (extruder<0)
 | 
						|
  {
 | 
						|
     soft_pwm_bed = (MAX_BED_POWER)/2;
 | 
						|
     bias = d = (MAX_BED_POWER)/2;
 | 
						|
   }
 | 
						|
   else
 | 
						|
   {
 | 
						|
     soft_pwm[extruder] = (PID_MAX)/2;
 | 
						|
     bias = d = (PID_MAX)/2;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 for(;;) {
 | 
						|
 | 
						|
    if(temp_meas_ready == true) { // temp sample ready
 | 
						|
      updateTemperaturesFromRawValues();
 | 
						|
 | 
						|
      input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
 | 
						|
 | 
						|
      max=max(max,input);
 | 
						|
      min=min(min,input);
 | 
						|
      if(heating == true && input > temp) {
 | 
						|
        if(millis() - t2 > 5000) { 
 | 
						|
          heating=false;
 | 
						|
          if (extruder<0)
 | 
						|
            soft_pwm_bed = (bias - d) >> 1;
 | 
						|
          else
 | 
						|
            soft_pwm[extruder] = (bias - d) >> 1;
 | 
						|
          t1=millis();
 | 
						|
          t_high=t1 - t2;
 | 
						|
          max=temp;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if(heating == false && input < temp) {
 | 
						|
        if(millis() - t1 > 5000) {
 | 
						|
          heating=true;
 | 
						|
          t2=millis();
 | 
						|
          t_low=t2 - t1;
 | 
						|
          if(cycles > 0) {
 | 
						|
            bias += (d*(t_high - t_low))/(t_low + t_high);
 | 
						|
            bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
 | 
						|
            if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
 | 
						|
            else d = bias;
 | 
						|
 | 
						|
            SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
 | 
						|
            SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
 | 
						|
            SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
 | 
						|
            SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
 | 
						|
            if(cycles > 2) {
 | 
						|
              Ku = (4.0*d)/(3.14159*(max-min)/2.0);
 | 
						|
              Tu = ((float)(t_low + t_high)/1000.0);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
 | 
						|
              SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
 | 
						|
              Kp = 0.6*Ku;
 | 
						|
              Ki = 2*Kp/Tu;
 | 
						|
              Kd = Kp*Tu/8;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" Classic PID ");
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              /*
 | 
						|
              Kp = 0.33*Ku;
 | 
						|
              Ki = Kp/Tu;
 | 
						|
              Kd = Kp*Tu/3;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" Some overshoot ");
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              Kp = 0.2*Ku;
 | 
						|
              Ki = 2*Kp/Tu;
 | 
						|
              Kd = Kp*Tu/3;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" No overshoot ");
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              */
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (extruder<0)
 | 
						|
            soft_pwm_bed = (bias + d) >> 1;
 | 
						|
          else
 | 
						|
            soft_pwm[extruder] = (bias + d) >> 1;
 | 
						|
          cycles++;
 | 
						|
          min=temp;
 | 
						|
        }
 | 
						|
      } 
 | 
						|
    }
 | 
						|
    if(input > (temp + 20)) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if(millis() - temp_millis > 2000) {
 | 
						|
      int p;
 | 
						|
      if (extruder<0){
 | 
						|
        p=soft_pwm_bed;       
 | 
						|
        SERIAL_PROTOCOLPGM("ok B:");
 | 
						|
      }else{
 | 
						|
        p=soft_pwm[extruder];       
 | 
						|
        SERIAL_PROTOCOLPGM("ok T:");
 | 
						|
      }
 | 
						|
			
 | 
						|
      SERIAL_PROTOCOL(input);   
 | 
						|
      SERIAL_PROTOCOLPGM(" @:");
 | 
						|
      SERIAL_PROTOCOLLN(p);       
 | 
						|
 | 
						|
      temp_millis = millis();
 | 
						|
    }
 | 
						|
    if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if(cycles > ncycles) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    lcd_update();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void updatePID()
 | 
						|
{
 | 
						|
#ifdef PIDTEMP
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) { 
 | 
						|
     temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;  
 | 
						|
  }
 | 
						|
#endif
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
  temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;  
 | 
						|
#endif
 | 
						|
}
 | 
						|
  
