You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6094 lines
187 KiB

/* -*- c++ -*- */
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
#ifdef MESH_BED_LEVELING
#include "mesh_bed_leveling.h"
#endif
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#ifdef BLINKM
#include "BlinkM.h"
#include "Wire.h"
#endif
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home one or more axes
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M120 - Enable endstop detection
// M121 - Disable endstop detection
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - Set additional homing offset
// M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 - Set speed factor override percentage: S<factor in percent>
// M221 - Set extrude factor override percentage: S<factor in percent>
// M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - Set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M380 - Activate solenoid on active extruder
// M381 - Disable all solenoids
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Display measured filament diameter
// M500 - Store parameters in EEPROM
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
// M666 - Set delta endstop adjustment
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
#ifdef SDSUPPORT
CardReader card;
#endif
bool Running = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply;
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
float home_offset[3] = { 0 };
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
uint8_t active_extruder = 0;
int fanSpeed = 0;
bool cancel_heatup = false;
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float offset[3] = { 0 };
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static int bufindr = 0;
static int bufindw = 0;
static int buflen = 0;
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown
unsigned long previous_millis_cmd = 0;
static unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
unsigned long starttime = 0; ///< Print job start time
unsigned long stoptime = 0; ///< Print job stop time
static uint8_t target_extruder;
bool CooldownNoWait = true;
bool target_direction;
#ifdef ENABLE_AUTO_BED_LEVELING
int xy_travel_speed = XY_TRAVEL_SPEED;
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
float z_endstop_adj = 0;
#endif
// Extruder offsets
#if EXTRUDERS > 1
#ifndef EXTRUDER_OFFSET_X
#define EXTRUDER_OFFSET_X { 0 }
#endif
#ifndef EXTRUDER_OFFSET_Y
#define EXTRUDER_OFFSET_Y { 0 }
#endif
float extruder_offset[][EXTRUDERS] = {
EXTRUDER_OFFSET_X,
EXTRUDER_OFFSET_Y
#ifdef DUAL_X_CARRIAGE
, { 0 } // supports offsets in XYZ plane
#endif
};
#endif
#ifdef SERVO_ENDSTOPS
int servo_endstops[] = SERVO_ENDSTOPS;
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
#endif
#ifdef BARICUDA
int ValvePressure = 0;
int EtoPPressure = 0;
#endif
#ifdef FWRETRACT
bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false };
bool retracted_swap[EXTRUDERS] = { false };
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT
#if defined(ULTIPANEL) && HAS_POWER_SWITCH
bool powersupply =
#ifdef PS_DEFAULT_OFF
false
#else
true
#endif
;
#endif
#ifdef DELTA
float delta[3] = { 0 };
#define SIN_60 0.8660254037844386
#define COS_60 0.5
float endstop_adj[3] = { 0 };
// these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS;
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
float delta_tower1_y = -COS_60 * delta_radius;
float delta_tower2_x = SIN_60 * delta_radius; // front right tower
float delta_tower2_y = -COS_60 * delta_radius;
float delta_tower3_x = 0; // back middle tower
float delta_tower3_y = delta_radius;
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
#ifdef ENABLE_AUTO_BED_LEVELING
int delta_grid_spacing[2] = { 0, 0 };
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
#endif
#else
static bool home_all_axis = true;
#endif
#ifdef SCARA
static float delta[3] = { 0 };
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
#endif
#ifdef FILAMENT_SENSOR
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1 = 0; //index into ring buffer
int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist = 0; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
#ifdef FILAMENT_RUNOUT_SENSOR
static bool filrunoutEnqued = false;
#endif
#ifdef SDSUPPORT
static bool fromsd[BUFSIZE];
#endif
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
//===========================================================================
//================================ Functions ================================
//===========================================================================
void get_arc_coordinates();
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
#ifdef PREVENT_DANGEROUS_EXTRUDE
float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#ifdef SDSUPPORT
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
//Injects the next command from the pending sequence of commands, when possible
//Return false if and only if no command was pending
static bool drain_queued_commands_P() {
if (!queued_commands_P) return false;
// Get the next 30 chars from the sequence of gcodes to run
char cmd[30];
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
// Look for the end of line, or the end of sequence
size_t i = 0;
char c;
while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
if (c)
queued_commands_P += i + 1; // move to next command
else
queued_commands_P = NULL; // will have no more commands in the sequence
}
return true;
}
//Record one or many commands to run from program memory.
//Aborts the current queue, if any.
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
void enquecommands_P(const char* pgcode) {
queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible)
}
//adds a single command to the main command buffer, from RAM
//that is really done in a non-safe way.
//needs overworking someday
//Returns false if it failed to do so
bool enquecommand(const char *cmd)
{
if(*cmd==';')
return false;
if(buflen >= BUFSIZE)
return false;
//this is dangerous if a mixing of serial and this happens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueing);
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
return true;
}
void setup_killpin()
{
#if HAS_KILL
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN, HIGH);
#endif
}
void setup_filrunoutpin()
{
#if HAS_FILRUNOUT
pinMode(FILRUNOUT_PIN, INPUT);
#ifdef ENDSTOPPULLUP_FIL_RUNOUT
WRITE(FILLRUNOUT_PIN, HIGH);
#endif
#endif
}
// Set home pin
void setup_homepin(void)
{
#if HAS_HOME
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN, HIGH);
#endif
}
void setup_photpin()
{
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if HAS_POWER_SWITCH
#ifdef PS_DEFAULT_OFF
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide()
{
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servos[0].attach(SERVO0_PIN);
#endif
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servos[1].attach(SERVO1_PIN);
#endif
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servos[2].attach(SERVO2_PIN);
#endif
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servos[3].attach(SERVO3_PIN);
#endif
// Set position of Servo Endstops that are defined
#ifdef SERVO_ENDSTOPS
for (int i = 0; i < 3; i++)
if (servo_endstops[i] >= 0)
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
#endif
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
void setup() {
setup_killpin();
setup_filrunoutpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR = 0;
SERIAL_ECHOPGM(MSG_MARLIN);
SERIAL_ECHOLNPGM(" " STRING_VERSION);
#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
SERIAL_ECHOPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif // STRING_CONFIG_H_AUTHOR
#endif // STRING_VERSION_CONFIG_H
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
#ifdef SDSUPPORT
for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
#endif // !SDSUPPORT
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings();
tp_init(); // Initialize temperature loop
plan_init(); // Initialize planner;
watchdog_init();
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
lcd_init();
_delay_ms(1000); // wait 1sec to display the splash screen
#if HAS_CONTROLLERFAN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#ifdef DIGIPOT_I2C
digipot_i2c_init();
#endif
#ifdef Z_PROBE_SLED
pinMode(SERVO0_PIN, OUTPUT);
digitalWrite(SERVO0_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
setup_homepin();
#ifdef STAT_LED_RED
pinMode(STAT_LED_RED, OUTPUT);
digitalWrite(STAT_LED_RED, LOW); // turn it off
#endif
#ifdef STAT_LED_BLUE
pinMode(STAT_LED_BLUE, OUTPUT);
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
#endif
}
void loop() {
if (buflen < BUFSIZE - 1) get_command();
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if (buflen) {
#ifdef SDSUPPORT
if (card.saving) {
if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
card.write_command(cmdbuffer[bufindr]);
if (card.logging)
process_commands();
else
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
else {
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
}
else
process_commands();
#else
process_commands();
#endif // SDSUPPORT
buflen--;
bufindr = (bufindr + 1) % BUFSIZE;
}
// Check heater every n milliseconds
manage_heater();
manage_inactivity();
checkHitEndstops();
lcd_update();
}
void get_command()
{
if (drain_queued_commands_P()) // priority is given to non-serial commands
return;
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
serial_char = MYSERIAL.read();
if(serial_char == '\n' ||
serial_char == '\r' ||
serial_count >= (MAX_CMD_SIZE - 1) )
{
// end of line == end of comment
comment_mode = false;
if(!serial_count) {
// short cut for empty lines
return;
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
#ifdef SDSUPPORT
fromsd[bufindw] = false;
#endif //!SDSUPPORT
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strchr(cmdbuffer[bufindw], '*') != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strchr(cmdbuffer[bufindw], '*') != NULL))
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
serial_count = 0;
return;
}
}
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch(strtol(strchr_pointer + 1, NULL, 10)){
case 0:
case 1:
case 2:
case 3:
if (IsStopped()) {
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
break;
default:
break;
}
}
//If command was e-stop process now
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
kill();
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
serial_count = 0; //clear buffer
}
else if(serial_char == '\\') { //Handle escapes
if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
cmdbuffer[bufindw][serial_count++] = serial_char;
}
//otherwise do nothing
}
else { // its not a newline, carriage return or escape char
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!card.sdprinting || serial_count!=0){
return;
}
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering=false;
if(buflen==0) stop_buffering=false;
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
int16_t n=card.get();
serial_char = (char)n;
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == '#' && comment_mode == false) ||
(serial_char == ':' && comment_mode == false) ||
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
{
if(card.eof()){
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int hours, minutes;
minutes=(t/60)%60;
hours=t/60/60;
sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time, true);
card.printingHasFinished();
card.checkautostart(true);
}
if(serial_char=='#')
stop_buffering=true;
if(!serial_count)
{
comment_mode = false; //for new command
return; //if empty line
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
// if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
// }
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
float code_has_value() {
char c = *(strchr_pointer + 1);
return (c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.';
}
float code_value() {
float ret;
char *e = strchr(strchr_pointer, 'E');
if (e) {
*e = 0;
ret = strtod(strchr_pointer+1, NULL);
*e = 'E';
}
else
ret = strtod(strchr_pointer+1, NULL);
return ret;
}
long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
bool code_seen(char code) {
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#ifdef DUAL_X_CARRIAGE
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) {
if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
float xoff = home_offset[X_AXIS];
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
}
#endif
#ifdef SCARA
float homeposition[3];
if (axis < 2) {
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics,
// and calculates homing offset using forward kinematics
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis];
// SCARA home positions are based on configuration since the actual limits are determined by the
// inverse kinematic transform.
