You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
marlin-lulzbot-laser/Marlin/ultralcd_impl_st7920_lite_s...

759 lines
21 KiB

/*
* Lightweight Status Screen for the RepRapDiscount Full
* Graphics Smart Controller (ST7920-based 128x64 LCD)
*
* (c) 2017 Aleph Objects, Inc.
*
* The code in this page is free software: you can
* redistribute it and/or modify it under the terms of the GNU
* General Public License (GNU GPL) as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version. The code is distributed WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
*
*/
/* This is an implementation of a status screen for the RepRapDiscount
* Full Graphics Smart Controller using native ST7920 commands rather
* than using U8Glib.
*
* This alternative status screen makes use of the built-in character
* generation capabilities of the ST7920 to update the status screen
* with less SPI traffic and CPU use. In particular:
*
* - The fan and bed animations are handled using custom characters
* that are stored in CGRAM. This allows for the animation to be
* updated by writing a single character to the text-buffer (DDRAM).
*
* - All the information in the status screen is text that is written
* to DDRAM, so the work of generating the bitmaps is offloaded to
* the ST7920 rather than being render by U8Glib on the MCU.
*
* - The graphics buffer (GDRAM) is only used for static graphics
* elements (nozzle and feedrate bitmaps) and for the progress
* bar, so updates are sporadic.
*/
#include "duration_t.h"
typedef const __FlashStringHelper *progmem_str;
#include "ultralcd_impl_st7920_lite_status_screen.h"
#define BUFFER_WIDTH 256
#define BUFFER_HEIGHT 32
#define DDRAM_LINE_1 0x00
#define DDRAM_LINE_2 0x10
#define DDRAM_LINE_3 0x08
#define DDRAM_LINE_4 0x18
ST7920_Lite_Status_Screen::st7920_state_t ST7920_Lite_Status_Screen::current_bits;
void ST7920_Lite_Status_Screen::cmd(uint8_t cmd) {
if(!current_bits.synced || !current_bits.cmd) {
current_bits.synced = true;
current_bits.cmd = true;
sync_cmd();
}
write_byte(cmd);
}
void ST7920_Lite_Status_Screen::begin_data() {
extended_function_set(false);
if(!current_bits.synced || current_bits.cmd) {
current_bits.synced = true;
current_bits.cmd = false;
sync_dat();
}
}
void ST7920_Lite_Status_Screen::write_word(uint16_t w) {
write_byte((w >> 8) & 0xFF);
write_byte((w >> 0) & 0xFF);
}
void ST7920_Lite_Status_Screen::write_str(const char *str) {
while(*str) {
write_byte(*str++);
}
}
void ST7920_Lite_Status_Screen::write_str(const char *str, uint8_t len) {
while(*str && len--) {
write_byte(*str++);
}
}
void ST7920_Lite_Status_Screen::write_str_P(const char *str) {
const char *p_str = (const char *)str;
char c = pgm_read_byte_near(p_str++);
while(c) {
write_byte(c);
c = pgm_read_byte_near(p_str++);
}
}
void ST7920_Lite_Status_Screen::write_str(progmem_str str) {
write_str_P((const char*)str);
}
void ST7920_Lite_Status_Screen::write_number(uint8_t value, uint8_t digits) {
char str[7];
const char *fmt;
switch(digits) {
case 6: fmt = PSTR("%6d"); break;
case 5: fmt = PSTR("%5d"); break;
case 4: fmt = PSTR("%4d"); break;
case 3: fmt = PSTR("%3d"); break;
case 2: fmt = PSTR("%2d"); break;
