You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							571 lines
						
					
					
						
							15 KiB
						
					
					
				
			
		
		
	
	
							571 lines
						
					
					
						
							15 KiB
						
					
					
				/**
 | 
						|
 * Marlin 3D Printer Firmware
 | 
						|
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * temperature.h - temperature controller
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef TEMPERATURE_H
 | 
						|
#define TEMPERATURE_H
 | 
						|
 | 
						|
#include "thermistortables.h"
 | 
						|
 | 
						|
#include "MarlinConfig.h"
 | 
						|
 | 
						|
#if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
  #include "stepper.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef SOFT_PWM_SCALE
 | 
						|
  #define SOFT_PWM_SCALE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
 | 
						|
 | 
						|
#if HOTENDS == 1
 | 
						|
  #define HOTEND_INDEX  0
 | 
						|
  #define EXTRUDER_IDX  0
 | 
						|
#else
 | 
						|
  #define HOTEND_INDEX  e
 | 
						|
  #define EXTRUDER_IDX  active_extruder
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * States for ADC reading in the ISR
 | 
						|
 */
 | 
						|
enum ADCSensorState {
 | 
						|
  #if HAS_TEMP_0
 | 
						|
    PrepareTemp_0,
 | 
						|
    MeasureTemp_0,
 | 
						|
  #endif
 | 
						|
  #if HAS_TEMP_1
 | 
						|
    PrepareTemp_1,
 | 
						|
    MeasureTemp_1,
 | 
						|
  #endif
 | 
						|
  #if HAS_TEMP_2
 | 
						|
    PrepareTemp_2,
 | 
						|
    MeasureTemp_2,
 | 
						|
  #endif
 | 
						|
  #if HAS_TEMP_3
 | 
						|
    PrepareTemp_3,
 | 
						|
    MeasureTemp_3,
 | 
						|
  #endif
 | 
						|
  #if HAS_TEMP_4
 | 
						|
    PrepareTemp_4,
 | 
						|
    MeasureTemp_4,
 | 
						|
  #endif
 | 
						|
  #if HAS_TEMP_BED
 | 
						|
    PrepareTemp_BED,
 | 
						|
    MeasureTemp_BED,
 | 
						|
  #endif
 | 
						|
  #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
    Prepare_FILWIDTH,
 | 
						|
    Measure_FILWIDTH,
 | 
						|
  #endif
 | 
						|
  SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
 | 
						|
  StartupDelay  // Startup, delay initial temp reading a tiny bit so the hardware can settle
 | 
						|
};
 | 
						|
 | 
						|
// Minimum number of Temperature::ISR loops between sensor readings.
 | 
						|
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
 | 
						|
// get all oversampled sensor readings
 | 
						|
#define MIN_ADC_ISR_LOOPS 10
 | 
						|
 | 
						|
#define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
 | 
						|
 | 
						|
#if !HAS_HEATER_BED
 | 
						|
  constexpr int16_t target_temperature_bed = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
class Temperature {
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    static float current_temperature[HOTENDS],
 | 
						|
                 current_temperature_bed;
 | 
						|
    static int16_t current_temperature_raw[HOTENDS],
 | 
						|
                   target_temperature[HOTENDS],
 | 
						|
                   current_temperature_bed_raw;
 | 
						|
 | 
						|
    #if HAS_HEATER_BED
 | 
						|
      static int16_t target_temperature_bed;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static volatile bool in_temp_isr;
 | 
						|
 | 
						|
    static uint8_t soft_pwm_amount[HOTENDS],
 | 
						|
                   soft_pwm_amount_bed;
 | 
						|
 | 
						|
    #if ENABLED(FAN_SOFT_PWM)
 | 
						|
      static uint8_t soft_pwm_amount_fan[FAN_COUNT],
 | 
						|
                     soft_pwm_count_fan[FAN_COUNT];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
 | 
						|
      #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP)
 | 
						|
 | 
						|
      #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
 | 
						|
 | 
						|
        static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
 | 
						|
        #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
          static float Kc[HOTENDS];
 | 
						|
        #endif
 | 
						|
        #define PID_PARAM(param, h) Temperature::param[h]
 | 
						|
 | 
						|
      #else
 | 
						|
 | 
						|
        static float Kp, Ki, Kd;
 | 
						|
        #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
          static float Kc;
 | 
						|
        #endif
 | 
						|
        #define PID_PARAM(param, h) Temperature::param
 | 
						|
 | 
						|
      #endif // PID_PARAMS_PER_HOTEND
 | 
						|
 | 
						|
      // Apply the scale factors to the PID values
 | 
						|
      #define scalePID_i(i)   ( (i) * PID_dT )
 | 
						|
