You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							982 lines
						
					
					
						
							28 KiB
						
					
					
				
			
		
		
	
	
							982 lines
						
					
					
						
							28 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * stepper.cpp - A singleton object to execute motion plans using stepper motors
 | |
|  * Marlin Firmware
 | |
|  *
 | |
|  * Derived from Grbl
 | |
|  * Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
|  *
 | |
|  * Grbl is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * Grbl is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | |
|    and Philipp Tiefenbacher. */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "stepper.h"
 | |
| #include "endstops.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| #include "cardreader.h"
 | |
| #include "speed_lookuptable.h"
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| Stepper stepper; // Singleton
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
|   #define X_APPLY_DIR(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_DIR_WRITE(v); \
 | |
|       X2_DIR_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
 | |
|     }
 | |
|   #define X_APPLY_STEP(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_STEP_WRITE(v); \
 | |
|       X2_STEP_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
 | |
|     }
 | |
| #else
 | |
|   #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
 | |
|   #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | |
|   #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
 | |
|   #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
 | |
| #else
 | |
|   #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
 | |
|   #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | |
|   #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     #define Z_APPLY_STEP(v,Q) \
 | |
|     if (performing_homing) { \
 | |
|       if (Z_HOME_DIR > 0) {\
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } \
 | |
|       else { \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } \
 | |
|     } \
 | |
|     else { \
 | |
|       Z_STEP_WRITE(v); \
 | |
|       Z2_STEP_WRITE(v); \
 | |
|     }
 | |
|   #else
 | |
|     #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
 | |
|   #endif
 | |
| #else
 | |
|   #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
 | |
|   #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
 | |
| 
 | |
| // intRes = longIn1 * longIn2 >> 24
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
 | |
| // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
 | |
| // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
 | |
| // B0 A0 are bits 24-39 and are the returned value
 | |
| // C1 B1 A1 is longIn1
 | |
| // D2 C2 B2 A2 is longIn2
 | |
| //
 | |
| #define MultiU24X32toH16(intRes, longIn1, longIn2) \
 | |
|   asm volatile ( \
 | |
|                  "clr r26 \n\t" \
 | |
|                  "mul %A1, %B2 \n\t" \
 | |
|                  "mov r27, r1 \n\t" \
 | |
|                  "mul %B1, %C2 \n\t" \
 | |
|                  "movw %A0, r0 \n\t" \
 | |
|                  "mul %C1, %C2 \n\t" \
 | |
|                  "add %B0, r0 \n\t" \
 | |
|                  "mul %C1, %B2 \n\t" \
 | |
|                  "add %A0, r0 \n\t" \
 | |
|                  "adc %B0, r1 \n\t" \
 | |
|                  "mul %A1, %C2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %B1, %B2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %C1, %A2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %B1, %A2 \n\t" \
 | |
|                  "add r27, r1 \n\t" \
 | |
|                  "adc %A0, r26 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "lsr r27 \n\t" \
 | |
|                  "adc %A0, r26 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %D2, %A1 \n\t" \
 | |
|                  "add %A0, r0 \n\t" \
 | |
|                  "adc %B0, r1 \n\t" \
 | |
|                  "mul %D2, %B1 \n\t" \
 | |
|                  "add %B0, r0 \n\t" \
 | |
|                  "clr r1 \n\t" \
 | |
|                  : \
 | |
|                  "=&r" (intRes) \
 | |
|                  : \
 | |
|                  "d" (longIn1), \
 | |
|                  "d" (longIn2) \
 | |
|                  : \
 | |
|                  "r26" , "r27" \
