You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1128 lines
						
					
					
						
							43 KiB
						
					
					
				
			
		
		
	
	
							1128 lines
						
					
					
						
							43 KiB
						
					
					
				/*
 | 
						|
  planner.c - buffers movement commands and manages the acceleration profile plan
 | 
						|
 Part of Grbl
 | 
						|
 
 | 
						|
 Copyright (c) 2009-2011 Simen Svale Skogsrud
 | 
						|
 
 | 
						|
 Grbl is free software: you can redistribute it and/or modify
 | 
						|
 it under the terms of the GNU General Public License as published by
 | 
						|
 the Free Software Foundation, either version 3 of the License, or
 | 
						|
 (at your option) any later version.
 | 
						|
 
 | 
						|
 Grbl is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 GNU General Public License for more details.
 | 
						|
 
 | 
						|
 You should have received a copy of the GNU General Public License
 | 
						|
 along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
 | 
						|
 | 
						|
/*  
 | 
						|
 Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 | 
						|
 
 | 
						|
 s == speed, a == acceleration, t == time, d == distance
 | 
						|
 
 | 
						|
 Basic definitions:
 | 
						|
 
 | 
						|
 Speed[s_, a_, t_] := s + (a*t) 
 | 
						|
 Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 | 
						|
 
 | 
						|
 Distance to reach a specific speed with a constant acceleration:
 | 
						|
 
 | 
						|
 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 | 
						|
 d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 | 
						|
 
 | 
						|
 Speed after a given distance of travel with constant acceleration:
 | 
						|
 
 | 
						|
 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 | 
						|
 m -> Sqrt[2 a d + s^2]    
 | 
						|
 
 | 
						|
 DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 | 
						|
 
 | 
						|
 When to start braking (di) to reach a specified destionation speed (s2) after accelerating
 | 
						|
 from initial speed s1 without ever stopping at a plateau:
 | 
						|
 
 | 
						|
 Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 | 
						|
 di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 | 
						|
 
