You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							811 lines
						
					
					
						
							23 KiB
						
					
					
				
			
		
		
	
	
							811 lines
						
					
					
						
							23 KiB
						
					
					
				/**
 | 
						|
 * ConfigurationStore.cpp
 | 
						|
 *
 | 
						|
 * Configuration and EEPROM storage
 | 
						|
 *
 | 
						|
 * IMPORTANT:  Whenever there are changes made to the variables stored in EEPROM
 | 
						|
 * in the functions below, also increment the version number. This makes sure that
 | 
						|
 * the default values are used whenever there is a change to the data, to prevent
 | 
						|
 * wrong data being written to the variables.
 | 
						|
 *
 | 
						|
 * ALSO: Variables in the Store and Retrieve sections must be in the same order.
 | 
						|
 *       If a feature is disabled, some data must still be written that, when read,
 | 
						|
 *       either sets a Sane Default, or results in No Change to the existing value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#define EEPROM_VERSION "V19"
 | 
						|
 | 
						|
/**
 | 
						|
 * V19 EEPROM Layout:
 | 
						|
 *
 | 
						|
 *  ver
 | 
						|
 *  axis_steps_per_unit (x4)
 | 
						|
 *  max_feedrate (x4)
 | 
						|
 *  max_acceleration_units_per_sq_second (x4)
 | 
						|
 *  acceleration
 | 
						|
 *  retract_acceleration
 | 
						|
 *  travel_acceleration
 | 
						|
 *  minimumfeedrate
 | 
						|
 *  mintravelfeedrate
 | 
						|
 *  minsegmenttime
 | 
						|
 *  max_xy_jerk
 | 
						|
 *  max_z_jerk
 | 
						|
 *  max_e_jerk
 | 
						|
 *  home_offset (x3)
 | 
						|
 *
 | 
						|
 * Mesh bed leveling:
 | 
						|
 *  active
 | 
						|
 *  mesh_num_x
 | 
						|
 *  mesh_num_y
 | 
						|
 *  z_values[][]
 | 
						|
 *  zprobe_zoffset
 | 
						|
 *
 | 
						|
 * DELTA:
 | 
						|
 *  endstop_adj (x3)
 | 
						|
 *  delta_radius
 | 
						|
 *  delta_diagonal_rod
 | 
						|
 *  delta_segments_per_second
 | 
						|
 *
 | 
						|
 * ULTIPANEL:
 | 
						|
 *  plaPreheatHotendTemp
 | 
						|
 *  plaPreheatHPBTemp
 | 
						|
 *  plaPreheatFanSpeed
 | 
						|
 *  absPreheatHotendTemp
 | 
						|
 *  absPreheatHPBTemp
 | 
						|
 *  absPreheatFanSpeed
 | 
						|
 *
 | 
						|
 * PIDTEMP:
 | 
						|
 *  Kp[0], Ki[0], Kd[0], Kc[0]
 | 
						|
 *  Kp[1], Ki[1], Kd[1], Kc[1]
 | 
						|
 *  Kp[2], Ki[2], Kd[2], Kc[2]
 | 
						|
 *  Kp[3], Ki[3], Kd[3], Kc[3]
 | 
						|
 *
 | 
						|
 * PIDTEMPBED:
 | 
						|
 *  bedKp, bedKi, bedKd
 | 
						|
 *
 | 
						|
 * DOGLCD:
 | 
						|
 *  lcd_contrast
 | 
						|
 *
 | 
						|
 * SCARA:
 | 
						|
 *  axis_scaling (x3)
 | 
						|
 *
 | 
						|
 * FWRETRACT:
 | 
						|
 *  autoretract_enabled
 | 
						|
 *  retract_length
 | 
						|
 *  retract_length_swap
 | 
						|
 *  retract_feedrate
 | 
						|
 *  retract_zlift
 | 
						|
 *  retract_recover_length
 | 
						|
 *  retract_recover_length_swap
 | 
						|
 *  retract_recover_feedrate
 | 
						|
 *
 | 
						|
 *  volumetric_enabled
 | 
						|
 *
 | 
						|
 *  filament_size (x4)
 | 
						|
 *
 | 
						|
 * Z_DUAL_ENDSTOPS
 | 
						|
 *  z_endstop_adj
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include "Marlin.h"
 | 
						|
#include "language.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "ConfigurationStore.h"
 | 
						|
 | 
						|
#ifdef MESH_BED_LEVELING
 | 
						|
   #include "mesh_bed_leveling.h"
 | 
						|
#endif  // MESH_BED_LEVELING
 | 
						|
 | 
						|
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
 | 
						|
  uint8_t c;
 | 
						|
  while(size--) {
 | 
						|
    eeprom_write_byte((unsigned char*)pos, *value);
 | 
