You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							464 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
	
	
							464 lines
						
					
					
						
							13 KiB
						
					
					
				/**
 | 
						|
 * Marlin 3D Printer Firmware
 | 
						|
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * temperature.h - temperature controller
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef TEMPERATURE_H
 | 
						|
#define TEMPERATURE_H
 | 
						|
 | 
						|
#include "planner.h"
 | 
						|
#include "thermistortables.h"
 | 
						|
 | 
						|
#include "MarlinConfig.h"
 | 
						|
 | 
						|
#if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
  #include "stepper.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef SOFT_PWM_SCALE
 | 
						|
  #define SOFT_PWM_SCALE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
 | 
						|
 | 
						|
#if HOTENDS == 1
 | 
						|
  #define HOTEND_INDEX  0
 | 
						|
  #define EXTRUDER_IDX  0
 | 
						|
#else
 | 
						|
  #define HOTEND_INDEX  e
 | 
						|
  #define EXTRUDER_IDX  active_extruder
 | 
						|
#endif
 | 
						|
 | 
						|
class Temperature {
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    static float current_temperature[HOTENDS],
 | 
						|
                 current_temperature_bed;
 | 
						|
    static int   current_temperature_raw[HOTENDS],
 | 
						|
                 target_temperature[HOTENDS],
 | 
						|
                 current_temperature_bed_raw,
 | 
						|
                 target_temperature_bed;
 | 
						|
 | 
						|
    static volatile bool in_temp_isr;
 | 
						|
 | 
						|
    #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
 | 
						|
      static float redundant_temperature;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static uint8_t soft_pwm_bed;
 | 
						|
 | 
						|
    #if ENABLED(FAN_SOFT_PWM)
 | 
						|
      static uint8_t fanSpeedSoftPwm[FAN_COUNT];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
 | 
						|
      #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP)
 | 
						|
 | 
						|
      #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
 | 
						|
 | 
						|
        static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
 | 
						|
        #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
          static float Kc[HOTENDS];
 | 
						|
        #endif
 | 
						|
        #define PID_PARAM(param, h) Temperature::param[h]
 | 
						|
 | 
						|
      #else
 | 
						|
 | 
						|
        static float Kp, Ki, Kd;
 | 
						|
        #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
          static float Kc;
 | 
						|
        #endif
 | 
						|
        #define PID_PARAM(param, h) Temperature::param
 | 
						|
 | 
						|
      #endif // PID_PARAMS_PER_HOTEND
 | 
						|
 | 
						|
      // Apply the scale factors to the PID values
 | 
						|
      #define scalePID_i(i)   ( (i) * PID_dT )
 | 
						|
      #define unscalePID_i(i) ( (i) / PID_dT )
 | 
						|
      #define scalePID_d(d)   ( (d) / PID_dT )
 | 
						|
      #define unscalePID_d(d) ( (d) * PID_dT )
 | 
						|
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float bedKp, bedKi, bedKd;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(BABYSTEPPING)
 | 
						|
      static volatile int babystepsTodo[3];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
 | 
						|
      static int watch_target_temp[HOTENDS];
 | 
						|
      static millis_t watch_heater_next_ms[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
 | 
						|
      static int watch_target_bed_temp;
 | 
						|
      static millis_t watch_bed_next_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PREVENT_COLD_EXTRUSION)
 | 
						|
      static bool allow_cold_extrude;
 | 
						|
      static float extrude_min_temp;
 | 
						|
      static bool tooColdToExtrude(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
 | 
						|
    #endif
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
 | 
						|
      static int redundant_temperature_raw;
 | 
						|
      static float redundant_temperature;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static volatile bool temp_meas_ready;
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMP)
 | 
						|
      static float temp_iState[HOTENDS],
 | 
						|
                   temp_dState[HOTENDS],
 | 
						|
                   pTerm[HOTENDS],
 | 
						|
                   iTerm[HOTENDS],
 | 
						|
                   dTerm[HOTENDS];
 | 
						|
 | 
						|
      #if ENABLED(PID_EXTRUSION_SCALING)
 | 
						|
        static float cTerm[HOTENDS];
 | 
						|
        static long last_e_position;
 | 
						|
        static long lpq[LPQ_MAX_LEN];
 | 
						|
        static int lpq_ptr;
 | 
						|
      #endif
 | 
						|
 | 
						|
      static float pid_error[HOTENDS];
 | 
						|
      static bool pid_reset[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float temp_iState_bed,
 | 
						|
                   temp_dState_bed,
 | 
						|
                   pTerm_bed,
 | 
						|