 | 
						|
 IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 | 
						|
 */
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "stepper.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "language.h"
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//============================= public variables ============================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
unsigned long minsegmenttime;
 | 
						|
float max_feedrate[NUM_AXIS]; // set the max speeds
 | 
						|
float axis_steps_per_unit[NUM_AXIS];
 | 
						|
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
 | 
						|
float minimumfeedrate;
 | 
						|
float acceleration;         // Normal acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all printing moves. M204 SXXXX
 | 
						|
float retract_acceleration; //  mm/s^2   filament pull-pack and push-forward  while standing still in the other axis M204 TXXXX
 | 
						|
float travel_acceleration;  // Travel acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
 | 
						|
float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
 | 
						|
float max_z_jerk;
 | 
						|
float max_e_jerk;
 | 
						|
float mintravelfeedrate;
 | 
						|
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
// this holds the required transform to compensate for bed level
 | 
						|
matrix_3x3 plan_bed_level_matrix = {
 | 
						|
	1.0, 0.0, 0.0,
 | 
						|
	0.0, 1.0, 0.0,
 | 
						|
	0.0, 0.0, 1.0
 | 
						|
};
 | 
						|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
// The current position of the tool in absolute steps
 | 
						|
long position[NUM_AXIS];   //rescaled from extern when axis_steps_per_unit are changed by gcode
 | 
						|
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
 | 
						|
static float previous_nominal_speed; // Nominal speed of previous path line segment
 | 
						|
 | 
						|
#ifdef AUTOTEMP
 | 
						|
float autotemp_max=250;
 | 
						|
float autotemp_min=210;
 | 
						|
float autotemp_factor=0.1;
 | 
						|
bool autotemp_enabled=false;
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=================semi-private variables, used in inline  functions    =====
 | 
						|
//===========================================================================
 | 
						|
block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructions
 | 
						|
volatile unsigned char block_buffer_head;           // Index of the next block to be pushed
 | 
						|
volatile unsigned char block_buffer_tail;           // Index of the block to process now
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================private variables ============================
 | 
						|
//===========================================================================
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
float extrude_min_temp=EXTRUDE_MINTEMP;
 | 
						|
#endif
 | 
						|
#ifdef XY_FREQUENCY_LIMIT
 | 
						|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
 | 
						|
// Used for the frequency limit
 | 
						|
static unsigned char old_direction_bits = 0;               // Old direction bits. Used for speed calculations
 | 
						|
static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0};     // Segment times (in us). Used for speed calculations
 | 
						|
static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
 static char meas_sample; //temporary variable to hold filament measurement sample
 | 
						|
#endif
 | 
						|
 | 
						|
// Returns the index of the next block in the ring buffer
 | 
						|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
 | 
						|
static int8_t next_block_index(int8_t block_index) {
 | 
						|
  block_index++;
 | 
						|
  if (block_index == BLOCK_BUFFER_SIZE) { 
 | 
						|
    block_index = 0; 
 | 
						|
  }
 | 
						|
  return(block_index);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Returns the index of the previous block in the ring buffer
 | 
						|
static int8_t prev_block_index(int8_t block_index) {
 | 
						|
  if (block_index == 0) { 
 | 
						|
    block_index = BLOCK_BUFFER_SIZE; 
 | 
						|
  }
 | 
						|
  block_index--;
 | 
						|
  return(block_index);
 | 
						|
}
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================functions         ============================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the 
 | 
						|
// given acceleration:
 | 
						|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
 | 
						|
{
 | 
						|
  if (acceleration!=0) {
 | 
						|
    return((target_rate*target_rate-initial_rate*initial_rate)/
 | 
						|
      (2.0*acceleration));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    return 0.0;  // acceleration was 0, set acceleration distance to 0
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if 
 | 
						|
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
 | 
						|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
 | 
						|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
 | 
						|
 | 
						|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) 
 | 
						|
{
 | 
						|
  if (acceleration!=0) {
 | 
						|
    return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
 | 
						|
      (4.0*acceleration) );
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    return 0.0;  // acceleration was 0, set intersection distance to 0
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
 | 
						|
 | 
						|
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
 | 
						|
  unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
 | 
						|
  unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
 | 
						|
 | 
						|
  // Limit minimal step rate (Otherwise the timer will overflow.)
 | 
						|
  if(initial_rate <120) {
 | 
						|
    initial_rate=120; 
 | 
						|
  }
 | 
						|
  if(final_rate < 120) {
 | 
						|
    final_rate=120;  
 | 
						|
  }
 | 
						|
 | 
						|
  long acceleration = block->acceleration_st;
 | 
						|
  int32_t accelerate_steps =
 | 
						|
    ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
 | 
						|
  int32_t decelerate_steps =
 | 
						|
    floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
 | 
						|
 | 
						|
  // Calculate the size of Plateau of Nominal Rate.
 | 
						|
  int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
 | 
						|
 | 
						|
  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 | 
						|
  // have to use intersection_distance() to calculate when to abort acceleration and start braking
 | 
						|
  // in order to reach the final_rate exactly at the end of this block.
 | 
						|
  if (plateau_steps < 0) {
 | 
						|
    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
 | 
						|
    accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
 | 
						|
    accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
 | 
						|
    plateau_steps = 0;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef ADVANCE
 | 
						|
  volatile long initial_advance = block->advance*entry_factor*entry_factor; 
 | 
						|
  volatile long final_advance = block->advance*exit_factor*exit_factor;
 | 
						|
#endif // ADVANCE
 | 
						|
 | 
						|
  // block->accelerate_until = accelerate_steps;
 | 
						|
  // block->decelerate_after = accelerate_steps+plateau_steps;
 | 
						|
  CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
 | 
						|
  if(block->busy == false) { // Don't update variables if block is busy.
 | 
						|
    block->accelerate_until = accelerate_steps;
 | 
						|
    block->decelerate_after = accelerate_steps+plateau_steps;
 | 
						|
    block->initial_rate = initial_rate;
 | 
						|
    block->final_rate = final_rate;
 | 
						|
#ifdef ADVANCE
 | 
						|
    block->initial_advance = initial_advance;
 | 
						|
    block->final_advance = final_advance;
 | 
						|
#endif //ADVANCE
 | 
						|
  }
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
}                    
 | 
						|
 | 
						|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the 
 | 
						|
// acceleration within the allotted distance.
 | 
						|
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
 | 
						|
  return  sqrt(target_velocity*target_velocity-2*acceleration*distance);
 | 
						|
}
 | 
						|
 | 
						|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | 
						|
// This method will calculate the junction jerk as the euclidean distance between the nominal 
 | 
						|
// velocities of the respective blocks.
 | 
						|
//inline float junction_jerk(block_t *before, block_t *after) {
 | 
						|
//  return sqrt(
 | 
						|
//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
 | 
						|
//}
 | 
						|
 | 
						|
 | 
						|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
 | 
						|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
 | 
						|
  if(!current) { 
 | 
						|
    return; 
 | 
						|
  }
 | 
						|
 | 
						|
  if (next) {
 | 
						|
    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 | 
						|
    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
 | 
						|
    // check for maximum allowable speed reductions to ensure maximum possible planned speed.
 | 
						|
    if (current->entry_speed != current->max_entry_speed) {
 | 
						|
 | 
						|
      // If nominal length true, max junction speed is guaranteed to be reached. Only compute
 | 
						|
      // for max allowable speed if block is decelerating and nominal length is false.
 | 
						|
      if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
 | 
						|
        current->entry_speed = min( current->max_entry_speed,
 | 
						|
        max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
 | 
						|
      } 
 | 
						|
      else {
 | 
						|
        current->entry_speed = current->max_entry_speed;
 | 
						|
      }
 | 
						|
      current->recalculate_flag = true;
 | 
						|
 | 
						|
    }
 | 
						|
  } // Skip last block. Already initialized and set for recalculation.
 | 
						|
}
 | 
						|
 | 
						|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
 | 
						|
// implements the reverse pass.
 | 
						|
void planner_reverse_pass() {
 | 
						|
  uint8_t block_index = block_buffer_head;
 | 
						|
  
