You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1433 lines
52 KiB
1433 lines
52 KiB
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* planner.cpp
|
|
*
|
|
* Buffer movement commands and manage the acceleration profile plan
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*
|
|
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
|
|
*
|
|
*
|
|
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
*
|
|
* s == speed, a == acceleration, t == time, d == distance
|
|
*
|
|
* Basic definitions:
|
|
* Speed[s_, a_, t_] := s + (a*t)
|
|
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
*
|
|
* Distance to reach a specific speed with a constant acceleration:
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
*
|
|
* Speed after a given distance of travel with constant acceleration:
|
|
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
* m -> Sqrt[2 a d + s^2]
|
|
*
|
|
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
*
|
|
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
|
|
* from initial speed s1 without ever stopping at a plateau:
|
|
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
*
|
|
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
*
|
|
*/
|
|
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "language.h"
|
|
|
|
#include "Marlin.h"
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
Planner planner;
|
|
|
|
// public:
|
|
|
|
/**
|
|
* A ring buffer of moves described in steps
|
|
*/
|
|
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
|
|
volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
|
|
volatile uint8_t Planner::block_buffer_tail = 0;
|
|
|
|
float Planner::max_feedrate_mm_s[NUM_AXIS], // Max speeds in mm per second
|
|
Planner::axis_steps_per_mm[NUM_AXIS],
|
|
Planner::steps_to_mm[NUM_AXIS];
|
|
|
|
uint32_t Planner::max_acceleration_steps_per_s2[NUM_AXIS],
|
|
Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
|
|
|
|
millis_t Planner::min_segment_time;
|
|
float Planner::min_feedrate_mm_s,
|
|
Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
|
|
Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
|
|
Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
|
|
Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
|
|
Planner::min_travel_feedrate_mm_s;
|
|
|
|
#if HAS_ABL
|
|
bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
|
|
#endif
|
|
|
|
#if ABL_PLANAR
|
|
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
float Planner::z_fade_height = 0.0,
|
|
Planner::inverse_z_fade_height = 0.0;
|
|
#endif
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
float Planner::autotemp_max = 250,
|
|
Planner::autotemp_min = 210,
|
|
Planner::autotemp_factor = 0.1;
|
|
bool Planner::autotemp_enabled = false;
|
|
#endif
|
|
|
|
// private:
|
|
|
|
long Planner::position[NUM_AXIS] = { 0 };
|
|
|
|
uint32_t Planner::cutoff_long;
|
|
|
|
float Planner::previous_speed[NUM_AXIS],
|
|
Planner::previous_nominal_speed;
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
|
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
|
|
#endif // DISABLE_INACTIVE_EXTRUDER
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
// Old direction bits. Used for speed calculations
|
|
unsigned char Planner::old_direction_bits = 0;
|
|
// Segment times (in µs). Used for speed calculations
|
|
long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
float Planner::extruder_advance_k = LIN_ADVANCE_K;
|
|
float Planner::position_float[NUM_AXIS] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(ENSURE_SMOOTH_MOVES)
|
|
uint32_t Planner::block_buffer_runtime_us = 0;
|
|
#endif
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
Planner::Planner() { init(); }
|
|
|
|
void Planner::init() {
|
|
block_buffer_head = block_buffer_tail = 0;
|
|
ZERO(position);
|
|
#if ENABLED(LIN_ADVANCE)
|
|
ZERO(position_float);
|
|
#endif
|
|
ZERO(previous_speed);
|
|
previous_nominal_speed = 0.0;
|
|
#if ABL_PLANAR
|
|
bed_level_matrix.set_to_identity();
|
|
#endif
|
|
}
|
|
|
|
#define MINIMAL_STEP_RATE 120
|
|
|
|
/**
|
|
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
|
|
* by the provided factors.
|
|
*/
|
|
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
|
|
uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
|
|
final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
NOLESS(initial_rate, MINIMAL_STEP_RATE);
|
|
NOLESS(final_rate, MINIMAL_STEP_RATE);
|
|
|
|
int32_t accel = block->acceleration_steps_per_s2,
|
|
accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
|
|
decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
|
|
plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
|
|
|
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
|
// have to use intersection_distance() to calculate when to abort accel and start braking
|
|
// in order to reach the final_rate exactly at the end of this block.
|
|
if (plateau_steps < 0) {
|
|
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
|
|
NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
|
|
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
|
|
plateau_steps = 0;
|
|
}
|
|
|
|
// block->accelerate_until = accelerate_steps;
|
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
|
|
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
|
|
block->accelerate_until = accelerate_steps;
|
|
block->decelerate_after = accelerate_steps + plateau_steps;
|
|
block->initial_rate = initial_rate;
|
|
block->final_rate = final_rate;
|
|
#if ENABLED(ADVANCE)
|
|
block->initial_advance = block->advance * sq(entry_factor);
|
|
block->final_advance = block->advance * sq(exit_factor);
|
|
#endif
|
|
}
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
|
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
|
// velocities of the respective blocks.