						|
    c = eeprom_read_byte((unsigned char*)pos);
 | 
						|
    if (c != *value) {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
 | 
						|
    }
 | 
						|
    pos++;
 | 
						|
    value++;
 | 
						|
  };
 | 
						|
}
 | 
						|
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
 | 
						|
  do {
 | 
						|
    *value = eeprom_read_byte((unsigned char*)pos);
 | 
						|
    pos++;
 | 
						|
    value++;
 | 
						|
  } while (--size);
 | 
						|
}
 | 
						|
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
 | 
						|
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
 | 
						|
 | 
						|
//======================================================================================
 | 
						|
 | 
						|
#define DUMMY_PID_VALUE 3000.0f
 | 
						|
 | 
						|
#define EEPROM_OFFSET 100
 | 
						|
 | 
						|
#ifdef EEPROM_SETTINGS
 | 
						|
 | 
						|
void Config_StoreSettings()  {
 | 
						|
  float dummy = 0.0f;
 | 
						|
  char ver[4] = "000";
 | 
						|
  int i = EEPROM_OFFSET;
 | 
						|
  EEPROM_WRITE_VAR(i, ver); // invalidate data first
 | 
						|
  EEPROM_WRITE_VAR(i, axis_steps_per_unit);
 | 
						|
  EEPROM_WRITE_VAR(i, max_feedrate);
 | 
						|
  EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
 | 
						|
  EEPROM_WRITE_VAR(i, acceleration);
 | 
						|
  EEPROM_WRITE_VAR(i, retract_acceleration);
 | 
						|
  EEPROM_WRITE_VAR(i, travel_acceleration);
 | 
						|
  EEPROM_WRITE_VAR(i, minimumfeedrate);
 | 
						|
  EEPROM_WRITE_VAR(i, mintravelfeedrate);
 | 
						|
  EEPROM_WRITE_VAR(i, minsegmenttime);
 | 
						|
  EEPROM_WRITE_VAR(i, max_xy_jerk);
 | 
						|
  EEPROM_WRITE_VAR(i, max_z_jerk);
 | 
						|
  EEPROM_WRITE_VAR(i, max_e_jerk);
 | 
						|
  EEPROM_WRITE_VAR(i, home_offset);
 | 
						|
 | 
						|
  uint8_t mesh_num_x = 3;
 | 
						|
  uint8_t mesh_num_y = 3;
 | 
						|
  #ifdef MESH_BED_LEVELING
 | 
						|
    // Compile time test that sizeof(mbl.z_values) is as expected
 | 
						|
    typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
 | 
						|
    mesh_num_x = MESH_NUM_X_POINTS;
 | 
						|
    mesh_num_y = MESH_NUM_Y_POINTS;
 | 
						|
    EEPROM_WRITE_VAR(i, mbl.active);
 | 
						|
    EEPROM_WRITE_VAR(i, mesh_num_x);
 | 
						|
    EEPROM_WRITE_VAR(i, mesh_num_y);
 | 
						|
    EEPROM_WRITE_VAR(i, mbl.z_values);
 | 
						|
  #else
 | 
						|
    uint8_t dummy_uint8 = 0;
 | 
						|
    EEPROM_WRITE_VAR(i, dummy_uint8);
 | 
						|
    EEPROM_WRITE_VAR(i, mesh_num_x);
 | 
						|
    EEPROM_WRITE_VAR(i, mesh_num_y);
 | 
						|
    dummy = 0.0f;
 | 
						|
    for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
 | 
						|
      EEPROM_WRITE_VAR(i, dummy);
 | 
						|
    }
 | 
						|
  #endif // MESH_BED_LEVELING
 | 
						|
 | 
						|
  #ifndef ENABLE_AUTO_BED_LEVELING
 | 
						|
    float zprobe_zoffset = 0;
 | 
						|
  #endif
 | 
						|
  EEPROM_WRITE_VAR(i, zprobe_zoffset);
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    EEPROM_WRITE_VAR(i, endstop_adj);               // 3 floats
 | 
						|
    EEPROM_WRITE_VAR(i, delta_radius);              // 1 float
 | 
						|
    EEPROM_WRITE_VAR(i, delta_diagonal_rod);        // 1 float
 | 
						|
    EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
 | 
						|
  #elif defined(Z_DUAL_ENDSTOPS)
 | 
						|
    EEPROM_WRITE_VAR(i, z_endstop_adj);            // 1 floats
 | 
						|
    dummy = 0.0f;
 | 
						|
    for (int q=5; q--;) EEPROM_WRITE_VAR(i, dummy);
 | 
						|
  #else
 | 
						|
    dummy = 0.0f;
 | 
						|
    for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifndef ULTIPANEL
 | 
						|
    int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