 | 
						|
  //Make a local copy of block_buffer_tail, because the interrupt can alter it
 | 
						|
  CRITICAL_SECTION_START;
 | 
						|
  unsigned char tail = block_buffer_tail;
 | 
						|
  CRITICAL_SECTION_END
 | 
						|
  
 | 
						|
  if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
 | 
						|
    block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
 | 
						|
    block_t *block[3] = { 
 | 
						|
      NULL, NULL, NULL         };
 | 
						|
    while(block_index != tail) { 
 | 
						|
      block_index = prev_block_index(block_index); 
 | 
						|
      block[2]= block[1];
 | 
						|
      block[1]= block[0];
 | 
						|
      block[0] = &block_buffer[block_index];
 | 
						|
      planner_reverse_pass_kernel(block[0], block[1], block[2]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
 | 
						|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
 | 
						|
  if(!previous) { 
 | 
						|
    return; 
 | 
						|
  }
 | 
						|
 | 
						|
  // If the previous block is an acceleration block, but it is not long enough to complete the
 | 
						|
  // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 | 
						|
  // speeds have already been reset, maximized, and reverse planned by reverse planner.
 | 
						|
  // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
 | 
						|
  if (!previous->nominal_length_flag) {
 | 
						|
    if (previous->entry_speed < current->entry_speed) {
 | 
						|
      double entry_speed = min( current->entry_speed,
 | 
						|
      max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
 | 
						|
 | 
						|
      // Check for junction speed change
 | 
						|
      if (current->entry_speed != entry_speed) {
 | 
						|
        current->entry_speed = entry_speed;
 | 
						|
        current->recalculate_flag = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
 | 
						|
// implements the forward pass.
 | 
						|
void planner_forward_pass() {
 | 
						|
  uint8_t block_index = block_buffer_tail;
 | 
						|
  block_t *block[3] = { 
 | 
						|
    NULL, NULL, NULL   };
 | 
						|
 | 
						|
  while(block_index != block_buffer_head) {
 | 
						|
    block[0] = block[1];
 | 
						|
    block[1] = block[2];
 | 
						|
    block[2] = &block_buffer[block_index];
 | 
						|
    planner_forward_pass_kernel(block[0],block[1],block[2]);
 | 
						|
    block_index = next_block_index(block_index);
 | 
						|
  }
 | 
						|
  planner_forward_pass_kernel(block[1], block[2], NULL);
 | 
						|
}
 | 
						|
 | 
						|
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the 
 | 
						|
// entry_factor for each junction. Must be called by planner_recalculate() after 
 | 
						|
// updating the blocks.
 | 
						|
void planner_recalculate_trapezoids() {
 | 
						|
  int8_t block_index = block_buffer_tail;
 | 
						|
  block_t *current;
 | 
						|
  block_t *next = NULL;
 | 
						|
 | 
						|
  while(block_index != block_buffer_head) {
 | 
						|
    current = next;
 | 
						|
    next = &block_buffer[block_index];
 | 
						|
    if (current) {
 | 
						|
      // Recalculate if current block entry or exit junction speed has changed.
 | 
						|
      if (current->recalculate_flag || next->recalculate_flag) {
 | 
						|
        // NOTE: Entry and exit factors always > 0 by all previous logic operations.
 | 
						|
        calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
 | 
						|
        next->entry_speed/current->nominal_speed);
 | 
						|
        current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
 | 
						|
      }
 | 
						|
    }
 | 
						|
    block_index = next_block_index( block_index );
 | 
						|
  }
 | 
						|
  // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
 | 
						|
  if(next != NULL) {
 | 
						|
    calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
 | 
						|
    MINIMUM_PLANNER_SPEED/next->nominal_speed);
 | 
						|
    next->recalculate_flag = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Recalculates the motion plan according to the following algorithm:
 | 
						|
//
 | 
						|
//   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) 
 | 
						|
//      so that:
 | 
						|
//     a. The junction jerk is within the set limit
 | 
						|
//     b. No speed reduction within one block requires faster deceleration than the one, true constant 
 | 
						|
//        acceleration.
 | 
						|
//   2. Go over every block in chronological order and dial down junction speed reduction values if 
 | 
						|
//     a. The speed increase within one block would require faster accelleration than the one, true 
 | 
						|
//        constant acceleration.
 | 
						|
//
 | 
						|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to 
 | 
						|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than 
 | 
						|
// the set limit. Finally it will:
 | 
						|
//
 | 
						|
//   3. Recalculate trapezoids for all blocks.
 | 
						|
 | 
						|
void planner_recalculate() {   
 | 
						|
  planner_reverse_pass();
 | 
						|
  planner_forward_pass();
 | 
						|
  planner_recalculate_trapezoids();
 | 
						|
}
 | 
						|
 | 
						|
void plan_init() {
 | 
						|
  block_buffer_head = 0;
 | 
						|
  block_buffer_tail = 0;
 | 
						|
  memset(position, 0, sizeof(position)); // clear position
 | 
						|
  previous_speed[0] = 0.0;
 | 
						|
  previous_speed[1] = 0.0;
 | 
						|
  previous_speed[2] = 0.0;
 | 
						|
  previous_speed[3] = 0.0;
 | 
						|
  previous_nominal_speed = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifdef AUTOTEMP
 | 
						|
void getHighESpeed()
 | 
						|
{
 | 
						|
  static float oldt=0;
 | 
						|
  if(!autotemp_enabled){
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if(degTargetHotend0()+2<autotemp_min) {  //probably temperature set to zero.
 | 
						|
    return; //do nothing
 | 
						|
  }
 | 
						|
