You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1713 lines
55 KiB
1713 lines
55 KiB
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* configuration_store.cpp
|
|
*
|
|
* Settings and EEPROM storage
|
|
*
|
|
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
* in the functions below, also increment the version number. This makes sure that
|
|
* the default values are used whenever there is a change to the data, to prevent
|
|
* wrong data being written to the variables.
|
|
*
|
|
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
|
* If a feature is disabled, some data must still be written that, when read,
|
|
* either sets a Sane Default, or results in No Change to the existing value.
|
|
*
|
|
*/
|
|
|
|
#define EEPROM_VERSION "V37"
|
|
|
|
// Change EEPROM version if these are changed:
|
|
#define EEPROM_OFFSET 100
|
|
|
|
/**
|
|
* V37 EEPROM Layout:
|
|
*
|
|
* 100 Version (char x4)
|
|
* 104 EEPROM Checksum (uint16_t)
|
|
*
|
|
* 106 E_STEPPERS (uint8_t)
|
|
* 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
|
|
* 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
|
|
* 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
|
|
* 155 M204 P planner.acceleration (float)
|
|
* 159 M204 R planner.retract_acceleration (float)
|
|
* 163 M204 T planner.travel_acceleration (float)
|
|
* 167 M205 S planner.min_feedrate_mm_s (float)
|
|
* 171 M205 T planner.min_travel_feedrate_mm_s (float)
|
|
* 175 M205 B planner.min_segment_time (ulong)
|
|
* 179 M205 X planner.max_jerk[X_AXIS] (float)
|
|
* 183 M205 Y planner.max_jerk[Y_AXIS] (float)
|
|
* 187 M205 Z planner.max_jerk[Z_AXIS] (float)
|
|
* 191 M205 E planner.max_jerk[E_AXIS] (float)
|
|
* 195 M206 XYZ home_offset (float x3)
|
|
* 207 M218 XYZ hotend_offset (float x3 per additional hotend)
|
|
*
|
|
* Global Leveling:
|
|
* 219 z_fade_height (float)
|
|
*
|
|
* MESH_BED_LEVELING: 43 bytes
|
|
* 223 M420 S from mbl.status (bool)
|
|
* 224 mbl.z_offset (float)
|
|
* 228 GRID_MAX_POINTS_X (uint8_t)
|
|
* 229 GRID_MAX_POINTS_Y (uint8_t)
|
|
* 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
|
|
*
|
|
* HAS_BED_PROBE: 4 bytes
|
|
* 266 M851 zprobe_zoffset (float)
|
|
*
|
|
* ABL_PLANAR: 36 bytes
|
|
* 270 planner.bed_level_matrix (matrix_3x3 = float x9)
|
|
*
|
|
* AUTO_BED_LEVELING_BILINEAR: 47 bytes
|
|
* 306 GRID_MAX_POINTS_X (uint8_t)
|
|
* 307 GRID_MAX_POINTS_Y (uint8_t)
|
|
* 308 bilinear_grid_spacing (int x2)
|
|
* 312 G29 L F bilinear_start (int x2)
|
|
* 316 z_values[][] (float x9, up to float x256) +988
|
|
*
|
|
* AUTO_BED_LEVELING_UBL: 6 bytes
|
|
* 324 G29 A ubl.state.active (bool)
|
|
* 325 G29 Z ubl.state.z_offset (float)
|
|
* 329 G29 S ubl.state.eeprom_storage_slot (int8_t)
|
|
*
|
|
* DELTA: 48 bytes
|
|
* 348 M666 XYZ endstop_adj (float x3)
|
|
* 360 M665 R delta_radius (float)
|
|
* 364 M665 L delta_diagonal_rod (float)
|
|
* 368 M665 S delta_segments_per_second (float)
|
|
* 372 M665 B delta_calibration_radius (float)
|
|
* 376 M665 X delta_tower_angle_trim[A] (float)
|
|
* 380 M665 Y delta_tower_angle_trim[B] (float)
|
|
* --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
|
|
*
|
|
* Z_DUAL_ENDSTOPS: 48 bytes
|
|
* 348 M666 Z z_endstop_adj (float)
|
|
* --- dummy data (float x11)
|
|
*
|
|
* ULTIPANEL: 6 bytes
|
|
* 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
|
|
* 400 M145 S0 B lcd_preheat_bed_temp (int x2)
|
|
* 404 M145 S0 F lcd_preheat_fan_speed (int x2)
|
|
*
|
|
* PIDTEMP: 66 bytes
|
|
* 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
|
|
* 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
|
|
* 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
|
|
* 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
