You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							7.1 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "math.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|   #include "ubl.h"
 | |
|   #include "hex_print_routines.h"
 | |
|   #include "temperature.h"
 | |
| 
 | |
|   /**
 | |
|    * These support functions allow the use of large bit arrays of flags that take very
 | |
|    * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
 | |
|    * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
 | |
|    * in the future.
 | |
|    */
 | |
|   void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
 | |
|   void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
 | |
|   bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
 | |
| 
 | |
|   uint8_t ubl_cnt = 0;
 | |
| 
 | |
|   static void serial_echo_xy(const uint16_t x, const uint16_t y) {
 | |
|     SERIAL_CHAR('(');
 | |
|     SERIAL_ECHO(x);
 | |
|     SERIAL_CHAR(',');
 | |
|     SERIAL_ECHO(y);
 | |
|     SERIAL_CHAR(')');
 | |
|     safe_delay(10);
 | |
|   }
 | |
| 
 | |
|   ubl_state unified_bed_leveling::state;
 | |
| 
 | |
|   float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
 | |
|         unified_bed_leveling::last_specified_z;
 | |
| 
 | |
|   // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
 | |
|   // until determinism prevails
 | |
|   constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
 | |
|                   unified_bed_leveling::mesh_index_to_ypos[16];
 | |
| 
 | |
|   bool unified_bed_leveling::g26_debug_flag = false,
 | |
|        unified_bed_leveling::has_control_of_lcd_panel = false;
 | |
| 
 | |
|   int16_t unified_bed_leveling::eeprom_start = -1;  // Please stop changing this to 8 bits in size
 | |
|                                                     // It needs to hold values bigger than this.
 | |
| 
 | |
|   volatile int unified_bed_leveling::encoder_diff;
 | |
| 
 | |
|   unified_bed_leveling::unified_bed_leveling() {
 | |
|     ubl_cnt++;  // Debug counter to insure we only have one UBL object present in memory.
 | |
|     reset();
 | |
|   }
 | |
| 
 | |
|   void unified_bed_leveling::load_mesh(const int16_t slot) {
 | |
|     int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
 | |
| 
 | |
|     if (slot == -1) {
 | |
|       SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
 | |
|       reset();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
 | |
|       SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
 | |
|     eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
 | |
| 
 | |
|     SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", slot);
 | |
|     SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
 | |
|   }
 | |
| 
 | |
|   void unified_bed_leveling::store_mesh(const int16_t slot) {
 | |
|     int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
 | |
| 
 | |
|     if (!WITHIN(slot, 0, j - 1) || eeprom_start <= 0) {
 | |
|       SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
 | |
|       SERIAL_PROTOCOL(slot);
 | |
|       SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
 | |
|       SERIAL_PROTOCOLLNPAIR("E2END     : ", E2END);
 | |
|       SERIAL_PROTOCOLLNPAIR("k         : ", (int)UBL_LAST_EEPROM_INDEX);
 | |
|       SERIAL_PROTOCOLLNPAIR("j         : ", j);
 | |
|       SERIAL_PROTOCOLLNPAIR("m         : ", slot);
 | |
|       SERIAL_EOL;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     j = UBL_LAST_EEPROM_INDEX - (slot + 1) * sizeof(z_values);
 | |
|     eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
 | |
| 
 | |
|     SERIAL_PROTOCOLPAIR("Mesh saved in slot ", slot);
 | |
|     SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
 | |
|   }
 | |
| 
 | |
|   void unified_bed_leveling::reset() {
 | |
|     state.active = false;
 | |
|     state.z_offset = 0;
 | |
|     state.eeprom_storage_slot = -1;
 | |
| 
 | |
|     ZERO(z_values);
 | |
| 
 | |
|     last_specified_z = -999.9;
 | |
|   }
 | |
| 
 | |
|   void unified_bed_leveling::invalidate() {
 | |
|     state.active = false;
 | |
|     state.z_offset = 0;
 | |
|     for (int x = 0; x < GRID_MAX_POINTS_X; x++)
 | |
|       for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
 | |
|         z_values[x][y] = NAN;
 | |
|   }
 | |
| 
 | |
|   void unified_bed_leveling::display_map(const int map_type) {
 | |
|     const bool map0 = map_type == 0;
 | |
|     const uint8_t spaces = 11;
 | |
| 
 | |
|     if (map0) {
 | |
|       SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
 | |
|       serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
 | |
|       SERIAL_ECHO_SP(spaces * (GRID_MAX_POINTS_X - 2) + 3);
 | |
|       serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
 | |
|       SERIAL_EOL;
 | |
|       serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MAX_Y);
 | |
|       SERIAL_ECHO_SP(spaces * (GRID_MAX_POINTS_X - 2)-3);
 | |
|       serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
| 
 | |
|     const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
 | |
|                 current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
 | |
| 
 | |
|     for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
 | |
|       for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
 | |
|         const bool is_current = i == current_xi && j == current_yi;
 | |
| 
 | |
|         // is the nozzle here? then mark the number
 | |
|         if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
 | |
| 
 | |
|         const float f = z_values[i][j];
 | |
|         if (isnan(f)) {
 | |
|           serialprintPGM(map0 ? PSTR("   .  ") : PSTR("NAN"));
 | |
|         }
 | |
|         else {
 | |
|           // if we don't do this, the columns won't line up nicely
 | |
|           if (map0 && f >= 0.0) SERIAL_CHAR(' ');
 | |
|           SERIAL_PROTOCOL_F(f, 3);
 | |
|           idle();
 | |
|         }
 | |
|         if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
 | |
| 
 | |
|         #if TX_BUFFER_SIZE > 0
 | |
|           MYSERIAL.flushTX();
 | |
|         #endif
 | |
|         safe_delay(15);
 | |
|         if (map0) {
 | |
|           SERIAL_CHAR(is_current ? ']' : ' ');
 | |
|           SERIAL_CHAR(' ');
 | |
|         }
 | |
|       }
 | |
|       SERIAL_EOL;
 | |
|       if (j && map0) { // we want the (0,0) up tight against the block of numbers
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_EOL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (map0) {
 | |
|       serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
 | |
|       SERIAL_ECHO_SP(spaces * (GRID_MAX_POINTS_X - 2) + 1);
 | |
|       serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
 | |
|       SERIAL_EOL;
 | |
|       serial_echo_xy(0, 0);
 | |
|       SERIAL_ECHO_SP(spaces * (GRID_MAX_POINTS_X - 2) + 5);
 | |
|       serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool unified_bed_leveling::sanity_check() {
 | |
|     uint8_t error_flag = 0;
 | |
| 
 | |
|     const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
 | |
|     if (j < 1) {
 | |
|       SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
 | |
|       error_flag++;
 | |
|     }
 | |
| 
 | |
|     return !!error_flag;
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL
 |