You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8871 lines
280 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
*
* About Marlin
*
* This firmware is a mashup between Sprinter and grbl.
* - https://github.com/kliment/Sprinter
* - https://github.com/simen/grbl/tree
*
* It has preliminary support for Matthew Roberts advance algorithm
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_GRID)
#include "qr_solve.h"
#endif
#endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
#include "planner_bezier.h"
#endif
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "endstops.h"
#include "temperature.h"
#include "cardreader.h"
#include "configuration_store.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "nozzle.h"
#include "duration_t.h"
#include "types.h"
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
#if ENABLED(BLINKM)
#include "blinkm.h"
#include "Wire.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h"
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
#include "twibus.h"
#endif
/**
* Look here for descriptions of G-codes:
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G-codes online:
* - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
* - http://reprap.org/wiki/G-code
*
* -----------------
* Implemented Codes
* -----------------
*
* "G" Codes
*
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
* G10 - Retract filament according to settings of M207
* G11 - Retract recover filament according to settings of M208
* G12 - Clean tool
* G20 - Set input units to inches
* G21 - Set input units to millimeters
* G28 - Home one or more axes
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
* G30 - Single Z probe, probes bed at current XY location.
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
*
* "M" Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
* syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
* Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
* M75 - Start the print job timer
* M76 - Pause the print job timer
* M77 - Stop the print job timer
* M78 - Show statistical information about the print jobs
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move,
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set planner.axis_steps_per_mm - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number
* M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
* M112 - Emergency stop
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - Display a message on the controller screen
* M119 - Output Endstop status to serial port
* M120 - Enable endstop detection
* M121 - Disable endstop detection
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M149 - Set temperature units
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
* M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
* M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
* M205 - Set advanced settings. Current units apply:
S<print> T<travel> minimum speeds
B<minimum segment time>
X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
* M206 - Set additional homing offset
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
* M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
Every normal extrude-only move will be classified as retract depending on the direction.
* M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
* M218 - Set a tool offset: T<index> X<offset> Y<offset>
* M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
* M221 - Set Flow Percentage: S<percent>
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C<contrast value> (value 0..63)
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M380 - Activate solenoid on active extruder
* M381 - Disable all solenoids
* M400 - Finish all moves
* M401 - Lower Z probe if present
* M402 - Raise Z probe if present
* M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
* M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
* M406 - Disable Filament Sensor extrusion control
* M407 - Display measured filament diameter in millimeters
* M410 - Quickstop. Abort all the planned moves
* M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
* M428 - Set the home_offset logically based on the current_position
* M500 - Store parameters in EEPROM
* M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
* M666 - Set delta endstop adjustment
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
* M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
* M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
*
* ************ SCARA Specific - This can change to suit future G-code regulations
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
* M365 - SCARA calibration: Scaling factor, X, Y, Z axis
* ************* SCARA End ***************
*
* ************ Custom codes - This can change to suit future G-code regulations
* M100 - Watch Free Memory (For Debugging Only)
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
*
* "T" Codes
*
* T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
*
*/
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
#endif
#if ENABLED(SDSUPPORT)
CardReader card;
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
TWIBus i2c;
#endif
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_NONE;
float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[XYZ] = { false };
bool axis_homed[XYZ] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
static char* current_command, *current_command_args;
static uint8_t cmd_queue_index_r = 0,
cmd_queue_index_w = 0,
commands_in_queue = 0;
#if ENABLED(INCH_MODE_SUPPORT)
float linear_unit_factor = 1.0;
float volumetric_unit_factor = 1.0;
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
TempUnit input_temp_units = TEMPUNIT_C;
#endif
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
const float homing_feedrate_mm_s[] = {
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
};
static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
int feedrate_percentage = 100, saved_feedrate_percentage;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
// Software Endstops are based on the configured limits.
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
bool soft_endstops_enabled = true;
#endif
float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
#if FAN_COUNT > 0
int fanSpeeds[FAN_COUNT] = { 0 };
#endif
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0;
// Relative Mode. Enable with G91, disable with G90.
static bool relative_mode = false;
volatile bool wait_for_heatup = true;
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static int serial_count = 0;
// GCode parameter pointer used by code_seen(), code_value_float(), etc.
static char* seen_pointer;
// Next Immediate GCode Command pointer. NULL if none.
const char* queued_commands_P = NULL;
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown
millis_t previous_cmd_ms = 0;
static millis_t max_inactive_time = 0;
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
// Print Job Timer
#if ENABLED(PRINTCOUNTER)
PrintCounter print_job_timer = PrintCounter();
#else
Stopwatch print_job_timer = Stopwatch();
#endif
// Buzzer - I2C on the LCD or a BEEPER_PIN
#if ENABLED(LCD_USE_I2C_BUZZER)
#define BUZZ(d,f) lcd_buzz(d, f)
#elif HAS_BUZZER
Buzzer buzzer;
#define BUZZ(d,f) buzzer.tone(d, f)
#else
#define BUZZ(d,f) NOOP
#endif
static uint8_t target_extruder;
#if HAS_BED_PROBE
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
#else
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
float z_endstop_adj = 0;
#endif
// Extruder offsets
#if HOTENDS > 1
float hotend_offset[][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#endif
};
#endif
#if HAS_Z_SERVO_ENDSTOP
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#endif
#if ENABLED(BARICUDA)
int baricuda_valve_pressure = 0;
int baricuda_e_to_p_pressure = 0;
#endif
#if ENABLED(FWRETRACT)
bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false };
bool retracted_swap[EXTRUDERS] = { false };
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate_mm_s = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT
#if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
bool powersupply =
#if ENABLED(PS_DEFAULT_OFF)
false
#else
true
#endif
;
#endif
#if ENABLED(DELTA)
#define TOWER_1 X_AXIS
#define TOWER_2 Y_AXIS
#define TOWER_3 Z_AXIS
float delta[ABC];
float cartesian_position[XYZ] = { 0 };
#define SIN_60 0.8660254037844386
#define COS_60 0.5
float endstop_adj[ABC] = { 0 };
// these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS;
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
float delta_tower3_x = 0; // back middle tower
float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
float delta_clip_start_height = Z_MAX_POS;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
int delta_grid_spacing[2] = { 0, 0 };
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
#endif
float delta_safe_distance_from_top();
#else
static bool home_all_axis = true;
#endif
#if ENABLED(SCARA)
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
float delta[ABC];
float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int filwidth_delay_index1 = 0; //index into ring buffer
int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
static bool filament_ran_out = false;
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
FilamentChangeMenuResponse filament_change_menu_response;
#endif
#if ENABLED(MIXING_EXTRUDER)
float mixing_factor[MIXING_STEPPERS];
#if MIXING_VIRTUAL_TOOLS > 1
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
#endif
#endif
static bool send_ok[BUFSIZE];
#if HAS_SERVOS
Servo servo[NUM_SERVOS];
#define MOVE_SERVO(I, P) servo[I].move(P)
#if HAS_Z_SERVO_ENDSTOP
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
#endif
#endif
#ifdef CHDK
millis_t chdkHigh = 0;
boolean chdkActive = false;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
static MarlinBusyState busy_state = NOT_BUSY;
static millis_t next_busy_signal_ms = 0;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define host_keepalive() ;
#define KEEPALIVE_STATE(n) ;
#endif // HOST_KEEPALIVE_FEATURE
/**
* ***************************************************************************
* ******************************** FUNCTIONS ********************************
* ***************************************************************************
*/
void stop();
void get_available_commands();
void process_next_command();
void prepare_move_to_destination();
void set_current_from_steppers_for_axis(AxisEnum axis);
#if ENABLED(ARC_SUPPORT)
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float offset[4]);
#endif
void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
static void report_current_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
serialprintPGM(prefix);
SERIAL_ECHOPAIR("(", x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
SERIAL_ECHOPGM(")");
if (suffix) serialprintPGM(suffix);
else SERIAL_EOL;
}
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
}
#endif
#define DEBUG_POS(SUFFIX,VAR) do { \
print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
#endif
/**
* sync_plan_position
* Set planner / stepper positions to the cartesian current_position.
* The stepper code translates these coordinates into step units.
* Allows translation between steps and millimeters for cartesian & core robots
*/
inline void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
#if ENABLED(DELTA) || ENABLED(SCARA)
inline void sync_plan_position_delta() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
#endif
inverse_kinematics(current_position);
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
#else
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif
#if ENABLED(SDSUPPORT)
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void* __brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
#if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current(int channel, float current);
extern void digipot_i2c_init();
#endif
/**
* Inject the next "immediate" command, when possible.
* Return true if any immediate commands remain to inject.
*/
static bool drain_queued_commands_P() {
if (queued_commands_P != NULL) {
size_t i = 0;
char c, cmd[30];
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueue_and_echo_command(cmd)) { // success?
if (c) // newline char?
queued_commands_P += i + 1; // advance to the next command
else
queued_commands_P = NULL; // nul char? no more commands
}
}
return (queued_commands_P != NULL); // return whether any more remain
}
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueue_and_echo_commands_P(const char* pgcode) {
queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible)
}
void clear_command_queue() {
cmd_queue_index_r = cmd_queue_index_w;
commands_in_queue = 0;
}
/**
* Once a new command is in the ring buffer, call this to commit it
*/
inline void _commit_command(bool say_ok) {
send_ok[cmd_queue_index_w] = say_ok;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue++;
}
/**
* Copy a command directly into the main command buffer, from RAM.
* Returns true if successfully adds the command
*/
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
strcpy(command_queue[cmd_queue_index_w], cmd);
_commit_command(say_ok);
return true;
}
void enqueue_and_echo_command_now(const char* cmd) {
while (!enqueue_and_echo_command(cmd)) idle();
}
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
if (_enqueuecommand(cmd, say_ok)) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueueing);
SERIAL_ECHO(cmd);
SERIAL_ECHOLNPGM("\"");
return true;
}
return false;
}
void setup_killpin() {
#if HAS_KILL
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN, HIGH);
#endif
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void setup_filrunoutpin() {
pinMode(FIL_RUNOUT_PIN, INPUT);
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
WRITE(FIL_RUNOUT_PIN, HIGH);
#endif
}
#endif
// Set home pin
void setup_homepin(void) {
#if HAS_HOME
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN, HIGH);
#endif
}
void setup_photpin() {
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if HAS_POWER_SWITCH
#if ENABLED(PS_DEFAULT_OFF)
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init() {
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servo[0].attach(SERVO0_PIN);
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
#endif
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servo[1].attach(SERVO1_PIN);
servo[1].detach();
#endif
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servo[2].attach(SERVO2_PIN);
servo[2].detach();
#endif
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servo[3].attach(SERVO3_PIN);
servo[3].detach();
#endif
#if HAS_Z_SERVO_ENDSTOP
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*
*/
STOW_Z_SERVO();
#endif
#if HAS_BED_PROBE
endstops.enable_z_probe(false);
#endif
}
/**
* Stepper Reset (RigidBoard, et.al.)
*/
#if HAS_STEPPER_RESET
void disableStepperDrivers() {
pinMode(STEPPER_RESET_PIN, OUTPUT);
digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
}
void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
i2c.receive(bytes);
}
void i2c_on_request() { // just send dummy data for now
i2c.reply("Hello World!\n");
}
#endif
/**
* Marlin entry-point: Set up before the program loop
* - Set up the kill pin, filament runout, power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for:
* • temperature
* • planner
* • watchdog
* • stepper
* • photo pin
* • servos
* • LCD controller
* • Digipot I2C
* • Z probe sled
* • status LEDs
*/
void setup() {
#ifdef DISABLE_JTAG
// Disable JTAG on AT90USB chips to free up pins for IO
MCUCR = 0x80;
MCUCR = 0x80;
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
setup_filrunoutpin();
#endif
setup_killpin();
setup_powerhold();
#if HAS_STEPPER_RESET
disableStepperDrivers();
#endif
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR = 0;
SERIAL_ECHOPGM(MSG_MARLIN);
SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
#ifdef STRING_DISTRIBUTION_DATE
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
SERIAL_ECHOPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif // STRING_CONFIG_H_AUTHOR
#endif // STRING_DISTRIBUTION_DATE
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
// Send "ok" after commands by default
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
// Load data from EEPROM if available (or use defaults)
// This also updates variables in the planner, elsewhere
Config_RetrieveSettings();
// Initialize current position based on home_offset
memcpy(current_position, home_offset, sizeof(home_offset));
// Vital to init stepper/planner equivalent for current_position
SYNC_PLAN_POSITION_KINEMATIC();
thermalManager.init(); // Initialize temperature loop
#if ENABLED(USE_WATCHDOG)
watchdog_init();
#endif
stepper.init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
#if HAS_CONTROLLERFAN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#if HAS_STEPPER_RESET
enableStepperDrivers();
#endif
#if ENABLED(DIGIPOT_I2C)
digipot_i2c_init();
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
dac_init();
#endif
#if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
pinMode(SLED_PIN, OUTPUT);
digitalWrite(SLED_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
setup_homepin();
#ifdef STAT_LED_RED
pinMode(STAT_LED_RED, OUTPUT);
digitalWrite(STAT_LED_RED, LOW); // turn it off
#endif
#ifdef STAT_LED_BLUE
pinMode(STAT_LED_BLUE, OUTPUT);
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
#endif
lcd_init();
#if ENABLED(SHOW_BOOTSCREEN)
#if ENABLED(DOGLCD)
safe_delay(BOOTSCREEN_TIMEOUT);
#elif ENABLED(ULTRA_LCD)
bootscreen();
lcd_init();
#endif
#endif
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
// Initialize mixing to 100% color 1
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] = (i == 0) ? 1 : 0;
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
i2c.onReceive(i2c_on_receive);
i2c.onRequest(i2c_on_request);
#endif
}
/**
* The main Marlin program loop
*
* - Save or log commands to SD
* - Process available commands (if not saving)
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
*/
void loop() {
if (commands_in_queue < BUFSIZE) get_available_commands();
#if ENABLED(SDSUPPORT)
card.checkautostart(false);
#endif
if (commands_in_queue) {
#if ENABLED(SDSUPPORT)
if (card.saving) {
char* command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
ok_to_send();
}
else {
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
process_next_command(); // The card is saving because it's logging
else
ok_to_send();
}
}
else
process_next_command();
#else
process_next_command();
#endif // SDSUPPORT
// The queue may be reset by a command handler or by code invoked by idle() within a handler
if (commands_in_queue) {
--commands_in_queue;
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
}
}
endstops.report_state();
idle();
}
void gcode_line_error(const char* err, bool doFlush = true) {
SERIAL_ERROR_START;
serialprintPGM(err);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
if (doFlush) FlushSerialRequestResend();
serial_count = 0;
}
inline void get_serial_commands() {
static char serial_line_buffer[MAX_CMD_SIZE];
static boolean serial_comment_mode = false;
// If the command buffer is empty for too long,
// send "wait" to indicate Marlin is still waiting.