|
|
* 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
|
|
* 488 M301 L lpq_len (int)
|
|
*
|
|
* PIDTEMPBED: 12 bytes
|
|
* 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
|
|
*
|
|
* DOGLCD: 2 bytes
|
|
* 502 M250 C lcd_contrast (int)
|
|
*
|
|
* FWRETRACT: 29 bytes
|
|
* 504 M209 S autoretract_enabled (bool)
|
|
* 505 M207 S retract_length (float)
|
|
* 509 M207 W retract_length_swap (float)
|
|
* 513 M207 F retract_feedrate_mm_s (float)
|
|
* 517 M207 Z retract_zlift (float)
|
|
* 521 M208 S retract_recover_length (float)
|
|
* 525 M208 W retract_recover_length_swap (float)
|
|
* 529 M208 F retract_recover_feedrate_mm_s (float)
|
|
*
|
|
* Volumetric Extrusion: 21 bytes
|
|
* 533 M200 D volumetric_enabled (bool)
|
|
* 534 M200 T D filament_size (float x5) (T0..3)
|
|
*
|
|
* HAVE_TMC2130: 20 bytes
|
|
* 554 M906 X stepperX current (uint16_t)
|
|
* 556 M906 Y stepperY current (uint16_t)
|
|
* 558 M906 Z stepperZ current (uint16_t)
|
|
* 560 M906 X2 stepperX2 current (uint16_t)
|
|
* 562 M906 Y2 stepperY2 current (uint16_t)
|
|
* 564 M906 Z2 stepperZ2 current (uint16_t)
|
|
* 566 M906 E0 stepperE0 current (uint16_t)
|
|
* 568 M906 E1 stepperE1 current (uint16_t)
|
|
* 570 M906 E2 stepperE2 current (uint16_t)
|
|
* 572 M906 E3 stepperE3 current (uint16_t)
|
|
* 576 M906 E4 stepperE4 current (uint16_t)
|
|
*
|
|
* LIN_ADVANCE: 8 bytes
|
|
* 580 M900 K extruder_advance_k (float)
|
|
* 584 M900 WHD advance_ed_ratio (float)
|
|
*
|
|
* 588 Minimum end-point
|
|
* 1909 (588 + 36 + 9 + 288 + 988) Maximum end-point
|
|
*/
|
|
#include "configuration_store.h"
|
|
|
|
MarlinSettings settings;
|
|
|
|
#include "Marlin.h"
|
|
#include "language.h"
|
|
#include "endstops.h"
|
|
#include "planner.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
#include "stepper_indirection.h"
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#include "ubl.h"
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
extern void refresh_bed_level();
|
|
#endif
|
|
|
|
/**
|
|
* Post-process after Retrieve or Reset
|
|
*/
|
|
void MarlinSettings::postprocess() {
|
|
// steps per s2 needs to be updated to agree with units per s2
|
|
planner.reset_acceleration_rates();
|
|
|
|
// Make sure delta kinematics are updated before refreshing the
|
|
// planner position so the stepper counts will be set correctly.
|
|
#if ENABLED(DELTA)
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
#endif
|
|
|
|
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
|
|
// and init stepper.count[], planner.position[] with current_position
|
|
planner.refresh_positioning();
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
thermalManager.updatePID();
|
|
#endif
|
|
|
|
calculate_volumetric_multipliers();
|
|
|
|
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
// Software endstops depend on home_offset
|
|
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
set_z_fade_height(planner.z_fade_height);
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
refresh_zprobe_zoffset();
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
refresh_bed_level();
|
|
//set_bed_leveling_enabled(leveling_is_on);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
|
|
const char version[4] = EEPROM_VERSION;
|
|
|
|
uint16_t MarlinSettings::eeprom_checksum;
|
|
|
|
bool MarlinSettings::eeprom_write_error,
|
|
MarlinSettings::eeprom_read_error;
|
|
|
|
void MarlinSettings::write_data(int &pos, const uint8_t* value, uint16_t size) {
|
|
if (eeprom_write_error) return;
|
|
while (size--) {
|
|
uint8_t * const p = (uint8_t * const)pos;
|
|
const uint8_t v = *value;
|
|
// EEPROM has only ~100,000 write cycles,
|
|
// so only write bytes that have changed!