 | 
						|
int getHeaterPower(int heater) {
 | 
						|
	if (heater<0)
 | 
						|
		return soft_pwm_bed;
 | 
						|
  return soft_pwm[heater];
 | 
						|
}
 | 
						|
 | 
						|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | 
						|
    (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | 
						|
    (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | 
						|
 | 
						|
  #if defined(FAN_PIN) && FAN_PIN > -1
 | 
						|
    #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN 
 | 
						|
       #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
 | 
						|
    #endif
 | 
						|
    #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN 
 | 
						|
       #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
 | 
						|
    #endif
 | 
						|
    #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN 
 | 
						|
       #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
 | 
						|
    #endif
 | 
						|
  #endif 
 | 
						|
 | 
						|
void setExtruderAutoFanState(int pin, bool state)
 | 
						|
{
 | 
						|
  unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
 | 
						|
  // this idiom allows both digital and PWM fan outputs (see M42 handling).
 | 
						|
  pinMode(pin, OUTPUT);
 | 
						|
  digitalWrite(pin, newFanSpeed);
 | 
						|
  analogWrite(pin, newFanSpeed);
 | 
						|
}
 | 
						|
 | 
						|
void checkExtruderAutoFans()
 | 
						|
{
 | 
						|
  uint8_t fanState = 0;
 | 
						|
 | 
						|
  // which fan pins need to be turned on?      
 | 
						|
  #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
 | 
						|
    if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | 
						|
      fanState |= 1;
 | 
						|
  #endif
 | 
						|
  #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
 | 
						|
    if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | 
						|
    {
 | 
						|
      if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | 
						|
        fanState |= 1;
 | 
						|
      else
 | 
						|
        fanState |= 2;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
 | 
						|
    if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | 
						|
    {
 | 
						|
      if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | 
						|
        fanState |= 1;
 | 
						|
      else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) 
 | 
						|
        fanState |= 2;
 | 
						|
      else
 | 
						|
        fanState |= 4;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  // update extruder auto fan states
 | 
						|
  #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
 | 
						|
    setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
 | 
						|
  #endif 
 | 
						|
  #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
 | 
						|
    if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) 
 | 
						|
      setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
 | 
						|
  #endif 
 | 
						|
  #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
 | 
						|
    if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN 
 | 
						|
        && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
 | 
						|
      setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
 | 
						|
  #endif 
 | 
						|
}
 | 
						|
 | 
						|
#endif // any extruder auto fan pins set
 | 
						|
 | 
						|
void manage_heater()
 | 
						|
{
 | 
						|
  float pid_input;
 | 
						|
  float pid_output;
 | 
						|
 | 
						|
  if(temp_meas_ready != true)   //better readability
 | 
						|
    return; 
 | 
						|
 | 
						|
  updateTemperaturesFromRawValues();
 | 
						|
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) 
 | 
						|
  {
 | 
						|
 | 
						|
  #ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | 
						|
    thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef PIDTEMP
 | 
						|
    pid_input = current_temperature[e];
 | 
						|
 | 
						|
    #ifndef PID_OPENLOOP
 | 
						|
        pid_error[e] = target_temperature[e] - pid_input;
 | 
						|
        if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
 | 
						|
          pid_output = BANG_MAX;
 | 
						|
          pid_reset[e] = true;
 | 
						|
        }
 | 
						|
        else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
 | 
						|
          pid_output = 0;
 | 
						|
          pid_reset[e] = true;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          if(pid_reset[e] == true) {
 | 
						|
            temp_iState[e] = 0.0;
 | 
						|
            pid_reset[e] = false;
 | 
						|
          }
 | 
						|
          pTerm[e] = Kp * pid_error[e];
 | 
						|
          temp_iState[e] += pid_error[e];
 | 
						|
          temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
 | 
						|
          iTerm[e] = Ki * temp_iState[e];
 | 
						|
 | 
						|
          //K1 defined in Configuration.h in the PID settings
 | 
						|
          #define K2 (1.0-K1)
 | 
						|
          dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
 | 
						|
          pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
 | 
						|
        }
 | 
						|
        temp_dState[e] = pid_input;
 | 
						|
    #else 
 | 
						|
          pid_output = constrain(target_temperature[e], 0, PID_MAX);
 | 
						|
    #endif //PID_OPENLOOP
 | 
						|
    #ifdef PID_DEBUG
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHO(" PID_DEBUG ");
 | 
						|
    SERIAL_ECHO(e);
 | 
						|
    SERIAL_ECHO(": Input ");
 | 
						|
    SERIAL_ECHO(pid_input);
 | 
						|
    SERIAL_ECHO(" Output ");
 | 
						|
    SERIAL_ECHO(pid_output);
 | 
						|
    SERIAL_ECHO(" pTerm ");
 | 
						|
    SERIAL_ECHO(pTerm[e]);
 | 
						|
    SERIAL_ECHO(" iTerm ");
 | 
						|
    SERIAL_ECHO(iTerm[e]);
 | 
						|
    SERIAL_ECHO(" dTerm ");
 | 
						|
    SERIAL_ECHOLN(dTerm[e]);  
 | 
						|
    #endif //PID_DEBUG
 | 
						|
  #else /* PID off */
 | 
						|
    pid_output = 0;
 | 
						|
    if(current_temperature[e] < target_temperature[e]) {
 | 
						|
      pid_output = PID_MAX;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
    // Check if temperature is within the correct range
 | 
						|
    if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e])) 
 | 
						|
    {
 | 
						|
      soft_pwm[e] = (int)pid_output >> 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      soft_pwm[e] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    #ifdef WATCH_TEMP_PERIOD
 | 
						|
    if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
 | 
						|
    {
 | 
						|
        if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
 | 
						|
        {
 | 
						|
            setTargetHotend(0, e);
 | 
						|
            LCD_MESSAGEPGM("Heating failed");
 | 
						|
            SERIAL_ECHO_START;
 | 
						|
            SERIAL_ECHOLN("Heating failed");
 | 
						|
        }else{
 | 
						|
            watchmillis[e] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    #endif
 | 
						|
    #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
      if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
 | 
						|
        disable_heater();
 | 
						|
        if(IsStopped() == false) {
 | 
						|
          SERIAL_ERROR_START;
 | 
						|
          SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
 | 
						|
          LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
 | 
						|
        }
 | 
						|
        #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
          Stop();
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  } // End extruder for loop
 | 
						|
 | 
						|
  #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | 
						|
      (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | 
						|
      (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | 
						|
  if(millis() - extruder_autofan_last_check > 2500)  // only need to check fan state very infrequently
 | 
						|
  {
 | 
						|
    checkExtruderAutoFans();
 | 
						|
    extruder_autofan_last_check = millis();
 | 
						|
  }  
 | 
						|
  #endif       
 | 
						|
  