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else {
current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + home_offset[axis];
}
#else
current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + home_offset[axis];
#endif
}
/**
* Some planner shorthand inline functions
*/
inline void set_homing_bump_feedrate(AxisEnum axis) {
const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
if (homing_bump_divisor[axis] >= 1)
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
else {
feedrate = homing_feedrate[axis] / 10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
}
}
inline void line_to_current_position() {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_z(float zPosition) {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_destination(float mm_m) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
}
inline void line_to_destination() {
line_to_destination(feedrate);
}
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#if defined(DELTA) || defined(SCARA)
inline void sync_plan_position_delta() {
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#endif
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef DELTA
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_move_raw() {
refresh_cmd_timeout();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
set_current_to_destination();
}
#endif
#ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
sync_plan_position();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
sync_plan_position();
}
#endif // !AUTO_BED_LEVELING_GRID
static void run_z_probe() {
#ifdef DELTA
float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS);
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw();
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// we have to let the planner know where we are right now as it is not where we said to go.
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
sync_plan_position_delta();
#else // !DELTA
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
line_to_z(zPosition);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate(Z_AXIS);
zPosition -= home_bump_mm(Z_AXIS) * 2;
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
sync_plan_position();
#endif // !DELTA
}
/**
*
*/
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
#ifdef DELTA
feedrate = XY_TRAVEL_SPEED;
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_raw();
st_synchronize();
#else
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
line_to_current_position();
st_synchronize();
feedrate = xy_travel_speed;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
line_to_current_position();
st_synchronize();
#endif
feedrate = oldFeedRate;
}
static void setup_for_endstop_move() {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
refresh_cmd_timeout();
enable_endstops(true);
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
refresh_cmd_timeout();
}
static void deploy_z_probe() {
#ifdef SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
feedrate = homing_feedrate[X_AXIS];
// Move to the start position to initiate deployment
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
prepare_move_raw();
// Home X to touch the belt
feedrate = homing_feedrate[X_AXIS]/10;
destination[X_AXIS] = 0;
prepare_move_raw();
// Home Y for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
#ifdef Z_PROBE_ENDSTOP
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop)
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop)
#endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
}
#endif // Z_PROBE_ALLEN_KEY
}
static void stow_z_probe() {
#ifdef SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
#if Z_RAISE_AFTER_PROBING > 0
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
st_synchronize();
#endif
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
// Move up for safety
feedrate = homing_feedrate[X_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw();
// Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
prepare_move_raw();
// Move the nozzle down to push the probe into retracted position
feedrate = homing_feedrate[Z_AXIS]/10;
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
prepare_move_raw();
// Move up for safety
feedrate = homing_feedrate[Z_AXIS]/2;
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
prepare_move_raw();
// Home XY for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
#ifdef Z_PROBE_ENDSTOP
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (!z_probe_endstop)
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop)
#endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
}
#endif
}
enum ProbeAction {
ProbeStay = 0,
ProbeDeploy = BIT(0),
ProbeStow = BIT(1),
ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
};
// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeDeploy) deploy_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if Z_RAISE_BETWEEN_PROBINGS > 0
if (retract_action == ProbeStay) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
st_synchronize();
}
#endif
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeStow) stow_z_probe();
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed");
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
return measured_z;
}
#ifdef DELTA
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
}
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
// Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
if (x + y < 3) continue;
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
}
}
}
// Print calibration results for plotting or manual frame adjustment.
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
SERIAL_PROTOCOLCHAR(' ');
}
SERIAL_EOL;
}
}
// Reset calibration results to zero.
void reset_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
}
}
}
#endif // DELTA
#endif // ENABLE_AUTO_BED_LEVELING
/**
* Home an individual axis
*/
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(AxisEnum axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
int axis_home_dir;
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
#else
axis_home_dir = home_dir(axis);
#endif
// Set the axis position as setup for the move
current_position[axis] = 0;
sync_plan_position();
// Engage Servo endstop if enabled
#if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
#if SERVO_LEVELING
if (axis == Z_AXIS) deploy_z_probe(); else
#endif
{
if (servo_endstops[axis] > -1)
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
}
#endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
#ifdef Z_DUAL_ENDSTOPS
if (axis == Z_AXIS) In_Homing_Process(true);
#endif
// Move towards the endstop until an endstop is triggered
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
line_to_destination();
st_synchronize();
// Set the axis position as setup for the move
current_position[axis] = 0;
sync_plan_position();
// Move away from the endstop by the axis HOME_BUMP_MM
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
// Slow down the feedrate for the next move
set_homing_bump_feedrate(axis);
// Move slowly towards the endstop until triggered
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
#ifdef Z_DUAL_ENDSTOPS
if (axis == Z_AXIS) {
float adj = fabs(z_endstop_adj);
bool lockZ1;
if (axis_home_dir > 0) {
adj = -adj;
lockZ1 = (z_endstop_adj > 0);
}
else
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
sync_plan_position();
// Move to the adjusted endstop height
feedrate = homing_feedrate[axis];
destination[Z_AXIS] = adj;
line_to_destination();
st_synchronize();
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
In_Homing_Process(false);
} // Z_AXIS
#endif
#ifdef DELTA
// retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) {
sync_plan_position();
destination[axis] = endstop_adj[axis];
line_to_destination();
st_synchronize();
}
#endif
// Set the axis position to its home position (plus home offsets)
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose(); // clear endstop hit flags
axis_known_position[axis] = true;
// Retract Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[axis] > -1)
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
#endif
#if SERVO_LEVELING && !defined(Z_PROBE_SLED)
if (axis == Z_AXIS) stow_z_probe();
#endif
}
}
#ifdef FWRETRACT
void retract(bool retracting, bool swapretract = false) {
if (retracting == retracted[active_extruder]) return;
float oldFeedrate = feedrate;
set_destination_to_current();
if (retracting) {
feedrate = retract_feedrate * 60;
current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
prepare_move();
if (retract_zlift > 0.01) {
current_position[Z_AXIS] -= retract_zlift;
#ifdef DELTA
sync_plan_position_delta();
#else
sync_plan_position();
#endif
prepare_move();
}
}
else {
if (retract_zlift > 0.01) {
current_position[Z_AXIS] += retract_zlift;
#ifdef DELTA
sync_plan_position_delta();
#else
sync_plan_position();
#endif
//prepare_move();
}
feedrate = retract_recover_feedrate * 60;
float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
prepare_move();
}
feedrate = oldFeedrate;
retracted[active_extruder] = retracting;
} // retract()
#endif // FWRETRACT
#ifdef Z_PROBE_SLED
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
//
// Method to dock/undock a sled designed by Charles Bell.