|
|
if (v != eeprom_read_byte(p)) {
|
|
eeprom_write_byte(p, v);
|
|
if (eeprom_read_byte(p) != v) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
|
|
eeprom_write_error = true;
|
|
return;
|
|
}
|
|
}
|
|
eeprom_checksum += v;
|
|
pos++;
|
|
value++;
|
|
};
|
|
}
|
|
void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size) {
|
|
do {
|
|
uint8_t c = eeprom_read_byte((unsigned char*)pos);
|
|
if (!eeprom_read_error) *value = c;
|
|
eeprom_checksum += c;
|
|
pos++;
|
|
value++;
|
|
} while (--size);
|
|
}
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f
|
|
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
|
|
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
|
|
#define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
#define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
|
|
|
|
/**
|
|
* M500 - Store Configuration
|
|
*/
|
|
bool MarlinSettings::save() {
|
|
float dummy = 0.0f;
|
|
char ver[4] = "000";
|
|
|
|
EEPROM_START();
|
|
|
|
eeprom_write_error = false;
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
|
|
EEPROM_WRITE(esteppers);
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
#if !HAS_HOME_OFFSET
|
|
const float home_offset[XYZ] = { 0 };
|
|
#endif
|
|
#if ENABLED(DELTA)
|
|
dummy = 0.0;
|
|
EEPROM_WRITE(dummy);
|
|
EEPROM_WRITE(dummy);
|
|
dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
|
|
EEPROM_WRITE(dummy);
|
|
#else
|
|
EEPROM_WRITE(home_offset);
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
// Skip hotend 0 which must be 0
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
#endif
|
|
|
|
//
|
|
// Global Leveling
|
|
//
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float zfh = planner.z_fade_height;
|
|
#else
|
|
const float zfh = 10.0;
|
|
#endif
|
|
EEPROM_WRITE(zfh);
|
|
|
|
//
|
|
// Mesh Bed Leveling
|
|
//
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
static_assert(
|
|
sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(mbl.z_values[0][0]),
|
|
"MBL Z array is the wrong size."
|
|
);
|
|
const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
|
|
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
|
|
EEPROM_WRITE(leveling_is_on);
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
EEPROM_WRITE(mesh_num_x);
|
|
EEPROM_WRITE(mesh_num_y);
|
|
EEPROM_WRITE(mbl.z_values);
|
|
#else // For disabled MBL write a default mesh
|
|
const bool leveling_is_on = false;
|
|
dummy = 0.0f;
|
|
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
|
|
EEPROM_WRITE(leveling_is_on);
|
|
EEPROM_WRITE(dummy); // z_offset
|
|
EEPROM_WRITE(mesh_num_x);
|
|
EEPROM_WRITE(mesh_num_y);
|
|
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if !HAS_BED_PROBE
|
|
const float zprobe_zoffset = 0;
|
|
#endif
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
//
|
|
// Planar Bed Leveling matrix
|
|
//
|
|
|
|
#if ABL_PLANAR
|
|
EEPROM_WRITE(planner.bed_level_matrix);
|
|
#else
|
|
dummy = 0.0;
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Bilinear Auto Bed Leveling
|
|
//
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
// Compile time test that sizeof(z_values) is as expected
|
|
static_assert(
|
|
sizeof(z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(z_values[0][0]),
|
|
"Bilinear Z array is the wrong size."