|
|
//inline float junction_jerk(block_t *before, block_t *after) {
|
|
// return sqrt(
|
|
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
|
|
//}
|
|
|
|
|
|
// The kernel called by recalculate() when scanning the plan from last to first entry.
|
|
void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
|
|
if (!current || !next) return;
|
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
|
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
|
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
|
float max_entry_speed = current->max_entry_speed;
|
|
if (current->entry_speed != max_entry_speed) {
|
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
|
// for max allowable speed if block is decelerating and nominal length is false.
|
|
current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
|
|
? max_entry_speed
|
|
: min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
|
|
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* recalculate() needs to go over the current plan twice.
|
|
* Once in reverse and once forward. This implements the reverse pass.
|
|
*/
|
|
void Planner::reverse_pass() {
|
|
|
|
if (movesplanned() > 3) {
|
|
|
|
block_t* block[3] = { NULL, NULL, NULL };
|
|
|
|
// Make a local copy of block_buffer_tail, because the interrupt can alter it
|
|
// Is a critical section REALLY needed for a single byte change?
|
|
//CRITICAL_SECTION_START;
|
|
uint8_t tail = block_buffer_tail;
|
|
//CRITICAL_SECTION_END
|
|
|
|
uint8_t b = BLOCK_MOD(block_buffer_head - 3);
|
|
while (b != tail) {
|
|
if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
|
|
b = prev_block_index(b);
|
|
block[2] = block[1];
|
|
block[1] = block[0];
|
|
block[0] = &block_buffer[b];
|
|
reverse_pass_kernel(block[1], block[2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The kernel called by recalculate() when scanning the plan from first to last entry.
|
|
void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
|
|
if (!previous) return;
|
|
|
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
|
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
|
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
|
if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
|
|
if (previous->entry_speed < current->entry_speed) {
|
|
float entry_speed = min(current->entry_speed,
|
|
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
|
|
// Check for junction speed change
|
|
if (current->entry_speed != entry_speed) {
|
|
current->entry_speed = entry_speed;
|
|
SBI(current->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* recalculate() needs to go over the current plan twice.
|
|
* Once in reverse and once forward. This implements the forward pass.
|
|
*/
|
|
void Planner::forward_pass() {
|
|
block_t* block[3] = { NULL, NULL, NULL };
|
|
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
block[0] = block[1];
|
|
block[1] = block[2];
|
|
block[2] = &block_buffer[b];
|
|
forward_pass_kernel(block[0], block[1]);
|
|
}
|
|
forward_pass_kernel(block[1], block[2]);
|
|
}
|
|
|
|
/**
|
|
* Recalculate the trapezoid speed profiles for all blocks in the plan
|
|
* according to the entry_factor for each junction. Must be called by
|
|
* recalculate() after updating the blocks.
|
|
*/
|
|
void Planner::recalculate_trapezoids() {
|
|
int8_t block_index = block_buffer_tail;
|
|
block_t *current, *next = NULL;
|
|
|
|
while (block_index != block_buffer_head) {
|
|
current = next;
|
|
next = &block_buffer[block_index];
|
|
if (current) {
|
|
// Recalculate if current block entry or exit junction speed has changed.
|
|
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
float nom = current->nominal_speed;
|
|
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
|
|
CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
|
|
}
|
|
}
|
|
block_index = next_block_index(block_index);
|
|
}
|
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
|
if (next) {
|
|
float nom = next->nominal_speed;
|
|
calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
|
|
CBI(next->flag, BLOCK_BIT_RECALCULATE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recalculate the motion plan according to the following algorithm:
|
|
*
|
|
* 1. Go over every block in reverse order...
|
|
*
|
|
* Calculate a junction speed reduction (block_t.entry_factor) so:
|
|
*
|
|
* a. The junction jerk is within the set limit, and
|
|
*
|
|
* b. No speed reduction within one block requires faster
|
|
* deceleration than the one, true constant acceleration.
|
|
*
|
|
* 2. Go over every block in chronological order...
|
|
*
|
|
* Dial down junction speed reduction values if:
|
|
* a. The speed increase within one block would require faster
|
|
* acceleration than the one, true constant acceleration.
|
|
*
|
|
* After that, all blocks will have an entry_factor allowing all speed changes to
|
|
* be performed using only the one, true constant acceleration, and where no junction
|
|
* jerk is jerkier than the set limit, Jerky. Finally it will:
|
|
*
|
|
* 3. Recalculate "trapezoids" for all blocks.