      #define unscalePID_i(i) ( (i) / PID_dT )
 | 
						|
      #define scalePID_d(d)   ( (d) / PID_dT )
 | 
						|
      #define unscalePID_d(d) ( (d) * PID_dT )
 | 
						|
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float bedKp, bedKi, bedKd;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(BABYSTEPPING)
 | 
						|
      static volatile int babystepsTodo[3];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if WATCH_HOTENDS
 | 
						|
      static uint16_t watch_target_temp[HOTENDS];
 | 
						|
      static millis_t watch_heater_next_ms[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if WATCH_THE_BED
 | 
						|
      static uint16_t watch_target_bed_temp;
 | 
						|
      static millis_t watch_bed_next_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PREVENT_COLD_EXTRUSION)
 | 
						|
      static bool allow_cold_extrude;
 | 
						|
      static uint16_t extrude_min_temp;
 | 
						|
      static bool tooColdToExtrude(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
 | 
						|
    #endif
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
 | 
						|
      static uint16_t redundant_temperature_raw;
 | 
						|
      static float redundant_temperature;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static volatile bool temp_meas_ready;
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP)
 | 
						|
      static float temp_iState[HOTENDS],
 | 
						|
                   temp_dState[HOTENDS],
 | 
						|
                   pTerm[HOTENDS],
 | 
						|
                   iTerm[HOTENDS],
 | 
						|
                   dTerm[HOTENDS];
 | 
						|
 | 
						|
      #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
        static float cTerm[HOTENDS];
 | 
						|
        static long last_e_position;
 | 
						|
        static long lpq[LPQ_MAX_LEN];
 | 
						|
        static int lpq_ptr;
 | 
						|
      #endif
 | 
						|
 | 
						|
      static float pid_error[HOTENDS];
 | 
						|
      static bool pid_reset[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float temp_iState_bed,
 | 
						|
                   temp_dState_bed,
 | 
						|
                   pTerm_bed,
 | 
						|
                   iTerm_bed,
 | 
						|
                   dTerm_bed,
 | 
						|
                   pid_error_bed;
 | 
						|
    #else
 | 
						|
      static millis_t next_bed_check_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static uint16_t raw_temp_value[MAX_EXTRUDERS],
 | 
						|
                    raw_temp_bed_value;
 | 
						|
 | 
						|
    // Init min and max temp with extreme values to prevent false errors during startup
 | 
						|
    static int16_t minttemp_raw[HOTENDS],
 | 
						|
                   maxttemp_raw[HOTENDS],
 | 
						|
                   minttemp[HOTENDS],
 | 
						|
                   maxttemp[HOTENDS];
 | 
						|
 | 
						|
    #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
 | 
						|
      static uint8_t consecutive_low_temperature_error[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
      static millis_t preheat_end_time[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef BED_MINTEMP
 | 
						|
      static int16_t bed_minttemp_raw;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef BED_MAXTEMP
 | 
						|
      static int16_t bed_maxttemp_raw;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static int16_t meas_shift_index;  // Index of a delayed sample in buffer
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if HAS_AUTO_FAN
 | 
						|
      static millis_t next_auto_fan_check_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static int current_raw_filwidth;  //Holds measured filament diameter - one extruder only
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PROBING_HEATERS_OFF)
 | 
						|
      static bool paused;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | 
						|
      static millis_t heater_idle_timeout_ms[HOTENDS];
 | 
						|
      static bool heater_idle_timeout_exceeded[HOTENDS];
 | 
						|
      #if HAS_TEMP_BED
 | 
						|
        static millis_t bed_idle_timeout_ms;
 | 
						|
        static bool bed_idle_timeout_exceeded;
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    /**
 | 
						|
     * Instance Methods
 | 
						|
     */
 | 
						|
 | 
						|
    Temperature();
 | 
						|
 | 
						|
    void init();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Static (class) methods
 | 
						|
     */
 | 
						|
    static float analog2temp(int raw, uint8_t e);
 | 
						|
    static float analog2tempBed(int raw);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Called from the Temperature ISR