 | 
						|
  float high=0.0;
 | 
						|
  uint8_t block_index = block_buffer_tail;
 | 
						|
 | 
						|
  while(block_index != block_buffer_head) {
 | 
						|
    if((block_buffer[block_index].steps_x != 0) ||
 | 
						|
      (block_buffer[block_index].steps_y != 0) ||
 | 
						|
      (block_buffer[block_index].steps_z != 0)) {
 | 
						|
      float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
 | 
						|
      //se; mm/sec;
 | 
						|
      if(se>high)
 | 
						|
      {
 | 
						|
        high=se;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  float g=autotemp_min+high*autotemp_factor;
 | 
						|
  float t=g;
 | 
						|
  if(t<autotemp_min)
 | 
						|
    t=autotemp_min;
 | 
						|
  if(t>autotemp_max)
 | 
						|
    t=autotemp_max;
 | 
						|
  if(oldt>t)
 | 
						|
  {
 | 
						|
    t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
 | 
						|
  }
 | 
						|
  oldt=t;
 | 
						|
  setTargetHotend0(t);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void check_axes_activity()
 | 
						|
{
 | 
						|
  unsigned char x_active = 0;
 | 
						|
  unsigned char y_active = 0;  
 | 
						|
  unsigned char z_active = 0;
 | 
						|
  unsigned char e_active = 0;
 | 
						|
  unsigned char tail_fan_speed = fanSpeed;
 | 
						|
  #ifdef BARICUDA
 | 
						|
  unsigned char tail_valve_pressure = ValvePressure;
 | 
						|
  unsigned char tail_e_to_p_pressure = EtoPPressure;
 | 
						|
  #endif
 | 
						|
  block_t *block;
 | 
						|
 | 
						|
  if(block_buffer_tail != block_buffer_head)
 | 
						|
  {
 | 
						|
    uint8_t block_index = block_buffer_tail;
 | 
						|
    tail_fan_speed = block_buffer[block_index].fan_speed;
 | 
						|
    #ifdef BARICUDA
 | 
						|
    tail_valve_pressure = block_buffer[block_index].valve_pressure;
 | 
						|
    tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
 | 
						|
    #endif
 | 
						|
    while(block_index != block_buffer_head)
 | 
						|
    {
 | 
						|
      block = &block_buffer[block_index];
 | 
						|
      if(block->steps_x != 0) x_active++;
 | 
						|
      if(block->steps_y != 0) y_active++;
 | 
						|
      if(block->steps_z != 0) z_active++;
 | 
						|
      if(block->steps_e != 0) e_active++;
 | 
						|
      block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if((DISABLE_X) && (x_active == 0)) disable_x();
 | 
						|
  if((DISABLE_Y) && (y_active == 0)) disable_y();
 | 
						|
  if((DISABLE_Z) && (z_active == 0)) disable_z();
 | 
						|
  if((DISABLE_E) && (e_active == 0))
 | 
						|
  {
 | 
						|
    disable_e0();
 | 
						|
    disable_e1();
 | 
						|
    disable_e2(); 
 | 
						|
    disable_e3();
 | 
						|
  }
 | 
						|
#if defined(FAN_PIN) && FAN_PIN > -1
 | 
						|
  #ifdef FAN_KICKSTART_TIME
 | 
						|
    static unsigned long fan_kick_end;
 | 
						|
    if (tail_fan_speed) {
 | 
						|
      if (fan_kick_end == 0) {
 | 
						|
        // Just starting up fan - run at full power.
 | 
						|
        fan_kick_end = millis() + FAN_KICKSTART_TIME;
 | 
						|
        tail_fan_speed = 255;
 | 
						|
      } else if (fan_kick_end > millis())
 | 
						|
        // Fan still spinning up.
 | 
						|
        tail_fan_speed = 255;
 | 
						|
    } else {
 | 
						|
      fan_kick_end = 0;
 | 
						|
    }
 | 
						|
  #endif//FAN_KICKSTART_TIME
 | 
						|
  #ifdef FAN_SOFT_PWM
 | 
						|
  fanSpeedSoftPwm = tail_fan_speed;
 | 
						|
  #else
 | 
						|
  analogWrite(FAN_PIN,tail_fan_speed);
 | 
						|
  #endif//!FAN_SOFT_PWM
 | 
						|
#endif//FAN_PIN > -1
 | 
						|
#ifdef AUTOTEMP
 | 
						|
  getHighESpeed();
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BARICUDA
 | 
						|
  #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
 | 
						|
      analogWrite(HEATER_1_PIN,tail_valve_pressure);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
 | 
						|
      analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
 | 
						|
  #endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float junction_deviation = 0.1;
 | 
						|
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in 
 | 
						|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
 | 
						|
// calculation the caller must also provide the physical length of the line in millimeters.
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
 | 
						|
#else
 | 
						|
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
 | 
						|
#endif  //ENABLE_AUTO_BED_LEVELING
 | 
						|
{
 | 
						|
  // Calculate the buffer head after we push this byte
 | 
						|
  int next_buffer_head = next_block_index(block_buffer_head);
 | 
						|
 | 
						|
  // If the buffer is full: good! That means we are well ahead of the robot. 
 | 
						|
  // Rest here until there is room in the buffer.
 | 
						|
  while(block_buffer_tail == next_buffer_head)
 | 
						|
  {
 | 
						|
    manage_heater(); 
 | 
						|
    manage_inactivity(); 
 | 
						|
    lcd_update();
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
  apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
  // The target position of the tool in absolute steps
 | 
						|
  // Calculate target position in absolute steps
 | 
						|
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
						|
  long target[4];
 | 
						|
  target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 | 
						|
  target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 | 
						|
  target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
 | 
						|
  target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
 | 
						|
 | 
						|
  #ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
  if(target[E_AXIS]!=position[E_AXIS])
 | 
						|
  {
 | 
						|
    if(degHotend(active_extruder)<extrude_min_temp)
 | 
						|
    {
 | 
						|
      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | 
						|
    }
 | 
						|
    