|
|
*/
|
|
void Planner::recalculate() {
|
|
reverse_pass();
|
|
forward_pass();
|
|
recalculate_trapezoids();
|
|
}
|
|
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
void Planner::getHighESpeed() {
|
|
static float oldt = 0;
|
|
|
|
if (!autotemp_enabled) return;
|
|
if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
|
|
|
|
float high = 0.0;
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
block_t* block = &block_buffer[b];
|
|
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
|
|
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
|
|
NOLESS(high, se);
|
|
}
|
|
}
|
|
|
|
float t = autotemp_min + high * autotemp_factor;
|
|
t = constrain(t, autotemp_min, autotemp_max);
|
|
if (oldt > t) {
|
|
t *= (1 - (AUTOTEMP_OLDWEIGHT));
|
|
t += (AUTOTEMP_OLDWEIGHT) * oldt;
|
|
}
|
|
oldt = t;
|
|
thermalManager.setTargetHotend(t, 0);
|
|
}
|
|
|
|
#endif //AUTOTEMP
|
|
|
|
/**
|
|
* Maintain fans, paste extruder pressure,
|
|
*/
|
|
void Planner::check_axes_activity() {
|
|
unsigned char axis_active[NUM_AXIS] = { 0 },
|
|
tail_fan_speed[FAN_COUNT];
|
|
|
|
#if FAN_COUNT > 0
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#if HAS_HEATER_1
|
|
unsigned char tail_valve_pressure = baricuda_valve_pressure;
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
#endif
|
|
#endif
|
|
|
|
if (blocks_queued()) {
|
|
|
|
#if FAN_COUNT > 0
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
|
|
#endif
|
|
|
|
block_t* block;
|
|
|
|
#if ENABLED(BARICUDA)
|
|
block = &block_buffer[block_buffer_tail];
|
|
#if HAS_HEATER_1
|
|
tail_valve_pressure = block->valve_pressure;
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
tail_e_to_p_pressure = block->e_to_p_pressure;
|
|
#endif
|
|
#endif
|
|
|
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
|
block = &block_buffer[b];
|
|
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
|
|
}
|
|
}
|
|
#if ENABLED(DISABLE_X)
|
|
if (!axis_active[X_AXIS]) disable_x();
|
|
#endif
|
|
#if ENABLED(DISABLE_Y)
|
|
if (!axis_active[Y_AXIS]) disable_y();
|
|
#endif
|
|
#if ENABLED(DISABLE_Z)
|
|
if (!axis_active[Z_AXIS]) disable_z();
|
|
#endif
|
|
#if ENABLED(DISABLE_E)
|
|
if (!axis_active[E_AXIS]) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
#if defined(FAN_MIN_PWM)
|
|
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
|
|
#else
|
|
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
|
|
#endif
|
|
|
|
#ifdef FAN_KICKSTART_TIME
|
|
|
|
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
|
|
|
|
#define KICKSTART_FAN(f) \
|
|
if (tail_fan_speed[f]) { \
|
|
millis_t ms = millis(); \
|
|
if (fan_kick_end[f] == 0) { \
|
|
fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
|
|
tail_fan_speed[f] = 255; \
|
|
} else { \
|
|
if (PENDING(ms, fan_kick_end[f])) { \
|
|
tail_fan_speed[f] = 255; \
|
|
} \
|
|
} \
|
|
} else { \
|
|
fan_kick_end[f] = 0; \
|
|
}
|
|
|
|
#if HAS_FAN0
|
|
KICKSTART_FAN(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
KICKSTART_FAN(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
KICKSTART_FAN(2);
|
|
#endif
|
|
|
|
#endif //FAN_KICKSTART_TIME
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
|
|
#endif
|
|
#else
|
|
#if HAS_FAN0
|
|
analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
|
|
#endif
|
|
#if HAS_FAN1
|
|
analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
|
|
#endif
|
|
#if HAS_FAN2
|
|
analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
|
|
#endif
|
|
#endif
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
getHighESpeed();
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
#if HAS_HEATER_1
|
|
analogWrite(HEATER_1_PIN, tail_valve_pressure);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if PLANNER_LEVELING
|
|
/**
|
|
* lx, ly, lz - logical (cartesian, not delta) positions in mm
|
|
*/
|
|
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
|
|
|
#if HAS_ABL
|
|
if (!abl_enabled) return;
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
static float z_fade_factor = 1.0, last_raw_lz = -999.0;
|
|
if (z_fade_height) {
|
|
const float raw_lz = RAW_Z_POSITION(lz);
|
|
if (raw_lz >= z_fade_height) return;
|
|
if (last_raw_lz != raw_lz) {
|
|
last_raw_lz = raw_lz;
|
|
z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
|
|
}
|
|
}
|
|
else
|
|
z_fade_factor = 1.0;
|
|
#else
|
|
constexpr float z_fade_factor = 1.0;
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (mbl.active())
|
|
lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)) * z_fade_factor;
|
|
|
|
#elif ABL_PLANAR
|
|
|
|
float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
|
|
dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
|
|
dz = RAW_Z_POSITION(lz);
|
|
|
|
apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
|
|
|
|
lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
|
|
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
|
|
lz = LOGICAL_Z_POSITION(dz);
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
float tmp[XYZ] = { lx, ly, 0 };
|
|
lz += bilinear_z_offset(tmp) * z_fade_factor;
|
|
|
|
#endif
|
|
}
|
|
|
|
void Planner::unapply_leveling(float logical[XYZ]) {
|
|
|
|
#if HAS_ABL
|
|
if (!abl_enabled) return;
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (mbl.active()) {
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
|
|
logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
|
|
#else
|
|
logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
|
|
#endif
|
|
}
|
|
|
|
#elif ABL_PLANAR
|
|
|
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
|
|
|
float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
|
|
dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
|
|
dz = RAW_Z_POSITION(logical[Z_AXIS]);
|
|
|
|
apply_rotation_xyz(inverse, dx, dy, dz);
|
|
|
|
logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
|
|
logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
|
|
logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float c = bilinear_z_offset(logical);
|
|
logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
|
|
#else
|
|
logical[Z_AXIS] -= bilinear_z_offset(logical);
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif // PLANNER_LEVELING
|
|
|
|
/**
|
|
* Planner::_buffer_line
|
|
*
|
|
* Add a new linear movement to the buffer.