                   iTerm_bed,
 | 
						|
                   dTerm_bed,
 | 
						|
                   pid_error_bed;
 | 
						|
    #else
 | 
						|
      static millis_t next_bed_check_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static unsigned long raw_temp_value[4],
 | 
						|
                         raw_temp_bed_value;
 | 
						|
 | 
						|
    // Init min and max temp with extreme values to prevent false errors during startup
 | 
						|
    static int minttemp_raw[HOTENDS],
 | 
						|
               maxttemp_raw[HOTENDS],
 | 
						|
               minttemp[HOTENDS],
 | 
						|
               maxttemp[HOTENDS];
 | 
						|
 | 
						|
    #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
 | 
						|
      static int consecutive_low_temperature_error[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
      static unsigned long preheat_end_time[HOTENDS];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef BED_MINTEMP
 | 
						|
      static int bed_minttemp_raw;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef BED_MAXTEMP
 | 
						|
      static int bed_maxttemp_raw;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static int meas_shift_index;  // Index of a delayed sample in buffer
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if HAS_AUTO_FAN
 | 
						|
      static millis_t next_auto_fan_check_ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    static uint8_t soft_pwm[HOTENDS];
 | 
						|
 | 
						|
    #if ENABLED(FAN_SOFT_PWM)
 | 
						|
      static uint8_t soft_pwm_fan[FAN_COUNT];
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static int current_raw_filwidth;  //Holds measured filament diameter - one extruder only
 | 
						|
    #endif
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    /**
 | 
						|
     * Instance Methods
 | 
						|
     */
 | 
						|
 | 
						|
    Temperature();
 | 
						|
 | 
						|
    void init();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Static (class) methods
 | 
						|
     */
 | 
						|
    static float analog2temp(int raw, uint8_t e);
 | 
						|
    static float analog2tempBed(int raw);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Called from the Temperature ISR
 | 
						|
     */
 | 
						|
    static void isr();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Call periodically to manage heaters
 | 
						|
     */
 | 
						|
    static void manage_heater();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Preheating hotends
 | 
						|
     */
 | 
						|
    #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
      static bool is_preheating(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
 | 
						|
      }
 | 
						|
      static void start_preheat_time(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
 | 
						|
      }
 | 
						|
      static void reset_preheat_time(uint8_t e) {
 | 
						|
        #if HOTENDS == 1
 | 
						|
          UNUSED(e);
 | 
						|
        #endif
 | 
						|
        preheat_end_time[HOTEND_INDEX] = 0;
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      #define is_preheating(n) (false)
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
      static float analog2widthFil(); // Convert raw Filament Width to millimeters
 | 
						|
      static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
 | 
						|
    #endif
 | 
						|
 | 
						|
 | 
						|
    //high level conversion routines, for use outside of temperature.cpp
 | 
						|
    //inline so that there is no performance decrease.
 | 
						|
    //deg=degreeCelsius
 | 
						|
 | 
						|
    static float degHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static float degBed() { return current_temperature_bed; }
 | 
						|
 | 
						|
    #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | 
						|
    static float rawHotendTemp(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return current_temperature_raw[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static float rawBedTemp() { return current_temperature_bed_raw; }
 | 
						|
    #endif
 | 
						|
 | 
						|
    static float degTargetHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static float degTargetBed() { return target_temperature_bed; }
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
 | 
						|
      static void start_watching_heater(uint8_t e = 0);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
 | 
						|
      static void start_watching_bed();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void setTargetHotend(const float& celsius, uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      #ifdef MILLISECONDS_PREHEAT_TIME
 | 
						|
        if (celsius == 0.0f)
 | 
						|
          reset_preheat_time(HOTEND_INDEX);
 | 
						|
        else if (target_temperature[HOTEND_INDEX] == 0.0f)
 | 
						|
          start_preheat_time(HOTEND_INDEX);
 | 
						|
      #endif
 | 
						|
      target_temperature[HOTEND_INDEX] = celsius;
 | 
						|
      #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
 | 
						|