 | 
						|
     */
 | 
						|
    static void isr();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Call periodically to manage heaters
 | 
						|
     */
 | 
						|
    static void manage_heater() _O2; // Added _O2 to work around a compiler error
 | 
						|
 | 
						|
    /**
 | 
						|
     * Preheating hotends
 | 
						|
     */
 | 
						|
    #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
      static bool is_preheating(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
 | 
						|
      }
 | 
						|
      static void start_preheat_time(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
 | 
						|
      }
 | 
						|
      static void reset_preheat_time(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        preheat_end_time[HOTEND_INDEX] = 0;
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      #define is_preheating(n) (false)
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static float analog2widthFil(); // Convert raw Filament Width to millimeters
 | 
						|
      static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
 | 
						|
    #endif
 | 
						|
 | 
						|
 | 
						|
    //high level conversion routines, for use outside of temperature.cpp
 | 
						|
    //inline so that there is no performance decrease.
 | 
						|
    //deg=degreeCelsius
 | 
						|
 | 
						|
    static float degHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static float degBed() { return current_temperature_bed; }
 | 
						|
 | 
						|
    #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | 
						|
      static int16_t rawHotendTemp(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return current_temperature_raw[HOTEND_INDEX];
 | 
						|
      }
 | 
						|
      static int16_t rawBedTemp() { return current_temperature_bed_raw; }
 | 
						|
    #endif
 | 
						|
 | 
						|
    static int16_t degTargetHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
 | 
						|
    static int16_t degTargetBed() { return target_temperature_bed; }
 | 
						|
 | 
						|
    #if WATCH_HOTENDS
 | 
						|
      static void start_watching_heater(uint8_t e = 0);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if WATCH_THE_BED
 | 
						|
      static void start_watching_bed();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void setTargetHotend(const int16_t celsius, uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
        if (celsius == 0)
 | 
						|
          reset_preheat_time(HOTEND_INDEX);
 | 
						|
        else if (target_temperature[HOTEND_INDEX] == 0)
 | 
						|
          start_preheat_time(HOTEND_INDEX);
 | 
						|
      #endif
 | 
						|
      target_temperature[HOTEND_INDEX] = celsius;
 | 
						|
      #if WATCH_HOTENDS
 | 
						|
        start_watching_heater(HOTEND_INDEX);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    static void setTargetBed(const int16_t celsius) {
 | 
						|
      #if HAS_HEATER_BED
 | 
						|
        target_temperature_bed =
 | 
						|
          #ifdef BED_MAXTEMP
 | 
						|
            min(celsius, BED_MAXTEMP)
 | 
						|
          #else
 | 
						|
            celsius
 | 
						|
          #endif
 | 
						|
        ;
 | 
						|
        #if WATCH_THE_BED
 | 
						|
          start_watching_bed();
 | 
						|
        #endif
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isHeatingHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
 | 
						|
 | 
						|
    static bool isCoolingHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The software PWM power for a heater
 | 
						|
     */
 | 
						|
    static int getHeaterPower(int heater);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Switch off all heaters, set all target temperatures to 0
 | 
						|
     */
 | 
						|
    static void disable_all_heaters();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Perform auto-tuning for hotend or bed in response to M303
 | 
						|
     */
 | 
						|
    #if HAS_PID_HEATING
 | 
						|
      static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
 | 
						|
    #endif
 | 
						|
 | 
						|
    /**
 | 
						|
     * Update the temp manager when PID values change
 | 
						|
     */
 | 
						|
    static void updatePID();
 | 
						|
 | 
						|
    #if ENABLED(BABYSTEPPING)
 | 
						|
 | 
						|
      static void babystep_axis(const AxisEnum axis, const int distance) {
 | 
						|
        if (axis_known_position[axis]) {
 | 
						|
          #if IS_CORE
 | 
						|
            #if ENABLED(BABYSTEP_XY)
 | 
						|
              switch (axis) {