 | 
						|
        absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
 | 
						|
  #endif // !ULTIPANEL
 | 
						|
 | 
						|
  EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
 | 
						|
  EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
 | 
						|
  EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
 | 
						|
  EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
 | 
						|
  EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
 | 
						|
  EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
 | 
						|
 | 
						|
  for (int e = 0; e < 4; e++) {
 | 
						|
 | 
						|
    #ifdef PIDTEMP
 | 
						|
      if (e < EXTRUDERS) {
 | 
						|
        EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
 | 
						|
        EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
 | 
						|
        EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
 | 
						|
        #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
          EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
 | 
						|
        #else
 | 
						|
          dummy = 1.0f; // 1.0 = default kc
 | 
						|
          EEPROM_WRITE_VAR(i, dummy);
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
      else
 | 
						|
    #endif // !PIDTEMP
 | 
						|
      {
 | 
						|
        dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
 | 
						|
        EEPROM_WRITE_VAR(i, dummy);
 | 
						|
        dummy = 0.0f;
 | 
						|
        for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
 | 
						|
      }
 | 
						|
 | 
						|
  } // Extruders Loop
 | 
						|
 | 
						|
  #ifndef PIDTEMPBED
 | 
						|
    float bedKp = DUMMY_PID_VALUE, bedKi = DUMMY_PID_VALUE, bedKd = DUMMY_PID_VALUE;
 | 
						|
  #endif
 | 
						|
 | 
						|
  EEPROM_WRITE_VAR(i, bedKp);
 | 
						|
  EEPROM_WRITE_VAR(i, bedKi);
 | 
						|
  EEPROM_WRITE_VAR(i, bedKd);
 | 
						|
 | 
						|
  #ifndef DOGLCD
 | 
						|
    int lcd_contrast = 32;
 | 
						|
  #endif
 | 
						|
  EEPROM_WRITE_VAR(i, lcd_contrast);
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
 | 
						|
  #else
 | 
						|
    dummy = 1.0f;
 | 
						|
    EEPROM_WRITE_VAR(i, dummy);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef FWRETRACT
 | 
						|
    EEPROM_WRITE_VAR(i, autoretract_enabled);
 | 
						|
    EEPROM_WRITE_VAR(i, retract_length);
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      EEPROM_WRITE_VAR(i, retract_length_swap);
 | 
						|
    #else
 | 
						|
      dummy = 0.0f;
 | 
						|
      EEPROM_WRITE_VAR(i, dummy);
 | 
						|
    #endif
 | 
						|
    EEPROM_WRITE_VAR(i, retract_feedrate);
 | 
						|
    EEPROM_WRITE_VAR(i, retract_zlift);
 | 
						|
    EEPROM_WRITE_VAR(i, retract_recover_length);
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      EEPROM_WRITE_VAR(i, retract_recover_length_swap);
 | 
						|
    #else
 | 
						|
      dummy = 0.0f;
 | 
						|
      EEPROM_WRITE_VAR(i, dummy);
 | 
						|
    #endif
 | 
						|
    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
 | 
						|
  #endif // FWRETRACT
 | 
						|
 | 
						|
  EEPROM_WRITE_VAR(i, volumetric_enabled);
 | 
						|
 | 
						|
  // Save filament sizes
 | 
						|
  for (int q = 0; q < 4; q++) {
 | 
						|
    if (q < EXTRUDERS) dummy = filament_size[q];
 | 
						|
    EEPROM_WRITE_VAR(i, dummy);
 | 
						|
  }
 | 
						|
 | 
						|
  char ver2[4] = EEPROM_VERSION;
 | 
						|
  int j = EEPROM_OFFSET;
 | 
						|
  EEPROM_WRITE_VAR(j, ver2); // validate data
 | 
						|
 | 
						|
  // Report storage size
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
 | 
						|
