You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							873 lines
						
					
					
						
							34 KiB
						
					
					
				
			
		
		
	
	
							873 lines
						
					
					
						
							34 KiB
						
					
					
				/**
 | 
						|
 * Marlin 3D Printer Firmware
 | 
						|
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Marlin Firmware -- G26 - Mesh Validation Tool
 | 
						|
 */
 | 
						|
 | 
						|
#include "MarlinConfig.h"
 | 
						|
 | 
						|
#if ENABLED(G26_MESH_VALIDATION)
 | 
						|
 | 
						|
  #include "Marlin.h"
 | 
						|
  #include "planner.h"
 | 
						|
  #include "stepper.h"
 | 
						|
  #include "temperature.h"
 | 
						|
  #include "ultralcd.h"
 | 
						|
  #include "gcode.h"
 | 
						|
  #include "bitmap_flags.h"
 | 
						|
 | 
						|
  #if ENABLED(MESH_BED_LEVELING)
 | 
						|
    #include "mesh_bed_leveling.h"
 | 
						|
  #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | 
						|
    #include "ubl.h"
 | 
						|
  #endif
 | 
						|
 | 
						|
  #define EXTRUSION_MULTIPLIER 1.0
 | 
						|
  #define RETRACTION_MULTIPLIER 1.0
 | 
						|
  #define PRIME_LENGTH 10.0
 | 
						|
  #define OOZE_AMOUNT 0.3
 | 
						|
 | 
						|
  #define SIZE_OF_INTERSECTION_CIRCLES 5
 | 
						|
  #define SIZE_OF_CROSSHAIRS 3
 | 
						|
 | 
						|
  #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
 | 
						|
    #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
 | 
						|
  #endif
 | 
						|
 | 
						|
  #define G26_OK false
 | 
						|
  #define G26_ERR true
 | 
						|
 | 
						|
  /**
 | 
						|
   *   G26 Mesh Validation Tool
 | 
						|
   *
 | 
						|
   *   G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
 | 
						|
   *   In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
 | 
						|
   *   be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
 | 
						|
   *   first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
 | 
						|
   *   the intersections of those lines (respectively).
 | 
						|
   *
 | 
						|
   *   This action allows the user to immediately see where the Mesh is properly defined and where it needs to
 | 
						|
   *   be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
 | 
						|
   *   the user can specify the X and Y position of interest with command parameters. This allows the user to
 | 
						|
   *   focus on a particular area of the Mesh where attention is needed.
 | 
						|
   *
 | 
						|
   *   B #  Bed         Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
 | 
						|
   *
 | 
						|
   *   C    Current     When searching for Mesh Intersection points to draw, use the current nozzle location
 | 
						|
   *                    as the base for any distance comparison.
 | 
						|
   *
 | 
						|
   *   D    Disable     Disable the Unified Bed Leveling System. In the normal case the user is invoking this
 | 
						|
   *                    command to see how well a Mesh as been adjusted to match a print surface. In order to do
 | 
						|
   *                    this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
 | 
						|
   *                    alters the command's normal behaviour and disables the Unified Bed Leveling System even if
 | 
						|
   *                    it is on.
 | 
						|
   *
 | 
						|
   *   H #  Hotend      Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
 | 
						|
   *
 | 
						|
   *   F #  Filament    Used to specify the diameter of the filament being used. If not specified
 | 
						|
   *                    1.75mm filament is assumed. If you are not getting acceptable results by using the
 | 
						|
   *                    'correct' numbers, you can scale this number up or down a little bit to change the amount
 | 
						|
   *                    of filament that is being extruded during the printing of the various lines on the bed.
 | 
						|
   *
 | 
						|
   *   K    Keep-On     Keep the heaters turned on at the end of the command.
 | 
						|
   *
 | 
						|
   *   L #  Layer       Layer height. (Height of nozzle above bed)  If not specified .20mm will be used.
 | 
						|
   *
 | 
						|
   *   O #  Ooooze      How much your nozzle will Ooooze filament while getting in position to print. This
 | 
						|
   *                    is over kill, but using this parameter will let you get the very first 'circle' perfect
 | 
						|
   *                    so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
 | 
						|
   *                    Mesh calibrated. If not specified, a filament length of .3mm is assumed.
 | 
						|
   *
 | 
						|
   *   P #  Prime       Prime the nozzle with specified length of filament. If this parameter is not
 | 
						|
   *                    given, no prime action will take place. If the parameter specifies an amount, that much
 | 
						|
   *                    will be purged before continuing. If no amount is specified the command will start
 | 
						|
   *                    purging filament until the user provides an LCD Click and then it will continue with
 | 
						|
   *                    printing the Mesh. You can carefully remove the spent filament with a needle nose
 | 
						|
   *                    pliers while holding the LCD Click wheel in a depressed state. If you do not have
 | 
						|
   *                    an LCD, you must specify a value if you use P.