//
// dock[in] If true, move to MAX_X and engage the electromagnet
// offset[in] The additional distance to move to adjust docking location
//
static void dock_sled(bool dock, int offset=0) {
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
if (dock) {
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
digitalWrite(SERVO0_PIN, LOW); // turn off magnet
} else {
float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
}
}
#endif // Z_PROBE_SLED
/**
*
* G-Code Handler functions
*
*/
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1() {
if (IsRunning()) {
get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT
if (autoretract_enabled)
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
retract(!retracted[active_extruder]);
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
}
}
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
inline void gcode_G2_G3(bool clockwise) {
if (IsRunning()) {
get_arc_coordinates();
prepare_arc_move(clockwise);
}
}
/**
* G4: Dwell S<seconds> or P<milliseconds>
*/
inline void gcode_G4() {
unsigned long codenum = 0;
LCD_MESSAGEPGM(MSG_DWELL);
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
st_synchronize();
refresh_cmd_timeout();
codenum += previous_millis_cmd; // keep track of when we started waiting
while (millis() < codenum) {
manage_heater();
manage_inactivity();
lcd_update();
}
}
#ifdef FWRETRACT
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1
if (doRetract) {
retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
}
#endif
retract(doRetract
#if EXTRUDERS > 1
, retracted_swap[active_extruder]
#endif
);
}
#endif //FWRETRACT
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
* If numbers are included with XYZ set the position as with G92
* Currently adds the home_offset, which may be wrong and removed soon.
*
* Xn Home X, setting X to n + home_offset[X_AXIS]
* Yn Home Y, setting Y to n + home_offset[Y_AXIS]
* Zn Home Z, setting Z to n + home_offset[Z_AXIS]
*/
inline void gcode_G28() {
// For auto bed leveling, clear the level matrix
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity();
#ifdef DELTA
reset_bed_level();
#endif
#endif
// For manual bed leveling deactivate the matrix temporarily
#ifdef MESH_BED_LEVELING
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
#endif
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
refresh_cmd_timeout();
enable_endstops(true);
set_destination_to_current();
feedrate = 0.0;
#ifdef DELTA
// A delta can only safely home all axis at the same time
// all axis have to home at the same time
// Pretend the current position is 0,0,0
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
sync_plan_position();
// Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// Destination reached
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
// take care of back off and rehome now we are all at the top
HOMEAXIS(X);
HOMEAXIS(Y);
HOMEAXIS(Z);
sync_plan_position_delta();
#else // NOT DELTA
bool homeX = code_seen(axis_codes[X_AXIS]),
homeY = code_seen(axis_codes[Y_AXIS]),
homeZ = code_seen(axis_codes[Z_AXIS]);
home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
if (home_all_axis || homeZ) {
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
HOMEAXIS(Z);
#elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
// Raise Z before homing any other axes
// (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
feedrate = max_feedrate[Z_AXIS] * 60;
line_to_destination();
st_synchronize();
#endif
} // home_all_axis || homeZ
#ifdef QUICK_HOME
if (home_all_axis || (homeX && homeY)) { // First diagonal move
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
#ifdef DUAL_X_CARRIAGE
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#else
int x_axis_home_dir = home_dir(X_AXIS);
#endif
sync_plan_position();
float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
mlratio = mlx>mly ? mly/mlx : mlx/mly;
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
line_to_destination();
st_synchronize();
axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS);
sync_plan_position();
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
line_to_destination();
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
#ifndef SCARA
current_position[Z_AXIS] = destination[Z_AXIS];
#endif
}
#endif // QUICK_HOME
// Home X
if (home_all_axis || homeX) {
#ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder;
extruder_duplication_enabled = false;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_extruder_x_pos = current_position[X_AXIS];
active_extruder = tmp_extruder;
HOMEAXIS(X);
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
}
// Home Y
if (home_all_axis || homeY) HOMEAXIS(Y);
// Set the X position, if included
if (code_seen(axis_codes[X_AXIS]) && code_has_value())
current_position[X_AXIS] = code_value();
// Set the Y position, if included
if (code_seen(axis_codes[Y_AXIS]) && code_has_value())
current_position[Y_AXIS] = code_value();
// Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
if (home_all_axis || homeZ) {
#ifdef Z_SAFE_HOMING
if (home_all_axis) {
current_position[Z_AXIS] = 0;
sync_plan_position();
//
// Set the probe (or just the nozzle) destination to the safe homing point
//
// NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
// then this may not work as expected.
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED;
// This could potentially move X, Y, Z all together
line_to_destination();
st_synchronize();
// Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
// Home the Z axis
HOMEAXIS(Z);
}
else if (homeZ) { // Don't need to Home Z twice
// Let's see if X and Y are homed
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
// Make sure the probe is within the physical limits
// NOTE: This doesn't necessarily ensure the probe is also within the bed!
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
// Set the plan current position to X, Y, 0
current_position[Z_AXIS] = 0;
plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
// Set Z destination away from bed and raise the axis
// NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
line_to_destination();
st_synchronize();
// Home the Z axis
HOMEAXIS(Z);
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
}
else {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
}
} // !home_all_axes && homeZ
#else // !Z_SAFE_HOMING
HOMEAXIS(Z);
#endif // !Z_SAFE_HOMING
} // home_all_axis || homeZ
#endif // Z_HOME_DIR < 0
// Set the Z position, if included
if (code_seen(axis_codes[Z_AXIS]) && code_has_value())
current_position[Z_AXIS] = code_value();
#if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
#endif
sync_plan_position();
#endif // else DELTA
#ifdef SCARA
sync_plan_position_delta();
#endif
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
// For manual leveling move back to 0,0
#ifdef MESH_BED_LEVELING
if (mbl_was_active) {
current_position[X_AXIS] = mbl.get_x(0);
current_position[Y_AXIS] = mbl.get_y(0);
set_destination_to_current();
feedrate = homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position();
mbl.active = 1;
}
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
refresh_cmd_timeout();
endstops_hit_on_purpose(); // clear endstop hit flags
}
#ifdef MESH_BED_LEVELING
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
/**
* G29: Mesh-based Z-Probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING:
*
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn.nn Manually modify a single point
*
* The S0 report the points as below
*
* +----> X-axis
* |
* |
* v Y-axis
*
*/
inline void gcode_G29() {
static int probe_point = -1;
MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
if (state < 0 || state > 3) {
SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
return;
}
int ix, iy;
float z;
switch(state) {
case MeshReport:
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_EOL;
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
case MeshStart:
mbl.reset();
probe_point = 0;
enquecommands_P(PSTR("G28\nG29 S2"));
break;
case MeshNext:
if (probe_point < 0) {
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
if (probe_point == 0) {
// Set Z to a positive value before recording the first Z.
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position();
}
else {
// For others, save the Z of the previous point, then raise Z again.
ix = (probe_point - 1) % MESH_NUM_X_POINTS;
iy = (probe_point - 1) / MESH_NUM_X_POINTS;
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
mbl.set_z(ix, iy, current_position[Z_AXIS]);
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
}
// Is there another point to sample? Move there.
if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
ix = probe_point % MESH_NUM_X_POINTS;
iy = probe_point / MESH_NUM_X_POINTS;
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
current_position[X_AXIS] = mbl.get_x(ix);
current_position[Y_AXIS] = mbl.get_y(iy);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
probe_point++;
}
else {
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
probe_point = -1;
mbl.active = 1;
enquecommands_P(PSTR("G28"));
}
break;
case MeshSet:
if (code_seen('X') || code_seen('x')) {
ix = code_value_long()-1;
if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
return;
}
} else {
SERIAL_PROTOCOLPGM("X not entered.\n");
return;
}
if (code_seen('Y') || code_seen('y')) {
iy = code_value_long()-1;
if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
return;
}
} else {
SERIAL_PROTOCOLPGM("Y not entered.\n");
return;
}
if (code_seen('Z') || code_seen('z')) {
z = code_value();
} else {
SERIAL_PROTOCOLPGM("Z not entered.\n");
return;
}
mbl.z_values[iy][ix] = z;
} // switch(state)
}
#elif defined(ENABLE_AUTO_BED_LEVELING)
/**
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Not supported by non-linear delta printer bed leveling.
* Example: "G29 P4"
*
* S Set the XY travel speed between probe points (in mm/min)
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or clean the rotation Matrix. Useful to check the topology
* after a first run of G29.
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 will engage the probe, test the bed, then disengage.
* Include "E" to engage/disengage the probe for each sample.
* There's no extra effect if you have a fixed probe.