  SERIAL_ECHOLNPGM(" bytes)");
 | 
						|
}
 | 
						|
 | 
						|
void Config_RetrieveSettings() {
 | 
						|
 | 
						|
  int i = EEPROM_OFFSET;
 | 
						|
  char stored_ver[4];
 | 
						|
  char ver[4] = EEPROM_VERSION;
 | 
						|
  EEPROM_READ_VAR(i, stored_ver); //read stored version
 | 
						|
  //  SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
 | 
						|
 | 
						|
  if (strncmp(ver, stored_ver, 3) != 0) {
 | 
						|
    Config_ResetDefault();
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    float dummy = 0;
 | 
						|
 | 
						|
    // version number match
 | 
						|
    EEPROM_READ_VAR(i, axis_steps_per_unit);
 | 
						|
    EEPROM_READ_VAR(i, max_feedrate);
 | 
						|
    EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
 | 
						|
 | 
						|
    // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | 
						|
    reset_acceleration_rates();
 | 
						|
 | 
						|
    EEPROM_READ_VAR(i, acceleration);
 | 
						|
    EEPROM_READ_VAR(i, retract_acceleration);
 | 
						|
    EEPROM_READ_VAR(i, travel_acceleration);
 | 
						|
    EEPROM_READ_VAR(i, minimumfeedrate);
 | 
						|
    EEPROM_READ_VAR(i, mintravelfeedrate);
 | 
						|
    EEPROM_READ_VAR(i, minsegmenttime);
 | 
						|
    EEPROM_READ_VAR(i, max_xy_jerk);
 | 
						|
    EEPROM_READ_VAR(i, max_z_jerk);
 | 
						|
    EEPROM_READ_VAR(i, max_e_jerk);
 | 
						|
    EEPROM_READ_VAR(i, home_offset);
 | 
						|
 | 
						|
    uint8_t mesh_num_x = 0;
 | 
						|
    uint8_t mesh_num_y = 0;
 | 
						|
    #ifdef MESH_BED_LEVELING
 | 
						|
      EEPROM_READ_VAR(i, mbl.active);
 | 
						|
      EEPROM_READ_VAR(i, mesh_num_x);
 | 
						|
      EEPROM_READ_VAR(i, mesh_num_y);
 | 
						|
      if (mesh_num_x != MESH_NUM_X_POINTS ||
 | 
						|
          mesh_num_y != MESH_NUM_Y_POINTS) {
 | 
						|
        mbl.reset();
 | 
						|
        for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
 | 
						|
          EEPROM_READ_VAR(i, dummy);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        EEPROM_READ_VAR(i, mbl.z_values);
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      uint8_t dummy_uint8 = 0;
 | 
						|
      EEPROM_READ_VAR(i, dummy_uint8);
 | 
						|
      EEPROM_READ_VAR(i, mesh_num_x);
 | 
						|
      EEPROM_READ_VAR(i, mesh_num_y);
 | 
						|
      for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
 | 
						|
        EEPROM_READ_VAR(i, dummy);
 | 
						|
      }
 | 
						|
    #endif  // MESH_BED_LEVELING
 | 
						|
 | 
						|
    #ifndef ENABLE_AUTO_BED_LEVELING
 | 
						|
      float zprobe_zoffset = 0;
 | 
						|
    #endif
 | 
						|
    EEPROM_READ_VAR(i, zprobe_zoffset);
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
      EEPROM_READ_VAR(i, endstop_adj);                // 3 floats
 | 
						|
      EEPROM_READ_VAR(i, delta_radius);               // 1 float
 | 
						|
      EEPROM_READ_VAR(i, delta_diagonal_rod);         // 1 float
 | 
						|
      EEPROM_READ_VAR(i, delta_segments_per_second);  // 1 float
 | 
						|
    #elif defined(Z_DUAL_ENDSTOPS)
 | 
						|
      EEPROM_READ_VAR(i, z_endstop_adj);
 | 
						|
      dummy = 0.0f;
 | 
						|
      for (int q=5; q--;) EEPROM_READ_VAR(i, dummy);
 | 
						|
    #else
 | 
						|
      dummy = 0.0f;
 | 
						|
      for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifndef ULTIPANEL
 | 
						|
      int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
 | 
						|
          absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
 | 
						|
    #endif
 | 
						|
 | 
						|
    EEPROM_READ_VAR(i, plaPreheatHotendTemp);
 | 
						|
    EEPROM_READ_VAR(i, plaPreheatHPBTemp);
 | 
						|