 | |
|                )
 | |
| 
 | |
| // Some useful constants
 | |
| 
 | |
| #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
 | |
| #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
 | |
| 
 | |
| /**
 | |
|  *         __________________________
 | |
|  *        /|                        |\     _________________         ^
 | |
|  *       / |                        | \   /|               |\        |
 | |
|  *      /  |                        |  \ / |               | \       s
 | |
|  *     /   |                        |   |  |               |  \      p
 | |
|  *    /    |                        |   |  |               |   \     e
 | |
|  *   +-----+------------------------+---+--+---------------+----+    e
 | |
|  *   |               BLOCK 1            |      BLOCK 2          |    d
 | |
|  *
 | |
|  *                           time ----->
 | |
|  *
 | |
|  *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 | |
|  *  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 | |
|  *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | |
|  *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
 | |
|  */
 | |
| void Stepper::wake_up() {
 | |
|   //  TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the stepper direction of each axis
 | |
|  *
 | |
|  *   X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
 | |
|  *   X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
 | |
|  */
 | |
| void Stepper::set_directions() {
 | |
| 
 | |
|   #define SET_STEP_DIR(AXIS) \
 | |
|     if (motor_direction(AXIS ##_AXIS)) { \
 | |
|       AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
 | |
|       count_direction[AXIS ##_AXIS] = -1; \
 | |
|     } \
 | |
|     else { \
 | |
|       AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
 | |
|       count_direction[AXIS ##_AXIS] = 1; \
 | |
|     }
 | |
| 
 | |
|   SET_STEP_DIR(X); // A
 | |
|   SET_STEP_DIR(Y); // B
 | |
|   SET_STEP_DIR(Z); // C
 | |
| 
 | |
|   #if DISABLED(ADVANCE)
 | |
|     if (motor_direction(E_AXIS)) {
 | |
|       REV_E_DIR();
 | |
|       count_direction[E_AXIS] = -1;
 | |
|     }
 | |
|     else {
 | |
|       NORM_E_DIR();
 | |
|       count_direction[E_AXIS] = 1;
 | |
|     }
 | |
|   #endif //!ADVANCE
 | |
| }
 | |
| 
 | |
| // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 | |
| // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 | |
| ISR(TIMER1_COMPA_vect) { stepper.isr(); }
 | |
| 
 | |
| void Stepper::isr() {
 | |
|   if (cleaning_buffer_counter) {
 | |
|     current_block = NULL;
 | |
|     planner.discard_current_block();
 | |
|     #ifdef SD_FINISHED_RELEASECOMMAND
 | |
|       if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
 | |
|     #endif
 | |
|     cleaning_buffer_counter--;
 | |
|     OCR1A = 200;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there is no current block, attempt to pop one from the buffer
 | |
|   if (!current_block) {
 | |
|     // Anything in the buffer?
 | |
|     current_block = planner.get_current_block();
 | |
|     if (current_block) {
 | |
|       current_block->busy = true;
 | |
|       trapezoid_generator_reset();
 | |
|       counter_X = -(current_block->step_event_count >> 1);
 | |
|       counter_Y = counter_Z = counter_E = counter_X;
 | |
|       step_events_completed = 0;
 | |
| 
 | |
|       #if ENABLED(Z_LATE_ENABLE)
 | |
|         if (current_block->steps[Z_AXIS] > 0) {
 | |
|           enable_z();
 | |
|           OCR1A = 2000; //1ms wait
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       // #if ENABLED(ADVANCE)
 | |
|       //   e_steps[current_block->active_extruder] = 0;
 | |
|       // #endif
 | |
|     }
 | |
|     else {
 | |
|       OCR1A = 2000; // 1kHz.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (current_block != NULL) {
 | |
| 
 | |
|     // Update endstops state, if enabled
 | |
|     #if HAS_BED_PROBE
 | |
|       if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
 | |
|     #else
 | |
|       if (endstops.enabled) endstops.update();
 | |
|     #endif
 | |
| 
 | |
|     // Take multiple steps per interrupt (For high speed moves)
 | |
|     for (int8_t i = 0; i < step_loops; i++) {
 | |
|       #ifndef USBCON
 | |
|         customizedSerial.checkRx(); // Check for serial chars.
