You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1618 lines
						
					
					
						
							49 KiB
						
					
					
				
			
		
		
	
	
							1618 lines
						
					
					
						
							49 KiB
						
					
					
				| /*
 | |
|   temperature.cpp - temperature control
 | |
|   Part of Marlin
 | |
|   
 | |
|  Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  
 | |
|  This program is free software: you can redistribute it and/or modify
 | |
|  it under the terms of the GNU General Public License as published by
 | |
|  the Free Software Foundation, either version 3 of the License, or
 | |
|  (at your option) any later version.
 | |
|  
 | |
|  This program is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  GNU General Public License for more details.
 | |
|  
 | |
|  You should have received a copy of the GNU General Public License
 | |
|  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "ultralcd.h"
 | |
| #include "temperature.h"
 | |
| #include "watchdog.h"
 | |
| #include "language.h"
 | |
| 
 | |
| #include "Sd2PinMap.h"
 | |
| 
 | |
| //===========================================================================
 | |
| //================================== macros =================================
 | |
| //===========================================================================
 | |
| 
 | |
| #ifdef K1 // Defined in Configuration.h in the PID settings
 | |
|   #define K2 (1.0-K1)
 | |
| #endif
 | |
| 
 | |
| #if defined(PIDTEMPBED) || defined(PIDTEMP)
 | |
|   #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //============================= public variables ============================
 | |
| //===========================================================================
 | |
| 
 | |
| int target_temperature[4] = { 0 };
 | |
| int target_temperature_bed = 0;
 | |
| int current_temperature_raw[4] = { 0 };
 | |
| float current_temperature[4] = { 0.0 };
 | |
| int current_temperature_bed_raw = 0;
 | |
| float current_temperature_bed = 0.0;
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   int redundant_temperature_raw = 0;
 | |
|   float redundant_temperature = 0.0;
 | |
| #endif
 | |
| 
 | |
| #ifdef PIDTEMPBED
 | |
|   float bedKp=DEFAULT_bedKp;
 | |
|   float bedKi=(DEFAULT_bedKi*PID_dT);
 | |
|   float bedKd=(DEFAULT_bedKd/PID_dT);
 | |
| #endif //PIDTEMPBED
 | |
|   
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   unsigned char fanSpeedSoftPwm;
 | |
| #endif
 | |
| 
 | |
| unsigned char soft_pwm_bed;
 | |
|   
 | |
| #ifdef BABYSTEPPING
 | |
|   volatile int babystepsTodo[3] = { 0 };
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   int current_raw_filwidth = 0;  //Holds measured filament diameter - one extruder only
 | |
| #endif  
 | |
| 
 | |
| #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
 | |
|   enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
 | |
|   void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
 | |
|   #ifdef THERMAL_PROTECTION_HOTENDS
 | |
|     static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
 | |
|     static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
 | |
|   #endif
 | |
|   #ifdef THERMAL_PROTECTION_BED
 | |
|     static TRState thermal_runaway_bed_state_machine = TRReset;
 | |
|     static millis_t thermal_runaway_bed_timer;
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //============================ private variables ============================
 | |
| //===========================================================================
 | |
| 
 | |
| static volatile bool temp_meas_ready = false;
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
|   //static cannot be external:
 | |
|   static float temp_iState[EXTRUDERS] = { 0 };
 | |
|   static float temp_dState[EXTRUDERS] = { 0 };
 | |
|   static float pTerm[EXTRUDERS];
 | |
|   static float iTerm[EXTRUDERS];
 | |
|   static float dTerm[EXTRUDERS];
 | |
|   //int output;
 | |
|   static float pid_error[EXTRUDERS];
 | |
|   static float temp_iState_min[EXTRUDERS];
 | |
|   static float temp_iState_max[EXTRUDERS];
 | |
|   static bool pid_reset[EXTRUDERS];
 | |
| #endif //PIDTEMP
 | |
| #ifdef PIDTEMPBED
 | |
|   //static cannot be external:
 | |
|   static float temp_iState_bed = { 0 };
 | |
|   static float temp_dState_bed = { 0 };
 | |
|   static float pTerm_bed;
 | |
|   static float iTerm_bed;
 | |
|   static float dTerm_bed;
 | |
|   //int output;
 | |
|   static float pid_error_bed;
 | |
|   static float temp_iState_min_bed;
 | |
|   static float temp_iState_max_bed;
 | |
| #else //PIDTEMPBED
 | |
|   static millis_t  next_bed_check_ms;
 | |
| #endif //PIDTEMPBED
 | |
|   static unsigned char soft_pwm[EXTRUDERS];
 | |
| 
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   static unsigned char soft_pwm_fan;
 | |
| #endif
 | |
| #if HAS_AUTO_FAN
 | |
|   static millis_t next_auto_fan_check_ms;
 | |
| #endif  
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
|   #ifdef PID_PARAMS_PER_EXTRUDER
 | |
|     float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
 | |
|     float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
 | |
|     float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
 | |
|     #ifdef PID_ADD_EXTRUSION_RATE
 | |
|       float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
 | |
|     #endif // PID_ADD_EXTRUSION_RATE
 | |
|   #else //PID_PARAMS_PER_EXTRUDER
 | |
|     float Kp = DEFAULT_Kp;
 | |
|     float Ki = DEFAULT_Ki * PID_dT;
 | |
|     float Kd = DEFAULT_Kd / PID_dT;
 | |
|     #ifdef PID_ADD_EXTRUSION_RATE
 | |
|       float Kc = DEFAULT_Kc;
 | |
|     #endif // PID_ADD_EXTRUSION_RATE
 | |
|   #endif // PID_PARAMS_PER_EXTRUDER
 | |
| #endif //PIDTEMP
 | |
| 
 | |
| // Init min and max temp with extreme values to prevent false errors during startup
 | |
| static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
 | |
| static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
 | |
| static int minttemp[EXTRUDERS] = { 0 };
 | |
| static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
 | |
| #ifdef BED_MINTEMP
 | |
| static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
 | |
| #endif
 | |
| #ifdef BED_MAXTEMP
 | |
|   static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
 | |
| #endif
 | |
| 
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
 | |
|   static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
 | |
| #else
 | |
|   static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
 | |
|   static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
 | |
| #endif
 | |
| 
 | |
| static float analog2temp(int raw, uint8_t e);
 | |
| static float analog2tempBed(int raw);
 | |
| static void updateTemperaturesFromRawValues();
 | |
| 
 | |
| #ifdef THERMAL_PROTECTION_HOTENDS
 | |
|   int watch_target_temp[EXTRUDERS] = { 0 };
 | |
|   millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
 | |
| #endif
 | |
| 
 | |
| #ifndef SOFT_PWM_SCALE
 | |
|   #define SOFT_PWM_SCALE 0
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   static int meas_shift_index;  //used to point to a delayed sample in buffer for filament width sensor
 | |
| #endif
 | |
| 
 | |
| #ifdef HEATER_0_USES_MAX6675
 | |
|   static int read_max6675();
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //================================ Functions ================================
 | |
| //===========================================================================
 | |
| 
 | |
| void PID_autotune(float temp, int extruder, int ncycles) {
 | |
|   float input = 0.0;
 | |
|   int cycles = 0;
 | |
|   bool heating = true;
 | |
| 
 | |
|   millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
 | |
|   long t_high = 0, t_low = 0;
 | |
| 
 | |
|   long bias, d;
 | |
|   float Ku, Tu;
 | |
|   float Kp, Ki, Kd;
 | |
|   float max = 0, min = 10000;
 | |
| 
 | |
|   #if HAS_AUTO_FAN
 | |
|     millis_t next_auto_fan_check_ms = temp_ms + 2500;
 | |
|   #endif
 | |
| 
 | |
|   if (extruder >= EXTRUDERS
 | |
|     #if !HAS_TEMP_BED
 | |
|        || extruder < 0
 | |
|     #endif
 | |
|   ) {
 | |
|     SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
 | |
| 
 | |
|   disable_all_heaters(); // switch off all heaters.