        start_watching_heater(HOTEND_INDEX);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    static void setTargetBed(const float& celsius) {
 | 
						|
      target_temperature_bed = celsius;
 | 
						|
      #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
 | 
						|
        start_watching_bed();
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isHeatingHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
 | 
						|
 | 
						|
    static bool isCoolingHotend(uint8_t e) {
 | 
						|
      #if HOTENDS == 1
 | 
						|
        UNUSED(e);
 | 
						|
      #endif
 | 
						|
      return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
 | 
						|
    }
 | 
						|
    static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The software PWM power for a heater
 | 
						|
     */
 | 
						|
    static int getHeaterPower(int heater);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Switch off all heaters, set all target temperatures to 0
 | 
						|
     */
 | 
						|
    static void disable_all_heaters();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Perform auto-tuning for hotend or bed in response to M303
 | 
						|
     */
 | 
						|
    #if HAS_PID_HEATING
 | 
						|
      static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
 | 
						|
    #endif
 | 
						|
 | 
						|
    /**
 | 
						|
     * Update the temp manager when PID values change
 | 
						|
     */
 | 
						|
    static void updatePID();
 | 
						|
 | 
						|
    #if ENABLED(AUTOTEMP)
 | 
						|
      static void autotempShutdown() {
 | 
						|
        if (planner.autotemp_enabled) {
 | 
						|
          planner.autotemp_enabled = false;
 | 
						|
          if (degTargetHotend(EXTRUDER_IDX) > planner.autotemp_min)
 | 
						|
            setTargetHotend(0, EXTRUDER_IDX);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ENABLED(BABYSTEPPING)
 | 
						|
 | 
						|
      static void babystep_axis(const AxisEnum axis, const int distance) {
 | 
						|
        #if IS_CORE
 | 
						|
          #if ENABLED(BABYSTEP_XY)
 | 
						|
            switch (axis) {
 | 
						|
              case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
 | 
						|
                babystepsTodo[CORE_AXIS_1] += distance * 2;
 | 
						|
                babystepsTodo[CORE_AXIS_2] += distance * 2;
 | 
						|
                break;
 | 
						|
              case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
 | 
						|
                babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
 | 
						|
                babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
 | 
						|
                break;
 | 
						|
              case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
 | 
						|
                babystepsTodo[NORMAL_AXIS] += distance;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
          #elif CORE_IS_XZ || CORE_IS_YZ
 | 
						|
            // Only Z stepping needs to be handled here
 | 
						|
            babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
 | 
						|
            babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
 | 
						|
          #else
 | 
						|
            babystepsTodo[Z_AXIS] += distance;
 | 
						|
          #endif
 | 
						|
        #else
 | 
						|
          babystepsTodo[axis] += distance;
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // BABYSTEPPING
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    static void set_current_temp_raw();
 | 
						|
 | 
						|
    static void updateTemperaturesFromRawValues();
 | 
						|
 | 
						|
    #if ENABLED(HEATER_0_USES_MAX6675)
 | 
						|
      static int read_max6675();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void checkExtruderAutoFans();
 | 
						|
 | 
						|
    static float get_pid_output(int e);
 | 
						|
 | 
						|
    #if ENABLED(PIDTEMPBED)
 | 
						|
      static float get_pid_output_bed();
 | 
						|
    #endif
 | 
						|
 | 
						|
    static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
 | 
						|
    static void min_temp_error(int8_t e);
 | 
						|
    static void max_temp_error(int8_t e);
 | 
						|
 | 
						|
    #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
 | 
						|
 | 
						|
      typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
 | 
						|
 | 
						|
      static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
 | 
						|
 | 
						|
      #if ENABLED(THERMAL_PROTECTION_HOTENDS)
 | 
						|
        static TRState thermal_runaway_state_machine[HOTENDS];
 | 
						|
        static millis_t thermal_runaway_timer[HOTENDS];
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if HAS_THERMALLY_PROTECTED_BED
 | 
						|
        static TRState thermal_runaway_bed_state_machine;
 | 
						|
        static millis_t thermal_runaway_bed_timer;
 | 
						|
      #endif
 | 
						|
 | 
						|
    #endif // THERMAL_PROTECTION
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
extern Temperature thermalManager;
 | 
						|
 | 
						|
#endif // TEMPERATURE_H
 |