 | 
						|
    #ifdef PREVENT_LENGTHY_EXTRUDE
 | 
						|
    if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
 | 
						|
    {
 | 
						|
      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | 
						|
    }
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Prepare to set up new block
 | 
						|
  block_t *block = &block_buffer[block_buffer_head];
 | 
						|
 | 
						|
  // Mark block as not busy (Not executed by the stepper interrupt)
 | 
						|
  block->busy = false;
 | 
						|
 | 
						|
  // Number of steps for each axis
 | 
						|
#ifndef COREXY
 | 
						|
// default non-h-bot planning
 | 
						|
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
 | 
						|
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
 | 
						|
#else
 | 
						|
// corexy planning
 | 
						|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | 
						|
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
 | 
						|
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
 | 
						|
#endif
 | 
						|
  block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
 | 
						|
  block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
 | 
						|
  block->steps_e *= volumetric_multiplier[active_extruder];
 | 
						|
  block->steps_e *= extrudemultiply;
 | 
						|
  block->steps_e /= 100;
 | 
						|
  block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
 | 
						|
 | 
						|
  // Bail if this is a zero-length block
 | 
						|
  if (block->step_event_count <= dropsegments)
 | 
						|
  { 
 | 
						|
    return; 
 | 
						|
  }
 | 
						|
 | 
						|
  block->fan_speed = fanSpeed;
 | 
						|
  #ifdef BARICUDA
 | 
						|
  block->valve_pressure = ValvePressure;
 | 
						|
  block->e_to_p_pressure = EtoPPressure;
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Compute direction bits for this block 
 | 
						|
  block->direction_bits = 0;
 | 
						|
#ifndef COREXY
 | 
						|
  if (target[X_AXIS] < position[X_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(X_AXIS); 
 | 
						|
  }
 | 
						|
  if (target[Y_AXIS] < position[Y_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(Y_AXIS); 
 | 
						|
  }
 | 
						|
#else
 | 
						|
  if (target[X_AXIS] < position[X_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
 | 
						|
  }
 | 
						|
  if (target[Y_AXIS] < position[Y_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
 | 
						|
  }
 | 
						|
  if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
 | 
						|
  }
 | 
						|
  if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  if (target[Z_AXIS] < position[Z_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(Z_AXIS); 
 | 
						|
  }
 | 
						|
  if (target[E_AXIS] < position[E_AXIS])
 | 
						|
  {
 | 
						|
    block->direction_bits |= BIT(E_AXIS); 
 | 
						|
  }
 | 
						|
 | 
						|
  block->active_extruder = extruder;
 | 
						|
 | 
						|
  //enable active axes
 | 
						|
  #ifdef COREXY
 | 
						|
  if((block->steps_x != 0) || (block->steps_y != 0))
 | 
						|
  {
 | 
						|
    enable_x();
 | 
						|
    enable_y();
 | 
						|
  }
 | 
						|
  #else
 | 
						|
  if(block->steps_x != 0) enable_x();
 | 
						|
  if(block->steps_y != 0) enable_y();
 | 
						|
  #endif
 | 
						|
#ifndef Z_LATE_ENABLE
 | 
						|
  if(block->steps_z != 0) enable_z();
 | 
						|
#endif
 | 
						|
 | 
						|
  // Enable extruder(s)
 | 
						|
  if(block->steps_e != 0)
 | 
						|
  {
 | 
						|
    if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
 | 
						|
    {
 | 
						|
 | 
						|
      if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
 | 
						|
      if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
 | 
						|
      if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
 | 
						|
      if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
 | 
						|
      
 | 
						|
      switch(extruder)
 | 
						|
      {
 | 
						|
        case 0: 
 | 
						|
          enable_e0(); 
 | 
						|
          g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
 | 
						|
          