|
|
*
|
|
* Leveling and kinematics should be applied ahead of calling this.
|
|
*
|
|
* a,b,c,e - target positions in mm or degrees
|
|
* fr_mm_s - (target) speed of the move
|
|
* extruder - target extruder
|
|
*/
|
|
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
|
|
|
|
// The target position of the tool in absolute steps
|
|
// Calculate target position in absolute steps
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
long target[XYZE] = {
|
|
lround(a * axis_steps_per_mm[X_AXIS]),
|
|
lround(b * axis_steps_per_mm[Y_AXIS]),
|
|
lround(c * axis_steps_per_mm[Z_AXIS]),
|
|
lround(e * axis_steps_per_mm[E_AXIS])
|
|
};
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
float target_float[XYZE] = {a, b, c, e};
|
|
float de_float = target_float[E_AXIS] - position_float[E_AXIS];
|
|
float mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS]));
|
|
|
|
memcpy(position_float, target_float, sizeof(position_float));
|
|
#endif
|
|
|
|
long da = target[X_AXIS] - position[X_AXIS],
|
|
db = target[Y_AXIS] - position[Y_AXIS],
|
|
dc = target[Z_AXIS] - position[Z_AXIS];
|
|
|
|
/*
|
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
|
|
SERIAL_CHAR(' ');
|
|
#if IS_KINEMATIC
|
|
SERIAL_ECHOPAIR("A:", a);
|
|
SERIAL_ECHOPAIR(" (", da);
|
|
SERIAL_ECHOPAIR(") B:", b);
|
|
#else
|
|
SERIAL_ECHOPAIR("X:", a);
|
|
SERIAL_ECHOPAIR(" (", da);
|
|
SERIAL_ECHOPAIR(") Y:", b);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" (", db);
|
|
#if ENABLED(DELTA)
|
|
SERIAL_ECHOPAIR(") C:", c);
|
|
#else
|
|
SERIAL_ECHOPAIR(") Z:", c);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" (", dc);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL;
|
|
//*/
|
|
|
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
|
if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS];
|
|
|
|
long de = target[E_AXIS] - position[E_AXIS];
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
if (de) {
|
|
if (thermalManager.tooColdToExtrude(extruder)) {
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
de = 0; // no difference
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
}
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
de = 0; // no difference
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Compute direction bit-mask for this block
|
|
uint8_t dm = 0;
|
|
#if CORE_IS_XY
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
#elif CORE_IS_XZ
|
|
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
|
|
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
#elif CORE_IS_YZ
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
|
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
|
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
|
|
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
|
|
#else
|
|
if (da < 0) SBI(dm, X_AXIS);
|
|
if (db < 0) SBI(dm, Y_AXIS);
|
|
if (dc < 0) SBI(dm, Z_AXIS);
|
|
#endif
|
|
if (de < 0) SBI(dm, E_AXIS);
|
|
|
|
float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01;
|
|
int32_t esteps = abs(esteps_float) + 0.5;
|
|
|
|
// Calculate the buffer head after we push this byte
|
|
int8_t next_buffer_head = next_block_index(block_buffer_head);
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
// Rest here until there is room in the buffer.