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
static millis_t last_command_time = 0;
millis_t ms = millis();
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms;
}
#endif
/**
* Loop while serial characters are incoming and the queue is not full
*/
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
char serial_char = MYSERIAL.read();
/**
* If the character ends the line
*/
if (serial_char == '\n' || serial_char == '\r') {
serial_comment_mode = false; // end of line == end of comment
if (!serial_count) continue; // skip empty lines
serial_line_buffer[serial_count] = 0; // terminate string
serial_count = 0; //reset buffer
char* command = serial_line_buffer;
while (*command == ' ') command++; // skip any leading spaces
char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
char* apos = strchr(command, '*');
if (npos) {
boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
if (M110) {
char* n2pos = strchr(command + 4, 'N');
if (n2pos) npos = n2pos;
}
gcode_N = strtol(npos + 1, NULL, 10);
if (gcode_N != gcode_LastN + 1 && !M110) {
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
return;
}
if (apos) {
byte checksum = 0, count = 0;
while (command[count] != '*') checksum ^= command[count++];
if (strtol(apos + 1, NULL, 10) != checksum) {
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
return;
}
// if no errors, continue parsing
}
else {
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
return;
}
gcode_LastN = gcode_N;
// if no errors, continue parsing
}
else if (apos) { // No '*' without 'N'
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
return;
}
// Movement commands alert when stopped
if (IsStopped()) {
char* gpos = strchr(command, 'G');
if (gpos) {
int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
case 2:
case 3:
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
break;
}
}
}
#if DISABLED(EMERGENCY_PARSER)
// If command was e-stop process now
if (strcmp(command, "M108") == 0) wait_for_heatup = false;
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
#endif
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
last_command_time = ms;
#endif
// Add the command to the queue
_enqueuecommand(serial_line_buffer, true);
}
else if (serial_count >= MAX_CMD_SIZE - 1) {
// Keep fetching, but ignore normal characters beyond the max length
// The command will be injected when EOL is reached
}
else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
}
// otherwise do nothing
}
else { // it's not a newline, carriage return or escape char
if (serial_char == ';') serial_comment_mode = true;
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
}
} // queue has space, serial has data
}
#if ENABLED(SDSUPPORT)
inline void get_sdcard_commands() {
static bool stop_buffering = false,
sd_comment_mode = false;
if (!card.sdprinting) return;
/**
* '#' stops reading from SD to the buffer prematurely, so procedural
* macro calls are possible. If it occurs, stop_buffering is triggered
* and the buffer is run dry; this character _can_ occur in serial com
* due to checksums, however, no checksums are used in SD printing.
*/
if (commands_in_queue == 0) stop_buffering = false;
uint16_t sd_count = 0;
bool card_eof = card.eof();
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
int16_t n = card.get();
char sd_char = (char)n;
card_eof = card.eof();
if (card_eof || n == -1
|| sd_char == '\n' || sd_char == '\r'
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
) {
if (card_eof) {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
card.printingHasFinished();
card.checkautostart(true);
}
else if (n == -1) {
SERIAL_ERROR_START;
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
}
if (sd_char == '#') stop_buffering = true;
sd_comment_mode = false; //for new command
if (!sd_count) continue; //skip empty lines
command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
sd_count = 0; //clear buffer
_commit_command(false);
}
else if (sd_count >= MAX_CMD_SIZE - 1) {
/**
* Keep fetching, but ignore normal characters beyond the max length
* The command will be injected when EOL is reached
*/
}
else {
if (sd_char == ';') sd_comment_mode = true;
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
}
}
}
#endif // SDSUPPORT
/**
* Add to the circular command queue the next command from:
* - The command-injection queue (queued_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
*/
void get_available_commands() {
// if any immediate commands remain, don't get other commands yet
if (drain_queued_commands_P()) return;
get_serial_commands();
#if ENABLED(SDSUPPORT)
get_sdcard_commands();
#endif
}
inline bool code_has_value() {
int i = 1;
char c = seen_pointer[i];
while (c == ' ') c = seen_pointer[++i];
if (c == '-' || c == '+') c = seen_pointer[++i];
if (c == '.') c = seen_pointer[++i];
return NUMERIC(c);
}
inline float code_value_float() {
float ret;
char* e = strchr(seen_pointer, 'E');
if (e) {
*e = 0;
ret = strtod(seen_pointer + 1, NULL);
*e = 'E';
}
else
ret = strtod(seen_pointer + 1, NULL);
return ret;
}
inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
inline bool code_value_bool() { return code_value_byte() > 0; }
#if ENABLED(INCH_MODE_SUPPORT)
inline void set_input_linear_units(LinearUnit units) {
switch (units) {
case LINEARUNIT_INCH:
linear_unit_factor = 25.4;
break;
case LINEARUNIT_MM:
default:
linear_unit_factor = 1.0;
break;
}
volumetric_unit_factor = pow(linear_unit_factor, 3.0);
}
inline float axis_unit_factor(int axis) {
return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
}
inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
#else
inline float code_value_linear_units() { return code_value_float(); }
inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
float code_value_temp_abs() {
switch (input_temp_units) {
case TEMPUNIT_C:
return code_value_float();
case TEMPUNIT_F:
return (code_value_float() - 32) * 0.5555555556;
case TEMPUNIT_K:
return code_value_float() - 272.15;
default:
return code_value_float();
}
}
float code_value_temp_diff() {
switch (input_temp_units) {
case TEMPUNIT_C:
case TEMPUNIT_K:
return code_value_float();
case TEMPUNIT_F:
return code_value_float() * 0.5555555556;
default:
return code_value_float();
}
}
#else
float code_value_temp_abs() { return code_value_float(); }
float code_value_temp_diff() { return code_value_float(); }
#endif
FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
bool code_seen(char code) {
seen_pointer = strchr(current_command_args, code);
return (seen_pointer != NULL); // Return TRUE if the code-letter was found
}
/**
* Set target_extruder from the T parameter or the active_extruder
*
* Returns TRUE if the target is invalid
*/
bool get_target_extruder_from_command(int code) {
if (code_seen('T')) {
if (code_value_byte() >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('M');
SERIAL_ECHO(code);
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
return true;
}
target_extruder = code_value_byte();
}
else
target_extruder = active_extruder;
return false;
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[XYZ] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
#endif
#if ENABLED(DUAL_X_CARRIAGE)
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage offset when homed - otherwise X2_HOME_POS is used.
* This allow soft recalibration of the second extruder offset position
* without firmware reflash (through the M218 command).
*/
return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static millis_t delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
#endif //DUAL_X_CARRIAGE
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(AxisEnum axis) {
float offs = LOGICAL_POSITION(0, axis);
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) {
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs;
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
return;
}
}
else
#endif
{
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
}
#endif
#if ENABLED(DELTA)
if (axis == Z_AXIS)
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
#endif
}
/**
* Change the home offset for an axis, update the current
* position and the software endstops to retain the same
* relative distance to the new home.
*
* Since this changes the current_position, code should
* call sync_plan_position soon after this.
*/
static void set_home_offset(AxisEnum axis, float v) {
current_position[axis] += v - home_offset[axis];
home_offset[axis] = v;
update_software_endstops(axis);
}
static void set_axis_is_at_home(AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
SERIAL_ECHOLNPGM(")");
}
#endif
position_shift[axis] = 0;
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
if (active_extruder != 0)
current_position[X_AXIS] = x_home_pos(active_extruder);
else
current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
update_software_endstops(X_AXIS);
return;
}
#endif
#if ENABLED(SCARA)
if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[XYZ];
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
/**
* Works out real Homeposition angles using inverse kinematics,
* and calculates homing offset using forward kinematics
*/
inverse_kinematics(homeposition);
forward_kinematics_SCARA(delta);
// SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
/**
* SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform.
*/
soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else
#endif
{
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
update_software_endstops(axis);
if (axis == Z_AXIS) {
#if HAS_BED_PROBE && Z_HOME_DIR < 0
#if DISABLED(Z_MIN_PROBE_ENDSTOP)
current_position[Z_AXIS] -= zprobe_zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
}
#endif
#elif ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
#endif
#endif
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
DEBUG_POS("", current_position);
}
#endif
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
SERIAL_ECHOLNPGM(")");
}
#endif
axis_known_position[axis] = axis_homed[axis] = true;
}
/**
* Some planner shorthand inline functions
*/
inline float get_homing_bump_feedrate(AxisEnum axis) {
const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
int hbd = homing_bump_divisor[axis];
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate_mm_s[axis] / hbd;
}
//
// line_to_current_position
// Move the planner to the current position from wherever it last moved
// (or from wherever it has been told it is located).
//
inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
inline void line_to_z(float zPosition) {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
//
// line_to_destination
// Move the planner, not necessarily synced with current_position
//
inline void line_to_destination(float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
}
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
#if ENABLED(DELTA)
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_move_to_destination_raw() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
#endif
refresh_cmd_timeout();
inverse_kinematics(destination);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
set_current_to_destination();
}
#endif
/**
* Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
*/
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
#endif
#if ENABLED(DELTA)
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_to_current(); // sync destination at the start
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
#endif
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
if (z > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = x; // move directly (uninterpolated)
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
#endif
return;
}
else {
destination[Z_AXIS] = delta_clip_start_height;
prepare_move_to_destination_raw(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
#endif
}
}
if (z > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
#endif
}
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
prepare_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
#endif
if (z < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#endif
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
#endif
#else
// If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < z) {
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
current_position[Z_AXIS] = z;
line_to_current_position();
}
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
line_to_current_position();
// If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > z) {
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
current_position[Z_AXIS] = z;
line_to_current_position();
}
#endif
stepper.synchronize();
feedrate_mm_s = old_feedrate_mm_s;
}
void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
}
void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
}
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
}
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
//
static void setup_for_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
#endif
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
refresh_cmd_timeout();
}
static void clean_up_after_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
#endif
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
refresh_cmd_timeout();
}
#if HAS_BED_PROBE
/**
* Raise Z to a minimum height to make room for a probe to move
*/
inline void do_probe_raise(float z_raise) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
SERIAL_ECHOLNPGM(")");
}
#endif
float z_dest = LOGICAL_Z_POSITION(z_raise);
if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest);
}
#endif //HAS_BED_PROBE
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
if (xx || yy || zz) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_ECHOPGM(MSG_X);
if (yy) SERIAL_ECHOPGM(MSG_Y);
if (zz) SERIAL_ECHOPGM(MSG_Z);
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if ENABLED(ULTRA_LCD)
char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
strcat_P(message, PSTR(MSG_HOME " "));
if (xx) strcat_P(message, PSTR(MSG_X));
if (yy) strcat_P(message, PSTR(MSG_Y));
if (zz) strcat_P(message, PSTR(MSG_Z));
strcat_P(message, PSTR(" " MSG_FIRST));
lcd_setstatus(message);
#endif
return true;
}
return false;
}
#endif
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
*/
static void dock_sled(bool stow) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("dock_sled(", stow);
SERIAL_ECHOLNPGM(")");
}
#endif
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
#if PIN_EXISTS(SLED)
digitalWrite(SLED_PIN, !stow); // switch solenoid
#endif
}
#endif // Z_PROBE_SLED
#if ENABLED(Z_PROBE_ALLEN_KEY)
void run_deploy_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif
}
void run_stow_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif
do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif
}
#endif
#if HAS_BED_PROBE
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
#else
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
#endif
#endif
#define DEPLOY_PROBE() set_probe_deployed( true )
#define STOW_PROBE() set_probe_deployed( false )
// returns false for ok and true for failure
static bool set_probe_deployed(bool deploy) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("set_probe_deployed", current_position);
SERIAL_ECHOLNPAIR("deploy: ", deploy);
}
#endif
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe
do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
#if ENABLED(Z_PROBE_SLED)
if (axis_unhomed_error(true, false, false)) { stop(); return true; }
#elif ENABLED(Z_PROBE_ALLEN_KEY)
if (axis_unhomed_error(true, true, true )) { stop(); return true; }
#endif
float oldXpos = current_position[X_AXIS]; // save x position
float oldYpos = current_position[Y_AXIS]; // save y position
#ifdef _TRIGGERED_WHEN_STOWED_TEST
// If endstop is already false, the Z probe is deployed
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
// Would a goto be less ugly?
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
// for a triggered when stowed manual probe.
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
#endif
#if ENABLED(Z_PROBE_SLED)
dock_sled(!deploy);
#elif HAS_Z_SERVO_ENDSTOP
servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
#elif ENABLED(Z_PROBE_ALLEN_KEY)
deploy ? run_deploy_moves_script() : run_stow_moves_script();
#endif
#ifdef _TRIGGERED_WHEN_STOWED_TEST
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
return true;
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
#endif
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
endstops.enable_z_probe(deploy);
return false;
}
static void do_probe_move(float z, float fr_mm_m) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
#endif
// Move down until probe triggered
do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
// Clear endstop flags
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
#endif
}
// Do a single Z probe and return with current_position[Z_AXIS]
// at the height where the probe triggered.
static float run_z_probe() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
#endif
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
refresh_cmd_timeout();
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
planner.bed_level_matrix.set_to_identity();
#endif
#if ENABLED(PROBE_DOUBLE_TOUCH)
// Do a first probe at the fast speed
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
// move up by the bump distance
do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#else
// move fast, close to the bed
float z = LOGICAL_Z_POSITION(home_bump_mm(Z_AXIS));
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#endif
// move down slowly to find bed
do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
#endif
return current_position[Z_AXIS];
}
//
// - Move to the given XY
// - Deploy the probe, if not already deployed
// - Probe the bed, get the Z position
// - Depending on the 'stow' flag
// - Stow the probe, or
// - Raise to the BETWEEN height
// - Return the probed Z position
//
static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> probe_pt(", x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
SERIAL_ECHOLNPGM(")");
DEBUG_POS("", current_position);
}
#endif
float old_feedrate_mm_s = feedrate_mm_s;
// Ensure a minimum height before moving the probe
do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
// Move to the XY where we shall probe
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
SERIAL_ECHOLNPGM(")");
}
#endif
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
#endif
if (DEPLOY_PROBE()) return NAN;
float measured_z = run_z_probe();
if (stow) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
#endif
if (STOW_PROBE()) return NAN;
}
else {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
#endif
do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
}
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
#endif
feedrate_mm_s = old_feedrate_mm_s;
return measured_z;
}
#endif // HAS_BED_PROBE
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
//planner.bed_level_matrix.debug("bed level before");
#if ENABLED(DEBUG_LEVELING_FEATURE)
planner.bed_level_matrix.set_to_identity();
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = planner.adjusted_position();
DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
}
#endif
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
#endif
SYNC_PLAN_POSITION_KINEMATIC();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
planner.bed_level_matrix.set_to_identity();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = planner.adjusted_position();
DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
}
#endif
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
#endif
SYNC_PLAN_POSITION_KINEMATIC();
}
#endif // !AUTO_BED_LEVELING_GRID
#if ENABLED(DELTA)
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
}
float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
}
else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
/**
* Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center.
*/
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
if (x + y < 3) continue;
extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
}
}
}
/**
* Print calibration results for plotting or manual frame adjustment.
*/
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
SERIAL_PROTOCOLCHAR(' ');
}
SERIAL_EOL;
}
}
/**
* Reset calibration results to zero.
*/
void reset_bed_level() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
#endif
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
}
}
}
#endif // DELTA
#endif // AUTO_BED_LEVELING_FEATURE
/**
* Home an individual axis
*/
static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
current_position[axis] = 0;
sync_plan_position();
current_position[axis] = where;
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
stepper.synchronize();
endstops.hit_on_purpose();
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(AxisEnum axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : false)) return;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
SERIAL_ECHOLNPGM(")");
}
#endif
int axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
// Homing Z towards the bed? Deploy the Z probe or endstop.