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(ADVANCE)
 | |
|         counter_E += current_block->steps[E_AXIS];
 | |
|         if (counter_E > 0) {
 | |
|           counter_E -= current_block->step_event_count;
 | |
|           e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
 | |
|         }
 | |
|       #endif //ADVANCE
 | |
| 
 | |
|       #define _COUNTER(AXIS) counter_## AXIS
 | |
|       #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
 | |
|       #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
 | |
| 
 | |
|       #define STEP_ADD(AXIS) \
 | |
|         _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
 | |
|         if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
 | |
| 
 | |
|       STEP_ADD(X);
 | |
|       STEP_ADD(Y);
 | |
|       STEP_ADD(Z);
 | |
|       #if DISABLED(ADVANCE)
 | |
|         STEP_ADD(E);
 | |
|       #endif
 | |
| 
 | |
|       #define STEP_IF_COUNTER(AXIS) \
 | |
|         if (_COUNTER(AXIS) > 0) { \
 | |
|           _COUNTER(AXIS) -= current_block->step_event_count; \
 | |
|           count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
 | |
|           _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
 | |
|         }
 | |
| 
 | |
|       STEP_IF_COUNTER(X);
 | |
|       STEP_IF_COUNTER(Y);
 | |
|       STEP_IF_COUNTER(Z);
 | |
|       #if DISABLED(ADVANCE)
 | |
|         STEP_IF_COUNTER(E);
 | |
|       #endif
 | |
| 
 | |
|       step_events_completed++;
 | |
|       if (step_events_completed >= current_block->step_event_count) break;
 | |
|     }
 | |
|     // Calculate new timer value
 | |
|     unsigned short timer, step_rate;
 | |
|     if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
 | |
| 
 | |
|       MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | |
|       acc_step_rate += current_block->initial_rate;
 | |
| 
 | |
|       // upper limit
 | |
|       NOMORE(acc_step_rate, current_block->nominal_rate);
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(acc_step_rate);
 | |
|       OCR1A = timer;
 | |
|       acceleration_time += timer;
 | |
| 
 | |
|       #if ENABLED(ADVANCE)
 | |
| 
 | |
|         advance += advance_rate * step_loops;
 | |
|         //NOLESS(advance, current_block->advance);
 | |
| 
 | |
|         // Do E steps + advance steps
 | |
|         e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
 | |
|         old_advance = advance >> 8;
 | |
| 
 | |
|       #endif //ADVANCE
 | |
|     }
 | |
|     else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
 | |
|       MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | |
| 
 | |
|       if (step_rate <= acc_step_rate) { // Still decelerating?
 | |
|         step_rate = acc_step_rate - step_rate;
 | |
|         NOLESS(step_rate, current_block->final_rate);
 | |
|       }
 | |
|       else
 | |
|         step_rate = current_block->final_rate;
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(step_rate);
 | |
|       OCR1A = timer;
 | |
|       deceleration_time += timer;
 | |
| 
 | |
|       #if ENABLED(ADVANCE)
 | |
|         advance -= advance_rate * step_loops;
 | |
|         NOLESS(advance, final_advance);
 | |
| 
 | |
|         // Do E steps + advance steps
 | |
|         uint32_t advance_whole = advance >> 8;
 | |
|         e_steps[current_block->active_extruder] += advance_whole - old_advance;
 | |
|         old_advance = advance_whole;
 | |
|       #endif //ADVANCE
 | |
|     }
 | |
|     else {
 | |
|       OCR1A = OCR1A_nominal;
 | |
|       // ensure we're running at the correct step rate, even if we just came off an acceleration
 | |
|       step_loops = step_loops_nominal;
 | |
|     }
 | |
| 
 | |
|     OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
 | |
| 
 | |
|     // If current block is finished, reset pointer
 | |
|     if (step_events_completed >= current_block->step_event_count) {
 | |
|       current_block = NULL;
 | |