 | 
						|
  #ifndef PIDTEMPBED
 | 
						|
  if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
 | 
						|
    return;
 | 
						|
  previous_millis_bed_heater = millis();
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if TEMP_SENSOR_BED != 0
 | 
						|
  
 | 
						|
    #ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | 
						|
      thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
 | 
						|
    #endif
 | 
						|
 | 
						|
  #ifdef PIDTEMPBED
 | 
						|
    pid_input = current_temperature_bed;
 | 
						|
 | 
						|
    #ifndef PID_OPENLOOP
 | 
						|
		  pid_error_bed = target_temperature_bed - pid_input;
 | 
						|
		  pTerm_bed = bedKp * pid_error_bed;
 | 
						|
		  temp_iState_bed += pid_error_bed;
 | 
						|
		  temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
 | 
						|
		  iTerm_bed = bedKi * temp_iState_bed;
 | 
						|
 | 
						|
		  //K1 defined in Configuration.h in the PID settings
 | 
						|
		  #define K2 (1.0-K1)
 | 
						|
		  dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
 | 
						|
		  temp_dState_bed = pid_input;
 | 
						|
 | 
						|
		  pid_output = constrain(pTerm_bed + iTerm_bed - dTerm_bed, 0, MAX_BED_POWER);
 | 
						|
 | 
						|
    #else 
 | 
						|
      pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
 | 
						|
    #endif //PID_OPENLOOP
 | 
						|
 | 
						|
	  if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP)) 
 | 
						|
	  {
 | 
						|
	    soft_pwm_bed = (int)pid_output >> 1;
 | 
						|
	  }
 | 
						|
	  else {
 | 
						|
	    soft_pwm_bed = 0;
 | 
						|
	  }
 | 
						|
 | 
						|
    #elif !defined(BED_LIMIT_SWITCHING)
 | 
						|
      // Check if temperature is within the correct range
 | 
						|
      if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
 | 
						|
      {
 | 
						|
        if(current_temperature_bed >= target_temperature_bed)
 | 
						|
        {
 | 
						|
          soft_pwm_bed = 0;
 | 
						|
        }
 | 
						|
        else 
 | 
						|
        {
 | 
						|
          soft_pwm_bed = MAX_BED_POWER>>1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        soft_pwm_bed = 0;
 | 
						|
        WRITE(HEATER_BED_PIN,LOW);
 | 
						|
      }
 | 
						|
    #else //#ifdef BED_LIMIT_SWITCHING
 | 
						|
      // Check if temperature is within the correct band
 | 
						|
      if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
 | 
						|
      {
 | 
						|
        if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
 | 
						|
        {
 | 
						|
          soft_pwm_bed = 0;
 | 
						|
        }
 | 
						|
        else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
 | 
						|
        {
 | 
						|
          soft_pwm_bed = MAX_BED_POWER>>1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
      {
 | 
						|
        soft_pwm_bed = 0;
 | 
						|
        WRITE(HEATER_BED_PIN,LOW);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#define PGM_RD_W(x)   (short)pgm_read_word(&x)
 | 
						|
// Derived from RepRap FiveD extruder::getTemperature()
 | 
						|
// For hot end temperature measurement.
 | 
						|
static float analog2temp(int raw, uint8_t e) {
 | 
						|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
  if(e > EXTRUDERS)
 | 
						|
#else
 | 
						|
  if(e >= EXTRUDERS)
 | 
						|
#endif
 | 
						|
  {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERROR((int)e);
 | 
						|
      SERIAL_ERRORLNPGM(" - Invalid extruder number !");
 | 
						|
      kill();
 | 
						|
      return 0.0;
 | 
						|
  } 
 | 
						|
  #ifdef HEATER_0_USES_MAX6675
 | 
						|
    if (e == 0)
 | 
						|
    {
 | 
						|
      return 0.25 * raw;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  if(heater_ttbl_map[e] != NULL)
 | 
						|
  {
 | 
						|
    float celsius = 0;
 | 
						|
    uint8_t i;
 | 
						|
    short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
 | 
						|
 | 
						|
    for (i=1; i<heater_ttbllen_map[e]; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W((*tt)[i][0]) > raw)
 | 
						|
      {
 | 
						|
        celsius = PGM_RD_W((*tt)[i-1][1]) + 
 | 
						|
          (raw - PGM_RD_W((*tt)[i-1][0])) * 
 | 
						|
          (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
 | 
						|
          (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
 | 
						|
 | 
						|
    return celsius;
 | 
						|
  }
 | 
						|
  return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | 
						|
}
 | 
						|
 | 
						|
// Derived from RepRap FiveD extruder::getTemperature()
 | 
						|
// For bed temperature measurement.
 | 
						|
static float analog2tempBed(int raw) {
 | 
						|
  #ifdef BED_USES_THERMISTOR
 | 
						|
    float celsius = 0;
 | 
						|
    byte i;
 | 
						|
 | 
						|
    for (i=1; i<BEDTEMPTABLE_LEN; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
 | 
						|
      {
 | 
						|
        celsius  = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + 
 | 
						|
          (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * 
 | 
						|
          (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
 | 
						|
          (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
 | 
						|
 | 
						|
    return celsius;
 | 
						|
  #elif defined BED_USES_AD595
 | 
						|
    return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | 
						|
  #else
 | 
						|
    return 0;
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
 | 
						|
    and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
 | 
						|
static void updateTemperaturesFromRawValues()
 | 
						|
{
 | 
						|
    for(uint8_t e=0;e<EXTRUDERS;e++)
 | 
						|
    {
 | 
						|
        current_temperature[e] = analog2temp(current_temperature_raw[e], e);
 | 
						|
    }
 | 
						|
    current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
 | 
						|
    #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
      redundant_temperature = analog2temp(redundant_temperature_raw, 1);
 | 
						|
    #endif
 | 
						|
    //Reset the watchdog after we know we have a temperature measurement.
 | 
						|
    watchdog_reset();
 | 
						|
 | 
						|
    CRITICAL_SECTION_START;
 | 
						|
    temp_meas_ready = false;
 | 
						|
    CRITICAL_SECTION_END;
 | 
						|
}
 | 
						|
 | 
						|
void tp_init()
 | 
						|
{
 | 
						|
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
 | 
						|
  //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
 | 
						|
  MCUCR=(1<<JTD); 
 | 
						|
  MCUCR=(1<<JTD);
 | 
						|
#endif
 | 
						|
  