 | 
						|
   *
 | 
						|
   *   Q #  Multiplier  Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
 | 
						|
   *                    un-retraction is at 1.2mm   These numbers will be scaled by the specified amount
 | 
						|
   *
 | 
						|
   *   R #  Repeat      Prints the number of patterns given as a parameter, starting at the current location.
 | 
						|
   *                    If a parameter isn't given, every point will be printed unless G26 is interrupted.
 | 
						|
   *                    This works the same way that the UBL G29 P4 R parameter works.
 | 
						|
   *
 | 
						|
   *                    NOTE:  If you do not have an LCD, you -must- specify R. This is to ensure that you are
 | 
						|
   *                    aware that there's some risk associated with printing without the ability to abort in
 | 
						|
   *                    cases where mesh point Z value may be inaccurate. As above, if you do not include a
 | 
						|
   *                    parameter, every point will be printed.
 | 
						|
   *
 | 
						|
   *   S #  Nozzle      Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
 | 
						|
   *
 | 
						|
   *   U #  Random      Randomize the order that the circles are drawn on the bed. The search for the closest
 | 
						|
   *                    undrawn cicle is still done. But the distance to the location for each circle has a
 | 
						|
   *                    random number of the size specified added to it. Specifying S50 will give an interesting
 | 
						|
   *                    deviation from the normal behaviour on a 10 x 10 Mesh.
 | 
						|
   *
 | 
						|
   *   X #  X Coord.    Specify the starting location of the drawing activity.
 | 
						|
   *
 | 
						|
   *   Y #  Y Coord.    Specify the starting location of the drawing activity.
 | 
						|
   */
 | 
						|
 | 
						|
  // External references
 | 
						|
 | 
						|
  extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
 | 
						|
  extern Planner planner;
 | 
						|
  #if ENABLED(ULTRA_LCD)
 | 
						|
    extern char lcd_status_message[];
 | 
						|
  #endif
 | 
						|
  extern float destination[XYZE];
 | 
						|
  void set_destination_from_current();
 | 
						|
  void prepare_move_to_destination();
 | 
						|
  inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
 | 
						|
  inline void set_current_from_destination() { COPY(current_position, destination); }
 | 
						|
 | 
						|
  // Private functions
 | 
						|
 | 
						|
  static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
 | 
						|
  float g26_e_axis_feedrate = 0.020,
 | 
						|
        random_deviation = 0.0;
 | 
						|
 | 
						|
  static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
 | 
						|
                                     // retracts/recovers won't result in a bad state.
 | 
						|
 | 
						|
  static float g26_extrusion_multiplier,
 | 
						|
               g26_retraction_multiplier,
 | 
						|
               g26_layer_height,
 | 
						|
               g26_prime_length,
 | 
						|
               g26_x_pos, g26_y_pos;
 | 
						|
 | 
						|
  static int16_t g26_bed_temp,
 | 
						|
                 g26_hotend_temp;
 | 
						|
 | 
						|
  static int8_t g26_prime_flag;
 | 
						|
 | 
						|
  #if ENABLED(NEWPANEL)
 | 
						|
    /**
 | 
						|
     * Detect is_lcd_clicked, debounce it, and return true for cancel
 | 
						|
     */
 | 
						|
    bool user_canceled() {
 | 
						|
      if (!is_lcd_clicked()) return false;
 | 
						|
      safe_delay(10);                       // Wait for click to settle
 | 
						|
 | 
						|
      #if ENABLED(ULTRA_LCD)
 | 
						|
        lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
 | 
						|
        lcd_quick_feedback();
 | 
						|
      #endif
 | 
						|
 | 
						|
      while (!is_lcd_clicked()) idle();    // Wait for button release
 | 
						|
 | 
						|
      // If the button is suddenly pressed again,
 | 
						|
      // ask the user to resolve the issue
 | 
						|
      lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
 | 
						|
      while (is_lcd_clicked()) idle();             // unless this loop happens
 | 
						|
      lcd_reset_status();
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if ENABLED(NEWPANEL)
 | 
						|
    bool exit_from_g26() {
 | 
						|
      lcd_setstatusPGM(PSTR("Leaving G26"), -1);
 | 
						|
      while (is_lcd_clicked()) idle();
 | 
						|
      return G26_ERR;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  void G26_line_to_destination(const float &feed_rate) {
 | 
						|
    const float save_feedrate = feedrate_mm_s;
 | 
						|
    feedrate_mm_s = feed_rate;      // use specified feed rate
 | 
						|
    prepare_move_to_destination();  // will ultimately call ubl.line_to_destination_cartesian for UBL or ubl.prepare_linear_move_to for UBL_DELTA
 | 
						|
    feedrate_mm_s = save_feedrate;  // restore global feed rate
 | 
						|
  }
 | 
						|
 | 
						|
  void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
 | 
						|
    float feed_value;
 | 
						|
    static float last_z = -999.99;
 | 
						|
 | 
						|
    bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
 | 
						|
 | 
						|
    if (z != last_z) {
 | 
						|
      last_z = z;
 | 
						|
      feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0);  // Base the feed rate off of the configured Z_AXIS feed rate
 | 
						|
 | 
						|
      destination[X_AXIS] = current_position[X_AXIS];
 | 
						|
      destination[Y_AXIS] = current_position[Y_AXIS];
 | 
						|
      destination[Z_AXIS] = z;                          // We know the last_z==z or we wouldn't be in this block of code.