* Usage: "G29 E" or "G29 e"
*
*/
inline void gcode_G29() {
// Don't allow auto-leveling without homing first
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
return;
}
bool dryrun = code_seen('D') || code_seen('d'),
deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
#ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
#endif
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
}
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
#ifndef DELTA
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
if (auto_bed_leveling_grid_points < 2) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
return;
}
#endif
xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
right_out_r = right_probe_bed_position > MAX_PROBE_X,
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
#endif // AUTO_BED_LEVELING_GRID
#ifdef Z_PROBE_SLED
dock_sled(false); // engage (un-dock) the probe
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
deploy_z_probe();
#endif
st_synchronize();
if (!dryrun) {
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
plan_bed_level_matrix.set_to_identity();
#ifdef DELTA
reset_bed_level();
#else //!DELTA
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
sync_plan_position();
#endif // !DELTA
}
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
#ifdef DELTA
delta_grid_spacing[0] = xGridSpacing;
delta_grid_spacing[1] = yGridSpacing;
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
#else // !DELTA
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
#endif // !DELTA
int probePointCounter = 0;
bool zig = true;
for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
double yProbe = front_probe_bed_position + yGridSpacing * yCount;
int xStart, xStop, xInc;
if (zig) {
xStart = 0;
xStop = auto_bed_leveling_grid_points;
xInc = 1;
}
else {
xStart = auto_bed_leveling_grid_points - 1;
xStop = -1;
xInc = -1;
}
#ifndef DELTA
// If do_topography_map is set then don't zig-zag. Just scan in one direction.
// This gets the probe points in more readable order.
if (!do_topography_map) zig = !zig;
#endif
for (int xCount = xStart; xCount != xStop; xCount += xInc) {
double xProbe = left_probe_bed_position + xGridSpacing * xCount;
// raise extruder
float measured_z,
z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
#ifdef DELTA
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
#endif //DELTA
ProbeAction act;
if (deploy_probe_for_each_reading) // G29 E - Stow between probes
act = ProbeDeployAndStow;
else if (yCount == 0 && xCount == xStart)
act = ProbeDeploy;
else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
act = ProbeStow;
else
act = ProbeStay;
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
#ifndef DELTA
mean += measured_z;
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
#else
bed_level[xCount][yCount] = measured_z + z_offset;
#endif
probePointCounter++;
manage_heater();
manage_inactivity();
lcd_update();
} //xProbe
} //yProbe
clean_up_after_endstop_move();
#ifdef DELTA
if (!dryrun) extrapolate_unprobed_bed_level();
print_bed_level();
#else // !DELTA
// solve lsq problem
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL;
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL;
}
}
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
SERIAL_PROTOCOLPGM("+-----------+\n");
SERIAL_PROTOCOLPGM("|...Back....|\n");
SERIAL_PROTOCOLPGM("|Left..Right|\n");
SERIAL_PROTOCOLPGM("|...Front...|\n");
SERIAL_PROTOCOLPGM("+-----------+\n");
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
int ind = yy * auto_bed_leveling_grid_points + xx;
float diff = eqnBVector[ind] - mean;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL;
} // yy
SERIAL_EOL;
} //do_topography_map
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#endif //!DELTA
#else // !AUTO_BED_LEVELING_GRID
// Actions for each probe
ProbeAction p1, p2, p3;
if (deploy_probe_for_each_reading)
p1 = p2 = p3 = ProbeDeployAndStow;
else
p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
// Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
clean_up_after_endstop_move();
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
#ifndef DELTA
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
if (!dryrun) {
// Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
sync_plan_position();
}
#endif // !DELTA
#ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
stow_z_probe();
#endif
#ifdef Z_PROBE_END_SCRIPT
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
st_synchronize();
#endif
}
#ifndef Z_PROBE_SLED
inline void gcode_G30() {
deploy_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM("Bed");
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
SERIAL_EOL;
clean_up_after_endstop_move();
stow_z_probe(); // Retract Z Servo endstop if available
}
#endif //!Z_PROBE_SLED
#endif //ENABLE_AUTO_BED_LEVELING
/**
* G92: Set current position to given X Y Z E
*/
inline void gcode_G92() {
if (!code_seen(axis_codes[E_AXIS]))
st_synchronize();
bool didXYZ = false;
for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
float v = current_position[i] = code_value();
if (i == E_AXIS)
plan_set_e_position(v);
else
didXYZ = true;
}
}
if (didXYZ) sync_plan_position();
}
#ifdef ULTIPANEL
/**
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
* M1: // M1 - Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char *src = strchr_pointer + 2;
unsigned long codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value_short(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value_short() * 1000UL; // seconds to wait
hasS = codenum > 0;
}
char* starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0')
lcd_setstatus(src, true);
else {
LCD_MESSAGEPGM(MSG_USERWAIT);
#if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus();
#endif
}
lcd_ignore_click();
st_synchronize();
refresh_cmd_timeout();
if (codenum > 0) {
codenum += previous_millis_cmd; // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()) {
manage_heater();
manage_inactivity();
lcd_update();
}
lcd_ignore_click(false);
}
else {
if (!lcd_detected()) return;
while (!lcd_clicked()) {
manage_heater();
manage_inactivity();
lcd_update();
}
}
if (IS_SD_PRINTING)
LCD_MESSAGEPGM(MSG_RESUMING);
else
LCD_MESSAGEPGM(WELCOME_MSG);
}
#endif // ULTIPANEL
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
}
#ifdef SDSUPPORT
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
}
/**
* M21: Init SD Card
*/
inline void gcode_M21() {
card.initsd();
}
/**
* M22: Release SD Card
*/
inline void gcode_M22() {
card.release();
}
/**
* M23: Select a file
*/
inline void gcode_M23() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(codepos, '*');
if (starpos) *starpos = '\0';
card.openFile(codepos, true);
}
/**
* M24: Start SD Print
*/
inline void gcode_M24() {
card.startFileprint();
starttime = millis();
}
/**
* M25: Pause SD Print
*/
inline void gcode_M25() {
card.pauseSDPrint();
}
/**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
if (card.cardOK && code_seen('S'))
card.setIndex(code_value_short());
}
/**
* M27: Get SD Card status
*/
inline void gcode_M27() {
card.getStatus();
}
/**
* M28: Start SD Write
*/
inline void gcode_M28() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(codepos, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.openFile(codepos, false);
}
/**
* M29: Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
char* starpos = strchr(strchr_pointer + 4, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
}
#endif
/**
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
stoptime = millis();
unsigned long t = (stoptime - starttime) / 1000;
int min = t / 60, sec = t % 60;
char time[30];
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
#ifdef SDSUPPORT
/**
* M32: Select file and start SD Print
*/
inline void gcode_M32() {
if (card.sdprinting)
st_synchronize();
char* codepos = strchr_pointer + 4;
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
if (! namestartpos)
namestartpos = codepos; //default name position, 4 letters after the M
else
namestartpos++; //to skip the '!'
char* starpos = strchr(codepos, '*');
if (starpos) *(starpos) = '\0';
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
if (card.cardOK) {
card.openFile(namestartpos, true, !call_procedure);
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
card.setIndex(code_value_short());
card.startFileprint();
if (!call_procedure)
starttime = millis(); //procedure calls count as normal print time.
}
}
/**
* M928: Start SD Write
*/
inline void gcode_M928() {
char* starpos = strchr(strchr_pointer + 5, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer + 5);
}
#endif // SDSUPPORT
/**
* M42: Change pin status via GCode
*/
inline void gcode_M42() {
if (code_seen('S')) {
int pin_status = code_value_short(),
pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value_short();
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
#if HAS_FAN
if (pin_number == FAN_PIN) fanSpeed = pin_status;
#endif
if (pin_number > -1) {
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
} // code_seen('S')
}
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
// This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
#ifdef Z_PROBE_ENDSTOP
#if !HAS_Z_PROBE
#error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
#endif
#elif !HAS_Z_MIN
#error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
#endif
/**
* M48: Z-Probe repeatability measurement function.
*
* Usage:
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage probe for each reading
* L = Number of legs of movement before probe
*
* This function assumes the bed has been homed. Specifically, that a G28 command
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
*
* The number of samples will default to 10 if not specified. You can use upper or lower case
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
* N for its communication protocol and will get horribly confused if you send it a capital N.