|
|
while (block_buffer_tail == next_buffer_head) idle();
|
|
|
|
// Prepare to set up new block
|
|
block_t* block = &block_buffer[block_buffer_head];
|
|
|
|
// Clear all flags, including the "busy" bit
|
|
block->flag = 0;
|
|
|
|
// Set direction bits
|
|
block->direction_bits = dm;
|
|
|
|
// Number of steps for each axis
|
|
// See http://www.corexy.com/theory.html
|
|
#if CORE_IS_XY
|
|
block->steps[A_AXIS] = labs(da + db);
|
|
block->steps[B_AXIS] = labs(da - db);
|
|
block->steps[Z_AXIS] = labs(dc);
|
|
#elif CORE_IS_XZ
|
|
block->steps[A_AXIS] = labs(da + dc);
|
|
block->steps[Y_AXIS] = labs(db);
|
|
block->steps[C_AXIS] = labs(da - dc);
|
|
#elif CORE_IS_YZ
|
|
block->steps[X_AXIS] = labs(da);
|
|
block->steps[B_AXIS] = labs(db + dc);
|
|
block->steps[C_AXIS] = labs(db - dc);
|
|
#else
|
|
// default non-h-bot planning
|
|
block->steps[X_AXIS] = labs(da);
|
|
block->steps[Y_AXIS] = labs(db);
|
|
block->steps[Z_AXIS] = labs(dc);
|
|
#endif
|
|
|
|
block->steps[E_AXIS] = esteps;
|
|
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
|
|
|
|
// Bail if this is a zero-length block
|
|
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
|
|
|
|
// For a mixing extruder, get a magnified step_event_count for each
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
block->valve_pressure = baricuda_valve_pressure;
|
|
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
|
#endif
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
//enable active axes
|
|
#if CORE_IS_XY
|
|
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
|
|
enable_x();
|
|
enable_y();
|
|
}
|
|
#if DISABLED(Z_LATE_ENABLE)
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
#endif
|
|
#elif CORE_IS_XZ
|
|
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
|
|
enable_x();
|
|
enable_z();
|
|
}
|
|
if (block->steps[Y_AXIS]) enable_y();
|
|
#elif CORE_IS_YZ
|
|
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
|
|
enable_y();
|
|
enable_z();
|
|
}
|
|
if (block->steps[X_AXIS]) enable_x();
|
|
#else
|
|
if (block->steps[X_AXIS]) enable_x();
|
|
if (block->steps[Y_AXIS]) enable_y();
|
|
#if DISABLED(Z_LATE_ENABLE)
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
#endif
|
|
#endif
|
|
|
|
// Enable extruder(s)
|
|
if (esteps) {
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
|
|
|
|
for (int8_t i = 0; i < EXTRUDERS; i++)
|
|
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
|
|
|
switch(extruder) {
|
|
case 0:
|
|
enable_e0();
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (extruder_duplication_enabled) {
|
|
enable_e1();
|
|
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
}
|
|
#endif
|
|
g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
|
|
#if EXTRUDERS > 1
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
#if EXTRUDERS > 2
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
#if EXTRUDERS > 3
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
#endif
|
|
#endif
|
|
#endif
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
enable_e1();
|
|
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
#if EXTRUDERS > 2
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
#if EXTRUDERS > 3
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
#endif
|
|
#endif
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
enable_e2();
|
|
g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
#if EXTRUDERS > 3
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
#endif
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
enable_e3();
|
|
g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
break;
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
}
|
|
#else
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
enable_e3();
|
|
#endif
|
|
}
|
|
|
|
if (esteps)
|
|
NOLESS(fr_mm_s, min_feedrate_mm_s);
|
|
else
|
|
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
|
|
|
|
/**
|
|
* This part of the code calculates the total length of the movement.
|
|
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
*/
|
|
#if IS_CORE
|
|
float delta_mm[7];
|
|
#if CORE_IS_XY
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
|
|
delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
|
|
#elif CORE_IS_XZ
|
|
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
|
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
|
|
delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
|
|
#elif CORE_IS_YZ
|
|
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
|
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
|
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
|
|
delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
|
|
#endif
|
|
#else
|
|
float delta_mm[4];
|
|
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
|
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
|
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
|
#endif
|
|
delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS];
|
|
|
|
if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
}
|
|
else {
|
|
block->millimeters = sqrt(
|
|
#if CORE_IS_XY
|
|
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
|
|
#elif CORE_IS_XZ
|
|
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
|
|
#elif CORE_IS_YZ
|
|
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
|
|
#else
|
|
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
|
|
#endif
|
|
);
|
|
}
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
// Calculate moves/second for this move. No divide by zero due to previous checks.
|
|
float inverse_mm_s = fr_mm_s * inverse_millimeters;
|
|
|
|
int moves_queued = movesplanned();
|
|
|
|
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
#if ENABLED(SLOWDOWN)
|
|
// Segment time im micro seconds
|
|
unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
|
|
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) {
|
|
if (segment_time < min_segment_time) {
|
|
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
|
|
#if defined(XY_FREQUENCY_LIMIT) || ENABLED(ENSURE_SMOOTH_MOVES)
|
|
segment_time = lround(1000000.0 / inverse_mm_s);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(ENSURE_SMOOTH_MOVES)
|
|
#if DISABLED(SLOWDOWN)
|
|
unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
|
|
#endif
|
|
if (segment_time < (MIN_BLOCK_TIME) * 1000UL) {
|
|
// buffer will be draining, set to MIN_BLOCK_TIME.