|
|
);
|
|
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
|
|
EEPROM_WRITE(grid_max_x); // 1 byte
|
|
EEPROM_WRITE(grid_max_y); // 1 byte
|
|
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
|
|
EEPROM_WRITE(bilinear_start); // 2 ints
|
|
EEPROM_WRITE(z_values); // 9-256 floats
|
|
#else
|
|
// For disabled Bilinear Grid write an empty 3x3 grid
|
|
const uint8_t grid_max_x = 3, grid_max_y = 3;
|
|
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE(grid_max_x);
|
|
EEPROM_WRITE(grid_max_y);
|
|
EEPROM_WRITE(bilinear_grid_spacing);
|
|
EEPROM_WRITE(bilinear_start);
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
EEPROM_WRITE(ubl.state.active);
|
|
EEPROM_WRITE(ubl.state.z_offset);
|
|
EEPROM_WRITE(ubl.state.eeprom_storage_slot);
|
|
#else
|
|
const bool ubl_active = 0;
|
|
dummy = 0.0f;
|
|
const int8_t eeprom_slot = -1;
|
|
EEPROM_WRITE(ubl_active);
|
|
EEPROM_WRITE(dummy);
|
|
EEPROM_WRITE(eeprom_slot);
|
|
#endif //AUTO_BED_LEVELING_UBL
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
#if ENABLED(DELTA)
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
EEPROM_WRITE(delta_calibration_radius); // 1 float
|
|
EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
|
|
#else
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
|
|
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
|
|
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
|
|
#endif // !ULTIPANEL
|
|
|
|
EEPROM_WRITE(lcd_preheat_hotend_temp);
|
|
EEPROM_WRITE(lcd_preheat_bed_temp);
|
|
EEPROM_WRITE(lcd_preheat_fan_speed);
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
if (e < HOTENDS) {
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
#else
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
}
|
|
else
|
|
#endif // !PIDTEMP
|
|
{
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
EEPROM_WRITE(dummy); // Kp
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
}
|
|
|
|
} // Hotends Loop
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
int lpq_len = 20;
|
|
#endif
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
dummy = DUMMY_PID_VALUE;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
#else
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
#endif
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
const int lcd_contrast = 32;
|
|
#endif
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
EEPROM_WRITE(retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE(retract_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
EEPROM_WRITE(retract_zlift);
|
|
EEPROM_WRITE(retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
// Save filament sizes
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
EEPROM_WRITE(dummy);
|
|
}
|
|
|
|
// Save TMC2130 Configuration, and placeholder values
|
|
uint16_t val;
|
|
#if ENABLED(HAVE_TMC2130)
|
|
#if ENABLED(X_IS_TMC2130)
|
|
val = stepperX.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
val = stepperY.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
val = stepperZ.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(X2_IS_TMC2130)
|
|
val = stepperX2.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(Y2_IS_TMC2130)
|
|
val = stepperY2.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(Z2_IS_TMC2130)
|
|
val = stepperZ2.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
val = stepperE0.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(E1_IS_TMC2130)
|
|
val = stepperE1.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(E2_IS_TMC2130)
|
|
val = stepperE2.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(E3_IS_TMC2130)
|
|
val = stepperE3.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#if ENABLED(E4_IS_TMC2130)
|
|
val = stepperE4.getCurrent();
|
|
#else
|
|
val = 0;
|
|
#endif
|
|
EEPROM_WRITE(val);
|
|
#else
|
|
val = 0;
|
|
for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
|
|
#endif
|
|
|
|
//
|
|
// Linear Advance
|
|
//
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
EEPROM_WRITE(planner.extruder_advance_k);
|
|
EEPROM_WRITE(planner.advance_ed_ratio);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE(dummy);
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
if (!eeprom_write_error) {
|
|
|
|
const uint16_t final_checksum = eeprom_checksum,
|
|
eeprom_size = eeprom_index;
|
|
|
|
// Write the EEPROM header
|
|
eeprom_index = EEPROM_OFFSET;
|
|
EEPROM_WRITE(version);
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
// Report storage size
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
|
|
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
|
|
if (ubl.state.eeprom_storage_slot >= 0)
|
|
ubl.store_mesh(ubl.state.eeprom_storage_slot);
|
|
#endif
|
|
|
|
return !eeprom_write_error;
|
|
}
|
|
|
|
/**
|
|
* M501 - Retrieve Configuration
|
|
*/
|
|
bool MarlinSettings::load() {
|
|
|
|
EEPROM_START();