case 1: fmt = PSTR("%1d"); break;
}
sprintf_P(str,fmt,value);
write_str(str);
}
void ST7920_Lite_Status_Screen::display_status(bool display_on, bool cursor_on, bool blink_on) {
extended_function_set(false);
cmd(0b00001000 |
(display_on ? 0b0100 : 0) |
(cursor_on ? 0b0010 : 0) |
(blink_on ? 0b0001 : 0)
);
}
// Sets the extended and graphics bits simultaneously, regardless of
// the current state. This is a helper function for extended_function_set()
// and graphics()
void ST7920_Lite_Status_Screen::_extended_function_set(bool extended, bool graphics) {
cmd( 0b00100000 |
(extended ? 0b00000100 : 0) |
(graphics ? 0b00000010 : 0)
);
current_bits.extended = extended;
current_bits.graphics = graphics;
}
void ST7920_Lite_Status_Screen::extended_function_set(bool extended) {
if(extended != current_bits.extended) {
_extended_function_set(extended, current_bits.graphics);
}
}
void ST7920_Lite_Status_Screen::graphics(bool graphics) {
if(graphics != current_bits.graphics) {
_extended_function_set(current_bits.extended, graphics);
}
}
void ST7920_Lite_Status_Screen::entry_mode_select(bool ac_increase, bool shift) {
extended_function_set(false);
cmd(0b00000100 |
(ac_increase ? 0b00000010 : 0) |
(shift ? 0b00000001 : 0)
);
}
// Sets the sa bit regardless of the current state. This is a helper
// function for scroll_or_addr_select()
void ST7920_Lite_Status_Screen::_scroll_or_addr_select(bool sa) {
extended_function_set(true);
cmd(0b00100010 |
(sa ? 0b000001 : 0)
);
current_bits.sa = sa;
}
void ST7920_Lite_Status_Screen::scroll_or_addr_select(bool sa) {
if(sa != current_bits.sa) {
_scroll_or_addr_select(sa);
}
}
void ST7920_Lite_Status_Screen::set_ddram_address(uint8_t addr) {
extended_function_set(false);
cmd(0b10000000 | (addr & 0b00111111));
}
void ST7920_Lite_Status_Screen::set_cgram_address(uint8_t addr) {
extended_function_set(false);
cmd(0b01000000 | (addr & 0b00111111));
}
void ST7920_Lite_Status_Screen::set_gdram_address(uint8_t x, uint8_t y) {
extended_function_set(true);
cmd(0b10000000 | (y & 0b01111111));
cmd(0b10000000 | (x & 0b00001111));
}
void ST7920_Lite_Status_Screen::clear() {
extended_function_set(false);
cmd(0x00000001);
delay(15); //delay for CGRAM clear
}
void ST7920_Lite_Status_Screen::home() {
extended_function_set(false);
cmd(0x00000010);
}
/* This fills the entire text buffer with spaces */
void ST7920_Lite_Status_Screen::clear_ddram()
{
set_ddram_address(DDRAM_LINE_1);
begin_data();
for(int i=0; i < 64;i++) {
write_byte(' ');
}
}
/* This fills the entire graphics buffer with zeros */
void ST7920_Lite_Status_Screen::clear_gdram()
{
for(int y = 0; y < BUFFER_HEIGHT; y++) {
set_gdram_address(0,y);
begin_data();
for(int i = 0; i < (BUFFER_WIDTH / 16); i++) {
write_byte(0);
write_byte(0);
}
}
}
void ST7920_Lite_Status_Screen::load_cgram_icon(uint16_t addr, const void *data) {
const uint16_t *p_word = (const uint16_t *)data;
set_cgram_address(addr);
begin_data();
for(int i = 0; i < 16; i++) {
uint16_t word = pgm_read_word_near(p_word++);
write_byte((word & 0xFF00) >> 8);
write_byte((word & 0x00FF) >> 0);
}
}
/* Draws an icon in GDRAM. The position is specified in