 | 
						|
      destination[E_AXIS] = current_position[E_AXIS];
 | 
						|
 | 
						|
      G26_line_to_destination(feed_value);
 | 
						|
 | 
						|
      stepper.synchronize();
 | 
						|
      set_destination_from_current();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if X or Y is involved in the movement.
 | 
						|
    // Yes: a 'normal' movement. No: a retract() or recover()
 | 
						|
    feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
 | 
						|
 | 
						|
    if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
 | 
						|
 | 
						|
    destination[X_AXIS] = x;
 | 
						|
    destination[Y_AXIS] = y;
 | 
						|
    destination[E_AXIS] += e_delta;
 | 
						|
 | 
						|
    G26_line_to_destination(feed_value);
 | 
						|
 | 
						|
    stepper.synchronize();
 | 
						|
    set_destination_from_current();
 | 
						|
  }
 | 
						|
 | 
						|
  FORCE_INLINE void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
 | 
						|
 | 
						|
  void retract_filament(const float where[XYZE]) {
 | 
						|
    if (!g26_retracted) { // Only retract if we are not already retracted!
 | 
						|
      g26_retracted = true;
 | 
						|
      move_to(where, -1.0 * g26_retraction_multiplier);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void recover_filament(const float where[XYZE]) {
 | 
						|
    if (g26_retracted) { // Only un-retract if we are retracted.
 | 
						|
      move_to(where, 1.2 * g26_retraction_multiplier);
 | 
						|
      g26_retracted = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Prime the nozzle if needed. Return true on error.
 | 
						|
   */
 | 
						|
  inline bool prime_nozzle() {
 | 
						|
 | 
						|
    #if ENABLED(NEWPANEL)
 | 
						|
      float Total_Prime = 0.0;
 | 
						|
 | 
						|
      if (g26_prime_flag == -1) {  // The user wants to control how much filament gets purged
 | 
						|
 | 
						|
        lcd_external_control = true;
 | 
						|
        lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
 | 
						|
        lcd_chirp();
 | 
						|
 | 
						|
        set_destination_from_current();
 | 
						|
 | 
						|
        recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
 | 
						|
 | 
						|
        while (!is_lcd_clicked()) {
 | 
						|
          lcd_chirp();
 | 
						|
          destination[E_AXIS] += 0.25;
 | 
						|
          #ifdef PREVENT_LENGTHY_EXTRUDE
 | 
						|
            Total_Prime += 0.25;
 | 
						|
            if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR;
 | 
						|
          #endif
 | 
						|
          G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
 | 
						|
 | 
						|
          stepper.synchronize();    // Without this synchronize, the purge is more consistent,
 | 
						|
                                    // but because the planner has a buffer, we won't be able
 | 
						|
                                    // to stop as quickly. So we put up with the less smooth
 | 
						|
                                    // action to give the user a more responsive 'Stop'.
 | 
						|
          set_destination_from_current();
 | 
						|
          idle();
 | 
						|
        }
 | 
						|
 | 
						|
        while (is_lcd_clicked()) idle();           // Debounce Encoder Wheel
 | 
						|
 | 
						|
        #if ENABLED(ULTRA_LCD)
 | 
						|
          strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
 | 
						|
                                                              // So... We cheat to get a message up.