|       planner.discard_current_block();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if ENABLED(ADVANCE)
 | |
|   // Timer interrupt for E. e_steps is set in the main routine;
 | |
|   // Timer 0 is shared with millies
 | |
|   ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
 | |
| 
 | |
|   void Stepper::advance_isr() {
 | |
|     old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
 | |
|     OCR0A = old_OCR0A;
 | |
| 
 | |
|     #define STEP_E_ONCE(INDEX) \
 | |
|       if (e_steps[INDEX] != 0) { \
 | |
|         E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
 | |
|         if (e_steps[INDEX] < 0) { \
 | |
|           E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
 | |
|           e_steps[INDEX]++; \
 | |
|         } \
 | |
|         else if (e_steps[INDEX] > 0) { \
 | |
|           E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
 | |
|           e_steps[INDEX]--; \
 | |
|         } \
 | |
|         E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
 | |
|       }
 | |
| 
 | |
|     // Step all E steppers that have steps, up to 4 steps per interrupt
 | |
|     for (unsigned char i = 0; i < 4; i++) {
 | |
|       STEP_E_ONCE(0);
 | |
|       #if EXTRUDERS > 1
 | |
|         STEP_E_ONCE(1);
 | |
|         #if EXTRUDERS > 2
 | |
|           STEP_E_ONCE(2);
 | |
|           #if EXTRUDERS > 3
 | |
|             STEP_E_ONCE(3);
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // ADVANCE
 | |
| 
 | |
| void Stepper::init() {
 | |
|   digipot_init(); //Initialize Digipot Motor Current
 | |
|   microstep_init(); //Initialize Microstepping Pins
 | |
| 
 | |
|   // initialise TMC Steppers
 | |
|   #if ENABLED(HAVE_TMCDRIVER)
 | |
|     tmc_init();
 | |
|   #endif
 | |
|     // initialise L6470 Steppers
 | |
|   #if ENABLED(HAVE_L6470DRIVER)
 | |
|     L6470_init();
 | |
|   #endif
 | |
| 
 | |
|   // Initialize Dir Pins
 | |
|   #if HAS_X_DIR
 | |
|     X_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_X2_DIR
 | |
|     X2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_Y_DIR
 | |
|     Y_DIR_INIT;
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
 | |
|       Y2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_Z_DIR
 | |
|     Z_DIR_INIT;
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
 | |
|       Z2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_DIR
 | |
|     E0_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E1_DIR
 | |
|     E1_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E2_DIR
 | |
|     E2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E3_DIR
 | |
|     E3_DIR_INIT;
 | |
|   #endif
 | |
| 
 | |
|   //Initialize Enable Pins - steppers default to disabled.
 | |
| 
 | |
|   #if HAS_X_ENABLE
 | |
|     X_ENABLE_INIT;
 | |
|     if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_X2_ENABLE
 | |
|     X2_ENABLE_INIT;
 | |
|     if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_Y_ENABLE
 | |
|     Y_ENABLE_INIT;
 | |
|     if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
 | |
| 
 | |
|   #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
 | |
|     Y2_ENABLE_INIT;
 | |
|     if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #endif
 | |
|   #if HAS_Z_ENABLE
 | |
|     Z_ENABLE_INIT;
 | |
|     if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
 | |
| 
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
 | |
|       Z2_ENABLE_INIT;
 | |
|       if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_ENABLE
 | |
|     E0_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E1_ENABLE
 | |
|     E1_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E2_ENABLE
 | |
|     E2_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E3_ENABLE
 | |
|     E3_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
| 
 | |
|   //
 | |
|   // Init endstops and pullups here
 | |
|   //
 | |
|   endstops.init();
 | |
| 
 | |