as if they were DDRAM coordinates, i.e. the x position
is [1-8], while the y position is [1-4] */
void ST7920_Lite_Status_Screen::draw_gdram_icon(uint8_t x, uint8_t y, const void *data) {
const uint16_t *p_word = (const uint16_t *)data;
if(y > 2) {
// Handle display folding
y -= 2;
x += 8;
}
x -= 1;
y -= 1;
for(int i = 0; i < 16; i++) {
uint16_t word = pgm_read_word_near(p_word++);
set_gdram_address(x,i+y*16);
begin_data();
write_byte((word & 0xFF00) >> 8);
write_byte((word & 0x00FF) >> 0);
}
}
/************************** MAIN SCREEN *************************************/
void ST7920_Lite_Status_Screen::draw_static_elements() {
scroll_or_addr_select(0);
// Load the animated bed and fan icons
load_cgram_icon(CGRAM_ICON_1_ADDR, heat1_icon);
load_cgram_icon(CGRAM_ICON_2_ADDR, heat2_icon);
load_cgram_icon(CGRAM_ICON_3_ADDR, fan1_icon);
load_cgram_icon(CGRAM_ICON_4_ADDR, fan2_icon);
// Draw the static icons in GDRAM
draw_gdram_icon(1,1,nozzle_icon);
#if EXTRUDERS == 2
draw_gdram_icon(1,2,nozzle_icon);
draw_gdram_icon(1,3,bed_icon);
#else
draw_gdram_icon(1,2,bed_icon);
#endif
draw_gdram_icon(6,2,feedrate_icon);
// Draw the initial fan icon
draw_fan_icon(false);
}
/* Although this is undocumented, the ST7920 allows the character
* data buffer (DDRAM) to be used in conjunction with the graphics
* bitmap buffer (CGRAM). The contents of the graphics buffer is
* XORed with the data from the character generator. This allows
* us to make the progess bar out of graphical data (the bar) and
* text data (the percentage).
*/
void ST7920_Lite_Status_Screen::draw_progress_bar(uint8_t value) {
#if EXTRUDERS == 1
// If we have only one extruder, draw a long progress bar on the third line
const int top = 1; // Top in pixels
const int bottom = 13; // Bottom in pixels
const int left = 8; // Left edge, in 16-bit words
const int width = 5; // Width of progress bar, in 16-bit words
#else
const int top = 16 + 1; // Top in pixels
const int bottom = 16 + 13; // Bottom in pixels
const int left = 5; // Left edge, in 16-bit words
const int width = 3; // Width of progress bar, in 16-bit words
#endif
const int char_pcnt = 100/width; // How many percent does each 16-bit word represent?
// Draw the progress bar as a bitmap in CGRAM
for(int y = top; y <= bottom; y++) {
set_gdram_address(left,y);
begin_data();
for(int x = 0; x < width; x++) {
uint16_t gfx_word = 0x0000;
if((x+1)*char_pcnt <= value) {
// Draw completely filled bytes
gfx_word = 0xFFFF;
} else if((x*char_pcnt) < value) {
// Draw partially filled bytes
gfx_word = int(0x8000) >> (value % char_pcnt)*16/char_pcnt;
}
// Draw the frame around the progress bar
if(y == top || y == bottom) {
// Draw top/bottom border
gfx_word = 0xFFFF;
} else if (x == (width-1)) {
// Draw right border
gfx_word |= 0x0001;
} else if (x == 0) {
// Draw left border
gfx_word |= 0x8000;
}
write_word(gfx_word);
}
}
// Draw the percentage as text in DDRAM
#if EXTRUDERS == 1
set_ddram_address(DDRAM_LINE_3 + 1);
#else
set_ddram_address(DDRAM_LINE_2 + left);
#endif
begin_data();
if(value > 9) {
write_number(value,4);
write_str(F("% "));
} else {
write_number(value,3);
write_str(F("% "));
}
}
void ST7920_Lite_Status_Screen::draw_fan_icon(bool whichIcon) {