|
|
inverse_mm_s = 1000000.0 / (1000.0 * (MIN_BLOCK_TIME));
|
|
segment_time = (MIN_BLOCK_TIME) * 1000UL;
|
|
}
|
|
block->segment_time = segment_time;
|
|
block_buffer_runtime_us += segment_time;
|
|
#endif
|
|
|
|
block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
|
|
block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
|
|
|
//FMM update ring buffer used for delay with filament measurements
|
|
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
|
|
|
|
const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
|
|
|
|
// increment counters with next move in e axis
|
|
filwidth_e_count += delta_mm[E_AXIS];
|
|
filwidth_delay_dist += delta_mm[E_AXIS];
|
|
|
|
// Only get new measurements on forward E movement
|
|
if (filwidth_e_count > 0.0001) {
|
|
|
|
// Loop the delay distance counter (modulus by the mm length)
|
|
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
|
|
|
|
// Convert into an index into the measurement array
|
|
filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001);
|
|
|
|
// If the index has changed (must have gone forward)...
|
|
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
|
filwidth_e_count = 0; // Reset the E movement counter
|
|
int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
|
do {
|
|
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
|
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
|
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
LOOP_XYZE(i) {
|
|
float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
|
|
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
|
|
}
|
|
|
|
// Max segment time in µs.
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
// Check and limit the xy direction change frequency
|
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
old_direction_bits = block->direction_bits;
|
|
segment_time = lround((float)segment_time / speed_factor);
|
|
|
|
long xs0 = axis_segment_time[X_AXIS][0],
|
|
xs1 = axis_segment_time[X_AXIS][1],
|
|
xs2 = axis_segment_time[X_AXIS][2],
|
|
ys0 = axis_segment_time[Y_AXIS][0],
|
|
ys1 = axis_segment_time[Y_AXIS][1],
|
|
ys2 = axis_segment_time[Y_AXIS][2];
|
|
|
|
if (TEST(direction_change, X_AXIS)) {
|
|
xs2 = axis_segment_time[X_AXIS][2] = xs1;
|
|
xs1 = axis_segment_time[X_AXIS][1] = xs0;
|
|
xs0 = 0;
|
|
}
|
|
xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
|
|
|
|
if (TEST(direction_change, Y_AXIS)) {
|
|
ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
|
|
ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
|
|
ys0 = 0;
|
|
}
|
|
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
|
|
|
|
long max_x_segment_time = MAX3(xs0, xs1, xs2),
|
|
max_y_segment_time = MAX3(ys0, ys1, ys2),
|
|
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
|
|
if (min_xy_segment_time < MAX_FREQ_TIME) {
|
|
float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
|
|
NOMORE(speed_factor, low_sf);
|
|
}
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
|
// Correct the speed
|
|
if (speed_factor < 1.0) {
|
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
|
block->nominal_speed *= speed_factor;
|
|
block->nominal_rate *= speed_factor;
|
|
}
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
float steps_per_mm = block->step_event_count * inverse_millimeters;
|
|
uint32_t accel;
|
|
if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
|
|
// convert to: acceleration steps/sec^2
|
|
accel = ceil(retract_acceleration * steps_per_mm);
|
|
}
|
|
else {
|
|
#define LIMIT_ACCEL_LONG(AXIS) do{ \
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS] < accel) { \
|
|
const uint32_t comp = max_acceleration_steps_per_s2[AXIS] * block->step_event_count; \
|
|
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
|
|
} \
|
|
}while(0)
|
|
|
|
#define LIMIT_ACCEL_FLOAT(AXIS) do{ \
|
|
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS] < accel) { \
|
|
const float comp = (float)max_acceleration_steps_per_s2[AXIS] * (float)block->step_event_count; \
|
|
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
|
|
} \
|
|
}while(0)
|
|
|
|
// Start with print or travel acceleration
|
|
accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
|
|
|
|
// Limit acceleration per axis
|
|
if (block->step_event_count <= cutoff_long){
|
|
LIMIT_ACCEL_LONG(X_AXIS);
|
|
LIMIT_ACCEL_LONG(Y_AXIS);
|
|
LIMIT_ACCEL_LONG(Z_AXIS);
|
|
LIMIT_ACCEL_LONG(E_AXIS);
|
|
} else {
|
|
LIMIT_ACCEL_FLOAT(X_AXIS);
|
|
LIMIT_ACCEL_FLOAT(Y_AXIS);
|
|
LIMIT_ACCEL_FLOAT(Z_AXIS);
|
|
LIMIT_ACCEL_FLOAT(E_AXIS);
|
|
}
|
|
}
|
|
block->acceleration_steps_per_s2 = accel;
|
|
block->acceleration = accel / steps_per_mm;
|
|
block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
|
|
|
|
// Initial limit on the segment entry velocity
|
|
float vmax_junction;
|
|
|
|
#if 0 // Use old jerk for now
|
|
|
|
float junction_deviation = 0.1;
|
|
|
|
// Compute path unit vector
|
|
double unit_vec[XYZ] = {
|
|
delta_mm[X_AXIS] * inverse_millimeters,
|
|
delta_mm[Y_AXIS] * inverse_millimeters,
|
|
delta_mm[Z_AXIS] * inverse_millimeters
|
|
};
|
|
|
|
/*
|
|
Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
|
|
|
Let a circle be tangent to both previous and current path line segments, where the junction
|
|
deviation is defined as the distance from the junction to the closest edge of the circle,
|
|
collinear with the circle center.