    EEPROM_READ_VAR(i, plaPreheatFanSpeed);
 | 
						|
    EEPROM_READ_VAR(i, absPreheatHotendTemp);
 | 
						|
    EEPROM_READ_VAR(i, absPreheatHPBTemp);
 | 
						|
    EEPROM_READ_VAR(i, absPreheatFanSpeed);
 | 
						|
 | 
						|
    #ifdef PIDTEMP
 | 
						|
      for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
 | 
						|
        EEPROM_READ_VAR(i, dummy); // Kp
 | 
						|
        if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
 | 
						|
          // do not need to scale PID values as the values in EEPROM are already scaled
 | 
						|
          PID_PARAM(Kp, e) = dummy;
 | 
						|
          EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
 | 
						|
          EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
 | 
						|
          #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
            EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
 | 
						|
          #else
 | 
						|
            EEPROM_READ_VAR(i, dummy);
 | 
						|
          #endif
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
 | 
						|
        }
 | 
						|
      }
 | 
						|
    #else // !PIDTEMP
 | 
						|
      // 4 x 4 = 16 slots for PID parameters
 | 
						|
      for (int q=16; q--;) EEPROM_READ_VAR(i, dummy);  // 4x Kp, Ki, Kd, Kc
 | 
						|
    #endif // !PIDTEMP
 | 
						|
 | 
						|
    #ifndef PIDTEMPBED
 | 
						|
      float bedKp, bedKi, bedKd;
 | 
						|
    #endif
 | 
						|
 | 
						|
    EEPROM_READ_VAR(i, dummy); // bedKp
 | 
						|
    if (dummy != DUMMY_PID_VALUE) {
 | 
						|
      bedKp = dummy;
 | 
						|
      EEPROM_READ_VAR(i, bedKi);
 | 
						|
      EEPROM_READ_VAR(i, bedKd);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      for (int q=2; q--;) EEPROM_READ_VAR(i, dummy); // bedKi, bedKd
 | 
						|
    }
 | 
						|
 | 
						|
    #ifndef DOGLCD
 | 
						|
      int lcd_contrast;
 | 
						|
    #endif
 | 
						|
    EEPROM_READ_VAR(i, lcd_contrast);
 | 
						|
 | 
						|
    #ifdef SCARA
 | 
						|
      EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
 | 
						|
    #else
 | 
						|
      EEPROM_READ_VAR(i, dummy);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef FWRETRACT
 | 
						|
      EEPROM_READ_VAR(i, autoretract_enabled);
 | 
						|
      EEPROM_READ_VAR(i, retract_length);
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        EEPROM_READ_VAR(i, retract_length_swap);
 | 
						|
      #else
 | 
						|
        EEPROM_READ_VAR(i, dummy);
 | 
						|
      #endif
 | 
						|
      EEPROM_READ_VAR(i, retract_feedrate);
 | 
						|
      EEPROM_READ_VAR(i, retract_zlift);
 | 
						|
      EEPROM_READ_VAR(i, retract_recover_length);
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        EEPROM_READ_VAR(i, retract_recover_length_swap);
 | 
						|
      #else
 | 
						|
        EEPROM_READ_VAR(i, dummy);
 | 
						|
      #endif
 | 
						|
      EEPROM_READ_VAR(i, retract_recover_feedrate);
 | 
						|
    #endif // FWRETRACT
 | 
						|
 | 
						|
    EEPROM_READ_VAR(i, volumetric_enabled);
 | 
						|
 | 
						|
    for (int q = 0; q < 4; q++) {
 | 
						|
      EEPROM_READ_VAR(i, dummy);
 | 
						|
      if (q < EXTRUDERS) filament_size[q] = dummy;
 | 
						|
    }
 | 
						|
 | 
						|
    calculate_volumetric_multipliers();
 | 
						|
    // Call updatePID (similar to when we have processed M301)
 | 
						|
    updatePID();
 | 
						|
 | 
						|
    // Report settings retrieved and length
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHO(ver);
 | 
						|
    SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
 | 
						|
    SERIAL_ECHOLNPGM(" bytes)");