set_ddram_address(DDRAM_LINE_1+5);
begin_data();
write_word(whichIcon ? CGRAM_ICON_3_WORD : CGRAM_ICON_4_WORD);
}
void ST7920_Lite_Status_Screen::draw_heat_icon(bool whichIcon, bool heating) {
#if EXTRUDERS == 1
set_ddram_address(DDRAM_LINE_2);
#else
set_ddram_address(DDRAM_LINE_3);
#endif
begin_data();
if(heating) {
write_word(whichIcon ? CGRAM_ICON_1_WORD : CGRAM_ICON_2_WORD);
} else {
write_byte(' ');
write_byte(' ');
}
}
#define FAR(a,b) (((a > b) ? (a-b) : (b-a)) > 1)
void ST7920_Lite_Status_Screen::draw_extruder_1_temp(uint8_t temp, uint8_t target) {
set_ddram_address(DDRAM_LINE_1+1);
begin_data();
write_number(temp);
if(target && FAR(temp, target)) {
write_str(F("\x1A"));
write_number(target);
} else {
write_str(F(" "));
}
}
void ST7920_Lite_Status_Screen::draw_extruder_2_temp(uint8_t temp, uint8_t target) {
set_ddram_address(DDRAM_LINE_2+1);
begin_data();
write_number(temp);
if(target && FAR(temp, target)) {
write_str(F("\x1A"));
write_number(target);
} else {
write_str(F(" "));
}
}
void ST7920_Lite_Status_Screen::draw_bed_temp(uint8_t temp, uint8_t target) {
#if EXTRUDERS == 1
set_ddram_address(DDRAM_LINE_2+1);
#else
set_ddram_address(DDRAM_LINE_3+1);
#endif
begin_data();
write_number(temp);
if(target && FAR(temp, target)) {
write_str(F("\x1A"));
write_number(target);
} else {
write_str(F(" "));
}
}
void ST7920_Lite_Status_Screen::draw_fan_speed(uint8_t value) {
set_ddram_address(DDRAM_LINE_1+6);
begin_data();
write_number(value,4);
}
void ST7920_Lite_Status_Screen::draw_print_time(uint32_t elapsed) {
const uint8_t hrs = elapsed/3600;
const uint8_t min = (elapsed/60)%60;
char str[7];
sprintf_P(str,hrs > 99 ? PSTR("%03d:%02d") : PSTR(" %02d:%02d"),hrs,min);
set_ddram_address(DDRAM_LINE_3+5);
begin_data();
write_str(str);
}
void ST7920_Lite_Status_Screen::draw_feedrate_percentage(uint8_t percentage) {
// We only have enough room for the feedrate when
// we have one extruder
#if EXTRUDERS == 1
set_ddram_address(DDRAM_LINE_2+6);
begin_data();
write_number(percentage,4);
#endif
}
void ST7920_Lite_Status_Screen::draw_status_message(const char *str) {
set_ddram_address(DDRAM_LINE_4);
begin_data();
#if ENABLED(STATUS_MESSAGE_SCROLLING)
const uint8_t lcd_len = 16;
const uint8_t padding = 2;
uint8_t str_len = strlen(str);
// Trim whitespace at the end of the str, as for some reason
// messages like "Card Inserted" are padded with many spaces
while(str_len > 0 && str[str_len-1] == ' ') {
str_len--;
}
if(str_len <= lcd_len) {
// It all fits on the LCD without scrolling
write_str(str);
} else {
// Print the message repeatedly until covering the LCD
uint8_t c = status_scroll_pos;
for(uint8_t n = 0; n < lcd_len; n++) {
write_byte(c < str_len ? str[c] : ' ');
c++;
c %= str_len + padding; // Wrap around
}
// Scroll the message
if(status_scroll_pos == str_len + padding) {
status_scroll_pos = 0;
} else {
status_scroll_pos++;
}
}
#else
write_str(str, 16);
#endif
}
void ST7920_Lite_Status_Screen::draw_position(const float x, const float y, const float z, bool position_known) {
char str[7];
set_ddram_address(DDRAM_LINE_4);
begin_data();
// If position is unknown, flash the labels.