|
|
eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
|
|
|
|
char stored_ver[4];
|
|
EEPROM_READ(stored_ver);
|
|
|
|
uint16_t stored_checksum;
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
// Version has to match or defaults are used
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
if (stored_ver[0] != 'V') {
|
|
stored_ver[0] = '?';
|
|
stored_ver[1] = '\0';
|
|
}
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("EEPROM version mismatch ");
|
|
SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
|
|
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
|
|
reset();
|
|
}
|
|
else {
|
|
float dummy = 0;
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
// Number of esteppers may change
|
|
uint8_t esteppers;
|
|
EEPROM_READ(esteppers);
|
|
|
|
// Get only the number of E stepper parameters previously stored
|
|
// Any steppers added later are set to their defaults
|
|
const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
|
|
const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
|
|
float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
|
|
uint32_t tmp3[XYZ + esteppers];
|
|
EEPROM_READ(tmp1);
|
|
EEPROM_READ(tmp2);
|
|
EEPROM_READ(tmp3);
|
|
LOOP_XYZE_N(i) {
|
|
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
|
|
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
|
|
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
|
|
}
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
EEPROM_READ(planner.min_segment_time);
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
#if !HAS_HOME_OFFSET
|
|
float home_offset[XYZ];
|
|
#endif
|
|
EEPROM_READ(home_offset);
|
|
|
|
#if ENABLED(DELTA)
|
|
home_offset[X_AXIS] = 0.0;
|
|
home_offset[Y_AXIS] = 0.0;
|
|
home_offset[Z_AXIS] -= DELTA_HEIGHT;
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
// Skip hotend 0 which must be 0
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
#endif
|
|
|
|
//
|
|
// Global Leveling
|
|
//
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
EEPROM_READ(planner.z_fade_height);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Mesh (Manual) Bed Leveling
|
|
//
|
|
|
|
bool leveling_is_on;
|
|
uint8_t mesh_num_x, mesh_num_y;
|
|
EEPROM_READ(leveling_is_on);
|
|
EEPROM_READ(dummy);
|
|
EEPROM_READ(mesh_num_x);
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
|
|
mbl.z_offset = dummy;
|
|
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
|
|
// EEPROM data fits the current mesh
|
|
EEPROM_READ(mbl.z_values);
|
|
}
|
|
else {
|
|
// EEPROM data is stale
|
|
mbl.reset();
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
}
|
|
#else
|
|
// MBL is disabled - skip the stored data
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if !HAS_BED_PROBE
|
|
float zprobe_zoffset;
|
|
#endif
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
//
|
|
// Planar Bed Leveling matrix
|
|
//
|
|
|
|
#if ABL_PLANAR
|
|
EEPROM_READ(planner.bed_level_matrix);
|
|
#else
|
|
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Bilinear Auto Bed Leveling
|
|
//
|
|
|
|
uint8_t grid_max_x, grid_max_y;
|
|
EEPROM_READ(grid_max_x); // 1 byte
|
|
EEPROM_READ(grid_max_y); // 1 byte
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
|
|
set_bed_leveling_enabled(false);
|
|
EEPROM_READ(bilinear_grid_spacing); // 2 ints
|
|
EEPROM_READ(bilinear_start); // 2 ints
|
|
EEPROM_READ(z_values); // 9 to 256 floats
|
|
}
|
|
else // EEPROM data is stale
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
{
|
|
// Skip past disabled (or stale) Bilinear Grid data
|
|
int bgs[2], bs[2];
|
|
EEPROM_READ(bgs);
|
|
EEPROM_READ(bs);
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
EEPROM_READ(ubl.state.active);
|
|
EEPROM_READ(ubl.state.z_offset);
|
|
EEPROM_READ(ubl.state.eeprom_storage_slot);
|
|
#else
|
|
bool dummyb;
|
|
uint8_t dummyui8;
|
|
EEPROM_READ(dummyb);
|
|
EEPROM_READ(dummy);
|
|
EEPROM_READ(dummyui8);
|
|
#endif //AUTO_BED_LEVELING_UBL
|
|
|
|
#if ENABLED(DELTA)
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
EEPROM_READ(delta_calibration_radius); // 1 float
|
|
EEPROM_READ(delta_tower_angle_trim); // 2 floats
|
|
dummy = 0.0f;
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy);
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_READ(z_endstop_adj);
|
|
dummy = 0.0f;
|
|
for (uint8_t q=11; q--;) EEPROM_READ(dummy);
|
|
#else
|
|
dummy = 0.0f;
|
|
for (uint8_t q=12; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
|
|
#endif
|
|
|
|
EEPROM_READ(lcd_preheat_hotend_temp);
|
|
EEPROM_READ(lcd_preheat_bed_temp);
|
|
EEPROM_READ(lcd_preheat_fan_speed);
|
|
|
|
//EEPROM_ASSERT(
|
|
// WITHIN(lcd_preheat_fan_speed, 0, 255),
|
|
// "lcd_preheat_fan_speed out of range"
|
|
//);
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
EEPROM_READ(dummy); // Kp
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