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef EEPROM_CHITCHAT
 | 
						|
    Config_PrintSettings();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#endif // EEPROM_SETTINGS
 | 
						|
 | 
						|
void Config_ResetDefault() {
 | 
						|
  float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
 | 
						|
  float tmp2[] = DEFAULT_MAX_FEEDRATE;
 | 
						|
  long tmp3[] = DEFAULT_MAX_ACCELERATION;
 | 
						|
  for (uint16_t i = 0; i < NUM_AXIS; i++) {
 | 
						|
    axis_steps_per_unit[i] = tmp1[i];
 | 
						|
    max_feedrate[i] = tmp2[i];
 | 
						|
    max_acceleration_units_per_sq_second[i] = tmp3[i];
 | 
						|
    #ifdef SCARA
 | 
						|
      if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
 | 
						|
        axis_scaling[i] = 1;
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  // steps per sq second need to be updated to agree with the units per sq second
 | 
						|
  reset_acceleration_rates();
 | 
						|
 | 
						|
  acceleration = DEFAULT_ACCELERATION;
 | 
						|
  retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
 | 
						|
  travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
 | 
						|
  minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
 | 
						|
  minsegmenttime = DEFAULT_MINSEGMENTTIME;
 | 
						|
  mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
 | 
						|
  max_xy_jerk = DEFAULT_XYJERK;
 | 
						|
  max_z_jerk = DEFAULT_ZJERK;
 | 
						|
  max_e_jerk = DEFAULT_EJERK;
 | 
						|
  home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
 | 
						|
 | 
						|
  #ifdef MESH_BED_LEVELING
 | 
						|
    mbl.active = 0;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
 | 
						|
    delta_radius =  DELTA_RADIUS;
 | 
						|
    delta_diagonal_rod =  DELTA_DIAGONAL_ROD;
 | 
						|
    delta_segments_per_second =  DELTA_SEGMENTS_PER_SECOND;
 | 
						|
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | 
						|
  #elif defined(Z_DUAL_ENDSTOPS)
 | 
						|
    z_endstop_adj = 0;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef ULTIPANEL
 | 
						|
    plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
 | 
						|
    plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
 | 
						|
    plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
 | 
						|
    absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
 | 
						|
    absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
 | 
						|
    absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DOGLCD
 | 
						|
    lcd_contrast = DEFAULT_LCD_CONTRAST;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef PIDTEMP
 | 
						|
    #ifdef PID_PARAMS_PER_EXTRUDER
 | 
						|
      for (int e = 0; e < EXTRUDERS; e++)
 | 
						|
    #else
 | 
						|
      int e = 0; // only need to write once
 | 
						|
    #endif
 | 
						|
    {
 | 
						|
      PID_PARAM(Kp, e) = DEFAULT_Kp;
 | 
						|
      PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
 | 
						|
      PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
 | 
						|
      #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
        PID_PARAM(Kc, e) = DEFAULT_Kc;
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
    // call updatePID (similar to when we have processed M301)
 | 
						|
    updatePID();
 | 
						|
  #endif // PIDTEMP
 | 
						|
 | 
						|
  #ifdef PIDTEMPBED
 | 
						|
    bedKp = DEFAULT_bedKp;
 | 
						|
    bedKi = scalePID_i(DEFAULT_bedKi);
 | 
						|
    bedKd = scalePID_d(DEFAULT_bedKd);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef FWRETRACT
 | 
						|
    autoretract_enabled = false;
 | 
						|
    retract_length = RETRACT_LENGTH;