 | 
						|
          if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | 
						|
          if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | 
						|
          if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | 
						|
        break;
 | 
						|
        case 1:
 | 
						|
          enable_e1(); 
 | 
						|
          g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
 | 
						|
          
 | 
						|
          if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | 
						|
          if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | 
						|
          if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | 
						|
        break;
 | 
						|
        case 2:
 | 
						|
          enable_e2(); 
 | 
						|
          g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
 | 
						|
          
 | 
						|
          if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | 
						|
          if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | 
						|
          if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | 
						|
        break;        
 | 
						|
        case 3:
 | 
						|
          enable_e3(); 
 | 
						|
          g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
 | 
						|
          
 | 
						|
          if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | 
						|
          if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | 
						|
          if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | 
						|
        break;        
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else //enable all
 | 
						|
    {
 | 
						|
      enable_e0();
 | 
						|
      enable_e1();
 | 
						|
      enable_e2();
 | 
						|
      enable_e3();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (block->steps_e == 0)
 | 
						|
  {
 | 
						|
    if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
 | 
						|
  } 
 | 
						|
 | 
						|
/* This part of the code calculates the total length of the movement. 
 | 
						|
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
 | 
						|
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
 | 
						|
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
 | 
						|
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. 
 | 
						|
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
 | 
						|
*/ 
 | 
						|
  #ifndef COREXY
 | 
						|
    float delta_mm[4];
 | 
						|
    delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 | 
						|
    delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 | 
						|
  #else
 | 
						|
    float delta_mm[6];
 | 
						|
    delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 | 
						|
    delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 | 
						|
    delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
 | 
						|
    delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
 | 
						|
  #endif
 | 
						|
  delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
 | 
						|
  delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
 | 
						|
  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
 | 
						|
  {
 | 
						|
    block->millimeters = fabs(delta_mm[E_AXIS]);
 | 
						|
  } 
 | 
						|
  else
 | 
						|
  {
 | 
						|
    #ifndef COREXY
 | 
						|
      block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
 | 
						|
	#else
 | 
						|
	  block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
 | 
						|
    #endif	
 | 
						|
  }
 | 
						|
  float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 
 | 
						|
 | 
						|
    // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
 | 
						|
  float inverse_second = feed_rate * inverse_millimeters;
 | 
						|
 | 
						|
  int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
 | 
						|
 | 
						|
  // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
 | 
						|
#ifdef OLD_SLOWDOWN
 | 
						|
  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
 | 
						|
    feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SLOWDOWN
 | 
						|
  //  segment time im micro seconds
 | 
						|
  unsigned long segment_time = lround(1000000.0/inverse_second);
 | 
						|
  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
 | 
						|
  {
 | 
						|
    if (segment_time < minsegmenttime)
 | 
						|
    { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | 
						|
      inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
 | 
						|
      #ifdef XY_FREQUENCY_LIMIT
 | 
						|
         segment_time = lround(1000000.0/inverse_second);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  //  END OF SLOW DOWN SECTION    
 | 
						|
 | 
						|
 | 
						|
  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
 | 
						|
  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
  //FMM update ring buffer used for delay with filament measurements
 | 
						|
  
 | 
						|
  
 | 
						|
    if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1))  //only for extruder with filament sensor and if ring buffer is initialized
 | 
						|
  	  {
 | 
						|
    delay_dist = delay_dist + delta_mm[E_AXIS];  //increment counter with next move in e axis
 | 
						|
  
 | 
						|
    while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1)))  //check if counter is over max buffer size in mm
 | 
						|
      	  delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1);  //loop around the buffer
 | 
						|
    while (delay_dist<0)
 | 
						|
    	  delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
 | 
						|
      
 | 
						|
    delay_index1=delay_dist/10.0;  //calculate index
 | 
						|
    
 | 
						|
    //ensure the number is within range of the array after converting from floating point
 | 
						|
    if(delay_index1<0)
 | 
						|
    	delay_index1=0;
 | 
						|
    else if (delay_index1>MAX_MEASUREMENT_DELAY)
 | 
						|
    	delay_index1=MAX_MEASUREMENT_DELAY;
 | 
						|
    	
 | 
						|
    if(delay_index1 != delay_index2)  //moved index
 | 
						|
  	  {
 | 
						|
    	meas_sample=widthFil_to_size_ratio()-100;  //subtract off 100 to reduce magnitude - to store in a signed char
 | 
						|
  	  }
 | 
						|
    while( delay_index1 != delay_index2)
 | 
						|
  	  {
 | 
						|
  	  delay_index2 = delay_index2 + 1;
 | 
						|
  	if(delay_index2>MAX_MEASUREMENT_DELAY)
 | 
						|
  			  delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1);  //loop around buffer when incrementing
 | 
						|
  	  if(delay_index2<0)
 | 
						|
  		delay_index2=0;
 | 
						|
  	  else if (delay_index2>MAX_MEASUREMENT_DELAY)
 | 
						|
  		delay_index2=MAX_MEASUREMENT_DELAY;  
 | 
						|
  	  
 | 
						|
  	  measurement_delay[delay_index2]=meas_sample;
 | 
						|
  	  }
 | 
						|
    	