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
if (axis == Z_AXIS) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
#endif
if (DEPLOY_PROBE()) return;
}
#endif
// Set a flag for Z motor locking
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) stepper.set_homing_flag(true);
#endif
// Move towards the endstop until an endstop is triggered
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home", current_position[axis]);
#endif
// Move away from the endstop by the axis HOME_BUMP_MM
do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
// Move slowly towards the endstop until triggered
do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home", current_position[axis]);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
float adj = fabs(z_endstop_adj);
bool lockZ1;
if (axis_home_dir > 0) {
adj = -adj;
lockZ1 = (z_endstop_adj > 0);
}
else
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
// Move to the adjusted endstop height
do_homing_move(axis, adj);
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag(false);
} // Z_AXIS
#endif
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
#if ENABLED(DELTA)
// retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * Z_HOME_DIR < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
DEBUG_POS("", current_position);
}
#endif
do_homing_move(axis, endstop_adj[axis]);
}
#else
// Set the axis position to its home position (plus home offsets)
set_axis_is_at_home(axis);
sync_plan_position();
destination[axis] = current_position[axis];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
#endif
// Put away the Z probe
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
if (axis == Z_AXIS) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
#endif
if (STOW_PROBE()) return;
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
SERIAL_ECHOLNPGM(")");
}
#endif
} // homeaxis()
#if ENABLED(FWRETRACT)
void retract(bool retracting, bool swapping = false) {
if (retracting == retracted[active_extruder]) return;
float old_feedrate_mm_s = feedrate_mm_s;
set_destination_to_current();
if (retracting) {
feedrate_mm_s = retract_feedrate_mm_s;
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
sync_plan_position_e();
prepare_move_to_destination();
if (retract_zlift > 0.01) {
current_position[Z_AXIS] -= retract_zlift;
SYNC_PLAN_POSITION_KINEMATIC();
prepare_move_to_destination();
}
}
else {
if (retract_zlift > 0.01) {
current_position[Z_AXIS] += retract_zlift;
SYNC_PLAN_POSITION_KINEMATIC();
}
feedrate_mm_s = retract_recover_feedrate_mm_s;
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
sync_plan_position_e();
prepare_move_to_destination();
}
feedrate_mm_s = old_feedrate_mm_s;
retracted[active_extruder] = retracting;
} // retract()
#endif // FWRETRACT
#if ENABLED(MIXING_EXTRUDER)
void normalize_mix() {
float mix_total = 0.0;
for (int i = 0; i < MIXING_STEPPERS; i++) {
float v = mixing_factor[i];
if (v < 0) v = mixing_factor[i] = 0;
mix_total += v;
}
// Scale all values if they don't add up to ~1.0
if (mix_total < 0.9999 || mix_total > 1.0001) {
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
float mix_scale = 1.0 / mix_total;
for (int i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] *= mix_scale;
}
}
#if ENABLED(DIRECT_MIXING_IN_G1)
// Get mixing parameters from the GCode
// Factors that are left out are set to 0
// The total "must" be 1.0 (but it will be normalized)
void gcode_get_mix() {
const char* mixing_codes = "ABCDHI";
for (int i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
normalize_mix();
}
#endif
#endif
/**
* ***************************************************************************
* ***************************** G-CODE HANDLING *****************************
* ***************************************************************************
*/
/**
* Set XYZE destination and feedrate from the current GCode command
*
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate, if included
*/
void gcode_get_destination() {
LOOP_XYZE(i) {
if (code_seen(axis_codes[i]))
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
else
destination[i] = current_position[i];
}
if (code_seen('F') && code_value_linear_units() > 0.0)
feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
#if ENABLED(PRINTCOUNTER)
if (!DEBUGGING(DRYRUN))
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
#endif
// Get ABCDHI mixing factors
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
gcode_get_mix();
#endif
}
void unknown_command_error() {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(current_command);
SERIAL_ECHOLNPGM("\"");
}
#if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* Output a "busy" message at regular intervals
* while the machine is not accepting commands.
*/
void host_keepalive() {
millis_t ms = millis();
if (host_keepalive_interval && busy_state != NOT_BUSY) {
if (PENDING(ms, next_busy_signal_ms)) return;
switch (busy_state) {
case IN_HANDLER:
case IN_PROCESS:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
break;
case PAUSED_FOR_USER:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
break;
case PAUSED_FOR_INPUT:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
break;
default:
break;
}
}
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
}
#endif //HOST_KEEPALIVE_FEATURE
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1() {
if (IsRunning()) {
gcode_get_destination(); // For X Y Z E F
#if ENABLED(FWRETRACT)
if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
sync_plan_position_e(); // AND from the planner
retract(!retracted[active_extruder]);
return;
}
}
#endif //FWRETRACT
prepare_move_to_destination();
}
}
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
#if ENABLED(ARC_SUPPORT)
inline void gcode_G2_G3(bool clockwise) {
if (IsRunning()) {
#if ENABLED(SF_ARC_FIX)
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
gcode_get_destination();
#if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup;
#endif
// Center of arc as offset from current_position
float arc_offset[2] = {
code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
};
// Send an arc to the planner
plan_arc(destination, arc_offset, clockwise);
refresh_cmd_timeout();
}
}
#endif
/**
* G4: Dwell S<seconds> or P<milliseconds>
*/
inline void gcode_G4() {
millis_t dwell_ms = 0;
if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
stepper.synchronize();
refresh_cmd_timeout();
dwell_ms += previous_cmd_ms; // keep track of when we started waiting
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
while (PENDING(millis(), dwell_ms)) idle();
}
#if ENABLED(BEZIER_CURVE_SUPPORT)
/**
* Parameters interpreted according to:
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
* However I, J omission is not supported at this point; all
* parameters can be omitted and default to zero.
*/
/**
* G5: Cubic B-spline
*/
inline void gcode_G5() {
if (IsRunning()) {
gcode_get_destination();
float offset[] = {
code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
};
plan_cubic_move(offset);
}
}
#endif // BEZIER_CURVE_SUPPORT
#if ENABLED(FWRETRACT)
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1
if (doRetract) {
retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
}
#endif
retract(doRetract
#if EXTRUDERS > 1
, retracted_swap[active_extruder]
#endif
);
}
#endif //FWRETRACT
#if ENABLED(NOZZLE_CLEAN_FEATURE)
/**
* G12: Clean the nozzle
*/
inline void gcode_G12() {
// Don't allow nozzle cleaning without homing first
if (axis_unhomed_error(true, true, true)) { return; }
uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
Nozzle::clean(pattern, strokes, objects);
}
#endif
#if ENABLED(INCH_MODE_SUPPORT)
/**
* G20: Set input mode to inches
*/
inline void gcode_G20() {
set_input_linear_units(LINEARUNIT_INCH);
}
/**
* G21: Set input mode to millimeters
*/
inline void gcode_G21() {
set_input_linear_units(LINEARUNIT_MM);
}
#endif
#if ENABLED(NOZZLE_PARK_FEATURE)
/**
* G27: Park the nozzle
*/
inline void gcode_G27() {
// Don't allow nozzle parking without homing first
if (axis_unhomed_error(true, true, true)) { return; }
uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
Nozzle::park(z_action);
}
#endif // NOZZLE_PARK_FEATURE
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
sync_plan_position();
int x_axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
x_home_dir(active_extruder)
#else
home_dir(X_AXIS)
#endif
;
float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
}
#endif // QUICK_HOME
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
*/
inline void gcode_G28() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
#endif
// Wait for planner moves to finish!
stepper.synchronize();
// For auto bed leveling, clear the level matrix
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
planner.bed_level_matrix.set_to_identity();
#if ENABLED(DELTA)
reset_bed_level();
#endif
#endif
// Always home with tool 0 active
#if HOTENDS > 1
uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true);
#endif
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extruder_duplication_enabled = false;
#endif
/**
* For mesh bed leveling deactivate the mesh calculations, will be turned
* on again when homing all axis
*/
#if ENABLED(MESH_BED_LEVELING)
float pre_home_z = MESH_HOME_SEARCH_Z;
if (mbl.active()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
#endif
// Save known Z position if already homed
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
pre_home_z = current_position[Z_AXIS];
pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
}
mbl.set_active(false);
current_position[Z_AXIS] = pre_home_z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
#endif
}
#endif
setup_for_endstop_or_probe_move();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
#endif
endstops.enable(true); // Enable endstops for next homing move
#if ENABLED(DELTA)
/**
* A delta can only safely home all axes at the same time
* This is like quick_home_xy() but for 3 towers.
*/
// Init the current position of all carriages to 0,0,0
memset(current_position, 0, sizeof(current_position));
sync_plan_position();
// Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
line_to_current_position();
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// Probably not needed. Double-check this line:
memset(current_position, 0, sizeof(current_position));
// At least one carriage has reached the top.
// Now back off and re-home each carriage separately.
HOMEAXIS(A);
HOMEAXIS(B);
HOMEAXIS(C);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
#endif
#else // NOT DELTA
bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
set_destination_to_current();
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if (home_all_axis || homeZ) {
HOMEAXIS(Z);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
#endif
}
#else
if (home_all_axis || homeX || homeY) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
#endif
do_blocking_move_to_z(destination[Z_AXIS]);
}
}
#endif
#if ENABLED(QUICK_HOME)
if (home_all_axis || (homeX && homeY)) quick_home_xy();
#endif
#if ENABLED(HOME_Y_BEFORE_X)
// Home Y
if (home_all_axis || homeY) {
HOMEAXIS(Y);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
#endif
}
#endif
// Home X
if (home_all_axis || homeX) {
#if ENABLED(DUAL_X_CARRIAGE)
int tmp_extruder = active_extruder;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
active_extruder = tmp_extruder;
HOMEAXIS(X);
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
#endif
}
#if DISABLED(HOME_Y_BEFORE_X)
// Home Y
if (home_all_axis || homeY) {
HOMEAXIS(Y);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
#endif
}
#endif
// Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
if (home_all_axis || homeZ) {
#if ENABLED(Z_SAFE_HOMING)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
}
#endif
if (home_all_axis) {
/**
* At this point we already have Z at Z_HOMING_HEIGHT height
* No need to move Z any more as this height should already be safe
* enough to reach Z_SAFE_HOMING XY positions.
* Just make sure the planner is in sync.
*/
SYNC_PLAN_POSITION_KINEMATIC();
/**
* Move the Z probe (or just the nozzle) to the safe homing point
*/
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
}
#endif
// Move in the XY plane
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
}
// Let's see if X and Y are homed
if (axis_unhomed_error(true, true, false)) return;
/**
* Make sure the Z probe is within the physical limits
* NOTE: This doesn't necessarily ensure the Z probe is also
* within the bed!
*/
float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
&& cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
&& cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
&& cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
// Home the Z axis
HOMEAXIS(Z);
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
}
#endif
#else // !Z_SAFE_HOMING
HOMEAXIS(Z);
#endif // !Z_SAFE_HOMING
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
#endif
} // home_all_axis || homeZ
#endif // Z_HOME_DIR < 0
SYNC_PLAN_POSITION_KINEMATIC();
#endif // !DELTA (gcode_G28)
endstops.not_homing();
// Enable mesh leveling again
#if ENABLED(MESH_BED_LEVELING)
if (mbl.has_mesh()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
#endif
if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
#endif
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_HOME_DIR > 0
+ Z_MAX_POS
#endif
;
SYNC_PLAN_POSITION_KINEMATIC();
mbl.set_active(true);
#if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = 0.0;
set_destination_to_current();
feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
line_to_destination();
stepper.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
#endif
#else
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
#if Z_HOME_DIR > 0
+ Z_MAX_POS
#endif
;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
#endif
#endif
}
else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
current_position[Z_AXIS] = pre_home_z;
SYNC_PLAN_POSITION_KINEMATIC();
mbl.set_active(true);
current_position[Z_AXIS] = pre_home_z -
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
#endif
}
}
#endif
#if ENABLED(DELTA)
// move to a height where we can use the full xy-area
do_blocking_move_to_z(delta_clip_start_height);
#endif
clean_up_after_endstop_or_probe_move();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
#endif
// Restore the active tool after homing
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
report_current_position();
}
#if HAS_PROBING_PROCEDURE
void out_of_range_error(const char* p_edge) {
SERIAL_PROTOCOLPGM("?Probe ");
serialprintPGM(p_edge);
SERIAL_PROTOCOLLNPGM(" position out of range.");
}
#endif
#if ENABLED(MESH_BED_LEVELING)
inline void _mbl_goto_xy(float x, float y) {
float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
+ Z_PROBE_TRAVEL_HEIGHT
#elif Z_HOMING_HEIGHT > 0
+ Z_HOMING_HEIGHT
#endif
;
line_to_current_position();
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
line_to_current_position();
#if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
line_to_current_position();
#endif
feedrate_mm_s = old_feedrate_mm_s;
stepper.synchronize();
}
/**
* G29: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING:
*
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn.nn Manually modify a single point
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
* S5 Reset and disable mesh
*
* The S0 report the points as below
*
* +----> X-axis 1-n
* |
* |
* v Y-axis 1-n
*
*/
inline void gcode_G29() {
static int probe_point = -1;
MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
if (state < 0 || state > 5) {
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
return;
}
int8_t px, py;
switch (state) {
case MeshReport:
if (mbl.has_mesh()) {
SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
for (px = 0; px < MESH_NUM_X_POINTS; px++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
}
SERIAL_EOL;
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
case MeshStart:
mbl.reset();
probe_point = 0;
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
break;
case MeshNext:
if (probe_point < 0) {
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
// For each G29 S2...
if (probe_point == 0) {
// For the initial G29 S2 make Z a positive value (e.g., 4.0)
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_HOME_DIR > 0
+ Z_MAX_POS
#endif
;
SYNC_PLAN_POSITION_KINEMATIC();
}
else {
// For G29 S2 after adjusting Z.
mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
}
// If there's another point to sample, move there with optional lift.
if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
mbl.zigzag(probe_point, px, py);
_mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
probe_point++;
}
else {
// One last "return to the bed" (as originally coded) at completion
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
+ Z_PROBE_TRAVEL_HEIGHT
#elif Z_HOMING_HEIGHT > 0
+ Z_HOMING_HEIGHT
#endif
;
line_to_current_position();
stepper.synchronize();
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
probe_point = -1;
mbl.set_has_mesh(true);
enqueue_and_echo_commands_P(PSTR("G28"));
}
break;
case MeshSet:
if (code_seen('X')) {
px = code_value_int() - 1;
if (px < 0 || px >= MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
return;
}
}
else {
SERIAL_PROTOCOLLNPGM("X not entered.");
return;
}
if (code_seen('Y')) {
py = code_value_int() - 1;
if (py < 0 || py >= MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
return;
}
}
else {
SERIAL_PROTOCOLLNPGM("Y not entered.");
return;
}
if (code_seen('Z')) {
mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
}
else {
SERIAL_PROTOCOLLNPGM("Z not entered.");
return;
}
break;
case MeshSetZOffset:
if (code_seen('Z')) {
mbl.z_offset = code_value_axis_units(Z_AXIS);
}
else {
SERIAL_PROTOCOLLNPGM("Z not entered.");
return;
}
break;
case MeshReset:
if (mbl.active()) {
current_position[Z_AXIS] +=
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
mbl.reset();
SYNC_PLAN_POSITION_KINEMATIC();
}
else
mbl.reset();
} // switch(state)
report_current_position();
}
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Not supported by non-linear delta printer bed leveling.
* Example: "G29 P4"
*
* S Set the XY travel speed between probe points (in units/min)
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or clean the rotation Matrix. Useful to check the topology
* after a first run of G29.