*/
inline void gcode_M48() {
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value_short();
if (verbose_level < 0 || verbose_level > 4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
return;
}
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
n_samples = code_value_short();
if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
return;
}
}
double X_probe_location, Y_probe_location,
X_current = X_probe_location = st_get_position_mm(X_AXIS),
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
Z_current = st_get_position_mm(Z_AXIS),
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
ext_position = st_get_position_mm(E_AXIS);
bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
if (code_seen('X') || code_seen('x')) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
SERIAL_PROTOCOLPGM("?X position out of range.\n");
return;
}
}
if (code_seen('Y') || code_seen('y')) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
SERIAL_PROTOCOLPGM("?Y position out of range.\n");
return;
}
}
if (code_seen('L') || code_seen('l')) {
n_legs = code_value_short();
if (n_legs == 1) n_legs = 2;
if (n_legs < 0 || n_legs > 15) {
SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
return;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line(X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS] / 60,
active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOLPGM("Positioning the probe...\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
deploy_z_probe();
setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
if (deploy_probe_for_each_reading) stow_z_probe();
for (uint8_t n=0; n < n_samples; n++) {
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
if (n_legs) {
unsigned long ms = millis();
double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
theta = RADIANS(ms % 360L);
float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",dir);
//SERIAL_EOL;
for (uint8_t l = 0; l < n_legs - 1; l++) {
ms = millis();
theta += RADIANS(dir * (ms % 20L));
radius += (ms % 10L) - 5L;
if (radius < 0.0) radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius;
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_EOL;
}
do_blocking_move_to(X_current, Y_current, Z_current);
} // n_legs loop
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
} // n_legs
if (deploy_probe_for_each_reading) {
deploy_z_probe();
delay(1000);
}
setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) {
float ss = sample_set[j] - mean;
sum += ss * ss;
}
sigma = sqrt(sum / (n + 1));
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL(n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
}
if (verbose_level > 0) SERIAL_EOL;
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
if (deploy_probe_for_each_reading) {
stow_z_probe();
delay(1000);
}
}
if (!deploy_probe_for_each_reading) {
stow_z_probe();
delay(1000);
}
clean_up_after_endstop_move();
// enable_endstops(true);
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_EOL;
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL; SERIAL_EOL;
}
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
/**
* M104: Set hot end temperature
*/
inline void gcode_M104() {
if (setTargetedHotend(104)) return;
if (code_seen('S')) {
float temp = code_value();
setTargetHotend(temp, target_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
#endif
setWatch();
}
}
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (setTargetedHotend(105)) return;
#if HAS_TEMP_0 || HAS_TEMP_BED
SERIAL_PROTOCOLPGM("ok");
#if HAS_TEMP_0
SERIAL_PROTOCOLPGM(" T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
#endif
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(), 1);
#endif
for (int8_t e = 0; e < EXTRUDERS; ++e) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(e), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
}
#else // !HAS_TEMP_0 && !HAS_TEMP_BED
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#ifdef SHOW_TEMP_ADC_VALUES
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
}
#endif
SERIAL_EOL;
}
#if HAS_FAN
/**
* M106: Set Fan Speed
*/
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
/**
* M107: Fan Off
*/
inline void gcode_M107() { fanSpeed = 0; }
#endif // HAS_FAN
/**
* M109: Wait for extruder(s) to reach temperature
*/
inline void gcode_M109() {
if (setTargetedHotend(109)) return;
LCD_MESSAGEPGM(MSG_HEATING);
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R')) {
float temp = code_value();
setTargetHotend(temp, target_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
#endif
}
#ifdef AUTOTEMP
autotemp_enabled = code_seen('F');
if (autotemp_enabled) autotemp_factor = code_value();
if (code_seen('S')) autotemp_min = code_value();
if (code_seen('B')) autotemp_max = code_value();
#endif
setWatch();
unsigned long timetemp = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME
long residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
#endif //TEMP_RESIDENCY_TIME
{ // while loop
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)target_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if (residencyStart > -1) {
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN( timetemp );
}
else {
SERIAL_PROTOCOLLNPGM("?");
}
#else
SERIAL_EOL;
#endif
timetemp = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
#ifdef TEMP_RESIDENCY_TIME
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
// or when current temp falls outside the hysteresis after target temp was reached
if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
{
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
refresh_cmd_timeout();
starttime = previous_millis_cmd;
}
#if HAS_TEMP_BED
/**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
LCD_MESSAGEPGM(MSG_BED_HEATING);
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R'))
setTargetBed(code_value());
unsigned long timetemp = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
unsigned long ms = millis();
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
timetemp = ms;
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_EOL;
}
manage_heater();
manage_inactivity();
lcd_update();
}
LCD_MESSAGEPGM(MSG_BED_DONE);
refresh_cmd_timeout();
}
#endif // HAS_TEMP_BED
/**
* M112: Emergency Stop
*/
inline void gcode_M112() {
kill();
}
#ifdef BARICUDA
#if HAS_HEATER_1
/**
* M126: Heater 1 valve open
*/
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M127: Heater 1 valve close
*/
inline void gcode_M127() { ValvePressure = 0; }
#endif
#if HAS_HEATER_2
/**
* M128: Heater 2 valve open
*/
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M129: Heater 2 valve close
*/
inline void gcode_M129() { EtoPPressure = 0; }
#endif
#endif //BARICUDA
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (code_seen('S')) setTargetBed(code_value());
}
#if HAS_POWER_SWITCH
/**
* M80: Turn on Power Supply
*/
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update();
#endif
}
#endif // HAS_POWER_SWITCH
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/
inline void gcode_M81() {
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait 1 second before switching off
#if HAS_SUICIDE
st_synchronize();
suicide();
#elif HAS_POWER_SWITCH
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
#if HAS_POWER_SWITCH
powersupply = false;
#endif
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update();
#endif
}
/**
* M82: Set E codes absolute (default)
*/
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
*/
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
* M18, M84: Disable all stepper motors
*/
inline void gcode_M18_M84() {
if (code_seen('S')) {
stepper_inactive_time = code_value() * 1000;
}
else {
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if (all_axis) {
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
finishAndDisableSteppers();
}
else {
st_synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if (code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#endif
}
}
}
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M85() {
if (code_seen('S')) max_inactive_time = code_value() * 1000;
}
/**
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M92() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
float value = code_value();
if (value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_e_jerk *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
}
}
/**
* M114: Output current position to serial port
*/
inline void gcode_M114() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_EOL;
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_EOL; SERIAL_EOL;
#endif
}
/**
* M115: Capabilities string
*/
inline void gcode_M115() {
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
}
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
char* codepos = strchr_pointer + 5;
char* starpos = strchr(codepos, '*');
if (starpos) *starpos = '\0';
lcd_setstatus(codepos);
}
/**
* M119: Output endstop states to serial output
*/
inline void gcode_M119() {
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if HAS_X_MIN
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_X_MAX
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MIN
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MAX
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MIN
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MAX
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z2_MAX
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_PROBE
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
}
/**
* M120: Enable endstops
*/
inline void gcode_M120() { enable_endstops(false); }
/**
* M121: Disable endstops
*/
inline void gcode_M121() { enable_endstops(true); }
#ifdef BLINKM
/**
* M150: Set Status LED Color - Use R-U-B for R-G-B
*/
inline void gcode_M150() {
SendColors(
code_seen('R') ? (byte)code_value_short() : 0,
code_seen('U') ? (byte)code_value_short() : 0,
code_seen('B') ? (byte)code_value_short() : 0
);
}
#endif // BLINKM
/**
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
* T<extruder>
* D<millimeters>
*/
inline void gcode_M200() {
int tmp_extruder = active_extruder;
if (code_seen('T')) {
tmp_extruder = code_value_short();
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
return;
}
}
if (code_seen('D')) {
float diameter = code_value();
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = (diameter != 0.0);
if (volumetric_enabled) {
filament_size[tmp_extruder] = diameter;
// make sure all extruders have some sane value for the filament size
for (int i=0; i<EXTRUDERS; i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
}
else {
//reserved for setting filament diameter via UFID or filament measuring device
return;
}
calculate_volumetric_multipliers();
}
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*/
inline void gcode_M201() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
}
#endif
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
*/
inline void gcode_M203() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_feedrate[i] = code_value();
}
}
}
/**
* M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
*/
inline void gcode_M204() {
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