 | |
| 
 | |
|   if (extruder < 0)
 | |
|     soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
 | |
|   else
 | |
|     soft_pwm[extruder] = bias = d = PID_MAX / 2;
 | |
| 
 | |
|   // PID Tuning loop
 | |
|   for (;;) {
 | |
| 
 | |
|     millis_t ms = millis();
 | |
| 
 | |
|     if (temp_meas_ready) { // temp sample ready
 | |
|       updateTemperaturesFromRawValues();
 | |
| 
 | |
|       input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
 | |
| 
 | |
|       max = max(max, input);
 | |
|       min = min(min, input);
 | |
| 
 | |
|       #if HAS_AUTO_FAN
 | |
|         if (ms > next_auto_fan_check_ms) {
 | |
|           checkExtruderAutoFans();
 | |
|           next_auto_fan_check_ms = ms + 2500;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       if (heating && input > temp) {
 | |
|         if (ms > t2 + 5000) {
 | |
|           heating = false;
 | |
|           if (extruder < 0)
 | |
|             soft_pwm_bed = (bias - d) >> 1;
 | |
|           else
 | |
|             soft_pwm[extruder] = (bias - d) >> 1;
 | |
|           t1 = ms;
 | |
|           t_high = t1 - t2;
 | |
|           max = temp;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!heating && input < temp) {
 | |
|         if (ms > t1 + 5000) {
 | |
|           heating = true;
 | |
|           t2 = ms;
 | |
|           t_low = t2 - t1;
 | |
|           if (cycles > 0) {
 | |
|             long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
 | |
|             bias += (d*(t_high - t_low))/(t_low + t_high);
 | |
|             bias = constrain(bias, 20, max_pow - 20);
 | |
|             d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
 | |
| 
 | |
|             SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
 | |
|             SERIAL_PROTOCOLPGM(MSG_D);    SERIAL_PROTOCOL(d);
 | |
|             SERIAL_PROTOCOLPGM(MSG_T_MIN);  SERIAL_PROTOCOL(min);
 | |
|             SERIAL_PROTOCOLPGM(MSG_T_MAX);  SERIAL_PROTOCOLLN(max);
 | |
|             if (cycles > 2) {
 | |
|               Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
 | |
|               Tu = ((float)(t_low + t_high) / 1000.0);
 | |
|               SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
 | |
|               SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
 | |
|               Kp = 0.6 * Ku;
 | |
|               Ki = 2 * Kp / Tu;
 | |
|               Kd = Kp * Tu / 8;
 | |
|               SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
 | |
|               SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
 | |
|               /*
 | |
|               Kp = 0.33*Ku;
 | |
|               Ki = Kp/Tu;
 | |
|               Kd = Kp*Tu/3;
 | |
|               SERIAL_PROTOCOLLNPGM(" Some overshoot ");
 | |
|               SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | |
|               Kp = 0.2*Ku;
 | |
|               Ki = 2*Kp/Tu;
 | |
|               Kd = Kp*Tu/3;
 | |
|               SERIAL_PROTOCOLLNPGM(" No overshoot ");
 | |
|               SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | |
|               */
 | |
|             }
 | |
|           }
 | |
|           if (extruder < 0)
 | |
|             soft_pwm_bed = (bias + d) >> 1;
 | |
|           else
 | |
|             soft_pwm[extruder] = (bias + d) >> 1;
 | |
|           cycles++;
 | |
|           min = temp;
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     #define MAX_OVERSHOOT_PID_AUTOTUNE 20
 | |
|     if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
 | |
|       SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
 | |
|       return;
 | |
|     }
 | |
|     // Every 2 seconds...
 | |
|     if (ms > temp_ms + 2000) {
 | |
|       int p;
 | |
|       if (extruder < 0) {
 | |
|         p = soft_pwm_bed;
 | |
|         SERIAL_PROTOCOLPGM(MSG_B);
 | |
|       }
 | |
|       else {
 | |
|         p = soft_pwm[extruder];
 | |
|         SERIAL_PROTOCOLPGM(MSG_T);
 | |
|       }
 | |
| 
 | |
|       SERIAL_PROTOCOL(input);
 | |
|       SERIAL_PROTOCOLPGM(MSG_AT);
 | |
|       SERIAL_PROTOCOLLN(p);
 | |
| 
 | |
|       temp_ms = ms;
 | |
|     } // every 2 seconds
 | |
|     // Over 2 minutes?
 | |
|     if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
 | |
|       SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
 | |
|       return;
 | |
|     }
 | |
|     if (cycles > ncycles) {
 | |
|       SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
 | |
|       const char *estring = extruder < 0 ? "bed" : "";
 | |
|       SERIAL_PROTOCOLPGM("#define  DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
 | |
|       SERIAL_PROTOCOLPGM("#define  DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
 | |
|       SERIAL_PROTOCOLPGM("#define  DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
 | |
|       return;
 | |
|     }
 | |
|     lcd_update();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void updatePID() {
 | |
|   #ifdef PIDTEMP
 | |
|     for (int e = 0; e < EXTRUDERS; e++) {
 | |
|       temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
 | |
|     }
 | |
|   #endif
 | |
|   #ifdef PIDTEMPBED
 | |
|     temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| int getHeaterPower(int heater) {
 | |
|   return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
 | |
| }
 | |
| 
 | |
| #if HAS_AUTO_FAN
 | |
| 
 | |
| void setExtruderAutoFanState(int pin, bool state) {
 | |
|   unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
 | |
|   // this idiom allows both digital and PWM fan outputs (see M42 handling).
 | |
|   digitalWrite(pin, newFanSpeed);
 | |
|   analogWrite(pin, newFanSpeed);
 | |
| }
 | |
| 
 | |
| void checkExtruderAutoFans() {
 | |
|   uint8_t fanState = 0;
 | |
| 
 | |
|   // which fan pins need to be turned on?      