PID_PARAM(Kp, e) = dummy;
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
}
|
|
else {
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
}
|
|
}
|
|
#else // !PIDTEMP
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
#endif // !PIDTEMP
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
int lpq_len;
|
|
#endif
|
|
EEPROM_READ(lpq_len);
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
EEPROM_READ(dummy); // bedKp
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
thermalManager.bedKp = dummy;
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
}
|
|
#else
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
#endif
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
int lcd_contrast;
|
|
#endif
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
EEPROM_READ(autoretract_enabled);
|
|
EEPROM_READ(retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ(retract_length_swap);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
EEPROM_READ(retract_zlift);
|
|
EEPROM_READ(retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
EEPROM_READ(dummy);
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
}
|
|
|
|
uint16_t val;
|
|
#if ENABLED(HAVE_TMC2130)
|
|
EEPROM_READ(val);
|
|
#if ENABLED(X_IS_TMC2130)
|
|
stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(X2_IS_TMC2130)
|
|
stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(Y2_IS_TMC2130)
|
|
stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(Z2_IS_TMC2130)
|
|
stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(E1_IS_TMC2130)
|
|
stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(E2_IS_TMC2130)
|
|
stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(E3_IS_TMC2130)
|
|
stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
EEPROM_READ(val);
|
|
#if ENABLED(E4_IS_TMC2130)
|
|
stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#else
|
|
for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
|
|
#endif
|
|
|
|
//
|
|
// Linear Advance
|
|
//
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
EEPROM_READ(planner.extruder_advance_k);
|
|
EEPROM_READ(planner.advance_ed_ratio);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
if (eeprom_checksum == stored_checksum) {
|
|
if (eeprom_read_error)
|
|
reset();
|
|
else {
|
|
postprocess();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(version);
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
|
|
reset();
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
|
|
// can float up or down a little bit without
|
|
// disrupting the Unified Bed Leveling data
|
|
SERIAL_ECHOPGM(" UBL ");
|
|
if (!ubl.state.active) SERIAL_ECHO("not ");
|
|
SERIAL_ECHOLNPGM("active!");
|
|
|
|
if (!ubl.sanity_check()) {
|
|
SERIAL_ECHOLNPGM("\nUnified Bed Leveling system initialized.\n");
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling system.\n");
|
|
ubl.reset();
|
|
}
|
|
|
|
if (ubl.state.eeprom_storage_slot >= 0) {
|
|
ubl.load_mesh(ubl.state.eeprom_storage_slot);
|
|
SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
|
|
SERIAL_ECHOLNPGM(" loaded from storage.");
|
|
}
|
|
else {
|
|
ubl.reset();
|
|
SERIAL_ECHOLNPGM("UBL System reset()");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
report();
|
|
#endif
|
|
|
|
return !eeprom_read_error;
|
|
}
|
|
|
|
#else // !EEPROM_SETTINGS
|
|
|
|
bool MarlinSettings::save() {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("EEPROM disabled");
|
|
return false;
|
|
}
|
|
|
|
#endif // !EEPROM_SETTINGS
|
|
|
|
/**
|
|
* M502 - Reset Configuration
|
|
*/
|
|
void MarlinSettings::reset() {
|
|
const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
|
|
const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
|
|
LOOP_XYZE_N(i) {
|
|
planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
|
|
planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
|
|
planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
|
|
}
|
|
|
|
planner.acceleration = DEFAULT_ACCELERATION;
|
|
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
|
|
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
|
|
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
|
|
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
|
|
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
|
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
|
|
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
planner.z_fade_height = 0.0;
|
|
#endif
|
|
|
|
#if HAS_HOME_OFFSET
|
|
ZERO(home_offset);
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
constexpr float tmp4[XYZ][HOTENDS] = {
|
|
HOTEND_OFFSET_X,
|
|
HOTEND_OFFSET_Y
|
|
#ifdef HOTEND_OFFSET_Z
|
|
, HOTEND_OFFSET_Z
|
|
#else
|
|
, { 0 }
|
|
#endif
|
|
};
|
|
static_assert(
|
|
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
|
|
"Offsets for the first hotend must be 0.0."