 | 
						|
          lcd_setstatusPGM(PSTR("Done Priming"), 99);
 | 
						|
          lcd_quick_feedback();
 | 
						|
          lcd_external_control = false;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
      else
 | 
						|
    #endif
 | 
						|
    {
 | 
						|
      #if ENABLED(ULTRA_LCD)
 | 
						|
        lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
 | 
						|
        lcd_quick_feedback();
 | 
						|
      #endif
 | 
						|
      set_destination_from_current();
 | 
						|
      destination[E_AXIS] += g26_prime_length;
 | 
						|
      G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
 | 
						|
      stepper.synchronize();
 | 
						|
      set_destination_from_current();
 | 
						|
      retract_filament(destination);
 | 
						|
    }
 | 
						|
 | 
						|
    return G26_OK;
 | 
						|
  }
 | 
						|
 | 
						|
  mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
 | 
						|
    float closest = 99999.99;
 | 
						|
    mesh_index_pair return_val;
 | 
						|
 | 
						|
    return_val.x_index = return_val.y_index = -1;
 | 
						|
 | 
						|
    for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
 | 
						|
      for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
 | 
						|
        if (!is_bit_set(circle_flags, i, j)) {
 | 
						|
          const float mx = _GET_MESH_X(i),  // We found a circle that needs to be printed
 | 
						|
                      my = _GET_MESH_Y(j);
 | 
						|
 | 
						|
          // Get the distance to this intersection
 | 
						|
          float f = HYPOT(X - mx, Y - my);
 | 
						|
 | 
						|
          // It is possible that we are being called with the values
 | 
						|
          // to let us find the closest circle to the start position.
 | 
						|
          // But if this is not the case, add a small weighting to the
 | 
						|
          // distance calculation to help it choose a better place to continue.
 | 
						|
          f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
 | 
						|
 | 
						|
          // Add in the specified amount of Random Noise to our search
 | 
						|
          if (random_deviation > 1.0)
 | 
						|
            f += random(0.0, random_deviation);
 | 
						|
 | 
						|
          if (f < closest) {
 | 
						|
            closest = f;              // We found a closer location that is still
 | 
						|
            return_val.x_index = i;   // un-printed  --- save the data for it
 | 
						|
            return_val.y_index = j;
 | 
						|
            return_val.distance = closest;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bit_set(circle_flags, return_val.x_index, return_val.y_index);   // Mark this location as done.
 | 
						|
    return return_val;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
 | 
						|
   * to the other. But there are really three sets of coordinates involved. The first coordinate
 | 
						|
   * is the present location of the nozzle. We don't necessarily want to print from this location.
 | 
						|
   * We first need to move the nozzle to the start of line segment where we want to print. Once
 | 
						|
   * there, we can use the two coordinates supplied to draw the line.
 | 
						|
   *
 | 
						|
   * Note:  Although we assume the first set of coordinates is the start of the line and the second
 | 
						|
   * set of coordinates is the end of the line, it does not always work out that way. This function
 | 
						|
   * optimizes the movement to minimize the travel distance before it can start printing. This saves
 | 
						|
   * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
 | 
						|
   * cause a lot of very little short retracement of th nozzle when it draws the very first line
 | 
						|
   * segment of a 'circle'. The time this requires is very short and is easily saved by the other
 | 
						|
   * cases where the optimization comes into play.
 | 
						|
   */
 | 
						|
  void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
 | 
						|
    const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual line segment
 | 
						|
                dy_s = current_position[Y_AXIS] - sy,
 | 
						|
                dist_start = HYPOT2(dx_s, dy_s),        // We don't need to do a sqrt(), we can compare the distance^2
 | 
						|
                                                        // to save computation time
 | 
						|
                dx_e = current_position[X_AXIS] - ex,   // find our distance from the end of the actual line segment
 | 
						|
                dy_e = current_position[Y_AXIS] - ey,
 | 
						|
                dist_end = HYPOT2(dx_e, dy_e),
 | 
						|
 | 
						|
                line_length = HYPOT(ex - sx, ey - sy);
 | 
						|
 | 
						|
    // If the end point of the line is closer to the nozzle, flip the direction,
 | 
						|
    // moving from the end to the start. On very small lines the optimization isn't worth it.