 | |
|   #if HAS_AUTO_FAN_0
 | |
|     if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|       fanState |= 1;
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_1
 | |
|     if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
 | |
|         fanState |= 1;
 | |
|       else
 | |
|         fanState |= 2;
 | |
|     }
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_2
 | |
|     if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|         fanState |= 1;
 | |
|       else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) 
 | |
|         fanState |= 2;
 | |
|       else
 | |
|         fanState |= 4;
 | |
|     }
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_3
 | |
|     if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|         fanState |= 1;
 | |
|       else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) 
 | |
|         fanState |= 2;
 | |
|       else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN) 
 | |
|         fanState |= 4;
 | |
|       else
 | |
|         fanState |= 8;
 | |
|     }
 | |
|   #endif
 | |
|   
 | |
|   // update extruder auto fan states
 | |
|   #if HAS_AUTO_FAN_0
 | |
|     setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_1
 | |
|     if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
 | |
|       setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_2
 | |
|     if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
 | |
|         && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
 | |
|       setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_3
 | |
|     if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
 | |
|         && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
 | |
|         && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
 | |
|       setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #endif // HAS_AUTO_FAN
 | |
| 
 | |
| //
 | |
| // Temperature Error Handlers
 | |
| //
 | |
| inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
 | |
|   static bool killed = false;
 | |
|   if (IsRunning()) {
 | |
|     SERIAL_ERROR_START;
 | |
|     serialprintPGM(serial_msg);
 | |
|     SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
 | |
|     if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
 | |
|   }
 | |
|   #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | |
|     if (!killed) {
 | |
|       Running = false;
 | |
|       killed = true;
 | |
|       kill(lcd_msg);
 | |
|     }
 | |
|     else
 | |
|       disable_all_heaters(); // paranoia
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void max_temp_error(uint8_t e) {
 | |
|   _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
 | |
| }
 | |
| void min_temp_error(uint8_t e) {
 | |
|   _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
 | |
| }
 | |
| 
 | |
| float get_pid_output(int e) {
 | |
|   float pid_output;
 | |
|   #ifdef PIDTEMP
 | |
|     #ifndef PID_OPENLOOP
 | |
|       pid_error[e] = target_temperature[e] - current_temperature[e];
 | |
|       if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
 | |
|         pid_output = BANG_MAX;
 | |
|         pid_reset[e] = true;
 | |
|       }
 | |
|       else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
 | |
|         pid_output = 0;
 | |
|         pid_reset[e] = true;
 | |
|       }
 | |
|       else {
 | |
|         if (pid_reset[e]) {
 | |
|           temp_iState[e] = 0.0;
 | |
|           pid_reset[e] = false;
 | |
|         }
 | |
|         pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
 | |
|         temp_iState[e] += pid_error[e];
 | |
|         temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
 | |
|         iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
 | |
| 
 | |
|         dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
 | |
|         pid_output = pTerm[e] + iTerm[e] - dTerm[e];
 | |
|         if (pid_output > PID_MAX) {
 | |
|           if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
 | |
|           pid_output = PID_MAX;
 | |
|         }
 | |
|         else if (pid_output < 0) {
 | |
|           if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
 | |
|           pid_output = 0;
 | |
|         }
 | |
|       }
 | |
|       temp_dState[e] = current_temperature[e];
 | |
|     #else
 | |
|       pid_output = constrain(target_temperature[e], 0, PID_MAX);
 | |
|     #endif //PID_OPENLOOP
 | |
| 
 | |
|     #ifdef PID_DEBUG
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG);
 | |
|       SERIAL_ECHO(e);
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
 | |
|       SERIAL_ECHO(current_temperature[e]);
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
 | |
|       SERIAL_ECHO(pid_output);
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
 | |
|       SERIAL_ECHO(pTerm[e]);
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
 | |
|       SERIAL_ECHO(iTerm[e]);
 | |
|       SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
 | |
|       SERIAL_ECHOLN(dTerm[e]);
 | |
|     #endif //PID_DEBUG
 | |
| 
 | |
|   #else /* PID off */
 | |
|     pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
 | |
|   #endif
 | |
| 
 | |
|   return pid_output;
 | |
| }
 | |
| 
 | |
| #ifdef PIDTEMPBED
 | |
|   float get_pid_output_bed() {
 | |
|     float pid_output;
 | |
|     #ifndef PID_OPENLOOP
 | |
|       pid_error_bed = target_temperature_bed - current_temperature_bed;
 | |
|       pTerm_bed = bedKp * pid_error_bed;
 | |
|       temp_iState_bed += pid_error_bed;
 | |
|       temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
 | |
|       iTerm_bed = bedKi * temp_iState_bed;
 | |
| 
 | |
|       dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
 | |
|       temp_dState_bed = current_temperature_bed;
 | |
| 
 | |
|       pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
 | |
|       if (pid_output > MAX_BED_POWER) {
 | |
|         if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
 | |
|         pid_output = MAX_BED_POWER;
 | |
|       }
 | |
|       else if (pid_output < 0) {
 | |
|         if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
 | |
|         pid_output = 0;
 | |
|       }
 | |
|     #else
 | |
|       pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
 | |
|     #endif // PID_OPENLOOP
 | |
| 
 | |
|     #ifdef PID_BED_DEBUG
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHO(" PID_BED_DEBUG ");
 | |
|       SERIAL_ECHO(": Input ");
 | |
|       SERIAL_ECHO(current_temperature_bed);
 | |
|       SERIAL_ECHO(" Output ");
 | |
|       SERIAL_ECHO(pid_output);
 | |
|       SERIAL_ECHO(" pTerm ");
 | |
|       SERIAL_ECHO(pTerm_bed);
 | |
|       SERIAL_ECHO(" iTerm ");
 | |
|       SERIAL_ECHO(iTerm_bed);
 | |
|       SERIAL_ECHO(" dTerm ");
 | |
|       SERIAL_ECHOLN(dTerm_bed);
 | |
|     #endif //PID_BED_DEBUG
 | |
| 
 | |
|     return pid_output;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Manage heating activities for extruder hot-ends and a heated bed
 | |
|  *  - Acquire updated temperature readings
 | |
|  *  - Invoke thermal runaway protection
 | |
|  *  - Manage extruder auto-fan
 | |
|  *  - Apply filament width to the extrusion rate (may move)
 | |
|  *  - Update the heated bed PID output value
 | |
|  */
 | |
| void manage_heater() {
 | |
| 
 | |
|   if (!temp_meas_ready) return;
 | |
| 
 | |
|   updateTemperaturesFromRawValues();
 | |
| 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
|     float ct = current_temperature[0];
 | |
|     if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
 | |
|     if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
 | |
|   #endif
 | |
| 
 | |
|   #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
 | |
|     millis_t ms = millis();
 | |
|   #endif
 | |
| 
 | |
|   // Loop through all extruders
 | |
|   for (int e = 0; e < EXTRUDERS; e++) {
 | |
| 
 | |
|     #ifdef THERMAL_PROTECTION_HOTENDS
 | |
|       thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
 | |
|     #endif
 | |
| 
 | |
|     float pid_output = get_pid_output(e);
 | |
| 
 | |
|     // Check if temperature is within the correct range
 | |
|     soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
 | |
| 
 | |
|     // Check if the temperature is failing to increase
 | |
|     #ifdef THERMAL_PROTECTION_HOTENDS
 | |
| 
 | |
|       // Is it time to check this extruder's heater?
 | |
|       if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
 | |
|         // Has it failed to increase enough?
 | |
|         if (degHotend(e) < watch_target_temp[e]) {
 | |
|           // Stop!