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      retract_length_swap = RETRACT_LENGTH_SWAP;
 | 
						|
    #endif
 | 
						|
    retract_feedrate = RETRACT_FEEDRATE;
 | 
						|
    retract_zlift = RETRACT_ZLIFT;
 | 
						|
    retract_recover_length = RETRACT_RECOVER_LENGTH;
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | 
						|
    #endif
 | 
						|
    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
 | 
						|
  #endif
 | 
						|
 | 
						|
  volumetric_enabled = false;
 | 
						|
  filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
    filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
      filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
      #if EXTRUDERS > 3
 | 
						|
        filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  calculate_volumetric_multipliers();
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
 | 
						|
}
 | 
						|
 | 
						|
#ifndef DISABLE_M503
 | 
						|
 | 
						|
void Config_PrintSettings(bool forReplay) {
 | 
						|
  // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Steps per unit:");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M92 X", axis_steps_per_unit[X_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Scaling factors:");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M365 X", axis_scaling[X_AXIS]);
 | 
						|
    SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
 | 
						|
    SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
 | 
						|
    SERIAL_EOL;
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  #endif // SCARA
 | 
						|
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M203 X", max_feedrate[X_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
 | 
						|
  SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
 | 
						|
  SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
 | 
						|
  SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
 | 
						|
  SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
 | 
						|
  SERIAL_EOL;
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M204 P", acceleration );
 | 
						|
  SERIAL_ECHOPAIR(" R", retract_acceleration);
 | 
						|
  SERIAL_ECHOPAIR(" T", travel_acceleration);
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M205 S", minimumfeedrate );
 | 
						|
  SERIAL_ECHOPAIR(" T", mintravelfeedrate );
 | 
						|
  SERIAL_ECHOPAIR(" B", minsegmenttime );
 | 
						|
  SERIAL_ECHOPAIR(" X", max_xy_jerk );
 | 
						|
  SERIAL_ECHOPAIR(" Z", max_z_jerk);
 | 
						|
  SERIAL_ECHOPAIR(" E", max_e_jerk);
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  if (!forReplay) {
 | 
						|
    SERIAL_ECHOLNPGM("Home offset (mm):");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
  }
 | 
						|
  SERIAL_ECHOPAIR("  M206 X", home_offset[X_AXIS] );
 | 
						|
  SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS] );
 | 
						|
  SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS] );
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M666 X", endstop_adj[X_AXIS] );
 | 
						|
    SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
 | 
						|
    SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
 | 
						|
    SERIAL_EOL;
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOPAIR("  M665 L", delta_diagonal_rod );
 | 
						|
    SERIAL_ECHOPAIR(" R", delta_radius );
 | 
						|
    SERIAL_ECHOPAIR(" S", delta_segments_per_second );
 | 
						|
    SERIAL_EOL;
 | 
						|
  #elif defined(Z_DUAL_ENDSTOPS)
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M666 Z", z_endstop_adj );
 | 
						|
    SERIAL_EOL;  
 | 
						|
  #endif // DELTA
 | 
						|
 | 
						|
  #if defined(PIDTEMP) || defined(PIDTEMPBED)