 | 
						|
    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length))
 | 
						|
      return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
 | 
						|
 | 
						|
    // Decide whether to retract & bump
 | 
						|
 | 
						|
    if (dist_start > 2.0) {
 | 
						|
      retract_filament(destination);
 | 
						|
      //todo:  parameterize the bump height with a define
 | 
						|
      move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0);  // Z bump to minimize scraping
 | 
						|
      move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
 | 
						|
    }
 | 
						|
 | 
						|
    move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
 | 
						|
 | 
						|
    const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
 | 
						|
 | 
						|
    recover_filament(destination);
 | 
						|
    move_to(ex, ey, ez, e_pos_delta);  // Get to the ending point with an appropriate amount of extrusion
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool look_for_lines_to_connect() {
 | 
						|
    float sx, sy, ex, ey;
 | 
						|
 | 
						|
    for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
 | 
						|
      for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
 | 
						|
 | 
						|
        #if ENABLED(NEWPANEL)
 | 
						|
          if (user_canceled()) return true;     // Check if the user wants to stop the Mesh Validation
 | 
						|
        #endif
 | 
						|
 | 
						|
        if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
 | 
						|
                                     // This is already a half circle because we are at the edge of the bed.
 | 
						|
 | 
						|
          if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
 | 
						|
            if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
 | 
						|
 | 
						|
              //
 | 
						|
              // We found two circles that need a horizontal line to connect them
 | 
						|
              // Print it!
 | 
						|
              //
 | 
						|
              sx = _GET_MESH_X(  i  ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
 | 
						|
              ex = _GET_MESH_X(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
 | 
						|
 | 
						|
              sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
 | 
						|
              sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
 | 
						|
              ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
 | 
						|
 | 
						|
              if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
 | 
						|
 | 
						|
                if (g26_debug_flag) {
 | 
						|
                  SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
 | 
						|
                  SERIAL_ECHOPAIR(", sy=", sy);
 | 
						|
                  SERIAL_ECHOPAIR(") -> (ex=", ex);
 | 
						|
                  SERIAL_ECHOPAIR(", ey=", ey);
 | 
						|
                  SERIAL_CHAR(')');
 | 
						|
                  SERIAL_EOL();
 | 
						|
                  //debug_current_and_destination(PSTR("Connecting horizontal line."));
 | 
						|
                }
 | 
						|
                print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
 | 
						|
              }
 | 
						|
              bit_set(horizontal_mesh_line_flags, i, j);   // Mark it as done so we don't do it again, even if we skipped it
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
 | 
						|
                                           // This is already a half circle because we are at the edge  of the bed.
 | 
						|
 | 
						|
            if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
 | 
						|
              if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
 | 
						|
                //
 | 
						|
                // We found two circles that need a vertical line to connect them
 | 
						|
                // Print it!
 | 
						|
                //
 | 
						|
                sy = _GET_MESH_Y(  j  ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
 | 
						|
                ey = _GET_MESH_Y(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
 | 
						|
 | 
						|
                sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
 | 
						|
                sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | 
						|
                ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | 
						|
 | 
						|
                if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
 | 
						|
 | 
						|
                  if (g26_debug_flag) {
 | 
						|
                    SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
 | 
						|
                    SERIAL_ECHOPAIR(", sy=", sy);
 | 
						|
                    SERIAL_ECHOPAIR(") -> (ex=", ex);
 | 
						|
                    SERIAL_ECHOPAIR(", ey=", ey);
 | 
						|
                    SERIAL_CHAR(')');
 | 
						|
                    SERIAL_EOL();
 | 
						|
 | 
						|
                    #if ENABLED(AUTO_BED_LEVELING_UBL)
 | 
						|
                      debug_current_and_destination(PSTR("Connecting vertical line."));
 | 
						|
                    #endif
 | 
						|
                  }
 | 
						|
                  print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
 | 
						|
                }
 | 
						|
                bit_set(vertical_mesh_line_flags, i, j);   // Mark it as done so we don't do it again, even if skipped
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  float valid_trig_angle(float d) {
 | 
						|
    while (d > 360.0) d -= 360.0;
 | 
						|
    while (d < 0.0) d += 360.0;
 | 
						|
    return d;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Turn on the bed and nozzle heat and
 | 
						|
   * wait for them to get up to temperature.
 | 
						|
   */
 | 
						|
  bool turn_on_heaters() {
 | 
						|
    millis_t next = millis() + 5000UL;
 | 
						|
    #if HAS_TEMP_BED
 | 
						|
      #if ENABLED(ULTRA_LCD)
 | 
						|
        if (g26_bed_temp > 25) {
 | 
						|
          lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
 | 
						|
          lcd_quick_feedback();
 | 
						|
          lcd_external_control = true;
 | 
						|
      #endif
 | 
						|
          thermalManager.setTargetBed(g26_bed_temp);
 | 
						|
          while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
 | 
						|
 | 
						|
            #if ENABLED(NEWPANEL)
 | 
						|
              if (is_lcd_clicked()) return exit_from_g26();
 | 
						|
            #endif
 | 
						|
 | 
						|
            if (ELAPSED(millis(), next)) {
 | 
						|
              next = millis() + 5000UL;
 | 
						|
              print_heaterstates();
 | 
						|
              SERIAL_EOL();
 | 
						|
            }
 | 
						|
            idle();
 | 
						|
          }
 | 
						|
      #if ENABLED(ULTRA_LCD)
 | 
						|
        }
 | 
						|
        lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
 | 
						|
        lcd_quick_feedback();
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Start heating the nozzle and wait for it to reach temperature.