 | |
|           _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
 | |
|         }
 | |
|         else {
 | |
|           // Start again if the target is still far off
 | |
|           start_watching_heater(e);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #endif // THERMAL_PROTECTION_HOTENDS
 | |
| 
 | |
|     #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|       if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
 | |
|         _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|   } // Extruders Loop
 | |
| 
 | |
|   #if HAS_AUTO_FAN
 | |
|     if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
 | |
|       checkExtruderAutoFans();
 | |
|       next_auto_fan_check_ms = ms + 2500;
 | |
|     }
 | |
|   #endif       
 | |
| 
 | |
|   // Control the extruder rate based on the width sensor
 | |
|   #ifdef FILAMENT_SENSOR
 | |
|     if (filament_sensor) {
 | |
|       meas_shift_index = delay_index1 - meas_delay_cm;
 | |
|       if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1;  //loop around buffer if needed
 | |
|       
 | |
|       // Get the delayed info and add 100 to reconstitute to a percent of
 | |
|       // the nominal filament diameter then square it to get an area
 | |
|       meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
 | |
|       float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
 | |
|       if (vm < 0.01) vm = 0.01;
 | |
|       volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
 | |
|     }
 | |
|   #endif //FILAMENT_SENSOR
 | |
| 
 | |
|   #ifndef PIDTEMPBED
 | |
|     if (ms < next_bed_check_ms) return;
 | |
|     next_bed_check_ms = ms + BED_CHECK_INTERVAL;
 | |
|   #endif
 | |
| 
 | |
|   #if TEMP_SENSOR_BED != 0
 | |
|   
 | |
|     #ifdef THERMAL_PROTECTION_BED
 | |
|       thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
 | |
|     #endif
 | |
| 
 | |
|     #ifdef PIDTEMPBED
 | |
|       float pid_output = get_pid_output_bed();
 | |
| 
 | |
|       soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
 | |
| 
 | |
|     #elif defined(BED_LIMIT_SWITCHING)
 | |
|       // Check if temperature is within the correct band
 | |
|       if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
 | |
|         if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
 | |
|           soft_pwm_bed = 0;
 | |
|         else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
 | |
|           soft_pwm_bed = MAX_BED_POWER >> 1;
 | |
|       }
 | |
|       else {
 | |
|         soft_pwm_bed = 0;
 | |
|         WRITE_HEATER_BED(LOW);
 | |
|       }
 | |
|     #else // BED_LIMIT_SWITCHING
 | |
|       // Check if temperature is within the correct range
 | |
|       if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
 | |
|         soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
 | |
|       }
 | |
|       else {
 | |
|         soft_pwm_bed = 0;
 | |
|         WRITE_HEATER_BED(LOW);
 | |
|       }
 | |
|     #endif
 | |
|   #endif //TEMP_SENSOR_BED != 0
 | |
| }
 | |
| 
 | |
| #define PGM_RD_W(x)   (short)pgm_read_word(&x)
 | |
| // Derived from RepRap FiveD extruder::getTemperature()
 | |
| // For hot end temperature measurement.
 | |
| static float analog2temp(int raw, uint8_t e) {
 | |
|   #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|     if (e > EXTRUDERS)
 | |
|   #else
 | |
|     if (e >= EXTRUDERS)
 | |
|   #endif
 | |
|     {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERROR((int)e);
 | |
|       SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
 | |
|       kill(PSTR(MSG_KILLED));
 | |
|       return 0.0;
 | |
|     } 
 | |
| 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
|     if (e == 0) return 0.25 * raw;
 | |
|   #endif
 | |
| 
 | |
|   if (heater_ttbl_map[e] != NULL) {
 | |
|     float celsius = 0;
 | |
|     uint8_t i;
 | |
|     short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
 | |
| 
 | |
|     for (i = 1; i < heater_ttbllen_map[e]; i++) {
 | |
|       if (PGM_RD_W((*tt)[i][0]) > raw) {
 | |
|         celsius = PGM_RD_W((*tt)[i-1][1]) + 
 | |
|           (raw - PGM_RD_W((*tt)[i-1][0])) * 
 | |
|           (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
 | |
|           (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Overflow: Set to last value in the table
 | |
|     if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
 | |
| 
 | |
|     return celsius;
 | |
|   }
 | |
|   return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | |
| }
 | |
| 
 | |
| // Derived from RepRap FiveD extruder::getTemperature()
 | |
| // For bed temperature measurement.
 | |
| static float analog2tempBed(int raw) {
 | |
|   #ifdef BED_USES_THERMISTOR
 | |
|     float celsius = 0;
 | |
|     byte i;
 | |
| 
 | |
|     for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
 | |
|       if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
 | |
|         celsius  = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + 
 | |
|           (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * 
 | |
|           (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
 | |
|           (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Overflow: Set to last value in the table
 | |
|     if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
 | |
| 
 | |
|     return celsius;
 | |
|   #elif defined BED_USES_AD595
 | |
|     return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | |
|   #else
 | |
|     return 0;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
 | |
|     and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
 | |
| static void updateTemperaturesFromRawValues() {
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
|     current_temperature_raw[0] = read_max6675();
 | |
|   #endif
 | |
|   for (uint8_t e = 0; e < EXTRUDERS; e++) {
 | |
|     current_temperature[e] = analog2temp(current_temperature_raw[e], e);
 | |
|   }
 | |
|   current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
 | |
|   #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|     redundant_temperature = analog2temp(redundant_temperature_raw, 1);
 | |
|   #endif
 | |
|   #if HAS_FILAMENT_SENSOR
 | |
|     filament_width_meas = analog2widthFil();
 | |
|   #endif
 | |
|   //Reset the watchdog after we know we have a temperature measurement.