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
* Usage: "G29 E" or "G29 e"
*
*/
inline void gcode_G29() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> gcode_G29");
DEBUG_POS("", current_position);
SERIAL_ECHOPGM("Probe: ");
#if ENABLED(FIX_MOUNTED_PROBE)
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
#elif HAS_Z_SERVO_ENDSTOP
SERIAL_ECHOLNPGM("SERVO PROBE");
#elif ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM("BLTOUCH");
#elif ENABLED(Z_PROBE_SLED)
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
#elif ENABLED(Z_PROBE_ALLEN_KEY)
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
#endif
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
#if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
SERIAL_ECHOPGM(" (Right");
#elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
SERIAL_ECHOPGM(" (Left");
#endif
#if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
SERIAL_ECHOPGM("-Back");
#elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
SERIAL_ECHOPGM("-Front");
#endif
if (zprobe_zoffset < 0)
SERIAL_ECHOPGM(" & Below");
else if (zprobe_zoffset > 0)
SERIAL_ECHOPGM(" & Above");
else
SERIAL_ECHOPGM(" & Same Z as");
SERIAL_ECHOLNPGM(" Nozzle)");
}
#endif
// Don't allow auto-leveling without homing first
if (axis_unhomed_error(true, true, true)) return;
int verbose_level = code_seen('V') ? code_value_int() : 1;
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
return;
}
bool dryrun = code_seen('D');
bool stow_probe_after_each = code_seen('E');
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
bool do_topography_map = verbose_level > 2 || code_seen('T');
#endif
if (verbose_level > 0) {
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
}
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
#if DISABLED(DELTA)
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
if (auto_bed_leveling_grid_points < 2) {
SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
return;
}
#endif
xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
}
if (right_out) {
out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
}
if (back_out) {
out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
#endif // AUTO_BED_LEVELING_GRID
if (!dryrun) {
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
if (DEBUGGING(LEVELING)) {
vector_3 corrected_position = planner.adjusted_position();
DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
}
#endif
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
planner.bed_level_matrix.set_to_identity();
#if ENABLED(DELTA)
reset_bed_level();
#else //!DELTA
//vector_3 corrected_position = planner.adjusted_position();
//corrected_position.debug("position before G29");
vector_3 uncorrected_position = planner.adjusted_position();
//uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
#endif
SYNC_PLAN_POSITION_KINEMATIC();
#endif // !DELTA
}
stepper.synchronize();
setup_for_endstop_or_probe_move();
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) return;
bed_leveling_in_progress = true;
#if ENABLED(AUTO_BED_LEVELING_GRID)
// probe at the points of a lattice grid
const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
#if ENABLED(DELTA)
delta_grid_spacing[X_AXIS] = xGridSpacing;
delta_grid_spacing[Y_AXIS] = yGridSpacing;
float zoffset = zprobe_zoffset;
if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
#else // !DELTA
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
int abl2 = sq(auto_bed_leveling_grid_points);
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
#endif // !DELTA
int probePointCounter = 0;
bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
float yBase = front_probe_bed_position + yGridSpacing * yCount,
yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
int xStart, xStop, xInc;
if (zig) {
xStart = 0;
xStop = auto_bed_leveling_grid_points;
xInc = 1;
}
else {
xStart = auto_bed_leveling_grid_points - 1;
xStop = -1;
xInc = -1;
}
zig = !zig;
for (int xCount = xStart; xCount != xStop; xCount += xInc) {
float xBase = left_probe_bed_position + xGridSpacing * xCount,
xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
#if ENABLED(DELTA)
// Avoid probing outside the round or hexagonal area of a delta printer
if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
#endif
float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
#if DISABLED(DELTA)
mean += measured_z;
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
indexIntoAB[xCount][yCount] = probePointCounter;
#else
bed_level[xCount][yCount] = measured_z + zoffset;
#endif
probePointCounter++;
idle();
} //xProbe
} //yProbe
#else // !AUTO_BED_LEVELING_GRID
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
#endif
// Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
stow_probe_after_each, verbose_level),
z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
stow_probe_after_each, verbose_level),
z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
stow_probe_after_each, verbose_level);
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
// Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
if (STOW_PROBE()) return;
// Restore state after probing
clean_up_after_endstop_or_probe_move();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
#endif
// Calculate leveling, print reports, correct the position
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if ENABLED(DELTA)
if (!dryrun) extrapolate_unprobed_bed_level();
print_bed_level();
#else // !DELTA
// solve lsq problem
double plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL;
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL;
}
}
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)");
float min_diff = 999;
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
int ind = indexIntoAB[xx][yy];
float diff = eqnBVector[ind] - mean;
float x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL;
} // yy
SERIAL_EOL;
if (verbose_level > 3) {
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
int ind = indexIntoAB[xx][yy];
float x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
float diff = eqnBVector[ind] - z_tmp - min_diff;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL;
} // yy
SERIAL_EOL;
}
} //do_topography_map
#endif //!DELTA
#endif // AUTO_BED_LEVELING_GRID
#if DISABLED(DELTA)
if (verbose_level > 0)
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
if (!dryrun) {
/**
* Correct the Z height difference from Z probe position and nozzle tip position.
* The Z height on homing is measured by Z probe, but the Z probe is quite far
* from the nozzle. When the bed is uneven, this height must be corrected.
*/
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
SERIAL_ECHOLNPAIR(" ... z_tmp = ", z_tmp);
}
#endif
// Apply the correction sending the Z probe offset
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
#endif
// Adjust the current Z and send it to the planner.
current_position[Z_AXIS] += z_tmp - stepper_z;
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
#endif
}
#endif // !DELTA
#ifdef Z_PROBE_END_SCRIPT
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Z Probe End Script: ");
SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
}
#endif
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
stepper.synchronize();
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
#endif
bed_leveling_in_progress = false;
report_current_position();
KEEPALIVE_STATE(IN_HANDLER);
}
#endif //AUTO_BED_LEVELING_FEATURE
#if HAS_BED_PROBE
/**
* G30: Do a single Z probe at the current XY
*/
inline void gcode_G30() {
setup_for_endstop_or_probe_move();
// TODO: clear the leveling matrix or the planner will be set incorrectly
float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
true, 1);
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(measured_z + 0.0001);
SERIAL_EOL;
clean_up_after_endstop_or_probe_move();
report_current_position();
}
#if ENABLED(Z_PROBE_SLED)
/**
* G31: Deploy the Z probe
*/
inline void gcode_G31() { DEPLOY_PROBE(); }
/**
* G32: Stow the Z probe
*/
inline void gcode_G32() { STOW_PROBE(); }
#endif // Z_PROBE_SLED
#endif // HAS_BED_PROBE
/**
* G92: Set current position to given X Y Z E
*/
inline void gcode_G92() {
bool didE = code_seen('E');
if (!didE) stepper.synchronize();
bool didXYZ = false;
LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) {
float p = current_position[i],
v = code_value_axis_units(i);
current_position[i] = v;
if (i != E_AXIS) {
position_shift[i] += v - p; // Offset the coordinate space
update_software_endstops((AxisEnum)i);
didXYZ = true;
}
}
}
if (didXYZ)
SYNC_PLAN_POSITION_KINEMATIC();
else if (didE)
sync_plan_position_e();
}
#if ENABLED(ULTIPANEL)
/**
* M0: Unconditional stop - Wait for user button press on LCD
* M1: Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char* args = current_command_args;
millis_t codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value_millis(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value_millis_from_seconds(); // seconds to wait
hasS = codenum > 0;
}
if (!hasP && !hasS && *args != '\0')
lcd_setstatus(args, true);
else {
LCD_MESSAGEPGM(MSG_USERWAIT);
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus();
#endif
}
lcd_ignore_click();
stepper.synchronize();
refresh_cmd_timeout();
if (codenum > 0) {
codenum += previous_cmd_ms; // wait until this time for a click
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
KEEPALIVE_STATE(IN_HANDLER);
lcd_ignore_click(false);
}
else {
if (!lcd_detected()) return;
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!lcd_clicked()) idle();
KEEPALIVE_STATE(IN_HANDLER);
}
if (IS_SD_PRINTING)
LCD_MESSAGEPGM(MSG_RESUMING);
else
LCD_MESSAGEPGM(WELCOME_MSG);
}
#endif // ULTIPANEL
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
}
#if ENABLED(SDSUPPORT)
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
}
/**
* M21: Init SD Card
*/
inline void gcode_M21() {
card.initsd();
}
/**
* M22: Release SD Card
*/
inline void gcode_M22() {
card.release();
}
/**
* M23: Open a file
*/
inline void gcode_M23() {
card.openFile(current_command_args, true);
}
/**
* M24: Start SD Print
*/
inline void gcode_M24() {
card.startFileprint();
print_job_timer.start();
}
/**
* M25: Pause SD Print
*/
inline void gcode_M25() {
card.pauseSDPrint();
}
/**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
if (card.cardOK && code_seen('S'))
card.setIndex(code_value_long());
}
/**
* M27: Get SD Card status
*/
inline void gcode_M27() {
card.getStatus();
}
/**
* M28: Start SD Write
*/
inline void gcode_M28() {
card.openFile(current_command_args, false);
}
/**
* M29: Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
card.removeFile(current_command_args);
}
}
#endif //SDSUPPORT
/**
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
char buffer[21];
duration_t elapsed = print_job_timer.duration();
elapsed.toString(buffer);
lcd_setstatus(buffer);
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Print time: ");
SERIAL_ECHOLN(buffer);
thermalManager.autotempShutdown();
}
#if ENABLED(SDSUPPORT)
/**
* M32: Select file and start SD Print
*/
inline void gcode_M32() {
if (card.sdprinting)
stepper.synchronize();
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
if (!namestartpos)
namestartpos = current_command_args; // Default name position, 4 letters after the M
else
namestartpos++; //to skip the '!'
bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
if (card.cardOK) {
card.openFile(namestartpos, true, call_procedure);
if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
card.setIndex(code_value_long());
card.startFileprint();
// Procedure calls count as normal print time.
if (!call_procedure) print_job_timer.start();
}
}
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
/**
* M33: Get the long full path of a file or folder
*
* Parameters:
* <dospath> Case-insensitive DOS-style path to a file or folder
*
* Example:
* M33 miscel~1/armchair/armcha~1.gco
*
* Output:
* /Miscellaneous/Armchair/Armchair.gcode
*/
inline void gcode_M33() {
card.printLongPath(current_command_args);
}
#endif
/**
* M928: Start SD Write
*/
inline void gcode_M928() {
card.openLogFile(current_command_args);
}
#endif // SDSUPPORT
/**
* M42: Change pin status via GCode
*
* P<pin> Pin number (LED if omitted)
* S<byte> Pin status from 0 - 255
*/
inline void gcode_M42() {
if (!code_seen('S')) return;
int pin_status = code_value_int();
if (pin_status < 0 || pin_status > 255) return;
int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
if (pin_number < 0) return;
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
if (pin_number == sensitive_pins[i]) return;
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
#if FAN_COUNT > 0
switch (pin_number) {
#if HAS_FAN0
case FAN_PIN: fanSpeeds[0] = pin_status; break;
#endif
#if HAS_FAN1
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
#endif
#if HAS_FAN2
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
#endif
}
#endif
}
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
*
* This function assumes the bed has been homed. Specifically, that a G28 command
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
*/
inline void gcode_M48() {
if (axis_unhomed_error(true, true, true)) return;
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
return;
}
if (verbose_level > 0)
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
return;
}
float X_current = current_position[X_AXIS],
Y_current = current_position[Y_AXIS];
bool stow_probe_after_each = code_seen('E');
float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA)
if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
out_of_range_error(PSTR("X"));
return;
}
#endif
float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA)
if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
out_of_range_error(PSTR("Y"));
return;
}
#else
if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
return;
}
#endif
bool seen_L = code_seen('L');
uint8_t n_legs = seen_L ? code_value_byte() : 0;
if (n_legs > 15) {
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
return;
}
if (n_legs == 1) n_legs = 2;
bool schizoid_flag = code_seen('S');
if (schizoid_flag && !seen_L) n_legs = 7;
/**
* Now get everything to the specified probe point So we can safely do a
* probe to get us close to the bed. If the Z-Axis is far from the bed,
* we don't want to use that as a starting point for each probe.
*/
if (verbose_level > 2)
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
#if ENABLED(DELTA)
// we don't do bed level correction in M48 because we want the raw data when we probe
reset_bed_level();
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
// we don't do bed level correction in M48 because we want the raw data when we probe
planner.bed_level_matrix.set_to_identity();
#endif
setup_for_endstop_or_probe_move();
// Move to the first point, deploy, and probe
probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
randomSeed(millis());
double mean = 0, sigma = 0, sample_set[n_samples];
for (uint8_t n = 0; n < n_samples; n++) {
if (n_legs) {
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0.0, 360.0),
radius = random(
#if ENABLED(DELTA)
DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
#else
5, X_MAX_LENGTH / 8
#endif
);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Starting radius: ", radius);
SERIAL_ECHOPAIR(" angle: ", angle);
SERIAL_ECHOPGM(" Direction: ");
if (dir > 0) SERIAL_ECHOPGM("Counter-");
SERIAL_ECHOLNPGM("Clockwise");
}
for (uint8_t l = 0; l < n_legs - 1; l++) {
double delta_angle;
if (schizoid_flag)
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
else
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
angle += delta_angle;
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
#if DISABLED(DELTA)
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
#else
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
X_current /= 1.25;
Y_current /= 1.25;
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
SERIAL_ECHOLNPAIR(", ", Y_current);
}
}
#endif
if (verbose_level > 3) {
SERIAL_PROTOCOLPGM("Going to:");
SERIAL_ECHOPAIR(" X", X_current);
SERIAL_ECHOPAIR(" Y", Y_current);
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
}
do_blocking_move_to_xy(X_current, Y_current);
} // n_legs loop
} // n_legs
// Probe a single point
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
/**
* Get the current mean for the data points we have so far
*/
double sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
/**
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = sqrt(sum / (n + 1));
if (verbose_level > 0) {
if (verbose_level > 1) {
SERIAL_PROTOCOL(n + 1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL((int)n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma, 6);
}
}
SERIAL_EOL;
}
} // End of probe loop
if (STOW_PROBE()) return;
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_EOL;
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL; SERIAL_EOL;
clean_up_after_endstop_or_probe_move();
report_current_position();
}
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
/**
* M75: Start print timer
*/
inline void gcode_M75() { print_job_timer.start(); }
/**
* M76: Pause print timer
*/
inline void gcode_M76() { print_job_timer.pause(); }
/**
* M77: Stop print timer
*/
inline void gcode_M77() { print_job_timer.stop(); }
#if ENABLED(PRINTCOUNTER)
/**
* M78: Show print statistics
*/
inline void gcode_M78() {
// "M78 S78" will reset the statistics
if (code_seen('S') && code_value_int() == 78)
print_job_timer.initStats();
else print_job_timer.showStats();
}
#endif
/**
* M104: Set hot end temperature
*/
inline void gcode_M104() {
if (get_target_extruder_from_command(104)) return;
if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return;
#endif
if (code_seen('S')) {
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
#endif
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* Stop the timer at the end of print, starting is managed by
* 'heat and wait' M109.
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* stand by mode, for instance in a dual extruder setup, without affecting
* the running print timer.
*/
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
print_job_timer.stop();
LCD_MESSAGEPGM(WELCOME_MSG);
}
#endif
if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
}
}
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates() {
#if HAS_TEMP_HOTEND
SERIAL_PROTOCOLPGM(" T:");
SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
SERIAL_CHAR(')');
#endif
#endif
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
SERIAL_CHAR(')');
#endif
#endif
#if HOTENDS > 1
HOTEND_LOOP() {
SERIAL_PROTOCOLPAIR(" T", e);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
SERIAL_CHAR(')');
#endif
}
#endif
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B@:");
SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
#endif
#if HOTENDS > 1
HOTEND_LOOP() {
SERIAL_PROTOCOLPAIR(" @", e);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
}
#endif
}
#endif
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (get_target_extruder_from_command(105)) return;
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
SERIAL_PROTOCOLPGM(MSG_OK);
print_heaterstates();
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_EOL;
}
#if FAN_COUNT > 0
/**
* M106: Set Fan Speed
*
* S<int> Speed between 0-255
* P<index> Fan index, if more than one fan
*/
inline void gcode_M106() {
uint16_t s = code_seen('S') ? code_value_ushort() : 255,
p = code_seen('P') ? code_value_ushort() : 0;
NOMORE(s, 255);
if (p < FAN_COUNT) fanSpeeds[p] = s;
}
/**
* M107: Fan Off
*/
inline void gcode_M107() {
uint16_t p = code_seen('P') ? code_value_ushort() : 0;
if (p < FAN_COUNT) fanSpeeds[p] = 0;
}
#endif // FAN_COUNT > 0
#if DISABLED(EMERGENCY_PARSER)
/**
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
*/
inline void gcode_M108() { wait_for_heatup = false; }
/**
* M112: Emergency Stop
*/
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
/**
* M410: Quickstop - Abort all planned moves
*
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
*/
inline void gcode_M410() { quickstop_stepper(); }
#endif
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
#endif
/**
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
*/
inline void gcode_M109() {
if (get_target_extruder_from_command(109)) return;
if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return;
#endif
bool no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) {
thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
#endif
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* stand by mode, for instance in a dual extruder setup, without affecting
* the running print timer.