const unsigned char alt_label = position_known ? 0 : (lcd_blink() ? ' ' : 0);
dtostrf(x, -4, 0, str);
write_byte(alt_label ? alt_label : 'X');
write_str(str, 4);
dtostrf(y, -4, 0, str);
write_byte(alt_label ? alt_label : 'Y');
write_str(str, 4);
dtostrf(z, -5, 1, str);
write_byte(alt_label ? alt_label : 'Z');
write_str(str, 5);
}
bool ST7920_Lite_Status_Screen::indicators_changed() {
// We only add the target temperatures to the checksum
// because the actual temps fluctuate so by updating
// them only during blinks we gain a bit of stability.
const bool blink = lcd_blink();
const uint8_t feedrate_perc = feedrate_percentage;
const uint8_t fan_speed = ((fanSpeeds[0] + 1) * 100) / 256;
const float extruder_1_target = thermalManager.degTargetHotend(0);
#if EXTRUDERS == 2
const float extruder_2_target = thermalManager.degTargetHotend(1);
#endif
const float bed_target = thermalManager.degTargetBed();
static uint8_t last_checksum = 0;
const uint8_t checksum =
uint8_t(blink) ^
uint8_t(feedrate_perc) ^
uint8_t(fan_speed) ^
uint8_t(extruder_1_target) ^
#if EXTRUDERS == 2
uint8_t(extruder_2_target) ^
#endif
uint8_t(bed_target);
if(last_checksum == checksum) {
return false;
} else {
last_checksum = checksum;
return true;
}
}
void ST7920_Lite_Status_Screen::update_indicators(bool forceUpdate) {
if(forceUpdate || indicators_changed()) {
const bool blink = lcd_blink();
const duration_t elapsed = print_job_timer.duration();
const uint32_t seconds_elapsed = elapsed.value;
const uint8_t feedrate_perc = feedrate_percentage;
const uint8_t fan_speed = ((fanSpeeds[0] + 1) * 100) / 256;
const float extruder_1_temp = thermalManager.degHotend(0);
const float extruder_1_target = thermalManager.degTargetHotend(0);
#if EXTRUDERS == 2
const float extruder_2_temp = thermalManager.degHotend(1);
const float extruder_2_target = thermalManager.degTargetHotend(1);
#endif
const float bed_temp = thermalManager.degBed();
const float bed_target = thermalManager.degTargetBed();
draw_extruder_1_temp(extruder_1_temp, extruder_1_target);
#if EXTRUDERS == 2
draw_extruder_2_temp(extruder_2_temp, extruder_2_target);
#endif
draw_bed_temp(bed_temp, bed_target);
draw_fan_speed(fan_speed);
draw_print_time(seconds_elapsed);
draw_feedrate_percentage(feedrate_perc);
// Update the fan and bed animations
if(fan_speed > 0) {
draw_fan_icon(blink);
}
if(bed_target > 0) {
draw_heat_icon(blink, true);
} else {
draw_heat_icon(false, false);
}
}
}
bool ST7920_Lite_Status_Screen::position_changed() {
const float x_pos = current_position[X_AXIS];
const float y_pos = current_position[Y_AXIS];
const float z_pos = current_position[Z_AXIS];
const uint8_t checksum = uint8_t(x_pos) ^ uint8_t(y_pos) ^ uint8_t(z_pos);
static uint8_t last_checksum = 0;
if(last_checksum == checksum) {
return false;
} else {
last_checksum = checksum;
return true;
}
}
bool ST7920_Lite_Status_Screen::status_changed() {
uint8_t checksum = 0;
for(const char *p = lcd_status_message; *p; p++) {
checksum ^= *p;
}
static uint8_t last_checksum = 0;
if(last_checksum == checksum) {
return false;
} else {
last_checksum = checksum;
return true;
}
}
bool ST7920_Lite_Status_Screen::blink_changed() {
static uint8_t last_blink = 0;
const bool blink = lcd_blink();
if(last_blink == blink) {
return false;
} else {
last_blink = blink;
return true;
}
}
void ST7920_Lite_Status_Screen::update_status_or_position(bool forceUpdate) {
static uint8_t countdown = 0;
/* There is only enough room in the display for either the
* status message or the position, not both, so we choose