 | |
|   watchdog_reset();
 | |
| 
 | |
|   CRITICAL_SECTION_START;
 | |
|   temp_meas_ready = false;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
| 
 | |
|   // Convert raw Filament Width to millimeters
 | |
|   float analog2widthFil() {
 | |
|     return current_raw_filwidth / 16383.0 * 5.0;
 | |
|     //return current_raw_filwidth;
 | |
|   }
 | |
| 
 | |
|   // Convert raw Filament Width to a ratio
 | |
|   int widthFil_to_size_ratio() {
 | |
|     float temp = filament_width_meas;
 | |
|     if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal;  //assume sensor cut out
 | |
|     else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
 | |
|     return filament_width_nominal / temp * 100;
 | |
|   } 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Initialize the temperature manager
 | |
|  * The manager is implemented by periodic calls to manage_heater()
 | |
|  */
 | |
| void tp_init() {
 | |
|   #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
 | |
|     //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
 | |
|     MCUCR=BIT(JTD);
 | |
|     MCUCR=BIT(JTD);
 | |
|   #endif
 | |
|   
 | |
|   // Finish init of mult extruder arrays 
 | |
|   for (int e = 0; e < EXTRUDERS; e++) {
 | |
|     // populate with the first value 
 | |
|     maxttemp[e] = maxttemp[0];
 | |
|     #ifdef PIDTEMP
 | |
|       temp_iState_min[e] = 0.0;
 | |
|       temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
 | |
|     #endif //PIDTEMP
 | |
|     #ifdef PIDTEMPBED
 | |
|       temp_iState_min_bed = 0.0;
 | |
|       temp_iState_max_bed = PID_BED_INTEGRAL_DRIVE_MAX / bedKi;
 | |
|     #endif //PIDTEMPBED
 | |
|   }
 | |
| 
 | |
|   #if HAS_HEATER_0
 | |
|     SET_OUTPUT(HEATER_0_PIN);
 | |
|   #endif
 | |
|   #if HAS_HEATER_1
 | |
|     SET_OUTPUT(HEATER_1_PIN);
 | |
|   #endif
 | |
|   #if HAS_HEATER_2
 | |
|     SET_OUTPUT(HEATER_2_PIN);
 | |
|   #endif
 | |
|   #if HAS_HEATER_3
 | |
|     SET_OUTPUT(HEATER_3_PIN);
 | |
|   #endif
 | |
|   #if HAS_HEATER_BED
 | |
|     SET_OUTPUT(HEATER_BED_PIN);
 | |
|   #endif  
 | |
|   #if HAS_FAN
 | |
|     SET_OUTPUT(FAN_PIN);
 | |
|     #ifdef FAST_PWM_FAN
 | |
|       setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
 | |
|     #endif
 | |
|     #ifdef FAN_SOFT_PWM
 | |
|       soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
| 
 | |
|     #ifndef SDSUPPORT
 | |
|       OUT_WRITE(SCK_PIN, LOW);
 | |
|       OUT_WRITE(MOSI_PIN, HIGH);
 | |
|       OUT_WRITE(MISO_PIN, HIGH);
 | |
|     #else
 | |
|       pinMode(SS_PIN, OUTPUT);
 | |
|       digitalWrite(SS_PIN, HIGH);
 | |
|     #endif
 | |
|     
 | |
|     OUT_WRITE(MAX6675_SS,HIGH);
 | |
| 
 | |
|   #endif //HEATER_0_USES_MAX6675
 | |
| 
 | |
|   #ifdef DIDR2
 | |
|     #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
 | |
|   #else
 | |
|     #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
 | |
|   #endif
 | |
| 
 | |
|   // Set analog inputs
 | |
|   ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
 | |
|   DIDR0 = 0;
 | |
|   #ifdef DIDR2
 | |
|     DIDR2 = 0;
 | |
|   #endif
 | |
|   #if HAS_TEMP_0
 | |
|     ANALOG_SELECT(TEMP_0_PIN);
 | |
|   #endif
 | |
|   #if HAS_TEMP_1
 | |
|     ANALOG_SELECT(TEMP_1_PIN);
 | |
|   #endif
 | |
|   #if HAS_TEMP_2
 | |
|     ANALOG_SELECT(TEMP_2_PIN);
 | |
|   #endif
 | |
|   #if HAS_TEMP_3
 | |
|     ANALOG_SELECT(TEMP_3_PIN);
 | |
|   #endif
 | |
|   #if HAS_TEMP_BED
 | |
|     ANALOG_SELECT(TEMP_BED_PIN);
 | |
|   #endif
 | |
|   #if HAS_FILAMENT_SENSOR
 | |
|     ANALOG_SELECT(FILWIDTH_PIN);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_AUTO_FAN_0
 | |
|     pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
 | |
|     pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
 | |
|     pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
 | |
|   #endif
 | |
|   #if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
 | |
|     pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
 | |
|   #endif
 | |
| 
 | |
|   // Use timer0 for temperature measurement
 | |
|   // Interleave temperature interrupt with millies interrupt
 | |
|   OCR0B = 128;
 | |
|   TIMSK0 |= BIT(OCIE0B);  
 | |
|   
 | |
|   // Wait for temperature measurement to settle
 | |
|   delay(250);
 | |
| 
 | |
|   #define TEMP_MIN_ROUTINE(NR) \
 | |
|     minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
 | |
|     while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
 | |
|       if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
 | |
|         minttemp_raw[NR] += OVERSAMPLENR; \
 | |
|       else \
 | |
|         minttemp_raw[NR] -= OVERSAMPLENR; \
 | |
|     }
 | |
|   #define TEMP_MAX_ROUTINE(NR) \
 | |
|     maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
 | |
|     while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
 | |
|       if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
 | |
|         maxttemp_raw[NR] -= OVERSAMPLENR; \
 | |
|       else \
 | |
|         maxttemp_raw[NR] += OVERSAMPLENR; \
 | |
|     }
 | |
| 
 | |
|   #ifdef HEATER_0_MINTEMP
 | |
|     TEMP_MIN_ROUTINE(0);
 | |
|   #endif
 | |
|   #ifdef HEATER_0_MAXTEMP
 | |
|     TEMP_MAX_ROUTINE(0);
 | |
|   #endif
 | |
|   #if EXTRUDERS > 1
 | |
|     #ifdef HEATER_1_MINTEMP
 | |
|       TEMP_MIN_ROUTINE(1);
 | |
|     #endif
 | |
|     #ifdef HEATER_1_MAXTEMP
 | |
|       TEMP_MAX_ROUTINE(1);
 | |
|     #endif
 | |
|     #if EXTRUDERS > 2
 | |
|       #ifdef HEATER_2_MINTEMP
 | |
|         TEMP_MIN_ROUTINE(2);
 | |
|       #endif
 | |
|       #ifdef HEATER_2_MAXTEMP
 | |
|         TEMP_MAX_ROUTINE(2);
 | |
|       #endif
 | |
|       #if EXTRUDERS > 3
 | |
|         #ifdef HEATER_3_MINTEMP
 | |
|           TEMP_MIN_ROUTINE(3);
 | |
|         #endif
 | |
|         #ifdef HEATER_3_MAXTEMP
 | |
|           TEMP_MAX_ROUTINE(3);
 | |
|         #endif
 | |
|       #endif // EXTRUDERS > 3
 | |
|     #endif // EXTRUDERS > 2
 | |
|   #endif // EXTRUDERS > 1
 | |
| 
 | |
|   #ifdef BED_MINTEMP
 | |
|     while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
 | |
|       #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | |
|         bed_minttemp_raw += OVERSAMPLENR;
 | |
|       #else
 | |
|         bed_minttemp_raw -= OVERSAMPLENR;
 | |
|       #endif
 | |
|     }
 | |
|   #endif //BED_MINTEMP
 | |
|   #ifdef BED_MAXTEMP
 | |
|     while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
 | |
|       #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | |
|         bed_maxttemp_raw -= OVERSAMPLENR;
 | |
|       #else
 | |
|         bed_maxttemp_raw += OVERSAMPLENR;
 | |
|       #endif
 | |
|     }
 | |
|   #endif //BED_MAXTEMP
 | |
| }
 | |
| 
 | |
| #ifdef THERMAL_PROTECTION_HOTENDS
 | |
|   /**
 | |
|    * Start Heating Sanity Check for hotends that are below
 | |
|    * their target temperature by a configurable margin.