 | 
						|
  // Finish init of mult extruder arrays 
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) {
 | 
						|
    // populate with the first value 
 | 
						|
    maxttemp[e] = maxttemp[0];
 | 
						|
#ifdef PIDTEMP
 | 
						|
    temp_iState_min[e] = 0.0;
 | 
						|
    temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
 | 
						|
#endif //PIDTEMP
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
    temp_iState_min_bed = 0.0;
 | 
						|
    temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
 | 
						|
#endif //PIDTEMPBED
 | 
						|
  }
 | 
						|
 | 
						|
  #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_0_PIN);
 | 
						|
  #endif  
 | 
						|
  #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_1_PIN);
 | 
						|
  #endif  
 | 
						|
  #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_2_PIN);
 | 
						|
  #endif  
 | 
						|
  #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_BED_PIN);
 | 
						|
  #endif  
 | 
						|
  #if defined(FAN_PIN) && (FAN_PIN > -1) 
 | 
						|
    SET_OUTPUT(FAN_PIN);
 | 
						|
    #ifdef FAST_PWM_FAN
 | 
						|
    setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
 | 
						|
    #endif
 | 
						|
    #ifdef FAN_SOFT_PWM
 | 
						|
    soft_pwm_fan = fanSpeedSoftPwm / 2;
 | 
						|
    #endif
 | 
						|
  #endif  
 | 
						|
 | 
						|
  #ifdef HEATER_0_USES_MAX6675
 | 
						|
    #ifndef SDSUPPORT
 | 
						|
      SET_OUTPUT(SCK_PIN);
 | 
						|
      WRITE(SCK_PIN,0);
 | 
						|
    
 | 
						|
      SET_OUTPUT(MOSI_PIN);
 | 
						|
      WRITE(MOSI_PIN,1);
 | 
						|
    
 | 
						|
      SET_INPUT(MISO_PIN);
 | 
						|
      WRITE(MISO_PIN,1);
 | 
						|
    #endif
 | 
						|
    /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
 | 
						|
    