|   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
 | |
|   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
 | |
|   #define _DISABLE(axis) disable_## axis()
 | |
| 
 | |
|   #define AXIS_INIT(axis, AXIS, PIN) \
 | |
|     _STEP_INIT(AXIS); \
 | |
|     _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
 | |
|     _DISABLE(axis)
 | |
| 
 | |
|   #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
 | |
| 
 | |
|   // Initialize Step Pins
 | |
|   #if HAS_X_STEP
 | |
|     AXIS_INIT(x, X, X);
 | |
|   #endif
 | |
|   #if HAS_X2_STEP
 | |
|     AXIS_INIT(x, X2, X);
 | |
|   #endif
 | |
|   #if HAS_Y_STEP
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
 | |
|       Y2_STEP_INIT;
 | |
|       Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(y, Y, Y);
 | |
|   #endif
 | |
|   #if HAS_Z_STEP
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
 | |
|       Z2_STEP_INIT;
 | |
|       Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(z, Z, Z);
 | |
|   #endif
 | |
|   #if HAS_E0_STEP
 | |
|     E_AXIS_INIT(0);
 | |
|   #endif
 | |
|   #if HAS_E1_STEP
 | |
|     E_AXIS_INIT(1);
 | |
|   #endif
 | |
|   #if HAS_E2_STEP
 | |
|     E_AXIS_INIT(2);
 | |
|   #endif
 | |
|   #if HAS_E3_STEP
 | |
|     E_AXIS_INIT(3);
 | |
|   #endif
 | |
| 
 | |
|   // waveform generation = 0100 = CTC
 | |
|   CBI(TCCR1B, WGM13);
 | |
|   SBI(TCCR1B, WGM12);
 | |
|   CBI(TCCR1A, WGM11);
 | |
|   CBI(TCCR1A, WGM10);
 | |
| 
 | |
|   // output mode = 00 (disconnected)
 | |
|   TCCR1A &= ~(3 << COM1A0);
 | |
|   TCCR1A &= ~(3 << COM1B0);
 | |
|   // Set the timer pre-scaler
 | |
|   // Generally we use a divider of 8, resulting in a 2MHz timer
 | |
|   // frequency on a 16MHz MCU. If you are going to change this, be
 | |
|   // sure to regenerate speed_lookuptable.h with
 | |
|   // create_speed_lookuptable.py
 | |
|   TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
 | |
| 
 | |
|   OCR1A = 0x4000;
 | |
|   TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| 
 | |
|   #if ENABLED(ADVANCE)
 | |
|     #if defined(TCCR0A) && defined(WGM01)
 | |
|       CBI(TCCR0A, WGM01);
 | |
|       CBI(TCCR0A, WGM00);
 | |
|     #endif
 | |
|     e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
 | |
|     SBI(TIMSK0, OCIE0A);
 | |
|   #endif //ADVANCE
 | |
| 
 | |
|   endstops.enable(true); // Start with endstops active. After homing they can be disabled
 | |
|   sei();
 | |
| 
 | |
|   set_directions(); // Init directions to last_direction_bits = 0
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Block until all buffered steps are executed
 | |
|  */
 | |
| void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
 | |
| 
 | |
| /**
 | |
|  * Set the stepper positions directly in steps
 | |
|  *
 | |
|  * The input is based on the typical per-axis XYZ steps.
 | |
|  * For CORE machines XYZ needs to be translated to ABC.
 | |
|  *
 | |
|  * This allows get_axis_position_mm to correctly
 | |
|  * derive the current XYZ position later on.
 | |
|  */
 | |
| void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
 | |
|   CRITICAL_SECTION_START;
 | |
| 
 | |
|   #if ENABLED(COREXY)
 | |
|     // corexy positioning
 | |
|     // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | |
|     count_position[A_AXIS] = x + y;
 | |
|     count_position[B_AXIS] = x - y;
 | |
|     count_position[Z_AXIS] = z;
 | |
|   #elif ENABLED(COREXZ)
 | |
|     // corexz planning
 | |
|     count_position[A_AXIS] = x + z;
 | |
|     count_position[Y_AXIS] = y;
 | |
|     count_position[C_AXIS] = x - z;
 | |
|   #else
 | |
|     // default non-h-bot planning
 | |
|     count_position[X_AXIS] = x;
 | |
|     count_position[Y_AXIS] = y;
 | |
|     count_position[Z_AXIS] = z;
 | |
|   #endif
 | |
| 
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| void Stepper::set_e_position(const long& e) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get a stepper's position in steps.