 | |
|    * This is called when the temperature is set. (M104, M109)
 | |
|    */
 | |
|   void start_watching_heater(int e) {
 | |
|     if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
 | |
|       watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
 | |
|       watch_heater_next_ms[e] = millis() + WATCH_TEMP_PERIOD * 1000;
 | |
|     }
 | |
|     else
 | |
|       watch_heater_next_ms[e] = 0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
 | |
| 
 | |
|   void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
 | |
| 
 | |
|     static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
 | |
| 
 | |
|     /*
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
 | |
|         if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
 | |
|         SERIAL_ECHOPGM(" ;  State:");
 | |
|         SERIAL_ECHOPGM(*state);
 | |
|         SERIAL_ECHOPGM(" ;  Timer:");
 | |
|         SERIAL_ECHOPGM(*timer);
 | |
|         SERIAL_ECHOPGM(" ;  Temperature:");
 | |
|         SERIAL_ECHOPGM(temperature);
 | |
|         SERIAL_ECHOPGM(" ;  Target Temp:");
 | |
|         SERIAL_ECHOPGM(target_temperature);
 | |
|         SERIAL_EOL;
 | |
|     */
 | |
| 
 | |
|     int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
 | |
| 
 | |
|     // If the target temperature changes, restart
 | |
|     if (tr_target_temperature[heater_index] != target_temperature)
 | |
|       *state = TRReset;
 | |
| 
 | |
|     switch (*state) {
 | |
|       case TRReset:
 | |
|         *timer = 0;
 | |
|         *state = TRInactive;
 | |
|       // Inactive state waits for a target temperature to be set
 | |
|       case TRInactive:
 | |
|         if (target_temperature > 0) {
 | |
|           tr_target_temperature[heater_index] = target_temperature;
 | |
|           *state = TRFirstHeating;
 | |
|         }
 | |
|         break;
 | |
|       // When first heating, wait for the temperature to be reached then go to Stable state
 | |
|       case TRFirstHeating:
 | |
|         if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
 | |
|         break;
 | |
|       // While the temperature is stable watch for a bad temperature
 | |
|       case TRStable:
 | |
|         // If the temperature is over the target (-hysteresis) restart the timer
 | |
|         if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
 | |
|           *timer = millis();
 | |
|           // If the timer goes too long without a reset, trigger shutdown
 | |
|         else if (millis() > *timer + period_seconds * 1000UL)
 | |
|           *state = TRRunaway;
 | |
|         break;
 | |
|       case TRRunaway:
 | |
|         _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
 | |
| 
 | |
| void disable_all_heaters() {
 | |
|   for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
 | |
|   setTargetBed(0);
 | |
| 
 | |
|   #define DISABLE_HEATER(NR) { \
 | |
|     target_temperature[NR] = 0; \
 | |
|     soft_pwm[NR] = 0; \
 | |
|     WRITE_HEATER_ ## NR (LOW); \
 | |
|   }
 | |
| 
 | |
|   #if HAS_TEMP_0
 | |
|     target_temperature[0] = 0;
 | |
|     soft_pwm[0] = 0;
 | |
|     WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
 | |
|   #endif
 | |
| 
 | |
|   #if EXTRUDERS > 1 && HAS_TEMP_1
 | |
|     DISABLE_HEATER(1);
 | |
|   #endif
 | |
| 
 | |
|   #if EXTRUDERS > 2 && HAS_TEMP_2
 | |
|     DISABLE_HEATER(2);
 | |
|   #endif
 | |
| 
 | |
|   #if EXTRUDERS > 3 && HAS_TEMP_3
 | |
|     DISABLE_HEATER(3);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_TEMP_BED
 | |
|     target_temperature_bed = 0;
 | |
|     soft_pwm_bed = 0;
 | |
|     #if HAS_HEATER_BED
 | |
|       WRITE_HEATER_BED(LOW);
 | |
|     #endif
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #ifdef HEATER_0_USES_MAX6675
 | |
|   #define MAX6675_HEAT_INTERVAL 250u
 | |
|   static millis_t next_max6675_ms = 0;
 | |
|   int max6675_temp = 2000;
 | |
| 
 | |
|   static int read_max6675() {
 | |
| 
 | |
|     millis_t ms = millis();
 | |
| 
 | |
|     if (ms < next_max6675_ms)
 | |
|       return max6675_temp;
 | |
|     
 | |
|     next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
 | |
| 
 | |
|     max6675_temp = 0;
 | |
| 
 | |
|     #ifdef PRR
 | |
|       PRR &= ~BIT(PRSPI);
 | |
|     #elif defined(PRR0)
 | |
|       PRR0 &= ~BIT(PRSPI);
 | |
|     #endif
 | |
| 
 | |
|     SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
 | |
| 
 | |
|     // enable TT_MAX6675
 | |
|     WRITE(MAX6675_SS, 0);
 | |
| 
 | |
|     // ensure 100ns delay - a bit extra is fine
 | |
|     asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | |
|     asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | |
| 
 | |
|     // read MSB
 | |
|     SPDR = 0;
 | |
|     for (;(SPSR & BIT(SPIF)) == 0;);
 | |
|     max6675_temp = SPDR;
 | |
|     max6675_temp <<= 8;
 | |
| 
 | |
|     // read LSB
 | |
|     SPDR = 0;
 | |
|     for (;(SPSR & BIT(SPIF)) == 0;);
 | |
|     max6675_temp |= SPDR;
 | |
| 
 | |
|     // disable TT_MAX6675
 | |
|     WRITE(MAX6675_SS, 1);
 | |
| 
 | |
|     if (max6675_temp & 4) {
 | |
|       // thermocouple open
 | |
|       max6675_temp = 4000;
 | |
|     }
 | |
|     else {
 | |
|       max6675_temp = max6675_temp >> 3;
 | |
|     }
 | |
| 
 | |
|     return max6675_temp;
 | |
|   }
 | |
| 
 | |
| #endif //HEATER_0_USES_MAX6675
 | |
| 
 | |
| /**
 | |
|  * Stages in the ISR loop
 | |
|  */
 | |
| enum TempState {
 | |
|   PrepareTemp_0,
 | |
|   MeasureTemp_0,
 | |
|   PrepareTemp_BED,
 | |
|   MeasureTemp_BED,
 | |
|   PrepareTemp_1,
 | |
|   MeasureTemp_1,
 | |
|   PrepareTemp_2,
 | |
|   MeasureTemp_2,
 | |
|   PrepareTemp_3,
 | |
|   MeasureTemp_3,
 | |
|   Prepare_FILWIDTH,
 | |
|   Measure_FILWIDTH,
 | |
|   StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
 | |
| };
 | |
| 
 | |
| static unsigned long raw_temp_value[4] = { 0 };
 | |
| static unsigned long raw_temp_bed_value = 0;
 | |
| 
 | |
| static void set_current_temp_raw() {
 | |
|   #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
 | |
|     current_temperature_raw[0] = raw_temp_value[0];
 | |
|   #endif
 | |
|   #if HAS_TEMP_1
 | |
|     #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|       redundant_temperature_raw = raw_temp_value[1];
 | |
|     #else
 | |
|       current_temperature_raw[1] = raw_temp_value[1];
 | |
|     #endif
 | |
|     #if HAS_TEMP_2
 | |
|       current_temperature_raw[2] = raw_temp_value[2];
 | |
|       #if HAS_TEMP_3
 | |
|         current_temperature_raw[3] = raw_temp_value[3];
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
|   current_temperature_bed_raw = raw_temp_bed_value;
 | |
|   temp_meas_ready = true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Timer 0 is shared with millies
 | |
|  *  - Manage PWM to all the heaters and fan
 | |
|  *  - Update the raw temperature values