|
|
|
|
The circular segment joining the two paths represents the path of centripetal acceleration.
|
|
Solve for max velocity based on max acceleration about the radius of the circle, defined
|
|
indirectly by junction deviation.
|
|
|
|
This may be also viewed as path width or max_jerk in the previous grbl version. This approach
|
|
does not actually deviate from path, but used as a robust way to compute cornering speeds, as
|
|
it takes into account the nonlinearities of both the junction angle and junction velocity.
|
|
*/
|
|
|
|
vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
|
|
|
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
|
if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
|
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
|
float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
|
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
|
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
|
// Skip and use default max junction speed for 0 degree acute junction.
|
|
if (cos_theta < 0.95) {
|
|
vmax_junction = min(previous_nominal_speed, block->nominal_speed);
|
|
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
|
if (cos_theta > -0.95) {
|
|
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
|
float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
|
|
NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Adapted from Prusa MKS firmware
|
|
*
|
|
* Start with a safe speed (from which the machine may halt to stop immediately).
|
|
*/
|
|
|
|
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
static float previous_safe_speed;
|
|
|
|
float safe_speed = block->nominal_speed;
|
|
bool limited = false;
|
|
LOOP_XYZE(i) {
|
|
float jerk = fabs(current_speed[i]);
|
|
if (jerk > max_jerk[i]) {
|
|
// The actual jerk is lower if it has been limited by the XY jerk.
|
|
if (limited) {
|
|
// Spare one division by a following gymnastics:
|
|
// Instead of jerk *= safe_speed / block->nominal_speed,
|
|
// multiply max_jerk[i] by the divisor.
|
|
jerk *= safe_speed;
|
|
float mjerk = max_jerk[i] * block->nominal_speed;
|
|
if (jerk > mjerk) safe_speed *= mjerk / jerk;
|
|
}
|
|
else {
|
|
safe_speed = max_jerk[i];
|
|
limited = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (moves_queued > 1 && previous_nominal_speed > 0.0001) {
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
|
|
|
|
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
|
bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
|
|
float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
|
|
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
|
|
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
float v_factor = 1.f;
|
|
limited = false;
|
|
// Now limit the jerk in all axes.
|
|
LOOP_XYZE(axis) {
|
|
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
|
|
float v_exit = previous_speed[axis], v_entry = current_speed[axis];
|
|
if (prev_speed_larger) v_exit *= smaller_speed_factor;
|
|
if (limited) {
|
|
v_exit *= v_factor;
|
|
v_entry *= v_factor;
|
|
}
|
|
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
|
|
float jerk =
|
|
(v_exit > v_entry) ?
|
|
((v_entry > 0.f || v_exit < 0.f) ?
|
|
// coasting
|
|
(v_exit - v_entry) :
|
|
// axis reversal
|
|
max(v_exit, -v_entry)) :
|
|
// v_exit <= v_entry
|
|
((v_entry < 0.f || v_exit > 0.f) ?
|
|
// coasting
|
|
(v_entry - v_exit) :
|
|
// axis reversal
|
|
max(-v_exit, v_entry));
|
|
if (jerk > max_jerk[axis]) {
|
|
v_factor *= max_jerk[axis] / jerk;
|
|
limited = true;
|
|
}
|
|
}
|
|
if (limited) vmax_junction *= v_factor;
|
|
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
|
|
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
|
|
float vmax_junction_threshold = vmax_junction * 0.99f;
|
|
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
|
|
// Not coasting. The machine will stop and start the movements anyway,
|
|
// better to start the segment from start.
|
|
SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
|
|
vmax_junction = safe_speed;
|
|
}
|
|
}
|
|
else {
|
|
SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
|
|
vmax_junction = safe_speed;
|
|
}
|
|
|
|
// Max entry speed of this block equals the max exit speed of the previous block.