*/
if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
print_job_timer.stop();
LCD_MESSAGEPGM(WELCOME_MSG);
}
/**
* We do not check if the timer is already running because this check will
* be done for us inside the Stopwatch::start() method thus a running timer
* will not restart.
*/
else print_job_timer.start();
#endif
if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
}
#if ENABLED(AUTOTEMP)
planner.autotemp_M109();
#endif
#if TEMP_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
#endif //TEMP_RESIDENCY_TIME > 0
float theTarget = -1.0, old_temp = 9999.0;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
KEEPALIVE_STATE(NOT_BUSY);
do {
// Target temperature might be changed during the loop
if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
theTarget = thermalManager.degTargetHotend(target_extruder);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
print_heaterstates();
#if TEMP_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms) {
long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
SERIAL_PROTOCOLLN(rem);
}
else {
SERIAL_PROTOCOLLNPGM("?");
}
#else
SERIAL_EOL;
#endif
}
idle();
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
float temp = thermalManager.degHotend(target_extruder);
#if TEMP_RESIDENCY_TIME > 0
float temp_diff = fabs(theTarget - temp);
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
}
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif //TEMP_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_CONDITIONS);
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
KEEPALIVE_STATE(IN_HANDLER);
}
#if HAS_TEMP_BED
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
#endif
/**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
if (DEBUGGING(DRYRUN)) return;
LCD_MESSAGEPGM(MSG_BED_HEATING);
bool no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) {
thermalManager.setTargetBed(code_value_temp_abs());
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
if (code_value_temp_abs() > BED_MINTEMP) {
/**
* We start the timer when 'heating and waiting' command arrives, LCD
* functions never wait. Cooling down managed by extruders.
*
* We do not check if the timer is already running because this check will
* be done for us inside the Stopwatch::start() method thus a running timer
* will not restart.
*/
print_job_timer.start();
}
#endif
}
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
#endif //TEMP_BED_RESIDENCY_TIME > 0
float theTarget = -1.0, old_temp = 9999.0;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
KEEPALIVE_STATE(NOT_BUSY);
target_extruder = active_extruder; // for print_heaterstates
do {
// Target temperature might be changed during the loop
if (theTarget != thermalManager.degTargetBed()) {
wants_to_cool = thermalManager.isCoolingBed();
theTarget = thermalManager.degTargetBed();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
print_heaterstates();
#if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms) {
long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
SERIAL_PROTOCOLLN(rem);
}
else {
SERIAL_PROTOCOLLNPGM("?");
}
#else
SERIAL_EOL;
#endif
}
idle();
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
float temp = thermalManager.degBed();
#if TEMP_BED_RESIDENCY_TIME > 0
float temp_diff = fabs(theTarget - temp);
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = now;
}
#endif //TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
LCD_MESSAGEPGM(MSG_BED_DONE);
KEEPALIVE_STATE(IN_HANDLER);
}
#endif // HAS_TEMP_BED
/**
* M110: Set Current Line Number
*/
inline void gcode_M110() {
if (code_seen('N')) gcode_N = code_value_long();
}
/**
* M111: Set the debug level
*/
inline void gcode_M111() {
marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
#if ENABLED(DEBUG_LEVELING_FEATURE)
const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
#endif
const static char* const debug_strings[] PROGMEM = {
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
#if ENABLED(DEBUG_LEVELING_FEATURE)
str_debug_32
#endif
};
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
if (marlin_debug_flags) {
uint8_t comma = 0;
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
if (TEST(marlin_debug_flags, i)) {
if (comma++) SERIAL_CHAR(',');
serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
}
}
}
else {
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
}
SERIAL_EOL;
}
#if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* M113: Get or set Host Keepalive interval (0 to disable)
*
* S<seconds> Optional. Set the keepalive interval.
*/
inline void gcode_M113() {
if (code_seen('S')) {
host_keepalive_interval = code_value_byte();
NOMORE(host_keepalive_interval, 60);
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
}
}
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
/**
* M126: Heater 1 valve open
*/
inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
/**
* M127: Heater 1 valve close
*/
inline void gcode_M127() { baricuda_valve_pressure = 0; }
#endif
#if HAS_HEATER_2
/**
* M128: Heater 2 valve open
*/
inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
/**
* M129: Heater 2 valve close
*/
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
#endif
#endif //BARICUDA
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (DEBUGGING(DRYRUN)) return;
if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
}
#if ENABLED(ULTIPANEL)
/**
* M145: Set the heatup state for a material in the LCD menu
* S<material> (0=PLA, 1=ABS)
* H<hotend temp>
* B<bed temp>
* F<fan speed>
*/
inline void gcode_M145() {
int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
if (material < 0 || material > 1) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
}
else {
int v;
switch (material) {
case 0:
if (code_seen('H')) {
v = code_value_int();
preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
}
if (code_seen('F')) {
v = code_value_int();
preheatFanSpeed1 = constrain(v, 0, 255);
}
#if TEMP_SENSOR_BED != 0
if (code_seen('B')) {
v = code_value_int();
preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
}
#endif
break;
case 1:
if (code_seen('H')) {
v = code_value_int();
preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
}
if (code_seen('F')) {
v = code_value_int();
preheatFanSpeed2 = constrain(v, 0, 255);
}
#if TEMP_SENSOR_BED != 0
if (code_seen('B')) {
v = code_value_int();
preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
}
#endif
break;
}
}
}
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
/**
* M149: Set temperature units
*/
inline void gcode_M149() {
if (code_seen('C')) {
set_input_temp_units(TEMPUNIT_C);
} else if (code_seen('K')) {
set_input_temp_units(TEMPUNIT_K);
} else if (code_seen('F')) {
set_input_temp_units(TEMPUNIT_F);
}
}
#endif
#if HAS_POWER_SWITCH
/**
* M80: Turn on Power Supply
*/
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
/**
* If you have a switch on suicide pin, this is useful
* if you want to start another print with suicide feature after
* a print without suicide...
*/
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if ENABLED(ULTIPANEL)
powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update();
#endif
}
#endif // HAS_POWER_SWITCH
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/
inline void gcode_M81() {
thermalManager.disable_all_heaters();
stepper.finish_and_disable();
#if FAN_COUNT > 0
#if FAN_COUNT > 1
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#else
fanSpeeds[0] = 0;
#endif
#endif
delay(1000); // Wait 1 second before switching off
#if HAS_SUICIDE
stepper.synchronize();
suicide();
#elif HAS_POWER_SWITCH
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#if ENABLED(ULTIPANEL)
#if HAS_POWER_SWITCH
powersupply = false;
#endif
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update();
#endif
}
/**
* M82: Set E codes absolute (default)
*/
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
*/
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
* M18, M84: Disable all stepper motors
*/
inline void gcode_M18_M84() {
if (code_seen('S')) {
stepper_inactive_time = code_value_millis_from_seconds();
}
else {
bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
if (all_axis) {
stepper.finish_and_disable();
}
else {
stepper.synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if (code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#endif
}
}
}
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M85() {
if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
}
/**
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
* (Follows the same syntax as G92)
*/
inline void gcode_M92() {
LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
float value = code_value_per_axis_unit(i);
if (value < 20.0) {
float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
planner.max_e_jerk *= factor;
planner.max_feedrate_mm_s[i] *= factor;
planner.max_acceleration_steps_per_s2[i] *= factor;
}
planner.axis_steps_per_mm[i] = value;
}
else {
planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
}
}
}
planner.refresh_positioning();
}
/**
* Output the current position to serial
*/
static void report_current_position() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
stepper.report_positions();
#if ENABLED(SCARA)
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_EOL; SERIAL_EOL;
#endif
}
/**
* M114: Output current position to serial port
*/
inline void gcode_M114() { report_current_position(); }
/**
* M115: Capabilities string
*/
inline void gcode_M115() {
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
}
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
lcd_setstatus(current_command_args);
}
/**
* M119: Output endstop states to serial output
*/
inline void gcode_M119() { endstops.M119(); }
/**
* M120: Enable endstops and set non-homing endstop state to "enabled"
*/
inline void gcode_M120() { endstops.enable_globally(true); }
/**
* M121: Disable endstops and set non-homing endstop state to "disabled"
*/
inline void gcode_M121() { endstops.enable_globally(false); }
#if ENABLED(BLINKM)
/**
* M150: Set Status LED Color - Use R-U-B for R-G-B
*/
inline void gcode_M150() {
SendColors(
code_seen('R') ? code_value_byte() : 0,
code_seen('U') ? code_value_byte() : 0,
code_seen('B') ? code_value_byte() : 0
);
}
#endif // BLINKM
#if ENABLED(EXPERIMENTAL_I2CBUS)
/**
* M155: Send data to a I2C slave device
*
* This is a PoC, the formating and arguments for the GCODE will
* change to be more compatible, the current proposal is:
*
* M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
*
* M155 B<byte-1 value in base 10>
* M155 B<byte-2 value in base 10>
* M155 B<byte-3 value in base 10>
*
* M155 S1 ; Send the buffered data and reset the buffer
* M155 R1 ; Reset the buffer without sending data
*
*/
inline void gcode_M155() {
// Set the target address
if (code_seen('A')) i2c.address(code_value_byte());
// Add a new byte to the buffer
if (code_seen('B')) i2c.addbyte(code_value_byte());
// Flush the buffer to the bus
if (code_seen('S')) i2c.send();
// Reset and rewind the buffer
else if (code_seen('R')) i2c.reset();
}
/**
* M156: Request X bytes from I2C slave device
*
* Usage: M156 A<slave device address base 10> B<number of bytes>
*/
inline void gcode_M156() {
if (code_seen('A')) i2c.address(code_value_byte());
uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
i2c.relay(bytes);
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLN("Bad i2c request");
}
}
#endif // EXPERIMENTAL_I2CBUS
/**
* M200: Set filament diameter and set E axis units to cubic units
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
*/
inline void gcode_M200() {
if (get_target_extruder_from_command(200)) return;
if (code_seen('D')) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = (code_value_linear_units() != 0.0);
if (volumetric_enabled) {
filament_size[target_extruder] = code_value_linear_units();
// make sure all extruders have some sane value for the filament size
for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
}
else {
//reserved for setting filament diameter via UFID or filament measuring device
return;
}
calculate_volumetric_multipliers();
}
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*/
inline void gcode_M201() {
LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) {
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
planner.reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
}
}
#endif
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
*/
inline void gcode_M203() {
LOOP_XYZE(i)
if (code_seen(axis_codes[i]))
planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
}
/**
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
*/
inline void gcode_M204() {
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
planner.travel_acceleration = planner.acceleration = code_value_linear_units();
SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
}
if (code_seen('P')) {
planner.acceleration = code_value_linear_units();
SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
}
if (code_seen('R')) {
planner.retract_acceleration = code_value_linear_units();
SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
}
if (code_seen('T')) {
planner.travel_acceleration = code_value_linear_units();
SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
}
}
/**
* M205: Set Advanced Settings
*
* S = Min Feed Rate (units/s)
* T = Min Travel Feed Rate (units/s)
* B = Min Segment Time (µs)
* X = Max XY Jerk (units/sec^2)
* Z = Max Z Jerk (units/sec^2)
* E = Max E Jerk (units/sec^2)
*/
inline void gcode_M205() {
if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
if (code_seen('B')) planner.min_segment_time = code_value_millis();
if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
}
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
LOOP_XYZ(i)
if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i));
#if ENABLED(SCARA)
if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
#endif
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
}
#if ENABLED(DELTA)
/**
* M665: Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
* A = Alpha (Tower 1) diagonal rod trim
* B = Beta (Tower 2) diagonal rod trim
* C = Gamma (Tower 3) diagonal rod trim
*/
inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
if (code_seen('R')) delta_radius = code_value_linear_units();
if (code_seen('S')) delta_segments_per_second = code_value_float();
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
/**
* M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> gcode_M666");
}
#endif
LOOP_XYZ(i) {
if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value_axis_units(i);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("endstop_adj[");
SERIAL_ECHO(axis_codes[i]);
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
}
#endif
}
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("<<< gcode_M666");
}
#endif
}
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
/**
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
*/
inline void gcode_M666() {
if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
}
#endif // !DELTA && Z_DUAL_ENDSTOPS
#if ENABLED(FWRETRACT)
/**
* M207: Set firmware retraction values
*
* S[+units] retract_length
* W[+units] retract_length_swap (multi-extruder)
* F[units/min] retract_feedrate_mm_s
* Z[units] retract_zlift
*/
inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
#if EXTRUDERS > 1
if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
#endif
}
/**
* M208: Set firmware un-retraction values
*
* S[+units] retract_recover_length (in addition to M207 S*)
* W[+units] retract_recover_length_swap (multi-extruder)
* F[units/min] retract_recover_feedrate_mm_s
*/
inline void gcode_M208() {
if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
#if EXTRUDERS > 1
if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
#endif
}
/**
* M209: Enable automatic retract (M209 S1)
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
*/
inline void gcode_M209() {
if (code_seen('S')) {
autoretract_enabled = code_value_bool();
for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
}
}
#endif // FWRETRACT
/**
* M211: Enable, Disable, and/or Report software endstops
*
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
*/
inline void gcode_M211() {
SERIAL_ECHO_START;
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
if (code_seen('S')) soft_endstops_enabled = code_value_bool();
#endif
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
#else
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
#endif
SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
}
#if HOTENDS > 1
/**
* M218 - set hotend offset (in linear units)
*
* T<tool>
* X<xoffset>
* Y<yoffset>
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
*/
inline void gcode_M218() {
if (get_target_extruder_from_command(218)) return;
if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
HOTEND_LOOP() {
SERIAL_CHAR(' ');
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
#endif
}
SERIAL_EOL;
}
#endif // HOTENDS > 1
/**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedrate_percentage = code_value_int();
}
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (get_target_extruder_from_command(221)) return;
if (code_seen('S'))
flow_percentage[target_extruder] = code_value_int();
}
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
inline void gcode_M226() {
if (code_seen('P')) {
int pin_number = code_value_int();
int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
if (pin_state >= -1 && pin_state <= 1) {
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
if (pin_number > -1) {
int target = LOW;
stepper.synchronize();
pinMode(pin_number, INPUT);
switch (pin_state) {
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while (digitalRead(pin_number) != target) idle();
} // pin_number > -1
} // pin_state -1 0 1
} // code_seen('P')
}
#if HAS_SERVOS
/**
* M280: Get or set servo position. P<index> [S<angle>]
*/
inline void gcode_M280() {
if (!code_seen('P')) return;
int servo_index = code_value_int();
if (servo_index >= 0 && servo_index < NUM_SERVOS) {
if (code_seen('S'))
MOVE_SERVO(servo_index, code_value_int());
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(" Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOPGM(": ");
SERIAL_ECHOLN(servo[servo_index].read());
}
}
else {
SERIAL_ERROR_START;
SERIAL_ERROR("Servo ");
SERIAL_ERROR(servo_index);
SERIAL_ERRORLN(" out of range");
}
}
#endif // HAS_SERVOS
#if HAS_BUZZER
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
// Limits the tone duration to 0-5 seconds.