 | |
|  *  - Check new temperature values for MIN/MAX errors
 | |
|  *  - Step the babysteps value for each axis towards 0
 | |
|  */
 | |
| ISR(TIMER0_COMPB_vect) {
 | |
| 
 | |
|   static unsigned char temp_count = 0;
 | |
|   static TempState temp_state = StartupDelay;
 | |
|   static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
 | |
| 
 | |
|   // Static members for each heater
 | |
|   #ifdef SLOW_PWM_HEATERS
 | |
|     static unsigned char slow_pwm_count = 0;
 | |
|     #define ISR_STATICS(n) \
 | |
|       static unsigned char soft_pwm_ ## n; \
 | |
|       static unsigned char state_heater_ ## n = 0; \
 | |
|       static unsigned char state_timer_heater_ ## n = 0
 | |
|   #else
 | |
|     #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
 | |
|   #endif
 | |
| 
 | |
|   // Statics per heater
 | |
|   ISR_STATICS(0);
 | |
|   #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
 | |
|     ISR_STATICS(1);
 | |
|     #if EXTRUDERS > 2
 | |
|       ISR_STATICS(2);
 | |
|       #if EXTRUDERS > 3
 | |
|         ISR_STATICS(3);
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_HEATER_BED
 | |
|     ISR_STATICS(BED);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_FILAMENT_SENSOR
 | |
|     static unsigned long raw_filwidth_value = 0;
 | |
|   #endif
 | |
|   
 | |
|   #ifndef SLOW_PWM_HEATERS
 | |
|     /**
 | |
|      * standard PWM modulation
 | |
|      */
 | |
|     if (pwm_count == 0) {
 | |
|       soft_pwm_0 = soft_pwm[0];
 | |
|       if (soft_pwm_0 > 0) {
 | |
|         WRITE_HEATER_0(1);
 | |
|       }
 | |
|       else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
 | |
| 
 | |
|       #if EXTRUDERS > 1
 | |
|         soft_pwm_1 = soft_pwm[1];
 | |
|         WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
 | |
|         #if EXTRUDERS > 2
 | |
|           soft_pwm_2 = soft_pwm[2];
 | |
|           WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
 | |
|           #if EXTRUDERS > 3
 | |
|             soft_pwm_3 = soft_pwm[3];
 | |
|             WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_HEATER_BED
 | |
|         soft_pwm_BED = soft_pwm_bed;
 | |
|         WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
 | |
|       #endif
 | |
|       #ifdef FAN_SOFT_PWM
 | |
|         soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|         WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
 | |
|     #if EXTRUDERS > 1
 | |
|       if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
 | |
|       #if EXTRUDERS > 2
 | |
|         if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
 | |
|         #if EXTRUDERS > 3
 | |
|           if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
 | |
|         #endif
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_HEATER_BED
 | |
|       if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
 | |
|     #endif
 | |
| 
 | |
|     #ifdef FAN_SOFT_PWM
 | |
|       if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
 | |
|     #endif
 | |
|     
 | |
|     pwm_count += BIT(SOFT_PWM_SCALE);
 | |
|     pwm_count &= 0x7f;
 | |
|   
 | |
|   #else // SLOW_PWM_HEATERS
 | |
|     /*
 | |
|      * SLOW PWM HEATERS
 | |
|      *
 | |
|      * for heaters drived by relay
 | |
|      */
 | |
|     #ifndef MIN_STATE_TIME
 | |
|       #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
 | |
|     #endif
 | |
| 
 | |
|     // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
 | |
|     #define _SLOW_PWM_ROUTINE(NR, src) \
 | |
|       soft_pwm_ ## NR = src; \
 | |
|       if (soft_pwm_ ## NR > 0) { \
 | |
|         if (state_timer_heater_ ## NR == 0) { \
 | |
|           if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
 | |
|           state_heater_ ## NR = 1; \
 | |
|           WRITE_HEATER_ ## NR(1); \
 | |
|         } \
 | |
|       } \
 | |
|       else { \
 | |
|         if (state_timer_heater_ ## NR == 0) { \
 | |
|           if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
 | |
|           state_heater_ ## NR = 0; \
 | |
|           WRITE_HEATER_ ## NR(0); \
 | |
|         } \
 | |
|       }
 | |
|     #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
 | |
| 
 | |
|     #define PWM_OFF_ROUTINE(NR) \
 | |
|       if (soft_pwm_ ## NR < slow_pwm_count) { \
 | |
|         if (state_timer_heater_ ## NR == 0) { \
 | |
|           if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
 | |
|           state_heater_ ## NR = 0; \
 | |
|           WRITE_HEATER_ ## NR (0); \
 | |
|         } \
 | |
|       }
 | |
| 
 | |
|     if (slow_pwm_count == 0) {
 | |
| 
 | |
|       SLOW_PWM_ROUTINE(0); // EXTRUDER 0
 | |
|       #if EXTRUDERS > 1
 | |
|         SLOW_PWM_ROUTINE(1); // EXTRUDER 1
 | |
|         #if EXTRUDERS > 2
 | |
|           SLOW_PWM_ROUTINE(2); // EXTRUDER 2
 | |
|           #if EXTRUDERS > 3
 | |
|             SLOW_PWM_ROUTINE(3); // EXTRUDER 3
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
|       #if HAS_HEATER_BED
 | |
|         _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
 | |
|       #endif
 | |
| 
 | |
|     } // slow_pwm_count == 0
 | |
| 
 | |
|     PWM_OFF_ROUTINE(0); // EXTRUDER 0
 | |
|     #if EXTRUDERS > 1
 | |
|       PWM_OFF_ROUTINE(1); // EXTRUDER 1
 | |
|       #if EXTRUDERS > 2
 | |
|         PWM_OFF_ROUTINE(2); // EXTRUDER 2
 | |
|         #if EXTRUDERS > 3
 | |
|           PWM_OFF_ROUTINE(3); // EXTRUDER 3
 | |
|         #endif
 | |
|       #endif
 | |
|     #endif
 | |
|     #if HAS_HEATER_BED
 | |
|       PWM_OFF_ROUTINE(BED); // BED
 | |
|     #endif
 | |
| 
 | |
|     #ifdef FAN_SOFT_PWM
 | |
|       if (pwm_count == 0) {
 | |
|         soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|         WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
 | |
|       }
 | |
|       if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
 | |
|     #endif //FAN_SOFT_PWM
 | |
| 
 | |
|     pwm_count += BIT(SOFT_PWM_SCALE);
 | |
|     pwm_count &= 0x7f;
 | |
| 
 | |
|     // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
 | |
|     if ((pwm_count % 64) == 0) {
 | |
|       slow_pwm_count++;
 | |
|       slow_pwm_count &= 0x7f;
 | |
|     
 | |
|       // EXTRUDER 0
 | |
|       if (state_timer_heater_0 > 0) state_timer_heater_0--; 
 | |
|       #if EXTRUDERS > 1    // EXTRUDER 1
 | |
|         if (state_timer_heater_1 > 0) state_timer_heater_1--;
 | |
|         #if EXTRUDERS > 2    // EXTRUDER 2
 | |
|           if (state_timer_heater_2 > 0) state_timer_heater_2--;
 | |
|           #if EXTRUDERS > 3    // EXTRUDER 3
 | |
|             if (state_timer_heater_3 > 0) state_timer_heater_3--;
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
|       #if HAS_HEATER_BED
 | |
|         if (state_timer_heater_BED > 0) state_timer_heater_BED--;
 | |
|       #endif
 | |