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("PID settings:");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    #if defined(PIDTEMP) && defined(PIDTEMPBED)
 | 
						|
      SERIAL_EOL;
 | 
						|
    #endif
 | 
						|
    #ifdef PIDTEMP
 | 
						|
      SERIAL_ECHOPAIR("  M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
 | 
						|
      SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
 | 
						|
      SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
 | 
						|
      SERIAL_EOL;
 | 
						|
    #endif
 | 
						|
    #ifdef PIDTEMPBED
 | 
						|
      SERIAL_ECHOPAIR("  M304 P", bedKp); // for compatibility with hosts, only echos values for E0
 | 
						|
      SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi));
 | 
						|
      SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd));
 | 
						|
      SERIAL_EOL;
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef FWRETRACT
 | 
						|
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M207 S", retract_length);
 | 
						|
    SERIAL_ECHOPAIR(" F", retract_feedrate*60);
 | 
						|
    SERIAL_ECHOPAIR(" Z", retract_zlift);
 | 
						|
    SERIAL_EOL;
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M208 S", retract_recover_length);
 | 
						|
    SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
 | 
						|
    SERIAL_EOL;
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
 | 
						|
    SERIAL_EOL;
 | 
						|
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (!forReplay) {
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM("Multi-extruder settings:");
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPAIR("   Swap retract length (mm):    ", retract_length_swap);
 | 
						|
        SERIAL_EOL;
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPAIR("   Swap rec. addl. length (mm): ", retract_recover_length_swap);
 | 
						|
        SERIAL_EOL;
 | 
						|
      }
 | 
						|
    #endif // EXTRUDERS > 1
 | 
						|
 | 
						|
  #endif // FWRETRACT
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  if (volumetric_enabled) {
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Filament settings:");
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
    }
 | 
						|
    SERIAL_ECHOPAIR("  M200 D", filament_size[0]);
 | 
						|
    SERIAL_EOL;
 | 
						|
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOPAIR("  M200 T1 D", filament_size[1]);
 | 
						|
      SERIAL_EOL;
 | 
						|
      #if EXTRUDERS > 2
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPAIR("  M200 T2 D", filament_size[2]);
 | 
						|
        SERIAL_EOL;
 | 
						|
        #if EXTRUDERS > 3
 | 
						|
          SERIAL_ECHO_START;
 | 
						|
          SERIAL_ECHOPAIR("  M200 T3 D", filament_size[3]);
 | 
						|
          SERIAL_EOL;
 | 
						|
        #endif
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
  } else {
 | 
						|
    if (!forReplay) {
 | 
						|
      SERIAL_ECHOLNPGM("Filament settings: Disabled");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    #ifdef CUSTOM_M_CODES
 | 
						|
      if (!forReplay) {
 | 
						|
        SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
      }
 | 
						|
      SERIAL_ECHOPAIR("  M", (unsigned long)CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
 | 
						|
      SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
 | 
						|
    #else
 | 
						|
      if (!forReplay) {
 | 
						|
        SERIAL_ECHOPAIR("Z-Probe Offset (mm):", -zprobe_zoffset);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
    SERIAL_EOL;
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#endif // !DISABLE_M503
 |