NOMORE(duration, 5000);
BUZZ(duration, frequency);
}
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
/**
* M301: Set PID parameters P I D (and optionally C, L)
*
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
*
* With PID_EXTRUSION_SCALING:
*
* C[float] Kc term
* L[float] LPQ length
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
if (e < HOTENDS) { // catch bad input value
if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
#if ENABLED(PID_EXTRUSION_SCALING)
if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
if (code_seen('L')) lpq_len = code_value_float();
NOMORE(lpq_len, LPQ_MAX_LEN);
#endif
thermalManager.updatePID();
SERIAL_ECHO_START;
#if ENABLED(PID_PARAMS_PER_HOTEND)
SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
SERIAL_ECHO(e);
#endif // PID_PARAMS_PER_HOTEND
SERIAL_ECHOPGM(" p:");
SERIAL_ECHO(PID_PARAM(Kp, e));
SERIAL_ECHOPGM(" i:");
SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPGM(" d:");
SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPGM(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_ECHO(PID_PARAM(Kc, e));
#endif
SERIAL_EOL;
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
}
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
inline void gcode_M304() {
if (code_seen('P')) thermalManager.bedKp = code_value_float();
if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
thermalManager.updatePID();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(" p:");
SERIAL_ECHO(thermalManager.bedKp);
SERIAL_ECHOPGM(" i:");
SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPGM(" d:");
SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
}
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif // !CHDK && HAS_PHOTOGRAPH
}
#endif // CHDK || PHOTOGRAPH_PIN
#if HAS_LCD_CONTRAST
/**
* M250: Read and optionally set the LCD contrast
*/
inline void gcode_M250() {
if (code_seen('C')) set_lcd_contrast(code_value_int());
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_EOL;
}
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_COLD_EXTRUSION)
/**
* M302: Allow cold extrudes, or set the minimum extrude temperature
*
* S<temperature> sets the minimum extrude temperature
* P<bool> enables (1) or disables (0) cold extrusion
*
* Examples:
*
* M302 ; report current cold extrusion state
* M302 P0 ; enable cold extrusion checking
* M302 P1 ; disables cold extrusion checking
* M302 S0 ; always allow extrusion (disables checking)
* M302 S170 ; only allow extrusion above 170
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
*/
inline void gcode_M302() {
bool seen_S = code_seen('S');
if (seen_S) {
thermalManager.extrude_min_temp = code_value_temp_abs();
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
}
if (code_seen('P'))
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
else if (!seen_S) {
// Report current state
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
SERIAL_ECHOLNPGM("C)");
}
}
#endif // PREVENT_COLD_EXTRUSION
/**
* M303: PID relay autotune
*
* S<temperature> sets the target temperature. (default 150C)
* E<extruder> (-1 for the bed) (default 0)
* C<cycles>
* U<bool> with a non-zero value will apply the result to current settings
*/
inline void gcode_M303() {
#if HAS_PID_HEATING
int e = code_seen('E') ? code_value_int() : 0;
int c = code_seen('C') ? code_value_int() : 5;
bool u = code_seen('U') && code_value_bool();
float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
if (e >= 0 && e < HOTENDS)
target_extruder = e;
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
thermalManager.PID_autotune(temp, e, c, u);
KEEPALIVE_STATE(IN_HANDLER);
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
#endif
}
#if ENABLED(SCARA)
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLNPGM(" Soft endstops disabled");
if (IsRunning()) {
//gcode_get_destination(); // For X Y Z E F
delta[X_AXIS] = delta_x;
delta[Y_AXIS] = delta_y;
forward_kinematics_SCARA(delta);
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move_to_destination();
//ok_to_send();
return true;
}
return false;
}
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLNPGM(" Cal: Theta 0");
return SCARA_move_to_cal(0, 120);
}
/**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLNPGM(" Cal: Theta 90");
return SCARA_move_to_cal(90, 130);
}
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLNPGM(" Cal: Psi 0");
return SCARA_move_to_cal(60, 180);
}
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLNPGM(" Cal: Psi 90");
return SCARA_move_to_cal(50, 90);
}
/**
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
return SCARA_move_to_cal(45, 135);
}
/**
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/
inline void gcode_M365() {
LOOP_XYZ(i)
if (code_seen(axis_codes[i]))
axis_scaling[i] = code_value_float();
}
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
void enable_solenoid(uint8_t num) {
switch (num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if HAS_SOLENOID_1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_2
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_3
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { stepper.synchronize(); }
#if HAS_BED_PROBE
/**
* M401: Engage Z Servo endstop if available
*/
inline void gcode_M401() { DEPLOY_PROBE(); }
/**
* M402: Retract Z Servo endstop if enabled
*/
inline void gcode_M402() { STOW_PROBE(); }
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
*/
inline void gcode_M404() {
if (code_seen('W')) {
filament_width_nominal = code_value_linear_units();
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
}
/**
* M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
// This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
// everything else, it uses code_value_int() instead of code_value_linear_units().
if (code_seen('D')) meas_delay_cm = code_value_int();
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
int temp_ratio = thermalManager.widthFil_to_size_ratio();
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
filwidth_delay_index1 = filwidth_delay_index2 = 0;
}
filament_sensor = true;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
}
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() { filament_sensor = false; }
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
#endif // FILAMENT_WIDTH_SENSOR
void quickstop_stepper() {
stepper.quick_stop();
#if DISABLED(SCARA)
stepper.synchronize();
LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
SYNC_PLAN_POSITION_KINEMATIC();
#endif
}
#if ENABLED(MESH_BED_LEVELING)
/**
* M420: Enable/Disable Mesh Bed Leveling
*/
inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
* Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
*/
inline void gcode_M421() {
int8_t px = 0, py = 0;
float z = 0;
bool hasX, hasY, hasZ, hasI, hasJ;
if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
if (hasX && hasY && hasZ) {
if (px >= 0 && py >= 0)
mbl.set_z(px, py, z);
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
}
}
else if (hasI && hasJ && hasZ) {
if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
mbl.set_z(px, py, z);
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
}
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
}
}
#endif
/**
* M428: Set home_offset based on the distance between the
* current_position and the nearest "reference point."
* If an axis is past center its endstop position
* is the reference-point. Otherwise it uses 0. This allows
* the Z offset to be set near the bed when using a max endstop.
*
* M428 can't be used more than 2cm away from 0 or an endstop.
*
* Use M206 to set these values directly.
*/
inline void gcode_M428() {
bool err = false;
LOOP_XYZ(i) {
if (axis_homed[i]) {
float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
diff = current_position[i] - LOGICAL_POSITION(base, i);
if (diff > -20 && diff < 20) {
set_home_offset((AxisEnum)i, home_offset[i] - diff);
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
LCD_ALERTMESSAGEPGM("Err: Too far!");
BUZZ(200, 40);
err = true;
break;
}
}
}
if (!err) {
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
BUZZ(200, 659);
BUZZ(200, 698);
}
}
/**
* M500: Store settings in EEPROM
*/
inline void gcode_M500() {
Config_StoreSettings();
}
/**
* M501: Read settings from EEPROM
*/
inline void gcode_M501() {
Config_RetrieveSettings();
}
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
Config_ResetDefault();
}
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
Config_PrintSettings(code_seen('S') && !code_value_bool());
}
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
}
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#if HAS_BED_PROBE
inline void gcode_M851() {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_CHAR(' ');
if (code_seen('Z')) {
float value = code_value_axis_units(Z_AXIS);
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
zprobe_zoffset = value;
SERIAL_ECHO(zprobe_zoffset);
}
else {
SERIAL_ECHOPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_CHAR(' ');
SERIAL_ECHOPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
}
}
else {
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
}
SERIAL_EOL;
}
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_CHANGE_FEATURE)
/**
* M600: Pause for filament change
*
* E[distance] - Retract the filament this far (negative value)
* Z[distance] - Move the Z axis by this distance
* X[position] - Move to this X position, with Y
* Y[position] - Move to this Y position, with X
* L[distance] - Retract distance for removal (manual reload)
*
* Default values are used for omitted arguments.
*
*/
inline void gcode_M600() {
if (thermalManager.tooColdToExtrude(active_extruder)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
return;
}
// Show initial message and wait for synchronize steppers
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
stepper.synchronize();
float lastpos[NUM_AXIS];
// Save current position of all axes
LOOP_XYZE(i)
lastpos[i] = destination[i] = current_position[i];
// Define runplan for move axes
#if ENABLED(DELTA)
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
#else
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
#endif
KEEPALIVE_STATE(IN_HANDLER);
// Initial retract before move to filament change position
if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
#if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
#endif
RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
// Lift Z axis
float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
#if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
FILAMENT_CHANGE_Z_ADD
#else
0
#endif
;
if (z_lift > 0) {
destination[Z_AXIS] += z_lift;
NOMORE(destination[Z_AXIS], Z_MAX_POS);
RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
}
// Move XY axes to filament exchange position
if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
#ifdef FILAMENT_CHANGE_X_POS
else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
#endif
if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
#ifdef FILAMENT_CHANGE_Y_POS
else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
#endif
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
stepper.synchronize();
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
// Unload filament
if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
#if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
#endif
RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
// Synchronize steppers and then disable extruders steppers for manual filament changing
stepper.synchronize();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
delay(100);
#if HAS_BUZZER
millis_t next_tick = 0;
#endif
// Wait for filament insert by user and press button
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
while (!lcd_clicked()) {
#if HAS_BUZZER
millis_t ms = millis();
if (ms >= next_tick) {
BUZZ(300, 2000);
next_tick = ms + 2500; // Beep every 2.5s while waiting
}
#endif
idle(true);
}
delay(100);
while (lcd_clicked()) idle(true);
delay(100);
// Show load message
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
// Load filament
if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
#if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
#endif
RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
stepper.synchronize();
#if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
do {
// Extrude filament to get into hotend
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
stepper.synchronize();
// Ask user if more filament should be extruded
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
KEEPALIVE_STATE(IN_HANDLER);
} while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
#endif
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
KEEPALIVE_STATE(IN_HANDLER);
// Set extruder to saved position
current_position[E_AXIS] = lastpos[E_AXIS];
destination[E_AXIS] = lastpos[E_AXIS];
planner.set_e_position_mm(current_position[E_AXIS]);
#if ENABLED(DELTA)
// Move XYZ to starting position, then E
inverse_kinematics(lastpos);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
#else
// Move XY to starting position, then Z, then E
destination[X_AXIS] = lastpos[X_AXIS];
destination[Y_AXIS] = lastpos[Y_AXIS];
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
destination[Z_AXIS] = lastpos[Z_AXIS];
RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
#endif
stepper.synchronize();
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
filament_ran_out = false;
#endif
// Show status screen
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
}
#endif // FILAMENT_CHANGE_FEATURE
#if ENABLED(DUAL_X_CARRIAGE)
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* units x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
stepper.synchronize();
if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
switch (dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE:
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_CHAR(' ');
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
SERIAL_CHAR(' ');
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_CHAR(',');
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
break;
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
inline void gcode_M605() {
stepper.synchronize();
extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
SERIAL_ECHO_START;
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
}
#endif // M605
#if ENABLED(LIN_ADVANCE)
/**
* M905: Set advance factor
*/
inline void gcode_M905() {
stepper.synchronize();
stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
}
#endif
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if HAS_DIGIPOTSS
LOOP_XYZE(i)
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
if (code_seen('B')) stepper.digipot_current(4, code_value_int());
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
if (code_seen('X')) stepper.digipot_current(0, code_value_int());
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
if (code_seen('E')) stepper.digipot_current(2, code_value_int());
#endif
#if ENABLED(DIGIPOT_I2C)
// this one uses actual amps in floating point
LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
if (code_seen('S')) {
float dac_percent = code_value_float();
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
}
LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
#endif
}
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
#if HAS_DIGIPOTSS
stepper.digitalPotWrite(
code_seen('P') ? code_value_int() : 0,
code_seen('S') ? code_value_int() : 0
);
#endif
#ifdef DAC_STEPPER_CURRENT
dac_current_raw(
code_seen('P') ? code_value_byte() : -1,
code_seen('S') ? code_value_ushort() : 0
);
#endif
}
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
inline void gcode_M909() { dac_print_values(); }
inline void gcode_M910() { dac_commit_eeprom(); }
#endif
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
#if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
stepper.microstep_readings();
}
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
if (code_seen('S')) switch (code_value_byte()) {
case 1:
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
break;
case 2:
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
break;
}
stepper.microstep_readings();
}
#endif // HAS_MICROSTEPS
#if ENABLED(MIXING_EXTRUDER)
/**
* M163: Set a single mix factor for a mixing extruder
* This is called "weight" by some systems.
*
* S[index] The channel index to set
* P[float] The mix value
*
*/
inline void gcode_M163() {
int mix_index = code_seen('S') ? code_value_int() : 0;
float mix_value = code_seen('P') ? code_value_float() : 0.0;
if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
}
#if MIXING_VIRTUAL_TOOLS > 1
/**
* M164: Store the current mix factors as a virtual tool.
*
* S[index] The virtual tool to store
*
*/
inline void gcode_M164() {
int tool_index = code_seen('S') ? code_value_int() : 0;
if (tool_index < MIXING_VIRTUAL_TOOLS) {
normalize_mix();
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
}
}
#endif
#if ENABLED(DIRECT_MIXING_IN_G1)
/**
* M165: Set multiple mix factors for a mixing extruder.
* Factors that are left out will be set to 0.
* All factors together must add up to 1.0.
*
* A[factor] Mix factor for extruder stepper 1
* B[factor] Mix factor for extruder stepper 2
* C[factor] Mix factor for extruder stepper 3
* D[factor] Mix factor for extruder stepper 4
* H[factor] Mix factor for extruder stepper 5
* I[factor] Mix factor for extruder stepper 6
*
*/
inline void gcode_M165() { gcode_get_mix(); }
#endif
#endif // MIXING_EXTRUDER
/**
* M999: Restart after being stopped
*
* Default behaviour is to flush the serial buffer and request
* a resend to the host starting on the last N line received.
*
* Sending "M999 S1" will resume printing without flushing the
* existing command buffer.
*
*/
inline void gcode_M999() {
Running = true;
lcd_reset_alert_level();
if (code_seen('S') && code_value_bool()) return;
// gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
}
#if ENABLED(SWITCHING_EXTRUDER)
inline void move_extruder_servo(uint8_t e) {
const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
}
#endif
inline void invalid_extruder_error(const uint8_t &e) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
SERIAL_PROTOCOL_F(e, DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
invalid_extruder_error(tmp_extruder);
return;
}
// T0-Tnnn: Switch virtual tool by changing the mix
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
#else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
#if HOTENDS > 1
if (tmp_extruder >= EXTRUDERS) {
invalid_extruder_error(tmp_extruder);
return;
}
float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
if (tmp_extruder != active_extruder) {
if (!no_move && axis_unhomed_error(true, true, true)) {
SERIAL_ECHOLNPGM("No move on toolchange");
no_move = true;
}
// Save current position to destination, for use later
set_destination_to_current();
#if ENABLED(DUAL_X_CARRIAGE)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Dual X Carriage Mode ");
switch (dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
}
}
#endif
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
(delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
}
#endif
// Park old head: 1) raise 2) move to park position 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
current_position[Y_AXIS],
current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
current_position[E_AXIS],
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
active_extruder
);
stepper.synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
#endif
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
break;
case DXC_DUPLICATION_MODE:
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder_parked)
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
extruder_duplication_enabled = false;
break;
default:
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
break;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
DEBUG_POS("New extruder (parked)", current_position);
}
#endif
// No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
#else // !DUAL_X_CARRIAGE
#if ENABLED(SWITCHING_EXTRUDER)
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
// Always raise by some amount
planner.buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + z_raise,
current_position[E_AXIS],
planner.max_feedrate_mm_s[Z_AXIS],
active_extruder
);
stepper.synchronize();
move_extruder_servo(active_extruder);
delay(500);
// Move back down, if needed
if (z_raise != z_diff) {
planner.buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + z_diff,
current_position[E_AXIS],
planner.max_feedrate_mm_s[Z_AXIS],
active_extruder
);
stepper.synchronize();
}
#endif
/**
* Set current_position to the position of the new nozzle.