 | 
						|
                case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
 | 
						|
                  babystepsTodo[CORE_AXIS_1] += distance * 2;
 | 
						|
                  babystepsTodo[CORE_AXIS_2] += distance * 2;
 | 
						|
                  break;
 | 
						|
                case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
 | 
						|
                  babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
 | 
						|
                  babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
 | 
						|
                  break;
 | 
						|
                case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
 | 
						|
                  babystepsTodo[NORMAL_AXIS] += distance;
 | 
						|
                  break;
 | 
						|
              }
 | 
						|
            #elif CORE_IS_XZ || CORE_IS_YZ
 | 
						|
              // Only Z stepping needs to be handled here
 | 
						|
              babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
 | 
						|
              babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
 | 
						|
            #else
 | 
						|
              babystepsTodo[Z_AXIS] += distance;
 | 
						|
            #endif
 | 
						|
          #else
 | 
						|
            babystepsTodo[axis] += distance;
 | 
						|
          #endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // BABYSTEPPING
 | 
						|
 | 
						|
    #if ENABLED(PROBING_HEATERS_OFF)
 | 
						|
      static void pause(const bool p);
 | 
						|
      static bool is_paused() { return paused; }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | 
						|
      static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
 | 
						|
        heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
 | 
						|
      }
 | 
						|
 | 
						|
      static void reset_heater_idle_timer(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        heater_idle_timeout_ms[HOTEND_INDEX] = 0;
 | 
						|
        heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
 | 
						|
        #if WATCH_HOTENDS
 | 
						|
          start_watching_heater(HOTEND_INDEX);
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
 | 
						|
      static bool is_heater_idle(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return heater_idle_timeout_exceeded[HOTEND_INDEX];
 | 
						|
      }
 | 
						|
 | 
						|
      #if HAS_TEMP_BED
 | 
						|
        static void start_bed_idle_timer(millis_t timeout_ms) {
 | 
						|
          bed_idle_timeout_ms = millis() + timeout_ms;
 | 
						|
          bed_idle_timeout_exceeded = false;
 | 
						|
        }
 | 
						|
 | 
						|
        static void reset_bed_idle_timer() {
 | 
						|
          bed_idle_timeout_ms = 0;
 | 
						|
          bed_idle_timeout_exceeded = false;
 | 
						|
          #if WATCH_THE_BED
 | 
						|
            start_watching_bed();
 | 
						|
          #endif
 | 
						|
        }
 | 
						|
 | 
						|
        static bool is_bed_idle() {
 | 
						|
          return bed_idle_timeout_exceeded;
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    static void set_current_temp_raw();
 | 
						|
 | 
						|
    static void updateTemperaturesFromRawValues();
 | 
						|
 | 
						|
    #if ENABLED(HEATER_0_USES_MAX6675)
 | 
						|
      static int read_max6675();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void checkExtruderAutoFans();
 | 
						|
 | 
						|
    static float get_pid_output(int e);
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float get_pid_output_bed();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
 | 
						|
    static void min_temp_error(int8_t e);
 | 
						|
    static void max_temp_error(int8_t e);
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
 | 
						|
 | 
						|
      typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
 | 
						|
 | 
						|
      static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
 | 
						|
 | 
						|
      #if ENABLED(THERMAL_PROTECTION_HOTENDS)
 | 
						|
        static TRState thermal_runaway_state_machine[HOTENDS];
 | 
						|
        static millis_t thermal_runaway_timer[HOTENDS];
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if HAS_THERMALLY_PROTECTED_BED
 | 
						|
        static TRState thermal_runaway_bed_state_machine;
 | 
						|
        static millis_t thermal_runaway_bed_timer;
 | 
						|
      #endif
 | 
						|
 | 
						|
    #endif // THERMAL_PROTECTION
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
extern Temperature thermalManager;
 | 
						|
 | 
						|
#endif // TEMPERATURE_H
 |