 | 
						|
    thermalManager.setTargetHotend(g26_hotend_temp, 0);
 | 
						|
    while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
 | 
						|
 | 
						|
      #if ENABLED(NEWPANEL)
 | 
						|
        if (is_lcd_clicked()) return exit_from_g26();
 | 
						|
      #endif
 | 
						|
 | 
						|
      if (ELAPSED(millis(), next)) {
 | 
						|
        next = millis() + 5000UL;
 | 
						|
        print_heaterstates();
 | 
						|
        SERIAL_EOL();
 | 
						|
      }
 | 
						|
      idle();
 | 
						|
    }
 | 
						|
 | 
						|
    #if ENABLED(ULTRA_LCD)
 | 
						|
      lcd_reset_status();
 | 
						|
      lcd_quick_feedback();
 | 
						|
    #endif
 | 
						|
 | 
						|
    return G26_OK;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * G26: Mesh Validation Pattern generation.
 | 
						|
   *
 | 
						|
   * Used to interactively edit UBL's Mesh by placing the
 | 
						|
   * nozzle in a problem area and doing a G29 P4 R command.
 | 
						|
   */
 | 
						|
  void gcode_G26() {
 | 
						|
    SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
 | 
						|
    float tmp, start_angle, end_angle;
 | 
						|
    int   i, xi, yi;
 | 
						|
    mesh_index_pair location;
 | 
						|
 | 
						|
    // Don't allow Mesh Validation without homing first,
 | 
						|
    // or if the parameter parsing did not go OK, abort
 | 
						|
    if (axis_unhomed_error()) return;
 | 
						|
 | 
						|
    g26_extrusion_multiplier    = EXTRUSION_MULTIPLIER;
 | 
						|
    g26_retraction_multiplier   = RETRACTION_MULTIPLIER;
 | 
						|
    g26_layer_height            = MESH_TEST_LAYER_HEIGHT;
 | 
						|
    g26_prime_length            = PRIME_LENGTH;
 | 
						|
    g26_bed_temp                = MESH_TEST_BED_TEMP;
 | 
						|
    g26_hotend_temp             = MESH_TEST_HOTEND_TEMP;
 | 
						|
    g26_prime_flag              = 0;
 | 
						|
 | 
						|
    float g26_nozzle            = MESH_TEST_NOZZLE_SIZE,
 | 
						|
          g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
 | 
						|
          g26_ooze_amount       = parser.linearval('O', OOZE_AMOUNT);
 | 
						|
 | 
						|
    bool g26_continue_with_closest = parser.boolval('C'),
 | 
						|
         g26_keep_heaters_on       = parser.boolval('K');
 | 
						|
 | 
						|
    if (parser.seenval('B')) {
 | 
						|
      g26_bed_temp = parser.value_celsius();
 | 
						|
      if (!WITHIN(g26_bed_temp, 15, 140)) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seenval('L')) {
 | 
						|
      g26_layer_height = parser.value_linear_units();
 | 
						|
      if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seen('Q')) {
 | 
						|
      if (parser.has_value()) {
 | 
						|
        g26_retraction_multiplier = parser.value_float();
 | 
						|
        if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
 | 
						|
          SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
 | 
						|
          return G26_ERR;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seenval('S')) {
 | 
						|
      g26_nozzle = parser.value_float();
 | 
						|
      if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seen('P')) {
 | 
						|
      if (!parser.has_value()) {
 | 
						|
        #if ENABLED(NEWPANEL)
 | 
						|
          g26_prime_flag = -1;
 | 
						|
        #else
 | 
						|
          SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
 | 
						|
          return G26_ERR;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        g26_prime_flag++;
 | 
						|
        g26_prime_length = parser.value_linear_units();
 | 
						|
        if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
 | 
						|
          SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
 | 
						|
          return G26_ERR;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seenval('F')) {
 | 
						|
      g26_filament_diameter = parser.value_linear_units();
 | 
						|
      if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
 | 
						|
                                                                      // scale up or down the length needed to get the
 | 
						|
                                                                      // same volume of filament
 | 
						|
 | 
						|
    g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
 | 
						|
 | 
						|
    if (parser.seenval('H')) {
 | 
						|
      g26_hotend_temp = parser.value_celsius();
 | 
						|
      if (!WITHIN(g26_hotend_temp, 165, 280)) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (parser.seen('U')) {
 | 
						|
      randomSeed(millis());
 | 
						|
      // This setting will persist for the next G26
 | 
						|
      random_deviation = parser.has_value() ? parser.value_float() : 50.0;
 | 
						|
    }
 | 
						|
 | 
						|
    int16_t g26_repeats;
 | 
						|
    #if ENABLED(NEWPANEL)
 | 
						|
      g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
 | 
						|
    #else
 | 
						|
      if (!parser.seen('R')) {
 | 
						|
        SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
 | 
						|
        return G26_ERR;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
 | 
						|
    #endif
 | 
						|
    if (g26_repeats < 1) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
 | 
						|
      return G26_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
 | 
						|
    g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
 | 
						|
    if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
 | 
						|
      return G26_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Wait until all parameters are verified before altering the state!