 | |
|  */
 | |
| long Stepper::position(AxisEnum axis) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   long count_pos = count_position[axis];
 | |
|   CRITICAL_SECTION_END;
 | |
|   return count_pos;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get an axis position according to stepper position(s)
 | |
|  * For CORE machines apply translation from ABC to XYZ.
 | |
|  */
 | |
| float Stepper::get_axis_position_mm(AxisEnum axis) {
 | |
|   float axis_steps;
 | |
|   #if ENABLED(COREXY) | ENABLED(COREXZ)
 | |
|     if (axis == X_AXIS || axis == CORE_AXIS_2) {
 | |
|       CRITICAL_SECTION_START;
 | |
|       long pos1 = count_position[A_AXIS],
 | |
|            pos2 = count_position[CORE_AXIS_2];
 | |
|       CRITICAL_SECTION_END;
 | |
|       // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
 | |
|       // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
 | |
|       axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
 | |
|     }
 | |
|     else
 | |
|       axis_steps = position(axis);
 | |
|   #else
 | |
|     axis_steps = position(axis);
 | |
|   #endif
 | |
|   return axis_steps / planner.axis_steps_per_unit[axis];
 | |
| }
 | |
| 
 | |
| void Stepper::finish_and_disable() {
 | |
|   synchronize();
 | |
|   disable_all_steppers();
 | |
| }
 | |
| 
 | |
| void Stepper::quick_stop() {
 | |
|   cleaning_buffer_counter = 5000;
 | |
|   DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|   while (planner.blocks_queued()) planner.discard_current_block();
 | |
|   current_block = NULL;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| void Stepper::endstop_triggered(AxisEnum axis) {
 | |
| 
 | |
|   #if ENABLED(COREXY) || ENABLED(COREXZ)
 | |
| 
 | |
|     float axis_pos = count_position[axis];
 | |
|     if (axis == A_AXIS)
 | |
|       axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
 | |
|     else if (axis == CORE_AXIS_2)
 | |
|       axis_pos = (count_position[A_AXIS] - axis_pos) / 2;
 | |
|     endstops_trigsteps[axis] = axis_pos;
 | |
| 
 | |
|   #else // !COREXY && !COREXZ
 | |
| 
 | |
|     endstops_trigsteps[axis] = count_position[axis];
 | |
| 
 | |
|   #endif // !COREXY && !COREXZ
 | |
| 
 | |
|   kill_current_block();
 | |
| }
 | |
| 
 | |
| void Stepper::report_positions() {
 | |
|   CRITICAL_SECTION_START;
 | |
|   long xpos = count_position[X_AXIS],
 | |
|        ypos = count_position[Y_AXIS],
 | |
|        zpos = count_position[Z_AXIS];
 | |
|   CRITICAL_SECTION_END;
 | |
| 
 | |
|   #if ENABLED(COREXY) || ENABLED(COREXZ)
 | |
|     SERIAL_PROTOCOLPGM(MSG_COUNT_A);
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(MSG_COUNT_X);
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(xpos);
 | |
| 
 | |
|   #if ENABLED(COREXY) || ENABLED(COREXZ)
 | |
|     SERIAL_PROTOCOLPGM(" B:");
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(" Y:");
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(ypos);
 | |
| 
 | |
|   #if ENABLED(COREXZ) || ENABLED(COREXZ)
 | |
|     SERIAL_PROTOCOLPGM(" C:");
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(" Z:");
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(zpos);
 | |
| 
 | |
|   SERIAL_EOL;
 | |
| }
 | |
| 
 | |
| #if ENABLED(BABYSTEPPING)
 | |
| 
 | |
|   // MUST ONLY BE CALLED BY AN ISR,
 | |
|   // No other ISR should ever interrupt this!