 | 
						|
    //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
 | 
						|
	pinMode(SS_PIN, OUTPUT);
 | 
						|
	digitalWrite(SS_PIN,0);  
 | 
						|
	pinMode(MAX6675_SS, OUTPUT);
 | 
						|
	digitalWrite(MAX6675_SS,1);
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Set analog inputs
 | 
						|
  ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
 | 
						|
  DIDR0 = 0;
 | 
						|
  #ifdef DIDR2
 | 
						|
    DIDR2 = 0;
 | 
						|
  #endif
 | 
						|
  #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | 
						|
    #if TEMP_0_PIN < 8
 | 
						|
       DIDR0 |= 1 << TEMP_0_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_0_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | 
						|
    #if TEMP_1_PIN < 8
 | 
						|
       DIDR0 |= 1<<TEMP_1_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_1_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | 
						|
    #if TEMP_2_PIN < 8
 | 
						|
       DIDR0 |= 1 << TEMP_2_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_2_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | 
						|
    #if TEMP_BED_PIN < 8
 | 
						|
       DIDR0 |= 1<<TEMP_BED_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_BED_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  // Use timer0 for temperature measurement
 | 
						|
  // Interleave temperature interrupt with millies interrupt
 | 
						|
  OCR0B = 128;
 | 
						|
  TIMSK0 |= (1<<OCIE0B);  
 | 
						|
  
 | 
						|
  // Wait for temperature measurement to settle
 | 
						|
  delay(250);
 | 
						|
 | 
						|
#ifdef HEATER_0_MINTEMP
 | 
						|
  minttemp[0] = HEATER_0_MINTEMP;
 | 
						|
  while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
 | 
						|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
 | 
						|
    minttemp_raw[0] += OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    minttemp_raw[0] -= OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //MINTEMP
 | 
						|
#ifdef HEATER_0_MAXTEMP
 | 
						|
  maxttemp[0] = HEATER_0_MAXTEMP;
 | 
						|
  while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
 | 
						|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
 | 
						|
    maxttemp_raw[0] -= OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    maxttemp_raw[0] += OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //MAXTEMP
 | 
						|
 | 
						|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
 | 
						|
  minttemp[1] = HEATER_1_MINTEMP;
 | 
						|
  while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
 | 
						|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
 | 
						|
    minttemp_raw[1] += OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    minttemp_raw[1] -= OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif // MINTEMP 1
 | 
						|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
 | 
						|
  maxttemp[1] = HEATER_1_MAXTEMP;
 | 
						|
  while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
 | 
						|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
 | 
						|
    maxttemp_raw[1] -= OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    maxttemp_raw[1] += OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //MAXTEMP 1
 | 
						|
 | 
						|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
 | 
						|
  minttemp[2] = HEATER_2_MINTEMP;
 | 
						|
  while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
 | 
						|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
 | 
						|
    minttemp_raw[2] += OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    minttemp_raw[2] -= OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //MINTEMP 2
 | 
						|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
 | 
						|
  maxttemp[2] = HEATER_2_MAXTEMP;
 | 
						|
  while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
 | 
						|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
 | 
						|
    maxttemp_raw[2] -= OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    maxttemp_raw[2] += OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //MAXTEMP 2
 | 
						|
 | 
						|
#ifdef BED_MINTEMP
 | 
						|
  /* No bed MINTEMP error implemented?!? */ /*
 | 
						|
  while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
 | 
						|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | 
						|
    bed_minttemp_raw += OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    bed_minttemp_raw -= OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  */
 | 
						|
#endif //BED_MINTEMP
 | 
						|
#ifdef BED_MAXTEMP
 | 
						|
  while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
 | 
						|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | 
						|
    bed_maxttemp_raw -= OVERSAMPLENR;
 | 
						|
#else
 | 
						|
    bed_maxttemp_raw += OVERSAMPLENR;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
#endif //BED_MAXTEMP
 | 
						|
}
 | 
						|
 | 
						|
void setWatch() 
 | 
						|
{  
 | 
						|
#ifdef WATCH_TEMP_PERIOD
 | 
						|
  for (int e = 0; e < EXTRUDERS; e++)
 | 
						|
  {
 | 
						|
    if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
 | 
						|
    {
 | 
						|
      watch_start_temp[e] = degHotend(e);
 | 
						|
      watchmillis[e] = millis();
 | 
						|
    } 
 | 
						|
  }
 | 
						|
#endif 
 | 
						|
}
 | 
						|
 | 
						|
#ifdef THERMAL_RUNAWAY_PROTECTION_PERIOD && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | 
						|
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
 | 
						|
{
 | 
						|
/*
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
 | 
						|
      SERIAL_ECHO(heater_id);
 | 
						|
      SERIAL_ECHO(" ;  State:");
 | 
						|
      SERIAL_ECHO(*state);
 | 
						|
      SERIAL_ECHO(" ;  Timer:");
 | 
						|
      SERIAL_ECHO(*timer);
 | 
						|
      SERIAL_ECHO(" ;  Temperature:");
 | 
						|
      SERIAL_ECHO(temperature);
 | 
						|
      SERIAL_ECHO(" ;  Target Temp:");
 | 
						|
      SERIAL_ECHO(target_temperature);
 | 
						|
      SERIAL_ECHOLN("");    
 | 
						|
*/
 | 
						|
  if ((target_temperature == 0) || thermal_runaway)
 | 
						|
  {
 | 
						|
    *state = 0;
 | 
						|
    *timer = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  switch (*state)
 | 
						|
  {
 | 
						|
    case 0: // "Heater Inactive" state
 | 
						|
      if (target_temperature > 0) *state = 1;
 | 
						|
      break;
 | 
						|
    case 1: // "First Heating" state
 | 
						|
      if (temperature >= target_temperature) *state = 2;
 | 
						|
      break;
 | 
						|
    case 2: // "Temperature Stable" state
 | 
						|
      if (temperature >= (target_temperature - hysteresis_degc))
 | 
						|
      {
 | 
						|
        *timer = millis();
 | 
						|
      } 
 | 
						|
      else if ( (millis() - *timer) > period_seconds*1000)
 | 
						|
      {
 | 
						|
        SERIAL_ERROR_START;
 | 
						|
        SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
 | 
						|
        SERIAL_ERRORLN((int)heater_id);
 | 
						|
        LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
 | 
						|
        thermal_runaway = true;
 | 
						|
        while(1)
 | 
						|
        {
 | 
						|
          disable_heater();
 | 
						|
          disable_x();
 | 
						|
          disable_y();
 | 
						|
          disable_z();
 | 
						|
          disable_e0();
 | 
						|
          disable_e1();
 | 
						|
          disable_e2();
 | 
						|
          manage_heater();
 | 
						|
          lcd_update();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void disable_heater()
 | 
						|
{
 | 
						|
  for(int i=0;i<EXTRUDERS;i++)
 | 
						|
    setTargetHotend(0,i);
 | 
						|
  setTargetBed(0);
 | 
						|
  #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
 | 
						|
  target_temperature[0]=0;
 | 
						|
  soft_pwm[0]=0;
 | 
						|
   #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1  
 | 
						|
     WRITE(HEATER_0_PIN,LOW);
 | 
						|
   #endif
 | 
						|
  #endif
 | 
						|
     