acceleration = code_value();
travel_acceleration = acceleration;
SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
SERIAL_EOL;
}
if (code_seen('P')) {
acceleration = code_value();
SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
SERIAL_EOL;
}
if (code_seen('R')) {
retract_acceleration = code_value();
SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
SERIAL_EOL;
}
if (code_seen('T')) {
travel_acceleration = code_value();
SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
SERIAL_EOL;
}
}
/**
* M205: Set Advanced Settings
*
* S = Min Feed Rate (mm/s)
* T = Min Travel Feed Rate (mm/s)
* B = Min Segment Time (µs)
* X = Max XY Jerk (mm/s/s)
* Z = Max Z Jerk (mm/s/s)
* E = Max E Jerk (mm/s/s)
*/
inline void gcode_M205() {
if (code_seen('S')) minimumfeedrate = code_value();
if (code_seen('T')) mintravelfeedrate = code_value();
if (code_seen('B')) minsegmenttime = code_value();
if (code_seen('X')) max_xy_jerk = code_value();
if (code_seen('Z')) max_z_jerk = code_value();
if (code_seen('E')) max_e_jerk = code_value();
}
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
home_offset[i] = code_value();
}
}
#ifdef SCARA
if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
#endif
}
#ifdef DELTA
/**
* M665: Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
*/
inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value();
if (code_seen('R')) delta_radius = code_value();
if (code_seen('S')) delta_segments_per_second = code_value();
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
/**
* M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
for (int8_t i = 0; i < 3; i++) {
if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value();
}
}
}
#elif defined(Z_DUAL_ENDSTOPS)
/**
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
*/
inline void gcode_M666() {
if (code_seen('Z')) z_endstop_adj = code_value();
SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
SERIAL_EOL;
}
#endif // DELTA
#ifdef FWRETRACT
/**
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
*/
inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value();
if (code_seen('F')) retract_feedrate = code_value() / 60;
if (code_seen('Z')) retract_zlift = code_value();
}
/**
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
*/
inline void gcode_M208() {
if (code_seen('S')) retract_recover_length = code_value();
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
}
/**
* M209: Enable automatic retract (M209 S1)
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
*/
inline void gcode_M209() {
if (code_seen('S')) {
int t = code_value_short();
switch(t) {
case 0:
autoretract_enabled = false;
break;
case 1:
autoretract_enabled = true;
break;
default:
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
return;
}
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
}
}
#endif // FWRETRACT
#if EXTRUDERS > 1
/**
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
*/
inline void gcode_M218() {
if (setTargetedHotend(218)) return;
if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
#ifdef DUAL_X_CARRIAGE
if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for (int e = 0; e < EXTRUDERS; e++) {
SERIAL_CHAR(' ');
SERIAL_ECHO(extruder_offset[X_AXIS][e]);
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
#ifdef DUAL_X_CARRIAGE
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
#endif
}
SERIAL_EOL;
}
#endif // EXTRUDERS > 1
/**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedmultiply = code_value();
}
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (code_seen('S')) {
int sval = code_value();
if (code_seen('T')) {
if (setTargetedHotend(221)) return;
extruder_multiply[target_extruder] = sval;
}
else {
extruder_multiply[active_extruder] = sval;
}
}
}
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
inline void gcode_M226() {
if (code_seen('P')) {
int pin_number = code_value();
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
if (pin_state >= -1 && pin_state <= 1) {
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
if (pin_number > -1) {
int target = LOW;
st_synchronize();
pinMode(pin_number, INPUT);
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target) {
manage_heater();
manage_inactivity();
lcd_update();
}
} // pin_number > -1
} // pin_state -1 0 1
} // code_seen('P')
}
#if NUM_SERVOS > 0
/**
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
*/
inline void gcode_M280() {
int servo_index = code_seen('P') ? code_value() : -1;
int servo_position = 0;
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if SERVO_LEVELING
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_EOL;
}
}
#endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0) {
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
noTone(BEEPER);
#elif defined(ULTRALCD)
lcd_buzz(beepS, beepP);
#elif defined(LCD_USE_I2C_BUZZER)
lcd_buzz(beepP, beepS);
#endif
}
else {
delay(beepP);
}
}
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
#ifdef PIDTEMP
/**
* M301: Set PID parameters P I D (and optionally C)
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = code_seen('E') ? code_value() : 0; // extruder being updated
if (e < EXTRUDERS) { // catch bad input value
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
#endif
updatePID();
SERIAL_PROTOCOL(MSG_OK);
#ifdef PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
SERIAL_PROTOCOL(e);
#endif // PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
#endif
SERIAL_EOL;
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
}
#endif // PIDTEMP
#ifdef PIDTEMPBED
inline void gcode_M304() {
if (code_seen('P')) bedKp = code_value();
if (code_seen('I')) bedKi = scalePID_i(code_value());
if (code_seen('D')) bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_EOL;
}
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif // !CHDK && HAS_PHOTOGRAPH
}
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef HAS_LCD_CONTRAST
/**
* M250: Read and optionally set the LCD contrast
*/
inline void gcode_M250() {
if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_EOL;
}
#endif // HAS_LCD_CONTRAST
#ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
/**
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
*/
inline void gcode_M302() {
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
}
#endif // PREVENT_DANGEROUS_EXTRUDE
/**
* M303: PID relay autotune
* S<temperature> sets the target temperature. (default target temperature = 150C)
* E<extruder> (-1 for the bed)
* C<cycles>
*/
inline void gcode_M303() {
int e = code_seen('E') ? code_value_short() : 0;
int c = code_seen('C') ? code_value_short() : 5;
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
PID_autotune(temp, e, c);
}
#ifdef SCARA
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (IsRunning()) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = delta_x;
delta[Y_AXIS] = delta_y;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return true;
}
return false;
}
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 ");
return SCARA_move_to_cal(0, 120);
}
/**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLN(" Cal: Theta 90 ");
return SCARA_move_to_cal(90, 130);
}
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLN(" Cal: Psi 0 ");
return SCARA_move_to_cal(60, 180);
}
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLN(" Cal: Psi 90 ");
return SCARA_move_to_cal(50, 90);
}
/**
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
return SCARA_move_to_cal(45, 135);
}
/**
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/
inline void gcode_M365() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
axis_scaling[i] = code_value();
}
}
}
#endif // SCARA
#ifdef EXT_SOLENOID
void enable_solenoid(uint8_t num) {
switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if HAS_SOLENOID_1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_2
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_3
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { st_synchronize(); }
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
/**
* M401: Engage Z Servo endstop if available
*/
inline void gcode_M401() { deploy_z_probe(); }
/**
* M402: Retract Z Servo endstop if enabled
*/
inline void gcode_M402() { stow_z_probe(); }
#endif
#ifdef FILAMENT_SENSOR
/**
* M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
*/
inline void gcode_M404() {
#if HAS_FILWIDTH
if (code_seen('W')) {
filament_width_nominal = code_value();
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
#endif
}
/**
* M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
if (code_seen('D')) meas_delay_cm = code_value();
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
int temp_ratio = widthFil_to_size_ratio();
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
delay_index1 = delay_index2 = 0;
}
filament_sensor = true;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
}
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() { filament_sensor = false; }
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
#endif // FILAMENT_SENSOR
/**
* M500: Store settings in EEPROM
*/
inline void gcode_M500() {
Config_StoreSettings();
}
/**
* M501: Read settings from EEPROM
*/
inline void gcode_M501() {
Config_RetrieveSettings();
}
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
Config_ResetDefault();
}
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
Config_PrintSettings(code_seen('S') && code_value() == 0);
}
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
}
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
inline void gcode_SET_Z_PROBE_OFFSET() {
float value;
if (code_seen('Z')) {
value = code_value();
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_EOL;
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHOPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_ECHOPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
SERIAL_EOL;
}
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
SERIAL_ECHO(-zprobe_zoffset);
SERIAL_EOL;
}
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
/**
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
*/
inline void gcode_M600() {
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
for (int i=0; i<NUM_AXIS; i++)
target[i] = lastpos[i] = current_position[i];
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
#ifdef DELTA
#define RUNPLAN calculate_delta(target); BASICPLAN
#else
#define RUNPLAN BASICPLAN
#endif
//retract by E
if (code_seen('E')) target[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FIRSTRETRACT
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
#endif
RUNPLAN;
//lift Z
if (code_seen('Z')) target[Z_AXIS] += code_value();
#ifdef FILAMENTCHANGE_ZADD
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
#endif
RUNPLAN;
//move xy
if (code_seen('X')) target[X_AXIS] = code_value();
#ifdef FILAMENTCHANGE_XPOS
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
#endif
if (code_seen('Y')) target[Y_AXIS] = code_value();
#ifdef FILAMENTCHANGE_YPOS
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
#endif
RUNPLAN;
if (code_seen('L')) target[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif
RUNPLAN;
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