 | |
|   void Stepper::babystep(const uint8_t axis, const bool direction) {
 | |
| 
 | |
|     #define _ENABLE(axis) enable_## axis()
 | |
|     #define _READ_DIR(AXIS) AXIS ##_DIR_READ
 | |
|     #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
 | |
|     #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
 | |
| 
 | |
|     #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
 | |
|         _ENABLE(axis); \
 | |
|         uint8_t old_pin = _READ_DIR(AXIS); \
 | |
|         _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
 | |
|         _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
 | |
|         delayMicroseconds(2); \
 | |
|         _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
 | |
|         _APPLY_DIR(AXIS, old_pin); \
 | |
|       }
 | |
| 
 | |
|     switch (axis) {
 | |
| 
 | |
|       case X_AXIS:
 | |
|         BABYSTEP_AXIS(x, X, false);
 | |
|         break;
 | |
| 
 | |
|       case Y_AXIS:
 | |
|         BABYSTEP_AXIS(y, Y, false);
 | |
|         break;
 | |
| 
 | |
|       case Z_AXIS: {
 | |
| 
 | |
|         #if DISABLED(DELTA)
 | |
| 
 | |
|           BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
 | |
| 
 | |
|         #else // DELTA
 | |
| 
 | |
|           bool z_direction = direction ^ BABYSTEP_INVERT_Z;
 | |
| 
 | |
|           enable_x();
 | |
|           enable_y();
 | |
|           enable_z();
 | |
|           uint8_t old_x_dir_pin = X_DIR_READ,
 | |
|                   old_y_dir_pin = Y_DIR_READ,
 | |
|                   old_z_dir_pin = Z_DIR_READ;
 | |
|           //setup new step
 | |
|           X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
 | |
|           Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
 | |
|           Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
 | |
|           //perform step
 | |
|           X_STEP_WRITE(!INVERT_X_STEP_PIN);
 | |
|           Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
 | |
|           Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
 | |
|           delayMicroseconds(2);
 | |
|           X_STEP_WRITE(INVERT_X_STEP_PIN);
 | |
|           Y_STEP_WRITE(INVERT_Y_STEP_PIN);
 | |
|           Z_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
|           //get old pin state back.
 | |
|           X_DIR_WRITE(old_x_dir_pin);
 | |
|           Y_DIR_WRITE(old_y_dir_pin);
 | |
|           Z_DIR_WRITE(old_z_dir_pin);
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|       } break;
 | |
| 
 | |
|       default: break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif //BABYSTEPPING
 | |
| 
 | |
| /**
 | |
|  * Software-controlled Stepper Motor Current
 | |
|  */
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
| 
 | |
|   // From Arduino DigitalPotControl example
 | |
|   void Stepper::digitalPotWrite(int address, int value) {
 | |
|     digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
 | |
|     SPI.transfer(address); //  send in the address and value via SPI:
 | |
|     SPI.transfer(value);
 | |
|     digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
 | |
|     //delay(10);
 | |
|   }
 | |
| 
 | |
| #endif //HAS_DIGIPOTSS
 | |
| 
 | |
| void Stepper::digipot_init() {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 | |
| 
 | |
|     SPI.begin();
 | |
|     pinMode(DIGIPOTSS_PIN, OUTPUT);
 | |
|     for (int i = 0; i < COUNT(digipot_motor_current); i++) {
 | |
|       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | |
|       digipot_current(i, digipot_motor_current[i]);
 | |
|     }
 | |
|   #endif
 | |
|   #if HAS_MOTOR_CURRENT_PWM
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|       pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
 | |
|       digipot_current(0, motor_current_setting[0]);
 | |
|     #endif
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|       pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
 | |
|       digipot_current(1, motor_current_setting[1]);