 | 
						|
     */
 | 
						|
    set_bed_leveling_enabled(!parser.seen('D'));
 | 
						|
 | 
						|
    if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
 | 
						|
      do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
 | 
						|
      stepper.synchronize();
 | 
						|
      set_current_from_destination();
 | 
						|
    }
 | 
						|
 | 
						|
    if (turn_on_heaters()) goto LEAVE;
 | 
						|
 | 
						|
    current_position[E_AXIS] = 0.0;
 | 
						|
    sync_plan_position_e();
 | 
						|
 | 
						|
    if (g26_prime_flag && prime_nozzle()) goto LEAVE;
 | 
						|
 | 
						|
    /**
 | 
						|
     *  Bed is preheated
 | 
						|
     *
 | 
						|
     *  Nozzle is at temperature
 | 
						|
     *
 | 
						|
     *  Filament is primed!
 | 
						|
     *
 | 
						|
     *  It's  "Show Time" !!!
 | 
						|
     */
 | 
						|
 | 
						|
    ZERO(circle_flags);
 | 
						|
    ZERO(horizontal_mesh_line_flags);
 | 
						|
    ZERO(vertical_mesh_line_flags);
 | 
						|
 | 
						|
    // Move nozzle to the specified height for the first layer
 | 
						|
    set_destination_from_current();
 | 
						|
    destination[Z_AXIS] = g26_layer_height;
 | 
						|
    move_to(destination, 0.0);
 | 
						|
    move_to(destination, g26_ooze_amount);
 | 
						|
 | 
						|
    #if ENABLED(ULTRA_LCD)
 | 
						|
      lcd_external_control = true;
 | 
						|
    #endif
 | 
						|
 | 
						|
    //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
 | 
						|
 | 
						|
    /**
 | 
						|
     * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
 | 
						|
     * the CPU load and make the arc drawing faster and more smooth
 | 
						|
     */
 | 
						|
    float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
 | 
						|
    for (i = 0; i <= 360 / 30; i++) {
 | 
						|
      cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
 | 
						|
      sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
 | 
						|
    }
 | 
						|
 | 
						|
    do {
 | 
						|
      location = g26_continue_with_closest
 | 
						|
        ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
 | 
						|
        : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
 | 
						|
 | 
						|
      if (location.x_index >= 0 && location.y_index >= 0) {
 | 
						|
        const float circle_x = _GET_MESH_X(location.x_index),
 | 
						|
                    circle_y = _GET_MESH_Y(location.y_index);
 | 
						|
 | 
						|
        // If this mesh location is outside the printable_radius, skip it.