 | 
						|
    
 | 
						|
  	  }
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
  // Calculate and limit speed in mm/sec for each axis
 | 
						|
  float current_speed[4];
 | 
						|
  float speed_factor = 1.0; //factor <=1 do decrease speed
 | 
						|
  for(int i=0; i < 4; i++)
 | 
						|
  {
 | 
						|
    current_speed[i] = delta_mm[i] * inverse_second;
 | 
						|
    if(fabs(current_speed[i]) > max_feedrate[i])
 | 
						|
      speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
 | 
						|
  }
 | 
						|
 | 
						|
  // Max segement time in us.
 | 
						|
#ifdef XY_FREQUENCY_LIMIT
 | 
						|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
 | 
						|
  // Check and limit the xy direction change frequency
 | 
						|
  unsigned char direction_change = block->direction_bits ^ old_direction_bits;
 | 
						|
  old_direction_bits = block->direction_bits;
 | 
						|
  segment_time = lround((float)segment_time / speed_factor);
 | 
						|
  
 | 
						|
  if((direction_change & BIT(X_AXIS)) == 0)
 | 
						|
  {
 | 
						|
    x_segment_time[0] += segment_time;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    x_segment_time[2] = x_segment_time[1];
 | 
						|
    x_segment_time[1] = x_segment_time[0];
 | 
						|
    x_segment_time[0] = segment_time;
 | 
						|
  }
 | 
						|
  if((direction_change & BIT(Y_AXIS)) == 0)
 | 
						|
  {
 | 
						|
    y_segment_time[0] += segment_time;
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    y_segment_time[2] = y_segment_time[1];
 | 
						|
    y_segment_time[1] = y_segment_time[0];
 | 
						|
    y_segment_time[0] = segment_time;
 | 
						|
  }
 | 
						|
  long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
 | 
						|
  long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
 | 
						|
  long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
 | 
						|
  if(min_xy_segment_time < MAX_FREQ_TIME)
 | 
						|
    speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
 | 
						|
#endif // XY_FREQUENCY_LIMIT
 | 
						|
 | 
						|
  // Correct the speed  
 | 
						|
  if( speed_factor < 1.0)
 | 
						|
  {
 | 
						|
    for(unsigned char i=0; i < 4; i++)
 | 
						|
    {
 | 
						|
      current_speed[i] *= speed_factor;
 | 
						|
    }
 | 
						|
    block->nominal_speed *= speed_factor;
 | 
						|
    block->nominal_rate *= speed_factor;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute and limit the acceleration rate for the trapezoid generator.  
 | 
						|
  float steps_per_mm = block->step_event_count/block->millimeters;
 | 
						|
  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
 | 
						|
  {
 | 
						|
    block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  else if(block->steps_e == 0)
 | 
						|
  {
 | 
						|
    block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  // Limit acceleration per axis
 | 
						|
  if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
 | 
						|
    block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
 | 
						|
  if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
 | 
						|
    block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
 | 
						|
  if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
 | 
						|
    block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
 | 
						|
  if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
 | 
						|
    block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
 | 
						|
 