 | 
						|
  #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
 | 
						|
    target_temperature[1]=0;
 | 
						|
    soft_pwm[1]=0;
 | 
						|
    #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 
 | 
						|
      WRITE(HEATER_1_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
      
 | 
						|
  #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
 | 
						|
    target_temperature[2]=0;
 | 
						|
    soft_pwm[2]=0;
 | 
						|
    #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1  
 | 
						|
      WRITE(HEATER_2_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif 
 | 
						|
 | 
						|
  #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | 
						|
    target_temperature_bed=0;
 | 
						|
    soft_pwm_bed=0;
 | 
						|
    #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  
 | 
						|
      WRITE(HEATER_BED_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif 
 | 
						|
}
 | 
						|
 | 
						|
void max_temp_error(uint8_t e) {
 | 
						|
  disable_heater();
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLN((int)e);
 | 
						|
    SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
 | 
						|
    LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
 | 
						|
  }
 | 
						|
  #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
  Stop();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void min_temp_error(uint8_t e) {
 | 
						|
  disable_heater();
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLN((int)e);
 | 
						|
    SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
 | 
						|
    LCD_ALERTMESSAGEPGM("Err: MINTEMP");
 | 
						|
  }
 | 
						|
  #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
  Stop();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void bed_max_temp_error(void) {
 | 
						|
#if HEATER_BED_PIN > -1
 | 
						|
  WRITE(HEATER_BED_PIN, 0);
 | 
						|
#endif
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
 | 
						|
    LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
 | 
						|
  }
 | 
						|
  #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
  Stop();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HEATER_0_USES_MAX6675
 | 
						|
#define MAX6675_HEAT_INTERVAL 250
 | 
						|
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
 | 
						|
int max6675_temp = 2000;
 | 
						|
 | 
						|
int read_max6675()
 | 
						|
{
 | 
						|
  if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL) 
 | 
						|
    return max6675_temp;
 | 
						|
  
 | 
						|
  max6675_previous_millis = millis();
 | 
						|
  max6675_temp = 0;
 | 
						|
    
 | 
						|
  #ifdef	PRR
 | 
						|
    PRR &= ~(1<<PRSPI);
 | 
						|
  #elif defined PRR0
 | 
						|
    PRR0 &= ~(1<<PRSPI);
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
 | 
						|
  
 | 
						|
  // enable TT_MAX6675
 | 
						|
  WRITE(MAX6675_SS, 0);
 | 
						|
  
 | 
						|
  // ensure 100ns delay - a bit extra is fine
 | 
						|
  asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | 
						|
  asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | 
						|
  
 | 
						|
  // read MSB
 | 
						|
  SPDR = 0;
 | 
						|
  for (;(SPSR & (1<<SPIF)) == 0;);
 | 
						|
  max6675_temp = SPDR;
 | 
						|
  max6675_temp <<= 8;
 | 
						|
  
 | 
						|
  // read LSB
 | 
						|
  SPDR = 0;
 | 
						|
  for (;(SPSR & (1<<SPIF)) == 0;);
 | 
						|
  max6675_temp |= SPDR;
 | 
						|
  