disable_e3();
delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt = 0;
while (!lcd_clicked()) {
cnt++;
manage_heater();
manage_inactivity(true);
lcd_update();
if (cnt == 0) {
#if BEEPER > 0
OUT_WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6, 100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
} // while(!lcd_clicked)
//return to normal
if (code_seen('L')) target[E_AXIS] -= code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
#endif
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
plan_set_e_position(current_position[E_AXIS]);
RUNPLAN; //should do nothing
lcd_reset_alert_level();
#ifdef DELTA
calculate_delta(lastpos);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
#else
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
#endif
#ifdef FILAMENT_RUNOUT_SENSOR
filrunoutEnqued = false;
#endif
}
#endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* millimeters x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
st_synchronize();
if (code_seen('S')) dual_x_carriage_mode = code_value();
switch(dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE:
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_CHAR(' ');
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
SERIAL_CHAR(' ');
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_CHAR(',');
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
break;
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
#endif // DUAL_X_CARRIAGE
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if HAS_DIGIPOTSS
for (int i=0;i<NUM_AXIS;i++)
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if (code_seen('B')) digipot_current(4, code_value());
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if (code_seen('X')) digipot_current(0, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN
if (code_seen('Z')) digipot_current(1, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_E_PIN
if (code_seen('E')) digipot_current(2, code_value());
#endif
#ifdef DIGIPOT_I2C
// this one uses actual amps in floating point
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif
}
#if HAS_DIGIPOTSS
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
digitalPotWrite(
code_seen('P') ? code_value() : 0,
code_seen('S') ? code_value() : 0
);
}
#endif // HAS_DIGIPOTSS
#if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
}
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
if (code_seen('S')) switch(code_value_short()) {
case 1:
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
if (code_seen('B')) microstep_ms(4, code_value(), -1);
break;
case 2:
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
if (code_seen('B')) microstep_ms(4, -1, code_value());
break;
}
microstep_readings();
}
#endif // HAS_MICROSTEPS
/**
* M999: Restart after being stopped
*/
inline void gcode_M999() {
Running = true;
lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
}
inline void gcode_T() {
int tmp_extruder = code_value();
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
SERIAL_ECHO(tmp_extruder);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
else {
target_extruder = tmp_extruder;
#if EXTRUDERS > 1
bool make_move = false;
#endif
if (code_seen('F')) {
#if EXTRUDERS > 1
make_move = true;
#endif
next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
set_destination_to_current();
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
extruder_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
}
else {
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
}
#else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY)
for (int i=X_AXIS; i<=Y_AXIS; i++)
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
// Set the new active extruder and position
active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE
#ifdef DELTA
sync_plan_position_delta();
#else
sync_plan_position();
#endif
// Move to the old position if 'F' was in the parameters
if (make_move && IsRunning()) prepare_move();
}
#ifdef EXT_SOLENOID
st_synchronize();
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
#endif // EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
}
/**
* Process Commands and dispatch them to handlers
* This is called from the main loop()
*/
void process_commands() {
if (code_seen('G')) {
int gCode = code_value_short();
switch(gCode) {
// G0, G1
case 0:
case 1:
gcode_G0_G1();
break;
// G2, G3
#ifndef SCARA
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(gCode == 2);
break;
#endif
// G4 Dwell
case 4:
gcode_G4();
break;
#ifdef FWRETRACT
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(gCode == 10);
break;
#endif //FWRETRACT
case 28: // G28: Home all axes, one at a time
gcode_G28();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
gcode_G30();
break;
#else // Z_PROBE_SLED
case 31: // G31: dock the sled
case 32: // G32: undock the sled
dock_sled(gCode == 31);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
gcode_G92();
break;
}
}
else if (code_seen('M')) {
switch(code_value_short()) {
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
break;
#endif // ULTIPANEL
case 17:
gcode_M17();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
gcode_M20(); break;
case 21: // M21 - init SD card
gcode_M21(); break;
case 22: //M22 - release SD card
gcode_M22(); break;
case 23: //M23 - Select file
gcode_M23(); break;
case 24: //M24 - Start SD print
gcode_M24(); break;
case 25: //M25 - Pause SD print
gcode_M25(); break;
case 26: //M26 - Set SD index
gcode_M26(); break;
case 27: //M27 - Get SD status
gcode_M27(); break;
case 28: //M28 - Start SD write
gcode_M28(); break;
case 29: //M29 - Stop SD write
gcode_M29(); break;
case 30: //M30 <filename> Delete File
gcode_M30(); break;
case 32: //M32 - Select file and start SD print
gcode_M32(); break;
case 928: //M928 - Start SD write
gcode_M928(); break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
gcode_M31();
break;
case 42: //M42 -Change pin status via gcode
gcode_M42();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z-Probe repeatability
gcode_M48();
break;
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
case 104: // M104
gcode_M104();
break;
case 112: // M112 Emergency Stop
gcode_M112();
break;
case 140: // M140 Set bed temp
gcode_M140();
break;
case 105: // M105 Read current temperature
gcode_M105();
return;
break;
case 109: // M109 Wait for temperature
gcode_M109();
break;
#if HAS_TEMP_BED
case 190: // M190 - Wait for bed heater to reach target.
gcode_M190();
break;
#endif // HAS_TEMP_BED
#if HAS_FAN
case 106: //M106 Fan On
gcode_M106();
break;
case 107: //M107 Fan Off
gcode_M107();
break;
#endif // HAS_FAN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if HAS_HEATER_1
case 126: // M126 valve open
gcode_M126();
break;
case 127: // M127 valve closed
gcode_M127();
break;
#endif // HAS_HEATER_1
// PWM for HEATER_2_PIN
#if HAS_HEATER_2
case 128: // M128 valve open
gcode_M128();
break;
case 129: // M129 valve closed
gcode_M129();
break;
#endif // HAS_HEATER_2
#endif // BARICUDA
#if HAS_POWER_SWITCH
case 80: // M80 - Turn on Power Supply
gcode_M80();
break;
#endif // HAS_POWER_SWITCH
case 81: // M81 - Turn off Power, including Power Supply, if possible
gcode_M81();
break;
case 82:
gcode_M82();
break;
case 83:
gcode_M83();
break;
case 18: //compatibility
case 84: // M84
gcode_M18_M84();
break;
case 85: // M85
gcode_M85();
break;
case 92: // M92
gcode_M92();
break;
case 115: // M115
gcode_M115();
break;
case 117: // M117 display message
gcode_M117();
break;
case 114: // M114
gcode_M114();
break;
case 120: // M120
gcode_M120();
break;
case 121: // M121
gcode_M121();
break;
case 119: // M119
gcode_M119();
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
gcode_M150();
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
gcode_M200();
break;
case 201: // M201
gcode_M201();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
gcode_M202();
break;
#endif
case 203: // M203 max feedrate mm/sec
gcode_M203();
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
gcode_M204();
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205();
break;
case 206: // M206 additional homing offset
gcode_M206();
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665();
break;
#endif
#if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
case 666: // M666 set delta / dual endstop adjustment
gcode_M666();
break;
#endif
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
gcode_M207();
break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
gcode_M208();
break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209();
break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
gcode_M218();
break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
gcode_M220();
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
gcode_M221();
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226();
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280();
break;
#endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
case 300: // M300 - Play beep tone
gcode_M300();
break;
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
#ifdef PIDTEMP
case 301: // M301
gcode_M301();
break;
#endif // PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
gcode_M304();
break;
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
break;
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef HAS_LCD_CONTRAST
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250();
break;
#endif // HAS_LCD_CONTRAST
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
gcode_M302();
break;
#endif // PREVENT_DANGEROUS_EXTRUDE
case 303: // M303 PID autotune
gcode_M303();
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return;
break;
case 361: // M361 SCARA Theta pos2
if (gcode_M361()) return;
break;
case 362: // M362 SCARA Psi pos1
if (gcode_M362()) return;
break;
case 363: // M363 SCARA Psi pos2
if (gcode_M363()) return;
break;
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
break;
case 365: // M365 Set SCARA scaling for X Y Z
gcode_M365();
break;
#endif // SCARA
case 400: // M400 finish all moves
gcode_M400();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
#endif
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
break;
case 405: //M405 Turn on filament sensor for control
gcode_M405();
break;
case 406: //M406 Turn off filament sensor for control
gcode_M406();
break;
case 407: //M407 Display measured filament diameter
gcode_M407();
break;
#endif // FILAMENT_SENSOR
case 500: // M500 Store settings in EEPROM
gcode_M500();
break;
case 501: // M501 Read settings from EEPROM
gcode_M501();
break;
case 502: // M502 Revert to default settings
gcode_M502();
break;
case 503: // M503 print settings currently in memory
gcode_M503();
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
gcode_M540();
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
gcode_SET_Z_PROBE_OFFSET();
break;
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600();
break;
#endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605:
gcode_M605();
break;
#endif // DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907();
break;
#if HAS_DIGIPOTSS
case 908: // M908 Control digital trimpot directly.