 | 
						|
 | 
						|
        if (!position_is_reachable(circle_x, circle_y)) continue;
 | 
						|
 | 
						|
        xi = location.x_index;  // Just to shrink the next few lines and make them easier to understand
 | 
						|
        yi = location.y_index;
 | 
						|
 | 
						|
        if (g26_debug_flag) {
 | 
						|
          SERIAL_ECHOPAIR("   Doing circle at: (xi=", xi);
 | 
						|
          SERIAL_ECHOPAIR(", yi=", yi);
 | 
						|
          SERIAL_CHAR(')');
 | 
						|
          SERIAL_EOL();
 | 
						|
        }
 | 
						|
 | 
						|
        start_angle = 0.0;    // assume it is going to be a full circle
 | 
						|
        end_angle   = 360.0;
 | 
						|
        if (xi == 0) {       // Check for bottom edge
 | 
						|
          start_angle = -90.0;
 | 
						|
          end_angle   =  90.0;
 | 
						|
          if (yi == 0)        // it is an edge, check for the two left corners
 | 
						|
            start_angle = 0.0;
 | 
						|
          else if (yi == GRID_MAX_POINTS_Y - 1)
 | 
						|
            end_angle = 0.0;
 | 
						|
        }
 | 
						|
        else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
 | 
						|
          start_angle =  90.0;
 | 
						|
          end_angle   = 270.0;
 | 
						|
          if (yi == 0)                  // it is an edge, check for the two right corners
 | 
						|
            end_angle = 180.0;
 | 
						|
          else if (yi == GRID_MAX_POINTS_Y - 1)
 | 
						|
            start_angle = 180.0;
 | 
						|
        }
 | 
						|
        else if (yi == 0) {
 | 
						|
          start_angle =   0.0;         // only do the top   side of the cirlce
 | 
						|
          end_angle   = 180.0;
 | 
						|
        }
 | 
						|
        else if (yi == GRID_MAX_POINTS_Y - 1) {
 | 
						|
          start_angle = 180.0;         // only do the bottom side of the cirlce
 | 
						|
          end_angle   = 360.0;
 | 
						|
        }
 | 
						|
 | 
						|
        for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
 | 
						|
 | 
						|
          #if ENABLED(NEWPANEL)
 | 
						|
            if (user_canceled()) goto LEAVE;              // Check if the user wants to stop the Mesh Validation
 | 
						|
          #endif
 | 
						|
 | 
						|
          int tmp_div_30 = tmp / 30.0;
 | 
						|
          if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
 | 
						|
          if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
 | 
						|
 | 
						|
          float rx = circle_x + cos_table[tmp_div_30],    // for speed, these are now a lookup table entry
 | 
						|
                ry = circle_y + sin_table[tmp_div_30],
 | 
						|
                xe = circle_x + cos_table[tmp_div_30 + 1],
 | 
						|
                ye = circle_y + sin_table[tmp_div_30 + 1];
 | 
						|
          #if IS_KINEMATIC
 | 
						|
            // Check to make sure this segment is entirely on the bed, skip if not.
 | 
						|
            if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
 | 
						|
          #else                                               // not, we need to skip
 | 
						|
            rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
 | 
						|
            ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | 
						|
            xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
 | 
						|
            ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
 | 
						|
          #endif
 | 
						|
 | 
						|
          //if (g26_debug_flag) {
 | 
						|
          //  char ccc, *cptr, seg_msg[50], seg_num[10];
 | 
						|
          //  strcpy(seg_msg, "   segment: ");
 | 
						|
          //  strcpy(seg_num, "    \n");
 | 
						|
          //  cptr = (char*) "01234567890ABCDEF????????";
 | 
						|
          //  ccc = cptr[tmp_div_30];
 | 
						|
          //  seg_num[1] = ccc;
 | 
						|
          //  strcat(seg_msg, seg_num);
 | 
						|
          //  debug_current_and_destination(seg_msg);
 | 
						|
          //}
 | 
						|
 | 
						|
          print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
 | 
						|
 | 
						|
        }
 | 
						|
        if (look_for_lines_to_connect())
 | 
						|
          goto LEAVE;
 | 
						|
      }
 | 
						|
    } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
 | 
						|
 | 
						|
    LEAVE:
 | 
						|
    lcd_setstatusPGM(PSTR("Leaving G26"), -1);
 | 
						|
 | 
						|
    retract_filament(destination);
 | 
						|
    destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
 | 
						|
 | 
						|
    //debug_current_and_destination(PSTR("ready to do Z-Raise."));
 | 
						|
    move_to(destination, 0); // Raise the nozzle
 | 
						|
    //debug_current_and_destination(PSTR("done doing Z-Raise."));
 | 
						|
 | 
						|
    destination[X_AXIS] = g26_x_pos;                               // Move back to the starting position
 | 
						|
    destination[Y_AXIS] = g26_y_pos;
 | 
						|
    //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;            // Keep the nozzle where it is
 | 
						|
 | 
						|
    move_to(destination, 0); // Move back to the starting position
 | 
						|
    //debug_current_and_destination(PSTR("done doing X/Y move."));
 | 
						|
 | 
						|
    #if ENABLED(ULTRA_LCD)
 | 
						|
      lcd_external_control = false;     // Give back control of the LCD Panel!
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (!g26_keep_heaters_on) {
 | 
						|
      #if HAS_TEMP_BED
 | 
						|
        thermalManager.setTargetBed(0);
 | 
						|
      #endif
 | 
						|
      thermalManager.setTargetHotend(0, 0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // G26_MESH_VALIDATION
 |