 | |
|     #endif
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|       pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
 | |
|       digipot_current(2, motor_current_setting[2]);
 | |
|     #endif
 | |
|     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | |
|     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void Stepper::digipot_current(uint8_t driver, int current) {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 | |
|     digitalPotWrite(digipot_ch[driver], current);
 | |
|   #elif HAS_MOTOR_CURRENT_PWM
 | |
|     #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
 | |
|     switch (driver) {
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|         case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
 | |
|       #endif
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|         case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
 | |
|       #endif
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|         case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
 | |
|       #endif
 | |
|     }
 | |
|   #else
 | |
|     UNUSED(driver);
 | |
|     UNUSED(current);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void Stepper::microstep_init() {
 | |
|   #if HAS_MICROSTEPS_E1
 | |
|     pinMode(E1_MS1_PIN, OUTPUT);
 | |
|     pinMode(E1_MS2_PIN, OUTPUT);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_MICROSTEPS
 | |
|     pinMode(X_MS1_PIN, OUTPUT);
 | |
|     pinMode(X_MS2_PIN, OUTPUT);
 | |
|     pinMode(Y_MS1_PIN, OUTPUT);
 | |
|     pinMode(Y_MS2_PIN, OUTPUT);
 | |
|     pinMode(Z_MS1_PIN, OUTPUT);
 | |
|     pinMode(Z_MS2_PIN, OUTPUT);
 | |
|     pinMode(E0_MS1_PIN, OUTPUT);
 | |
|     pinMode(E0_MS2_PIN, OUTPUT);
 | |
|     const uint8_t microstep_modes[] = MICROSTEP_MODES;
 | |
|     for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
 | |
|       microstep_mode(i, microstep_modes[i]);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Software-controlled Microstepping
 | |
|  */
 | |
| 
 | |
| void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
 | |
|   if (ms1 >= 0) switch (driver) {
 | |
|     case 0: digitalWrite(X_MS1_PIN, ms1); break;
 | |
|     case 1: digitalWrite(Y_MS1_PIN, ms1); break;
 | |
|     case 2: digitalWrite(Z_MS1_PIN, ms1); break;
 | |
|     case 3: digitalWrite(E0_MS1_PIN, ms1); break;
 | |
|     #if HAS_MICROSTEPS_E1
 | |
|       case 4: digitalWrite(E1_MS1_PIN, ms1); break;
 | |
|     #endif
 | |
|   }
 | |
|   if (ms2 >= 0) switch (driver) {
 | |
|     case 0: digitalWrite(X_MS2_PIN, ms2); break;
 | |
|     case 1: digitalWrite(Y_MS2_PIN, ms2); break;
 | |
|     case 2: digitalWrite(Z_MS2_PIN, ms2); break;
 | |
|     case 3: digitalWrite(E0_MS2_PIN, ms2); break;
 | |
|     #if PIN_EXISTS(E1_MS2)
 | |
|       case 4: digitalWrite(E1_MS2_PIN, ms2); break;
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
 | |
|   switch (stepping_mode) {
 | |
|     case 1: microstep_ms(driver, MICROSTEP1); break;
 | |
|     case 2: microstep_ms(driver, MICROSTEP2); break;
 | |
|     case 4: microstep_ms(driver, MICROSTEP4); break;
 | |
|     case 8: microstep_ms(driver, MICROSTEP8); break;
 | |
|     case 16: microstep_ms(driver, MICROSTEP16); break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Stepper::microstep_readings() {
 | |
|   SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 | |
|   SERIAL_PROTOCOLPGM("X: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("Y: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("Z: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
 | |
|   SERIAL_PROTOCOLPGM("E0: ");
 | |
|   SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
 | |
|   SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
 | |
|   #if HAS_MICROSTEPS_E1
 | |
|     SERIAL_PROTOCOLPGM("E1: ");
 | |
|     SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
 | |
|     SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
 | |
|   #endif
 | |
| }
 |