|
|
);
|
|
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
|
|
#endif
|
|
|
|
// Applies to all MBL and ABL
|
|
#if HAS_LEVELING
|
|
reset_bed_level();
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
|
|
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
|
|
COPY(endstop_adj, adj);
|
|
delta_radius = DELTA_RADIUS;
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
|
|
delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
|
|
delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
|
|
home_offset[Z_AXIS] = 0;
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
float z_endstop_adj =
|
|
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
|
|
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
|
|
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
|
|
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
|
|
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
|
|
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
|
|
#endif
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
HOTEND_LOOP()
|
|
#endif
|
|
{
|
|
PID_PARAM(Kp, e) = DEFAULT_Kp;
|
|
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
|
|
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
PID_PARAM(Kc, e) = DEFAULT_Kc;
|
|
#endif
|
|
}
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
lpq_len = 20; // default last-position-queue size
|
|
#endif
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
thermalManager.bedKp = DEFAULT_bedKp;
|
|
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
|
|
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
autoretract_enabled = false;
|
|
retract_length = RETRACT_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
#endif
|
|
retract_feedrate_mm_s = RETRACT_FEEDRATE;
|
|
retract_zlift = RETRACT_ZLIFT;
|
|
retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
#endif
|
|
retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
|
|
#endif
|
|
|
|
volumetric_enabled =
|
|
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
|
|
true
|
|
#else
|
|
false
|
|
#endif
|
|
;
|
|
for (uint8_t q = 0; q < COUNT(filament_size); q++)
|
|
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
|
endstops.enable_globally(
|
|
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
|
(true)
|
|
#else
|
|
(false)
|
|
#endif
|
|
);
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
#if ENABLED(X_IS_TMC2130)
|
|
stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(X2_IS_TMC2130)
|
|
stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(Y2_IS_TMC2130)
|
|
stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(Z2_IS_TMC2130)
|
|
stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(E1_IS_TMC2130)
|
|
stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(E2_IS_TMC2130)
|
|
stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#if ENABLED(E3_IS_TMC2130)
|
|
stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
planner.extruder_advance_k = LIN_ADVANCE_K;
|
|
planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
ubl.reset();
|
|
#endif
|
|
|
|
postprocess();
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
|
}
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
/**
|
|
* M503 - Report current settings in RAM
|
|
*
|
|
* Unless specifically disabled, M503 is available even without EEPROM
|
|
*/
|
|
void MarlinSettings::report(bool forReplay) {
|
|
|
|
/**
|
|
* Announce current units, in case inches are being displayed
|
|
*/
|
|
CONFIG_ECHO_START;
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
extern float linear_unit_factor, volumetric_unit_factor;
|
|
#define LINEAR_UNIT(N) ((N) / linear_unit_factor)
|
|
#define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? volumetric_unit_factor : linear_unit_factor))
|
|
SERIAL_ECHOPGM(" G2");
|
|
SERIAL_CHAR(linear_unit_factor == 1.0 ? '1' : '0');
|
|
SERIAL_ECHOPGM(" ; Units in ");
|
|
serialprintPGM(linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
|
|
#else
|
|
#define LINEAR_UNIT(N) N
|
|
#define VOLUMETRIC_UNIT(N) N
|
|
SERIAL_ECHOLNPGM(" G21 ; Units in mm\n");
|
|
#endif
|
|
SERIAL_EOL;
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
// Temperature units - for Ultipanel temperature options
|
|
|
|
CONFIG_ECHO_START;
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
extern TempUnit input_temp_units;
|
|
extern float temp_abs(const float &f);
|
|
#define TEMP_UNIT(N) temp_abs(N)
|
|
SERIAL_ECHOPGM(" M149 ");
|
|
SERIAL_CHAR(input_temp_units == TEMPUNIT_K ? 'K' : input_temp_units == TEMPUNIT_F ? 'F' : 'C');
|
|
SERIAL_ECHOPGM(" ; Units in ");
|
|
serialprintPGM(input_temp_units == TEMPUNIT_K ? PSTR("Kelvin\n") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit\n") : PSTR("Celsius\n"));
|
|
#else
|
|
#define TEMP_UNIT(N) N
|
|
SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius\n");
|
|
#endif
|
|
SERIAL_EOL;
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Volumetric extrusion M200
|
|
*/
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
if (volumetric_enabled)
|
|
SERIAL_EOL;
|
|
else
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
}
|
|
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 1
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 2
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 3
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 4
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
|
|
SERIAL_EOL;
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
|
|
if (!volumetric_enabled) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
}