* Offsets are based on linear distance, so we need to get
* the resulting position in coordinate space.
*
* - With grid or 3-point leveling, offset XYZ by a tilted vector
* - With mesh leveling, update Z for the new position
* - Otherwise, just use the raw linear distance
*
* Software endstops are altered here too. Consider a case where:
* E0 at X=0 ... E1 at X=10
* When we switch to E1 now X=10, but E1 can't move left.
* To express this we apply the change in XY to the software endstops.
* E1 can move farther right than E0, so the right limit is extended.
*
* Note that we don't adjust the Z software endstops. Why not?
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
* because the bed is 1mm lower at the new position. As long as
* the first nozzle is out of the way, the carriage should be
* allowed to move 1mm lower. This technically "breaks" the
* Z software endstop. But this is technically correct (and
* there is no viable alternative).
*/
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Offset extruder, make sure to apply the bed level rotation matrix
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
hotend_offset[Y_AXIS][tmp_extruder],
0),
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][active_extruder],
0),
offset_vec = tmp_offset_vec - act_offset_vec;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
tmp_offset_vec.debug("tmp_offset_vec");
act_offset_vec.debug("act_offset_vec");
offset_vec.debug("offset_vec (BEFORE)");
}
#endif
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
#endif
// Adjustments to the current position
float xydiff[2] = { offset_vec.x, offset_vec.y };
current_position[Z_AXIS] += offset_vec.z;
#else // !AUTO_BED_LEVELING_FEATURE
float xydiff[2] = {
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
};
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
#endif
float xpos = RAW_CURRENT_POSITION(X_AXIS),
ypos = RAW_CURRENT_POSITION(Y_AXIS);
current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
#endif
}
#endif // MESH_BED_LEVELING
#endif // !AUTO_BED_LEVELING_FEATURE
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
SERIAL_ECHOLNPGM(" }");
}
#endif
// The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xydiff[X_AXIS];
current_position[Y_AXIS] += xydiff[Y_AXIS];
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
position_shift[i] += xydiff[i];
update_software_endstops((AxisEnum)i);
}
// Set the new active extruder
active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
#endif
// Tell the planner the new "current position"
SYNC_PLAN_POSITION_KINEMATIC();
// Move to the "old position" (move the extruder into place)
if (!no_move && IsRunning()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
#endif
prepare_move_to_destination();
}
} // (tmp_extruder != active_extruder)
stepper.synchronize();
#if ENABLED(EXT_SOLENOID)
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
feedrate_mm_s = old_feedrate_mm_s;
#else // HOTENDS <= 1
// Set the new active extruder
active_extruder = tmp_extruder;
UNUSED(fr_mm_s);
UNUSED(no_move);
#endif // HOTENDS <= 1
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
#endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
}
/**
* T0-T3: Switch tool, usually switching extruders
*
* F[units/min] Set the movement feedrate
* S1 Don't move the tool in XY after change
*/
inline void gcode_T(uint8_t tmp_extruder) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
SERIAL_ECHOLNPGM(")");
DEBUG_POS("BEFORE", current_position);
}
#endif
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
tool_change(tmp_extruder);
#elif HOTENDS > 1
tool_change(
tmp_extruder,
code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
(tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T");
}
#endif
}
/**
* Process a single command and dispatch it to its handler
* This is called from the main loop()
*/
void process_next_command() {
current_command = command_queue[cmd_queue_index_r];
if (DEBUGGING(ECHO)) {
SERIAL_ECHO_START;
SERIAL_ECHOLN(current_command);
}
// Sanitize the current command:
// - Skip leading spaces
// - Bypass N[-0-9][0-9]*[ ]*
// - Overwrite * with nul to mark the end
while (*current_command == ' ') ++current_command;
if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
current_command += 2; // skip N[-0-9]
while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
while (*current_command == ' ') ++current_command; // skip [ ]*
}
char* starpos = strchr(current_command, '*'); // * should always be the last parameter
if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
char *cmd_ptr = current_command;
// Get the command code, which must be G, M, or T
char command_code = *cmd_ptr++;
// Skip spaces to get the numeric part
while (*cmd_ptr == ' ') cmd_ptr++;
uint16_t codenum = 0; // define ahead of goto
// Bail early if there's no code
bool code_is_good = NUMERIC(*cmd_ptr);
if (!code_is_good) goto ExitUnknownCommand;
// Get and skip the code number
do {
codenum = (codenum * 10) + (*cmd_ptr - '0');
cmd_ptr++;
} while (NUMERIC(*cmd_ptr));
// Skip all spaces to get to the first argument, or nul
while (*cmd_ptr == ' ') cmd_ptr++;
// The command's arguments (if any) start here, for sure!
current_command_args = cmd_ptr;
KEEPALIVE_STATE(IN_HANDLER);
// Handle a known G, M, or T
switch (command_code) {
case 'G': switch (codenum) {
// G0, G1
case 0:
case 1:
gcode_G0_G1();
break;
// G2, G3
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(codenum == 2);
break;
#endif
// G4 Dwell
case 4:
gcode_G4();
break;
#if ENABLED(BEZIER_CURVE_SUPPORT)
// G5
case 5: // G5 - Cubic B_spline
gcode_G5();
break;
#endif // BEZIER_CURVE_SUPPORT
#if ENABLED(FWRETRACT)
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(codenum == 10);
break;
#endif // FWRETRACT
#if ENABLED(NOZZLE_CLEAN_FEATURE)
case 12:
gcode_G12(); // G12: Nozzle Clean
break;
#endif // NOZZLE_CLEAN_FEATURE
#if ENABLED(INCH_MODE_SUPPORT)
case 20: //G20: Inch Mode
gcode_G20();
break;
case 21: //G21: MM Mode
gcode_G21();
break;
#endif // INCH_MODE_SUPPORT
#if ENABLED(NOZZLE_PARK_FEATURE)
case 27: // G27: Nozzle Park
gcode_G27();
break;
#endif // NOZZLE_PARK_FEATURE
case 28: // G28: Home all axes, one at a time
gcode_G28();
break;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
gcode_G29();
break;
#endif // AUTO_BED_LEVELING_FEATURE
#if HAS_BED_PROBE
case 30: // G30 Single Z probe
gcode_G30();
break;
#if ENABLED(Z_PROBE_SLED)
case 31: // G31: dock the sled
gcode_G31();
break;
case 32: // G32: undock the sled
gcode_G32();
break;
#endif // Z_PROBE_SLED
#endif // HAS_BED_PROBE
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
gcode_G92();
break;
}
break;
case 'M': switch (codenum) {
#if ENABLED(ULTIPANEL)
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
break;
#endif // ULTIPANEL
case 17:
gcode_M17();
break;
#if ENABLED(SDSUPPORT)
case 20: // M20 - list SD card
gcode_M20(); break;
case 21: // M21 - init SD card
gcode_M21(); break;
case 22: //M22 - release SD card
gcode_M22(); break;
case 23: //M23 - Select file
gcode_M23(); break;
case 24: //M24 - Start SD print
gcode_M24(); break;
case 25: //M25 - Pause SD print
gcode_M25(); break;
case 26: //M26 - Set SD index
gcode_M26(); break;
case 27: //M27 - Get SD status
gcode_M27(); break;
case 28: //M28 - Start SD write
gcode_M28(); break;
case 29: //M29 - Stop SD write
gcode_M29(); break;
case 30: //M30 <filename> Delete File
gcode_M30(); break;
case 32: //M32 - Select file and start SD print
gcode_M32(); break;
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
case 33: //M33 - Get the long full path to a file or folder
gcode_M33(); break;
#endif // LONG_FILENAME_HOST_SUPPORT
case 928: //M928 - Start SD write
gcode_M928(); break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
gcode_M31();
break;
case 42: //M42 -Change pin status via gcode
gcode_M42();
break;
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z probe repeatability
gcode_M48();
break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
case 75: // Start print timer
gcode_M75();
break;
case 76: // Pause print timer
gcode_M76();
break;
case 77: // Stop print timer
gcode_M77();
break;
#if ENABLED(PRINTCOUNTER)
case 78: // Show print statistics
gcode_M78();
break;
#endif
#if ENABLED(M100_FREE_MEMORY_WATCHER)
case 100:
gcode_M100();
break;
#endif
case 104: // M104
gcode_M104();
break;
case 110: // M110: Set Current Line Number
gcode_M110();
break;
case 111: // M111: Set debug level
gcode_M111();
break;
#if DISABLED(EMERGENCY_PARSER)
case 108: // M108: Cancel Waiting
gcode_M108();
break;
case 112: // M112: Emergency Stop
gcode_M112();
break;
case 410: // M410 quickstop - Abort all the planned moves.
gcode_M410();
break;
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
case 113: // M113: Set Host Keepalive interval
gcode_M113();
break;
#endif
case 140: // M140: Set bed temp
gcode_M140();
break;
case 105: // M105: Read current temperature
gcode_M105();
KEEPALIVE_STATE(NOT_BUSY);
return; // "ok" already printed
case 109: // M109: Wait for temperature
gcode_M109();
break;
#if HAS_TEMP_BED
case 190: // M190: Wait for bed heater to reach target
gcode_M190();
break;
#endif // HAS_TEMP_BED
#if FAN_COUNT > 0
case 106: // M106: Fan On
gcode_M106();
break;
case 107: // M107: Fan Off
gcode_M107();
break;
#endif // FAN_COUNT > 0
#if ENABLED(BARICUDA)
// PWM for HEATER_1_PIN
#if HAS_HEATER_1
case 126: // M126: valve open
gcode_M126();
break;
case 127: // M127: valve closed
gcode_M127();
break;
#endif // HAS_HEATER_1
// PWM for HEATER_2_PIN
#if HAS_HEATER_2
case 128: // M128: valve open
gcode_M128();
break;
case 129: // M129: valve closed
gcode_M129();
break;
#endif // HAS_HEATER_2
#endif // BARICUDA
#if HAS_POWER_SWITCH
case 80: // M80: Turn on Power Supply
gcode_M80();
break;
#endif // HAS_POWER_SWITCH
case 81: // M81: Turn off Power, including Power Supply, if possible
gcode_M81();
break;
case 82:
gcode_M82();
break;
case 83:
gcode_M83();
break;
case 18: // (for compatibility)
case 84: // M84
gcode_M18_M84();
break;
case 85: // M85
gcode_M85();
break;
case 92: // M92: Set the steps-per-unit for one or more axes
gcode_M92();
break;
case 115: // M115: Report capabilities
gcode_M115();
break;
case 117: // M117: Set LCD message text, if possible
gcode_M117();
break;
case 114: // M114: Report current position
gcode_M114();
break;
case 120: // M120: Enable endstops
gcode_M120();
break;
case 121: // M121: Disable endstops
gcode_M121();
break;
case 119: // M119: Report endstop states
gcode_M119();
break;
#if ENABLED(ULTIPANEL)
case 145: // M145: Set material heatup parameters
gcode_M145();
break;
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
case 149:
gcode_M149();
break;
#endif
#if ENABLED(BLINKM)
case 150: // M150
gcode_M150();
break;
#endif //BLINKM
#if ENABLED(EXPERIMENTAL_I2CBUS)
case 155:
gcode_M155();
break;
case 156:
gcode_M156();
break;
#endif //EXPERIMENTAL_I2CBUS
#if ENABLED(MIXING_EXTRUDER)
case 163: // M163 S<int> P<float> set weight for a mixing extruder
gcode_M163();
break;
#if MIXING_VIRTUAL_TOOLS > 1
case 164: // M164 S<int> save current mix as a virtual extruder
gcode_M164();
break;
#endif
#if ENABLED(DIRECT_MIXING_IN_G1)
case 165: // M165 [ABCDHI]<float> set multiple mix weights
gcode_M165();
break;
#endif
#endif
case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
gcode_M200();
break;
case 201: // M201
gcode_M201();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
gcode_M202();
break;
#endif
case 203: // M203 max feedrate units/sec
gcode_M203();
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
gcode_M204();
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205();
break;
case 206: // M206 additional homing offset
gcode_M206();
break;
#if ENABLED(DELTA)
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665();
break;
#endif
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
case 666: // M666 set delta / dual endstop adjustment
gcode_M666();
break;
#endif
#if ENABLED(FWRETRACT)
case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
gcode_M207();
break;
case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
gcode_M208();
break;
case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209();
break;
#endif // FWRETRACT
case 211: // M211 - Enable, Disable, and/or Report software endstops
gcode_M211();
break;
#if HOTENDS > 1
case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
gcode_M218();
break;
#endif
case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
gcode_M220();
break;
case 221: // M221 - Set Flow Percentage: S<percent>
gcode_M221();
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226();
break;
#if HAS_SERVOS
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280();
break;
#endif // HAS_SERVOS
#if HAS_BUZZER
case 300: // M300 - Play beep tone
gcode_M300();
break;
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
case 301: // M301
gcode_M301();
break;
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
case 304: // M304
gcode_M304();
break;
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
break;
#endif // CHDK || PHOTOGRAPH_PIN
#if HAS_LCD_CONTRAST
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250();
break;
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_COLD_EXTRUSION)
case 302: // allow cold extrudes, or set the minimum extrude temperature
gcode_M302();
break;
#endif // PREVENT_COLD_EXTRUSION
case 303: // M303 PID autotune
gcode_M303();
break;
#if ENABLED(SCARA)
case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return;
break;
case 361: // M361 SCARA Theta pos2
if (gcode_M361()) return;
break;
case 362: // M362 SCARA Psi pos1
if (gcode_M362()) return;
break;
case 363: // M363 SCARA Psi pos2
if (gcode_M363()) return;
break;
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
break;
case 365: // M365 Set SCARA scaling for X Y Z
gcode_M365();
break;
#endif // SCARA
case 400: // M400 finish all moves
gcode_M400();
break;
#if HAS_BED_PROBE
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
break;
case 405: //M405 Turn on filament sensor for control
gcode_M405();
break;
case 406: //M406 Turn off filament sensor for control
gcode_M406();
break;
case 407: //M407 Display measured filament diameter
gcode_M407();
break;
#endif // ENABLED(FILAMENT_WIDTH_SENSOR)
#if ENABLED(MESH_BED_LEVELING)
case 420: // M420 Enable/Disable Mesh Bed Leveling
gcode_M420();
break;
case 421: // M421 Set a Mesh Bed Leveling Z coordinate
gcode_M421();
break;
#endif
case 428: // M428 Apply current_position to home_offset
gcode_M428();
break;
case 500: // M500 Store settings in EEPROM
gcode_M500();
break;
case 501: // M501 Read settings from EEPROM
gcode_M501();
break;
case 502: // M502 Revert to default settings
gcode_M502();
break;
case 503: // M503 print settings currently in memory
gcode_M503();
break;
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
case 540:
gcode_M540();
break;
#endif
#if HAS_BED_PROBE
case 851:
gcode_M851();
break;
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_CHANGE_FEATURE)
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600();
break;
#endif // FILAMENT_CHANGE_FEATURE
#if ENABLED(DUAL_X_CARRIAGE)
case 605:
gcode_M605();
break;
#endif // DUAL_X_CARRIAGE
#if ENABLED(LIN_ADVANCE)
case 905: // M905 Set advance factor.