* one or another. Whenever the status message changes,
* we show it for a number of consecutive seconds, but
* then go back to showing the position as soon as the
* head moves, i.e:
*
* countdown > 1 -- Show status
* countdown = 1 -- Show status, until movement
* countdown = 0 -- Show position
*/
if( forceUpdate || status_changed() ) {
#if ENABLED(STATUS_MESSAGE_SCROLLING)
status_scroll_pos = 0;
#endif
if(lcd_strlen(lcd_status_message)) {
countdown = LULZBOT_DELAY_TO_SHOW_POSITION;
} else {
countdown = 0;
}
draw_status_message(lcd_status_message);
blink_changed(); // Clear changed flag
}
else if(countdown > 1 && blink_changed() ) {
countdown--;
#if ENABLED(STATUS_MESSAGE_SCROLLING)
draw_status_message(lcd_status_message);
#endif
}
else if(countdown > 0 && blink_changed() ) {
if(position_changed()) {
countdown--;
forceUpdate = true;
}
#if ENABLED(STATUS_MESSAGE_SCROLLING)
draw_status_message(lcd_status_message);
#endif
}
if(countdown == 0 && (forceUpdate || position_changed() ||
#if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
blink_changed()
#endif
)) {
draw_position(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
#if ENABLED(DISABLE_REDUCED_ACCURACY_WARNING)
true
#else
axis_known_position[X_AXIS] &&
axis_known_position[Y_AXIS] &&
axis_known_position[Z_AXIS]
#endif
);
}
}
void ST7920_Lite_Status_Screen::update_progress(bool forceUpdate) {
#if ENABLED(SDSUPPORT)
const uint8_t percent_done = card.percentDone();
#else
const uint8_t percent_done = 0;
#endif
// Since the progress bar involves writing
// quite a few bytes to GDRAM, only do this
// when an update is actually necessary.
static uint8_t last_progress = 0;
if(!forceUpdate && last_progress == percent_done)
return;
last_progress = percent_done;
draw_progress_bar(percent_done);
}
void ST7920_Lite_Status_Screen::update(bool forceUpdate) {
cs();
update_indicators(forceUpdate);
update_status_or_position(forceUpdate);
update_progress(forceUpdate);
ncs();
}
void ST7920_Lite_Status_Screen::reset_state_from_unknown() {
_extended_function_set(true, true); // Do it twice as only one bit
_extended_function_set(true, true); // get set at a time.
_scroll_or_addr_select(false);
}
void ST7920_Lite_Status_Screen::on_entry() {
cs();
reset_state_from_unknown();
clear();
clear_gdram();
draw_static_elements();
update(true);
ncs();
}
void ST7920_Lite_Status_Screen::on_exit() {
cs();
clear();
_extended_function_set(true, true); // Restore state to what u8g expects.
ncs();
}
// This is called prior to the KILL screen to
// clear the screen so we don't end up with a
// garbled display.
void ST7920_Lite_Status_Screen::clear_text_buffer() {
cs();
reset_state_from_unknown();
clear();
_extended_function_set(true, true); // Restore state to what u8g expects.
ncs();
}
static void lcd_implementation_status_screen() {
ST7920_Lite_Status_Screen::update(false);
}
/* In order to properly update the lite status screen,
* we must know when we have entered and left the
* status screen. Since the ultralcd code is not
* set up for doing this, we call this function before
* each update indicating whether the current screen
* is the status screen.
*
* This function keeps track of whether we have left or
* entered the status screen and calls the on_entry()
* and on_exit() methods for cleanup.
*/
static void lcd_in_status(bool inStatus) {
static bool lastInStatus = false;
if(!lastInStatus && inStatus) {
ST7920_Lite_Status_Screen::on_entry();
lastInStatus = true;
}
if(lastInStatus && !inStatus) {
ST7920_Lite_Status_Screen::on_exit();
lastInStatus = false;
}
}