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL;
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR(" M92 T", (int)i);
|
|
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL;
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR(" M203 T", (int)i);
|
|
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL;
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR(" M201 T", (int)i);
|
|
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
|
|
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
|
|
SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
|
|
SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
|
|
SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
|
|
|
|
#if HAS_M206_COMMAND
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Home offset:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
|
|
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Hotend offsets:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
SERIAL_ECHOPAIR(" M218 T", (int)e);
|
|
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
|
|
#endif
|
|
SERIAL_EOL;
|
|
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
|
|
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
|
|
SERIAL_ECHOPAIR(" Y", (int)py + 1);
|
|
SERIAL_ECHOPGM(" Z");
|
|
SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Unified Bed Leveling:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M420 S", ubl.state.active ? 1 : 0);
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
|
|
#endif
|
|
SERIAL_EOL;
|
|
|
|
if (!forReplay) {
|
|
SERIAL_ECHOPGM("\nUBL is ");
|
|
ubl.state.active ? SERIAL_CHAR('A') : SERIAL_ECHOPGM("Ina");
|
|
SERIAL_ECHOLNPAIR("ctive\n\nActive Mesh Slot: ", ubl.state.eeprom_storage_slot);
|
|
|
|
SERIAL_ECHOPGM("z_offset: ");
|
|
SERIAL_ECHO_F(ubl.state.z_offset, 6);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
|
|
SERIAL_ECHOLNPGM(" meshes.\n");
|
|
|
|
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
|
|
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
|
|
|
|
SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
|
|
SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
|
|
|
|
SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
|
|
SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
|
|
SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
|
|
|
|
SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
|
|
SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#elif HAS_ABL
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Auto Bed Leveling:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
|
|
#endif
|
|
SERIAL_EOL;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Endstop adjustment:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
|
|
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
|
|
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
|
|
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
|
|
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
|
|
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
|
|
SERIAL_ECHOPAIR(" Z", 0.00);
|
|
SERIAL_EOL;
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
|
|
#endif // DELTA
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
|
|
SERIAL_ECHOPAIR(" M145 S", (int)i);
|
|
SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
|
|
SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
|
|
SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
|
|
}
|
|
#endif // ULTIPANEL
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
}
|
|
#if ENABLED(PIDTEMP)
|
|
#if HOTENDS > 1
|
|
if (forReplay) {
|
|
HOTEND_LOOP() {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M301 E", e);
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else
|
|
#endif // HOTENDS > 1
|
|
// !forReplay || HOTENDS == 1
|
|
{
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
SERIAL_EOL;
|
|
#endif
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
|
|
#if EXTRUDERS > 1
|
|
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_length_swap));
|
|
#endif
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
|
|
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
|
|
#if EXTRUDERS > 1
|
|
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_recover_length_swap));
|
|
#endif
|
|
SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* Auto Bed Leveling
|
|
*/
|
|
#if HAS_BED_PROBE
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
|
|
#endif
|
|
|
|
/**
|
|
* TMC2130 stepper driver current
|
|
*/
|
|
#if ENABLED(HAVE_TMC2130)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Stepper driver current:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHO(" M906");
|
|
#if ENABLED(X_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
|
|
#endif
|
|
#if ENABLED(X2_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
|
|
#endif
|
|
#if ENABLED(Y2_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
|
|
#endif
|
|
#if ENABLED(Z2_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
|
|
#endif
|
|
#if ENABLED(E1_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
|
|
#endif
|
|
#if ENABLED(E2_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
|
|
#endif
|
|
#if ENABLED(E3_IS_TMC2130)
|
|
SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
|
|
#endif
|
|
SERIAL_EOL;
|
|
#endif
|
|
|
|
/**
|
|
* Linear Advance
|
|
*/
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Linear Advance:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
|
|
SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
|
|
#endif
|
|
}
|
|
|
|
#endif // !DISABLE_M503
|