|
|
block->max_entry_speed = vmax_junction;
|
|
|
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
|
float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
|
|
block->entry_speed = min(vmax_junction, v_allowable);
|
|
|
|
// Initialize planner efficiency flags
|
|
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
|
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
|
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
|
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
memcpy(previous_speed, current_speed, sizeof(previous_speed));
|
|
previous_nominal_speed = block->nominal_speed;
|
|
previous_safe_speed = safe_speed;
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
// Don't use LIN_ADVANCE for blocks if:
|
|
// !block->steps[E_AXIS]: We don't have E steps todo (Travel move)
|
|
// !block->steps[X_AXIS] && !block->steps[Y_AXIS]: We don't have a movement in XY direction (Retract / Prime moves)
|
|
// extruder_advance_k == 0.0: There is no advance factor set
|
|
// block->steps[E_AXIS] == block->step_event_count: A problem occurs when there's a very tiny move before a retract.
|
|
// In this case, the retract and the move will be executed together.
|
|
// This leads to an enormous number of advance steps due to a huge e_acceleration.
|
|
// The math is correct, but you don't want a retract move done with advance!
|
|
// de_float <= 0.0: Extruder is running in reverse direction (for example during "Wipe while retracting" (Slic3r) or "Combing" (Cura) movements)
|
|
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || extruder_advance_k == 0.0 || (uint32_t)esteps == block->step_event_count || de_float <= 0.0) {
|
|
block->use_advance_lead = false;
|
|
}
|
|
else {
|
|
block->use_advance_lead = true;
|
|
block->abs_adv_steps_multiplier8 = lround(extruder_advance_k * (de_float / mm_D_float) * block->nominal_speed / (float)block->nominal_rate * axis_steps_per_mm[E_AXIS] * 256.0);
|
|
}
|
|
|
|
#elif ENABLED(ADVANCE)
|
|
|
|
// Calculate advance rate
|
|
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
|
|
block->advance_rate = 0;
|
|
block->advance = 0;
|
|
}
|
|
else {
|
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
|
|
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256;
|
|
block->advance = advance;
|
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
|
|
}
|
|
/**
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM("advance :");
|
|
SERIAL_ECHO(block->advance/256.0);
|
|
SERIAL_ECHOPGM("advance rate :");
|
|
SERIAL_ECHOLN(block->advance_rate/256.0);
|
|
*/
|
|
|
|
#endif // ADVANCE or LIN_ADVANCE
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
|
|
|
|
// Move buffer head
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
// Update the position (only when a move was queued)
|
|
memcpy(position, target, sizeof(position));
|
|
|
|
recalculate();
|
|
|
|
stepper.wake_up();
|
|
|
|
} // buffer_line()
|
|
|
|
/**
|
|
* Directly set the planner XYZ position (and stepper positions)
|
|
* converting mm (or angles for SCARA) into steps.
|
|
*
|
|
* On CORE machines stepper ABC will be translated from the given XYZ.
|
|
*/
|
|
|
|
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
|
|
long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
|
|
nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
|
|
nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
|
stepper.set_position(na, nb, nc, ne);
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
|
ZERO(previous_speed);
|
|
}
|
|
|
|
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
|
#if PLANNER_LEVELING
|
|
float pos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
|
|
apply_leveling(pos);
|
|
#else
|
|
const float * const pos = position;
|
|
#endif
|
|
#if IS_KINEMATIC
|
|
inverse_kinematics(pos);
|
|
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
|
|
#else
|
|
_set_position_mm(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], position[E_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
|
*/
|
|
void Planner::sync_from_steppers() {
|
|
LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
|
|
}
|
|
|
|
/**
|
|
* Setters for planner position (also setting stepper position).
|
|
*/
|
|
void Planner::set_position_mm(const AxisEnum axis, const float& v) {
|
|
position[axis] = lround(v * axis_steps_per_mm[axis]);
|
|
stepper.set_position(axis, v);
|
|
previous_speed[axis] = 0.0;
|
|
}
|
|
|
|
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
|
void Planner::reset_acceleration_rates() {
|
|
uint32_t highest_rate = 1;
|
|
LOOP_XYZE(i) {
|
|
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
|
NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
|
|
}
|
|
cutoff_long = 4294967295UL / highest_rate;
|
|
}
|
|
|
|
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
|
|
void Planner::refresh_positioning() {
|
|
LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
|
|
set_position_mm_kinematic(current_position);
|
|
reset_acceleration_rates();
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
void Planner::autotemp_M104_M109() {
|
|
autotemp_enabled = code_seen('F');
|
|
if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
|
|
if (code_seen('S')) autotemp_min = code_value_temp_abs();
|
|
if (code_seen('B')) autotemp_max = code_value_temp_abs();
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
void Planner::advance_M905(const float &k) {
|
|
if (k >= 0.0) extruder_advance_k = k;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif
|