 | 
						|
  // disable TT_MAX6675
 | 
						|
  WRITE(MAX6675_SS, 1);
 | 
						|
 | 
						|
  if (max6675_temp & 4) 
 | 
						|
  {
 | 
						|
    // thermocouple open
 | 
						|
    max6675_temp = 2000;
 | 
						|
  }
 | 
						|
  else 
 | 
						|
  {
 | 
						|
    max6675_temp = max6675_temp >> 3;
 | 
						|
  }
 | 
						|
 | 
						|
  return max6675_temp;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// Timer 0 is shared with millies
 | 
						|
ISR(TIMER0_COMPB_vect)
 | 
						|
{
 | 
						|
  //these variables are only accesible from the ISR, but static, so they don't lose their value
 | 
						|
  static unsigned char temp_count = 0;
 | 
						|
  static unsigned long raw_temp_0_value = 0;
 | 
						|
  static unsigned long raw_temp_1_value = 0;
 | 
						|
  static unsigned long raw_temp_2_value = 0;
 | 
						|
  static unsigned long raw_temp_bed_value = 0;
 | 
						|
  static unsigned char temp_state = 8;
 | 
						|
  static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
 | 
						|
  static unsigned char soft_pwm_0;
 | 
						|
  #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
 | 
						|
  static unsigned char soft_pwm_1;
 | 
						|
  #endif
 | 
						|
  #if EXTRUDERS > 2
 | 
						|
  static unsigned char soft_pwm_2;
 | 
						|
  #endif
 | 
						|
  #if HEATER_BED_PIN > -1
 | 
						|
  static unsigned char soft_pwm_b;
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  if(pwm_count == 0){
 | 
						|
    soft_pwm_0 = soft_pwm[0];
 | 
						|
    if(soft_pwm_0 > 0) { 
 | 
						|
      WRITE(HEATER_0_PIN,1);
 | 
						|
      #ifdef HEATERS_PARALLEL
 | 
						|
      WRITE(HEATER_1_PIN,1);
 | 
						|
      #endif
 | 
						|
    } else WRITE(HEATER_0_PIN,0);
 | 
						|
	
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
    soft_pwm_1 = soft_pwm[1];
 | 
						|
    if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
 | 
						|
    #endif
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
    soft_pwm_2 = soft_pwm[2];
 | 
						|
    if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
 | 
						|
    #endif
 | 
						|
    #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | 
						|
    soft_pwm_b = soft_pwm_bed;
 | 
						|
    if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
 | 
						|
    #endif
 | 
						|
    #ifdef FAN_SOFT_PWM
 | 
						|
    soft_pwm_fan = fanSpeedSoftPwm / 2;
 | 
						|
    if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
  if(soft_pwm_0 < pwm_count) { 
 | 
						|
      WRITE(HEATER_0_PIN,0);
 | 
						|
      #ifdef HEATERS_PARALLEL
 | 
						|
      WRITE(HEATER_1_PIN,0);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
  if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
 | 
						|
  #endif
 | 
						|
  #if EXTRUDERS > 2
 | 
						|
  if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
 | 
						|
  #endif
 | 
						|
  #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | 
						|
  if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
 | 
						|
  #endif
 | 
						|
  #ifdef FAN_SOFT_PWM
 | 
						|
  if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  pwm_count += (1 << SOFT_PWM_SCALE);
 | 
						|
  pwm_count &= 0x7f;
 | 
						|
  
 | 
						|
  switch(temp_state) {
 | 
						|
    case 0: // Prepare TEMP_0
 | 
						|
      #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | 
						|
        #if TEMP_0_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      lcd_buttons_update();
 | 
						|
      temp_state = 1;
 | 
						|
      break;
 | 
						|
    case 1: // Measure TEMP_0
 | 
						|
      #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | 
						|
        raw_temp_0_value += ADC;
 | 
						|
      #endif
 | 
						|
      #ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
 | 
						|
        raw_temp_0_value = read_max6675();
 | 
						|
      #endif
 | 
						|
      temp_state = 2;
 | 
						|
      break;
 | 
						|
    case 2: // Prepare TEMP_BED
 | 
						|
      #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | 
						|
        #if TEMP_BED_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      lcd_buttons_update();
 | 
						|
      temp_state = 3;
 | 
						|
      break;
 | 
						|
    case 3: // Measure TEMP_BED
 | 
						|
      #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | 
						|
        raw_temp_bed_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 4;
 | 
						|
      break;
 | 
						|
    case 4: // Prepare TEMP_1
 | 
						|
      #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | 
						|
        #if TEMP_1_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      lcd_buttons_update();
 | 
						|
      temp_state = 5;
 | 
						|
      break;
 | 
						|
    case 5: // Measure TEMP_1
 | 
						|
      #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | 
						|
        raw_temp_1_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 6;
 | 
						|
      break;
 | 
						|
    case 6: // Prepare TEMP_2
 | 
						|
      #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | 
						|
        #if TEMP_2_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      lcd_buttons_update();
 | 
						|
      temp_state = 7;
 | 
						|
      break;
 | 
						|
    case 7: // Measure TEMP_2
 | 
						|
      #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | 
						|
        raw_temp_2_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 0;
 | 
						|
      temp_count++;
 | 
						|
      break;
 | 
						|
    case 8: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
 | 
						|
      temp_state = 0;
 | 
						|
      break;
 | 
						|
//    default:
 | 
						|
//      SERIAL_ERROR_START;
 | 
						|
//      SERIAL_ERRORLNPGM("Temp measurement error!");
 | 
						|
//      break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if(temp_count >= OVERSAMPLENR) // 8 * 16 * 1/(16000000/64/256)  = 131ms.
 | 
						|
  {
 | 
						|
    if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
 | 
						|
    {
 | 
						|
      current_temperature_raw[0] = raw_temp_0_value;
 | 
						|
#if EXTRUDERS > 1
 | 
						|
      current_temperature_raw[1] = raw_temp_1_value;
 | 
						|
#endif
 | 
						|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | 
						|
      redundant_temperature_raw = raw_temp_1_value;
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 2
 | 
						|
      current_temperature_raw[2] = raw_temp_2_value;
 | 
						|
#endif
 | 
						|
      current_temperature_bed_raw = raw_temp_bed_value;
 | 
						|
    }
 | 
						|
    