gcode_M908();
break;
#endif // HAS_DIGIPOTSS
#if HAS_MICROSTEPS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
break;
#endif // HAS_MICROSTEPS
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
}
}
else if (code_seen('T')) {
gcode_T();
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
}
ClearToSend();
}
void FlushSerialRequestResend() {
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend() {
refresh_cmd_timeout();
#ifdef SDSUPPORT
if (fromsd[bufindr]) return;
#endif
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
void get_coordinates() {
for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i]))
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
else
destination[i] = current_position[i];
}
if (code_seen('F')) {
next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void get_arc_coordinates() {
#ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_coordinates();
#ifdef SF_ARC_FIX
relative_mode = relative_mode_backup;
#endif
offset[0] = code_seen('I') ? code_value() : 0;
offset[1] = code_seen('J') ? code_value() : 0;
}
void clamp_to_software_endstops(float target[3])
{
if (min_software_endstops) {
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
#endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
}
if (max_software_endstops) {
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
#ifdef DELTA
void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower1_x = -SIN_60 * radius; // front left tower
delta_tower1_y = -COS_60 * radius;
delta_tower2_x = SIN_60 * radius; // front right tower
delta_tower2_y = -COS_60 * radius;
delta_tower3_x = 0.0; // back middle tower
delta_tower3_y = radius;
delta_diagonal_rod_2 = sq(diagonal_rod);
}
void calculate_delta(float cartesian[3]) {
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
#ifdef ENABLE_AUTO_BED_LEVELING
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[3]) {
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half],
z2 = bed_level[floor_x + half][floor_y + half + 1],
z3 = bed_level[floor_x + half + 1][floor_y + half],
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/*
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
*/
}
#endif // ENABLE_AUTO_BED_LEVELING
#endif // DELTA
#ifdef MESH_BED_LEVELING
#if !defined(MIN)
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
#endif // ! MIN
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
{
if (!mbl.active) {
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
int pix = mbl.select_x_index(current_position[X_AXIS]);
int piy = mbl.select_y_index(current_position[Y_AXIS]);
int ix = mbl.select_x_index(x);
int iy = mbl.select_y_index(y);
pix = MIN(pix, MESH_NUM_X_POINTS-2);
piy = MIN(piy, MESH_NUM_Y_POINTS-2);
ix = MIN(ix, MESH_NUM_X_POINTS-2);
iy = MIN(iy, MESH_NUM_Y_POINTS-2);
if (pix == ix && piy == iy) {
// Start and end on same mesh square
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
float nx, ny, ne, normalized_dist;
if (ix > pix && (x_splits) & BIT(ix)) {
nx = mbl.get_x(ix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(ix);
} else if (ix < pix && (x_splits) & BIT(pix)) {
nx = mbl.get_x(pix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(pix);
} else if (iy > piy && (y_splits) & BIT(iy)) {
ny = mbl.get_y(iy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(iy);
} else if (iy < piy && (y_splits) & BIT(piy)) {
ny = mbl.get_y(piy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(piy);
} else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
// Do the split and look for more borders
destination[X_AXIS] = nx;
destination[Y_AXIS] = ny;
destination[E_AXIS] = ne;
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] = e;
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
}
#endif // MESH_BED_LEVELING
#ifdef PREVENT_DANGEROUS_EXTRUDE
inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
float de = dest_e - curr_e;
if (de) {
if (degHotend(active_extruder) < extrude_min_temp) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
return 0;
}
#ifdef PREVENT_LENGTHY_EXTRUDE
if (labs(de) > EXTRUDE_MAXLENGTH) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
return 0;
}
#endif
}
return de;
}
#endif // PREVENT_DANGEROUS_EXTRUDE
void prepare_move() {
clamp_to_software_endstops(destination);
refresh_cmd_timeout();
#ifdef PREVENT_DANGEROUS_EXTRUDE
(void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
#endif
#ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif // SCARA
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return;
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination);
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position();
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
return;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
#endif // DUAL_X_CARRIAGE
#if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination();
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return;
#else
line_to_destination(feedrate * feedmultiply / 100.0);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)
set_current_to_destination();
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
refresh_cmd_timeout();
}
#if HAS_CONTROLLERFAN
unsigned long lastMotor = 0; // Last time a motor was turned on
unsigned long lastMotorCheck = 0; // Last time the state was checked
void controllerFan() {
uint32_t ms = millis();
if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
lastMotorCheck = ms;
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if EXTRUDERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#endif
#if EXTRUDERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if EXTRUDERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#endif
#endif
#endif
) {
lastMotor = ms; //... set time to NOW so the fan will turn on
}
uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, speed);
analogWrite(CONTROLLERFAN_PIN, speed);
}
}
#endif
#ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta(float cartesian[3]){
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
#else
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
#endif
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2;
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_ECHOLN(" ");*/
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if(millis() > stat_update) {
stat_update += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
max_temp = max(max_temp, degHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if HAS_TEMP_BED
max_temp = max(max_temp, degTargetBed());
max_temp = max(max_temp, degBed());
#endif
if((max_temp > 55.0) && (red_led == false)) {
digitalWrite(STAT_LED_RED, 1);
digitalWrite(STAT_LED_BLUE, 0);
red_led = true;
blue_led = false;
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
}
}
}
#endif
void enable_all_steppers() {
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
enable_e3();
}
void disable_all_steppers() {
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
/**
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
*/
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#if HAS_FILRUNOUT
if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
filrunout();
#endif
if (buflen < BUFSIZE - 1) get_command();
unsigned long ms = millis();
if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
&& !ignore_stepper_queue && !blocks_queued())
disable_all_steppers();
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if HAS_KILL
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750;
if (!READ(KILL_PIN))
killCount++;
else if (killCount > 0)
killCount--;
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if (killCount >= KILL_DELAY) kill();
#endif
#if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 750;
if (!READ(HOME_PIN)) {
if (!homeDebounceCount) {
enquecommands_P(PSTR("G28"));
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
}
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
homeDebounceCount++;
else
homeDebounceCount = 0;
}
#endif
#if HAS_CONTROLLERFAN
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus;
switch(active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if EXTRUDERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if EXTRUDERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if EXTRUDERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
break;
#endif
#endif
#endif
}
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes;
plan_set_e_position(oldepos);
previous_millis_cmd = ms; // refresh_cmd_timeout()
st_synchronize();
switch(active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
}
}
#endif
#ifdef DUAL_X_CARRIAGE
// handle delayed move timeout
if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
set_destination_to_current();
prepare_move();
}
#endif
#ifdef TEMP_STAT_LEDS
handle_status_leds();
#endif
check_axes_activity();
}
void kill()
{
cli(); // Stop interrupts
disable_heater();
disable_all_steppers();
#if HAS_POWER_SWITCH
pinMode(PS_ON_PIN, INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
LCD_ALERTMESSAGEPGM(MSG_KILLED);
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
cli(); // disable interrupts
suicide();
while(1) { /* Intentionally left empty */ } // Wait for reset
}
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout()
{
if filrunoutEnqued == false {
filrunoutEnqued = true;
enquecommand("M600");
}
}
#endif
void Stop()
{
disable_heater();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
}
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif //FAST_PWM_FAN
bool setTargetedHotend(int code){
target_extruder = active_extruder;
if (code_seen('T')) {
target_extruder = code_value_short();
if (target_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
switch(code){
case 104:
SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
break;
case 105:
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
break;
case 109:
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
break;
case 218:
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
break;
case 221:
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
break;
}
SERIAL_ECHOLN(target_extruder);
return true;
}
}
return false;
}
float calculate_volumetric_multiplier(float diameter) {
if (!volumetric_enabled || diameter == 0) return 1.0;
float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
}
void calculate_volumetric_multipliers() {
for (int i=0; i<EXTRUDERS; i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}