 | 
						|
  block->acceleration = block->acceleration_st / steps_per_mm;
 | 
						|
  block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
 | 
						|
 | 
						|
#if 0  // Use old jerk for now
 | 
						|
  // Compute path unit vector
 | 
						|
  double unit_vec[3];
 | 
						|
 | 
						|
  unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
 | 
						|
  unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
 | 
						|
  unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
 | 
						|
 | 
						|
  // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
 | 
						|
  // Let a circle be tangent to both previous and current path line segments, where the junction
 | 
						|
  // deviation is defined as the distance from the junction to the closest edge of the circle,
 | 
						|
  // colinear with the circle center. The circular segment joining the two paths represents the
 | 
						|
  // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
 | 
						|
  // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
 | 
						|
  // path width or max_jerk in the previous grbl version. This approach does not actually deviate
 | 
						|
  // from path, but used as a robust way to compute cornering speeds, as it takes into account the
 | 
						|
  // nonlinearities of both the junction angle and junction velocity.
 | 
						|
  double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
 | 
						|
 | 
						|
  // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
 | 
						|
  if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
 | 
						|
    // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
 | 
						|
    // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
 | 
						|
    double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
 | 
						|
      - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
 | 
						|
      - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
 | 
						|
 | 
						|
    // Skip and use default max junction speed for 0 degree acute junction.
 | 
						|
    if (cos_theta < 0.95) {
 | 
						|
      vmax_junction = min(previous_nominal_speed,block->nominal_speed);
 | 
						|
      // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
 | 
						|
      if (cos_theta > -0.95) {
 | 
						|
        // Compute maximum junction velocity based on maximum acceleration and junction deviation
 | 
						|
        double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
 | 
						|
        vmax_junction = min(vmax_junction,
 | 
						|
        sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  // Start with a safe speed
 | 
						|
  float vmax_junction = max_xy_jerk/2; 
 | 
						|
  float vmax_junction_factor = 1.0; 
 | 
						|
  if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) 
 | 
						|
    vmax_junction = min(vmax_junction, max_z_jerk/2);
 | 
						|
  if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) 
 | 
						|
    vmax_junction = min(vmax_junction, max_e_jerk/2);
 | 
						|
  vmax_junction = min(vmax_junction, block->nominal_speed);
 | 
						|
  float safe_speed = vmax_junction;
 | 
						|
 | 
						|
  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
 | 
						|
    float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
 | 
						|
    //    if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
 | 
						|
    vmax_junction = block->nominal_speed;
 | 
						|
    //    }
 | 
						|
    if (jerk > max_xy_jerk) {
 | 
						|
      vmax_junction_factor = (max_xy_jerk/jerk);
 | 
						|
    } 
 | 
						|
    if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
 | 
						|
      vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
 | 
						|
    } 
 | 
						|
    if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
 | 
						|
      vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
 | 
						|
    } 
 | 
						|
    vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
 | 
						|
  }
 | 
						|
  block->max_entry_speed = vmax_junction;
 | 
						|
 | 
						|
  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
 | 
						|
  double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
 | 
						|
  block->entry_speed = min(vmax_junction, v_allowable);
 | 
						|
 | 
						|
  // Initialize planner efficiency flags
 | 
						|
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
 | 
						|
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
 | 
						|
  // the current block and next block junction speeds are guaranteed to always be at their maximum
 | 
						|
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
 | 
						|
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 | 
						|
  // the reverse and forward planners, the corresponding block junction speed will always be at the
 | 
						|
  // the maximum junction speed and may always be ignored for any speed reduction checks.
 | 
						|
  if (block->nominal_speed <= v_allowable) { 
 | 
						|
    block->nominal_length_flag = true; 
 | 
						|
  }
 | 
						|
  else { 
 | 
						|
    block->nominal_length_flag = false; 
 | 
						|
  }
 | 
						|
  block->recalculate_flag = true; // Always calculate trapezoid for new block
 | 
						|
 | 
						|
  // Update previous path unit_vector and nominal speed
 | 
						|
  memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
 | 
						|
  previous_nominal_speed = block->nominal_speed;
 | 
						|
 | 
						|
 | 
						|
#ifdef ADVANCE
 | 
						|
  // Calculate advance rate
 | 
						|
  if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
 | 
						|
    block->advance_rate = 0;
 | 
						|
    block->advance = 0;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
 | 
						|
    float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * 
 | 
						|
      (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
 | 
						|
    block->advance = advance;
 | 
						|
    if(acc_dist == 0) {
 | 
						|
      block->advance_rate = 0;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      block->advance_rate = advance / (float)acc_dist;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /*
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
   SERIAL_ECHOPGM("advance :");
 | 
						|
   SERIAL_ECHO(block->advance/256.0);
 | 
						|
   SERIAL_ECHOPGM("advance rate :");
 | 
						|
   SERIAL_ECHOLN(block->advance_rate/256.0);
 | 
						|
   */
 | 
						|
#endif // ADVANCE
 | 
						|
 | 
						|
  calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
 | 
						|
  safe_speed/block->nominal_speed);
 | 
						|
 | 
						|
  // Move buffer head
 | 
						|
  block_buffer_head = next_buffer_head;
 | 
						|
 | 
						|
  // Update position
 | 
						|
  memcpy(position, target, sizeof(target)); // position[] = target[]
 | 
						|
 | 
						|
  planner_recalculate();
 | 
						|
 | 
						|
  st_wake_up();
 | 
						|
}
 | 
						|
 | 
						|
#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA)
 | 
						|
vector_3 plan_get_position() {
 | 
						|
	vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
 | 
						|
 | 
						|
	//position.debug("in plan_get position");
 | 
						|
	//plan_bed_level_matrix.debug("in plan_get bed_level");
 | 
						|
	matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
 | 
						|
	//inverse.debug("in plan_get inverse");
 | 
						|
	position.apply_rotation(inverse);
 | 
						|
	//position.debug("after rotation");
 | 
						|
 | 
						|
	return position;
 | 
						|
}
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
void plan_set_position(float x, float y, float z, const float &e)
 | 
						|
{
 | 
						|
  apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 | 
						|
#else
 | 
						|
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
 | 
						|
{
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
  position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 | 
						|
  position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 | 
						|
  position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
 | 
						|
  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 | 
						|
  st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
 | 
						|
  previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | 
						|
  previous_speed[0] = 0.0;
 | 
						|
  previous_speed[1] = 0.0;
 | 
						|
  previous_speed[2] = 0.0;
 | 
						|
  previous_speed[3] = 0.0;
 | 
						|
}
 | 
						|
 | 
						|
void plan_set_e_position(const float &e)
 | 
						|
{
 | 
						|
  position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 | 
						|
  st_set_e_position(position[E_AXIS]);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t movesplanned()
 | 
						|
{
 | 
						|
  return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
void set_extrude_min_temp(float temp)
 | 
						|
{
 | 
						|
  extrude_min_temp=temp;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
 | 
						|
void reset_acceleration_rates()
 | 
						|
{
 | 
						|
	for(int8_t i=0; i < NUM_AXIS; i++)
 | 
						|
        {
 | 
						|
        axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
 | 
						|
        }
 | 
						|
}
 |