gcode_M905();
break;
#endif
case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907();
break;
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
case 908: // M908 Control digital trimpot directly.
gcode_M908();
break;
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
case 909: // M909 Print digipot/DAC current value
gcode_M909();
break;
case 910: // M910 Commit digipot/DAC value to external EEPROM
gcode_M910();
break;
#endif
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
#if HAS_MICROSTEPS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
break;
#endif // HAS_MICROSTEPS
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
}
break;
case 'T':
gcode_T(codenum);
break;
default: code_is_good = false;
}
KEEPALIVE_STATE(NOT_BUSY);
ExitUnknownCommand:
// Still unknown command? Throw an error
if (!code_is_good) unknown_command_error();
ok_to_send();
}
void FlushSerialRequestResend() {
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ok_to_send();
}
void ok_to_send() {
refresh_cmd_timeout();
if (!send_ok[cmd_queue_index_r]) return;
SERIAL_PROTOCOLPGM(MSG_OK);
#if ENABLED(ADVANCED_OK)
char* p = command_queue[cmd_queue_index_r];
if (*p == 'N') {
SERIAL_PROTOCOL(' ');
SERIAL_ECHO(*p++);
while (NUMERIC_SIGNED(*p))
SERIAL_ECHO(*p++);
}
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
#endif
SERIAL_EOL;
}
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
void clamp_to_software_endstops(float target[XYZ]) {
#if ENABLED(min_software_endstops)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
#endif
#if ENABLED(max_software_endstops)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
}
#endif
#if ENABLED(DELTA)
void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
delta_tower3_x = 0.0; // back middle tower
delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
}
void inverse_kinematics(const float in_cartesian[XYZ]) {
const float cartesian[XYZ] = {
RAW_X_POSITION(in_cartesian[X_AXIS]),
RAW_Y_POSITION(in_cartesian[Y_AXIS]),
RAW_Z_POSITION(in_cartesian[Z_AXIS])
};
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
- sq(delta_tower1_x - cartesian[X_AXIS])
- sq(delta_tower1_y - cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
- sq(delta_tower2_x - cartesian[X_AXIS])
- sq(delta_tower2_y - cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
- sq(delta_tower3_x - cartesian[X_AXIS])
- sq(delta_tower3_y - cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/**
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
*/
}
float delta_safe_distance_from_top() {
float cartesian[XYZ] = {
LOGICAL_X_POSITION(0),
LOGICAL_Y_POSITION(0),
LOGICAL_Z_POSITION(0)
};
inverse_kinematics(cartesian);
float distance = delta[TOWER_3];
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
inverse_kinematics(cartesian);
return abs(distance - delta[TOWER_3]);
}
void forward_kinematics_DELTA(float z1, float z2, float z3) {
//As discussed in Wikipedia "Trilateration"
//we are establishing a new coordinate
//system in the plane of the three carriage points.
//This system will have the origin at tower1 and
//tower2 is on the x axis. tower3 is in the X-Y
//plane with a Z component of zero. We will define unit
//vectors in this coordinate system in our original
//coordinate system. Then when we calculate the
//Xnew, Ynew and Znew values, we can translate back into
//the original system by moving along those unit vectors
//by the corresponding values.
// https://en.wikipedia.org/wiki/Trilateration
// Variable names matched to Marlin, c-version
// and avoiding a vector library
// by Andreas Hardtung 2016-06-7
// based on a Java function from
// "Delta Robot Kinematics by Steve Graves" V3
// Result is in cartesian_position[].
//Create a vector in old coordinates along x axis of new coordinate
float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
//Get the Magnitude of vector.
float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
//Create unit vector by dividing by magnitude.
float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
//Now find vector from the origin of the new system to the third point.
float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
//Now use dot product to find the component of this vector on the X axis.
float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
//Now create a vector along the x axis that represents the x component of p13.
float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
//Now subtract the X component away from the original vector leaving only the Y component. We use the
//variable that will be the unit vector after we scale it.
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
//The magnitude of Y component
float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
//Now make vector a unit vector
ey[0] /= j; ey[1] /= j; ey[2] /= j;
//The cross product of the unit x and y is the unit z
//float[] ez = vectorCrossProd(ex, ey);
float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
//Now we have the d, i and j values defined in Wikipedia.
//We can plug them into the equations defined in
//Wikipedia for Xnew, Ynew and Znew
float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
//Now we can start from the origin in the old coords and
//add vectors in the old coords that represent the
//Xnew, Ynew and Znew to find the point in the old system
cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
};
void forward_kinematics_DELTA(float point[ABC]) {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
}
void set_cartesian_from_steppers() {
forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS));
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[XYZ]) {
if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half],
z2 = bed_level[floor_x + half][floor_y + half + 1],
z3 = bed_level[floor_x + half + 1][floor_y + half],
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/**
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
*/
}
#endif // AUTO_BED_LEVELING_FEATURE
#endif // DELTA
void set_current_from_steppers_for_axis(AxisEnum axis) {
#if ENABLED(DELTA)
set_cartesian_from_steppers();
current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
vector_3 pos = planner.adjusted_position();
current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
#else
current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
#endif
}
#if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
NOMORE(cx1, MESH_NUM_X_POINTS - 2);
NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
NOMORE(cx2, MESH_NUM_X_POINTS - 2);
NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[NUM_AXIS];
// Split at the left/front border of the right/top square
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end));
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end));
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
destination[E_AXIS] = MBL_SEGMENT_END(E);
// Do the split and look for more borders
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
memcpy(destination, end, sizeof(end));
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // MESH_BED_LEVELING
#if ENABLED(DELTA) || ENABLED(SCARA)
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
float difference[NUM_AXIS];
LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return false;
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
float seconds = cartesian_mm / _feedrate_mm_s;
int steps = max(1, int(delta_segments_per_second * seconds));
float inv_steps = 1.0/steps;
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) * inv_steps;
LOOP_XYZE(i)
target[i] = current_position[i] + difference[i] * fraction;
inverse_kinematics(target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
if (!bed_leveling_in_progress) adjust_delta(target);
#endif
//DEBUG_POS("prepare_kinematic_move_to", target);
//DEBUG_POS("prepare_kinematic_move_to", delta);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
}
return true;
}
#endif // DELTA || SCARA
#if ENABLED(DUAL_X_CARRIAGE)
inline bool prepare_move_to_destination_dualx() {
if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return false;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
return true;
}
#endif // DUAL_X_CARRIAGE
#if DISABLED(DELTA) && DISABLED(SCARA)
inline bool prepare_move_to_destination_cartesian() {
// Do not use feedrate_percentage for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination();
}
else {
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) {
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false;
}
else
#endif
line_to_destination(MMS_SCALED(feedrate_mm_s));
}
return true;
}
#endif // !DELTA && !SCARA
#if ENABLED(PREVENT_COLD_EXTRUSION)
inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
if (DEBUGGING(DRYRUN)) return;
float de = dest_e - curr_e;
if (de) {
if (thermalManager.tooColdToExtrude(active_extruder)) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > EXTRUDE_MAXLENGTH) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
}
#endif // PREVENT_COLD_EXTRUSION
/**
* Prepare a single move and get ready for the next one
*
* (This may call planner.buffer_line several times to put
* smaller moves into the planner for DELTA or SCARA.)
*/
void prepare_move_to_destination() {
clamp_to_software_endstops(destination);
refresh_cmd_timeout();
#if ENABLED(PREVENT_COLD_EXTRUSION)
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
#endif
#if ENABLED(DELTA) || ENABLED(SCARA)
if (!prepare_kinematic_move_to(destination)) return;
#else
#if ENABLED(DUAL_X_CARRIAGE)
if (!prepare_move_to_destination_dualx()) return;
#endif
if (!prepare_move_to_destination_cartesian()) return;
#endif
set_current_to_destination();
}
#if ENABLED(ARC_SUPPORT)
/**
* Plan an arc in 2 dimensions
*
* The arc is approximated by generating many small linear segments.
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* Arcs should only be made relatively large (over 5mm), as larger arcs with
* larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
*/
void plan_arc(
float target[NUM_AXIS], // Destination position
float* offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS],
rt_X = target[X_AXIS] - center_X,
rt_Y = target[Y_AXIS] - center_Y;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
angular_travel += RADIANS(360);
float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
if (mm_of_travel < 0.001) return;
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1;
float theta_per_segment = angular_travel / segments;
float linear_per_segment = linear_travel / segments;
float extruder_per_segment = extruder_travel / segments;
/**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
float sin_T = theta_per_segment;
float arc_target[NUM_AXIS];
float sin_Ti, cos_Ti, r_new_Y;
uint16_t i;
int8_t count = 0;
// Initialize the linear axis
arc_target[Z_AXIS] = current_position[Z_AXIS];
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL;
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater();
millis_t now = millis();
if (ELAPSED(now, next_idle_ms)) {
next_idle_ms = now + 200UL;
idle();
}
if (++count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_X / 1
r_new_Y = r_X * sin_T + r_Y * cos_T;
r_X = r_X * cos_T - r_Y * sin_T;
r_Y = r_new_Y;
}
else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
cos_Ti = cos(i * theta_per_segment);
sin_Ti = sin(i * theta_per_segment);
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[X_AXIS] = center_X + r_X;
arc_target[Y_AXIS] = center_Y + r_Y;
arc_target[Z_AXIS] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target);
#if ENABLED(DELTA) || ENABLED(SCARA)
inverse_kinematics(arc_target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#endif
}
// Ensure last segment arrives at target location.
#if ENABLED(DELTA) || ENABLED(SCARA)
inverse_kinematics(target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
#else
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
}
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
}
#endif // BEZIER_CURVE_SUPPORT
#if HAS_CONTROLLERFAN
void controllerFan() {
static millis_t lastMotorOn = 0; // Last time a motor was turned on
static millis_t nextMotorCheck = 0; // Last time the state was checked
millis_t ms = millis();
if (ELAPSED(ms, nextMotorCheck)) {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if E_STEPPERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#endif
#if E_STEPPERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#endif
#endif
#endif
) {
lastMotorOn = ms; //... set time to NOW so the fan will turn on
}
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, speed);
analogWrite(CONTROLLERFAN_PIN, speed);
}
}
#endif // HAS_CONTROLLERFAN
#if ENABLED(SCARA)
void forward_kinematics_SCARA(float f_scara[ABC]) {
// Perform forward kinematics, and place results in delta[]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void inverse_kinematics(const float cartesian[XYZ]) {
// Inverse kinematics.
// Perform SCARA IK and place results in delta[].
// The maths and first version were done by QHARLEY.
// Integrated, tweaked by Joachim Cerny in June 2014.
float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2)
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
#else
SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
#endif
SCARA_S2 = sqrt(1 - sq(SCARA_C2));
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2;
SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
SCARA_psi = atan2(SCARA_S2, SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
/**
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_EOL;
*/
}
#endif // SCARA
#if ENABLED(TEMP_STAT_LEDS)
static bool red_led = false;
static millis_t next_status_led_update_ms = 0;
void handle_status_leds(void) {
if (ELAPSED(millis(), next_status_led_update_ms)) {
next_status_led_update_ms += 500; // Update every 0.5s
float max_temp = 0.0;
#if HAS_TEMP_BED
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
#endif
HOTEND_LOOP() {
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
}
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
if (new_led != red_led) {
red_led = new_led;
digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
}
}
}
#endif
void enable_all_steppers() {
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
enable_e3();
}
void disable_all_steppers() {
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
/**
* Standard idle routine keeps the machine alive
*/
void idle(
#if ENABLED(FILAMENT_CHANGE_FEATURE)
bool no_stepper_sleep/*=false*/
#endif
) {
lcd_update();
host_keepalive();
manage_inactivity(
#if ENABLED(FILAMENT_CHANGE_FEATURE)
no_stepper_sleep
#endif
);
thermalManager.manage_heater();
#if ENABLED(PRINTCOUNTER)
print_job_timer.tick();
#endif
#if HAS_BUZZER && PIN_EXISTS(BEEPER)
buzzer.tick();
#endif
}
/**
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
*/
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
handle_filament_runout();
#endif
if (commands_in_queue < BUFSIZE) get_available_commands();
millis_t ms = millis();
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
&& !ignore_stepper_queue && !planner.blocks_queued()) {
#if ENABLED(DISABLE_INACTIVE_X)
disable_x();
#endif
#if ENABLED(DISABLE_INACTIVE_Y)
disable_y();
#endif
#if ENABLED(DISABLE_INACTIVE_Z)
disable_z();
#endif
#if ENABLED(DISABLE_INACTIVE_E)
disable_e0();
disable_e1();
disable_e2();
disable_e3();
#endif
}
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if HAS_KILL
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750;
if (!READ(KILL_PIN))
killCount++;
else if (killCount > 0)
killCount--;
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
#endif
#if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 2500;
if (!READ(HOME_PIN)) {
if (!homeDebounceCount) {
enqueue_and_echo_commands_P(PSTR("G28"));
LCD_MESSAGEPGM(MSG_AUTO_HOME);
}
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
homeDebounceCount++;
else
homeDebounceCount = 0;
}
#endif
#if HAS_CONTROLLERFAN
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#endif
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
#if ENABLED(SWITCHING_EXTRUDER)
bool oldstatus = E0_ENABLE_READ;
enable_e0();
#else // !SWITCHING_EXTRUDER
bool oldstatus;
switch (active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if E_STEPPERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if E_STEPPERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if E_STEPPERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
break;
#endif
#endif
#endif
}
#endif // !SWITCHING_EXTRUDER
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes;
planner.set_e_position_mm(oldepos);
previous_cmd_ms = ms; // refresh_cmd_timeout()
stepper.synchronize();
#if ENABLED(SWITCHING_EXTRUDER)
E0_ENABLE_WRITE(oldstatus);
#else
switch (active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
}
#endif // !SWITCHING_EXTRUDER
}
#endif // EXTRUDER_RUNOUT_PREVENT
#if ENABLED(DUAL_X_CARRIAGE)
// handle delayed move timeout
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
set_destination_to_current();
prepare_move_to_destination();
}
#endif
#if ENABLED(TEMP_STAT_LEDS)
handle_status_leds();
#endif
planner.check_axes_activity();
}
void kill(const char* lcd_msg) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
#if ENABLED(ULTRA_LCD)
kill_screen(lcd_msg);
#else
UNUSED(lcd_msg);
#endif
delay(500); // Wait a short time
cli(); // Stop interrupts
thermalManager.disable_all_heaters();
disable_all_steppers();
#if HAS_POWER_SWITCH
pinMode(PS_ON_PIN, INPUT);
#endif
suicide();
while (1) {
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
} // Wait for reset
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout() {
if (!filament_ran_out) {
filament_ran_out = true;
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
stepper.synchronize();
}
}
#endif // FILAMENT_RUNOUT_SENSOR
#if ENABLED(FAST_PWM_FAN)
void setPwmFrequency(uint8_t pin, int val) {
val &= 0x07;
switch (digitalPinToTimer(pin)) {
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif // FAST_PWM_FAN
void stop() {
thermalManager.disable_all_heaters();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
}
float calculate_volumetric_multiplier(float diameter) {
if (!volumetric_enabled || diameter == 0) return 1.0;
float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
}
void calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}