 | 
						|
    temp_meas_ready = true;
 | 
						|
    temp_count = 0;
 | 
						|
    raw_temp_0_value = 0;
 | 
						|
    raw_temp_1_value = 0;
 | 
						|
    raw_temp_2_value = 0;
 | 
						|
    raw_temp_bed_value = 0;
 | 
						|
 | 
						|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[0] <= maxttemp_raw[0]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[0] >= maxttemp_raw[0]) {
 | 
						|
#endif
 | 
						|
        max_temp_error(0);
 | 
						|
    }
 | 
						|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[0] >= minttemp_raw[0]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[0] <= minttemp_raw[0]) {
 | 
						|
#endif
 | 
						|
        min_temp_error(0);
 | 
						|
    }
 | 
						|
#if EXTRUDERS > 1
 | 
						|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[1] <= maxttemp_raw[1]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[1] >= maxttemp_raw[1]) {
 | 
						|
#endif
 | 
						|
        max_temp_error(1);
 | 
						|
    }
 | 
						|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[1] >= minttemp_raw[1]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[1] <= minttemp_raw[1]) {
 | 
						|
#endif
 | 
						|
        min_temp_error(1);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 2
 | 
						|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[2] <= maxttemp_raw[2]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[2] >= maxttemp_raw[2]) {
 | 
						|
#endif
 | 
						|
        max_temp_error(2);
 | 
						|
    }
 | 
						|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
 | 
						|
    if(current_temperature_raw[2] >= minttemp_raw[2]) {
 | 
						|
#else
 | 
						|
    if(current_temperature_raw[2] <= minttemp_raw[2]) {
 | 
						|
#endif
 | 
						|
        min_temp_error(2);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  /* No bed MINTEMP error? */
 | 
						|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
 | 
						|
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
 | 
						|
    if(current_temperature_bed_raw <= bed_maxttemp_raw) {
 | 
						|
#else
 | 
						|
    if(current_temperature_bed_raw >= bed_maxttemp_raw) {
 | 
						|
#endif
 | 
						|
       target_temperature_bed = 0;
 | 
						|
       bed_max_temp_error();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  
 | 
						|
#ifdef BABYSTEPPING
 | 
						|
  for(uint8_t axis=0;axis<3;axis++)
 | 
						|
  {
 | 
						|
    int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
 | 
						|
   
 | 
						|
    if(curTodo>0)
 | 
						|
    {
 | 
						|
      babystep(axis,/*fwd*/true);
 | 
						|
      babystepsTodo[axis]--; //less to do next time
 | 
						|
    }
 | 
						|
    else
 | 
						|
    if(curTodo<0)
 | 
						|
    {
 | 
						|
      babystep(axis,/*fwd*/false);
 | 
						|
      babystepsTodo[axis]++; //less to do next time
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif //BABYSTEPPING
 | 
						|
}
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
// Apply the scale factors to the PID values
 | 
						|
 | 
						|
 | 
						|
float scalePID_i(float i)
 | 
						|
{
 | 
						|
	return i*PID_dT;
 | 
						|
}
 | 
						|
 | 
						|
float unscalePID_i(float i)
 | 
						|
{
 | 
						|
	return i/PID_dT;
 | 
						|
}
 | 
						|
 | 
						|
float scalePID_d(float d)
 | 
						|
{
 | 
						|
    return d/PID_dT;
 | 
						|
}
 | 
						|
 | 
						|
float unscalePID_d(float d)
 | 
						|
{
 | 
						|
	return d*PID_dT;
 | 
						|
}
 | 
						|
 | 
						|
#endif //PIDTEMP
 | 
						|
 | 
						|
 |