|     } // (pwm_count % 64) == 0
 | |
|   
 | |
|   #endif // SLOW_PWM_HEATERS
 | |
| 
 | |
|   #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
 | |
|   #ifdef MUX5
 | |
|     #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
 | |
|   #else
 | |
|     #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
 | |
|   #endif
 | |
| 
 | |
|   // Prepare or measure a sensor, each one every 12th frame
 | |
|   switch(temp_state) {
 | |
|     case PrepareTemp_0:
 | |
|       #if HAS_TEMP_0
 | |
|         START_ADC(TEMP_0_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = MeasureTemp_0;
 | |
|       break;
 | |
|     case MeasureTemp_0:
 | |
|       #if HAS_TEMP_0
 | |
|         raw_temp_value[0] += ADC;
 | |
|       #endif
 | |
|       temp_state = PrepareTemp_BED;
 | |
|       break;
 | |
| 
 | |
|     case PrepareTemp_BED:
 | |
|       #if HAS_TEMP_BED
 | |
|         START_ADC(TEMP_BED_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = MeasureTemp_BED;
 | |
|       break;
 | |
|     case MeasureTemp_BED:
 | |
|       #if HAS_TEMP_BED
 | |
|         raw_temp_bed_value += ADC;
 | |
|       #endif
 | |
|       temp_state = PrepareTemp_1;
 | |
|       break;
 | |
| 
 | |
|     case PrepareTemp_1:
 | |
|       #if HAS_TEMP_1
 | |
|         START_ADC(TEMP_1_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = MeasureTemp_1;
 | |
|       break;
 | |
|     case MeasureTemp_1:
 | |
|       #if HAS_TEMP_1
 | |
|         raw_temp_value[1] += ADC;
 | |
|       #endif
 | |
|       temp_state = PrepareTemp_2;
 | |
|       break;
 | |
| 
 | |
|     case PrepareTemp_2:
 | |
|       #if HAS_TEMP_2
 | |
|         START_ADC(TEMP_2_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = MeasureTemp_2;
 | |
|       break;
 | |
|     case MeasureTemp_2:
 | |
|       #if HAS_TEMP_2
 | |
|         raw_temp_value[2] += ADC;
 | |
|       #endif
 | |
|       temp_state = PrepareTemp_3;
 | |
|       break;
 | |
| 
 | |
|     case PrepareTemp_3:
 | |
|       #if HAS_TEMP_3
 | |
|         START_ADC(TEMP_3_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = MeasureTemp_3;
 | |
|       break;
 | |
|     case MeasureTemp_3:
 | |
|       #if HAS_TEMP_3
 | |
|         raw_temp_value[3] += ADC;
 | |
|       #endif
 | |
|       temp_state = Prepare_FILWIDTH;
 | |
|       break;
 | |
| 
 | |
|     case Prepare_FILWIDTH:
 | |
|       #if HAS_FILAMENT_SENSOR
 | |
|         START_ADC(FILWIDTH_PIN);
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = Measure_FILWIDTH;
 | |
|       break;
 | |
|     case Measure_FILWIDTH:
 | |
|       #if HAS_FILAMENT_SENSOR
 | |
|         // raw_filwidth_value += ADC;  //remove to use an IIR filter approach
 | |
|         if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
 | |
|           raw_filwidth_value -= (raw_filwidth_value>>7);  //multiply raw_filwidth_value by 127/128
 | |
|           raw_filwidth_value += ((unsigned long)ADC<<7);  //add new ADC reading
 | |
|         }
 | |
|       #endif
 | |
|       temp_state = PrepareTemp_0;
 | |
|       temp_count++;
 | |
|       break;
 | |
| 
 | |
|     case StartupDelay:
 | |
|       temp_state = PrepareTemp_0;
 | |
|       break;
 | |
| 
 | |
|     // default:
 | |
|     //   SERIAL_ERROR_START;
 | |
|     //   SERIAL_ERRORLNPGM("Temp measurement error!");
 | |
|     //   break;
 | |
|   } // switch(temp_state)
 | |
| 
 | |
|   if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256)  = 164ms.
 | |
|     // Update the raw values if they've been read. Else we could be updating them during reading.
 | |
|     if (!temp_meas_ready) set_current_temp_raw();
 | |
| 
 | |
|     // Filament Sensor - can be read any time since IIR filtering is used
 | |
|     #if HAS_FILAMENT_SENSOR
 | |
|       current_raw_filwidth = raw_filwidth_value >> 10;  // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
 | |
|     #endif
 | |
| 
 | |
|     temp_count = 0;
 | |
|     for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
 | |
|     raw_temp_bed_value = 0;
 | |
| 
 | |
|     #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
 | |
|       #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
 | |
|         #define GE0 <=
 | |
|       #else
 | |
|         #define GE0 >=
 | |
|       #endif
 | |
|       if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
 | |
|       if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_TEMP_1
 | |
|       #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
 | |
|         #define GE1 <=
 | |
|       #else
 | |
|         #define GE1 >=
 | |
|       #endif
 | |
|       if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
 | |
|       if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
 | |
|     #endif // TEMP_SENSOR_1
 | |
| 
 | |
|     #if HAS_TEMP_2
 | |
|       #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
 | |
|         #define GE2 <=
 | |
|       #else
 | |
|         #define GE2 >=
 | |
|       #endif
 | |
|       if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
 | |
|       if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
 | |
|     #endif // TEMP_SENSOR_2
 | |
| 
 | |
|     #if HAS_TEMP_3
 | |
|       #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
 | |
|         #define GE3 <=
 | |
|       #else
 | |
|         #define GE3 >=
 | |
|       #endif
 | |
|       if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
 | |
|       if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
 | |
|     #endif // TEMP_SENSOR_3
 | |
| 
 | |
|     #if HAS_TEMP_BED
 | |
|       #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
 | |
|         #define GEBED <=
 | |
|       #else
 | |
|         #define GEBED >=
 | |
|       #endif
 | |
|       if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
 | |
|       if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED));
 | |
|     #endif
 | |
| 
 | |
|   } // temp_count >= OVERSAMPLENR
 | |
| 
 | |
|   #ifdef BABYSTEPPING
 | |
|     for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
 | |
|       int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
 | |
|      
 | |
|       if (curTodo > 0) {
 | |
|         babystep(axis,/*fwd*/true);
 | |
|         babystepsTodo[axis]--; //fewer to do next time
 | |
|       }
 | |
|       else if (curTodo < 0) {
 | |
|         babystep(axis,/*fwd*/false);
 | |
|         babystepsTodo[axis]++; //fewer to do next time
 | |
|       }
 | |
|     }
 | |
|   #endif //BABYSTEPPING
 | |
| }
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
|   // Apply the scale factors to the PID values
 | |
|   float scalePID_i(float i)   { return i * PID_dT; }
 | |
|   float unscalePID_i(float i) { return i / PID_dT; }
 | |
|   float scalePID_d(float d)   { return d / PID_dT; }
 | |
|   float unscalePID_d(float d) { return d * PID_dT; }
 | |
| #endif //PIDTEMP
 |