You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

904 lines
36 KiB

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
#include "ubl.h"
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#define EXTRUSION_MULTIPLIER 1.0
#define RETRACTION_MULTIPLIER 1.0
#define NOZZLE 0.4
#define FILAMENT 1.75
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOZE_AMOUNT 0.3
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSSHAIRS 3
#if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
#error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
#endif
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* M # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying R50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
* 'n' can be used instead if your host program does not appreciate you using 'N'.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'cicle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state.
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
// External references
extern float feedrate;
extern Planner planner;
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
#endif
extern float destination[XYZE];
void set_destination_to_current();
void set_current_to_destination();
float code_value_float();
float code_value_linear_units();
float code_value_axis_units(const AxisEnum axis);
bool code_value_bool();
bool code_has_value();
void lcd_init();
void lcd_setstatuspgm(const char* const message, const uint8_t level);
bool prepare_move_to_destination_cartesian();
void line_to_destination();
void line_to_destination(float);
void sync_plan_position_e();
void chirp_at_user();
// Private functions
void un_retract_filament(float where[XYZE]);
void retract_filament(float where[XYZE]);
void look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
bool turn_on_heaters();
bool prime_nozzle();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
float g26_e_axis_feedrate = 0.020,
random_deviation = 0.0,
layer_height = LAYER_HEIGHT;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = RETRACTION_MULTIPLIER,
nozzle = NOZZLE,
filament_diameter = FILAMENT,
prime_length = PRIME_LENGTH,
x_pos, y_pos,
ooze_amount = OOZE_AMOUNT;
static int16_t bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP;
static int8_t prime_flag = 0;
static bool keep_heaters_on = false;
static int16_t g26_repeats;
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void gcode_G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle;
int i, xi, yi;
mesh_index_pair location;
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
stepper.synchronize();
set_current_to_destination();
}
if (turn_on_heaters()) goto LEAVE;
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (prime_flag && prime_nozzle()) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
// Move nozzle to the specified height for the first layer
set_destination_to_current();
destination[Z_AXIS] = layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
ubl.has_control_of_lcd_panel = true;
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth
*/
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
}
do {
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
}
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
}
goto LEAVE;
}
location = continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
goto LEAVE;
}
#endif
// TODO: Change this to use `position_is_reachable`
if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to print off the bed.");
goto LEAVE;
}
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
}
start_angle = 0.0; // assume it is going to be a full circle
end_angle = 360.0;
if (xi == 0) { // Check for bottom edge
start_angle = -90.0;
end_angle = 90.0;
if (yi == 0) // it is an edge, check for the two left corners
start_angle = 0.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
end_angle = 0.0;
}
else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
start_angle = 90.0;
end_angle = 270.0;
if (yi == 0) // it is an edge, check for the two right corners
end_angle = 180.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
start_angle = 180.0;
}
else if (yi == 0) {
start_angle = 0.0; // only do the top side of the cirlce
end_angle = 180.0;
}
else if (yi == GRID_MAX_POINTS_Y - 1) {
start_angle = 180.0; // only do the bottom side of the cirlce
end_angle = 360.0;
}
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30],
xe = circle_x + cos_table[tmp_div_30 + 1],
ye = circle_y + sin_table[tmp_div_30 + 1];
#ifdef DELTA
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
continue; // the 'circle' is on the bed. If
#else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
//if (ubl.g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n");
// cptr = (char*) "01234567890ABCDEF????????";
// ccc = cptr[tmp_div_30];
// seg_num[1] = ccc;
// strcat(seg_msg, seg_num);
// debug_current_and_destination(seg_msg);
//}
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
}
//debug_current_and_destination(PSTR("Looking for lines to connect."));
look_for_lines_to_connect();
//debug_current_and_destination(PSTR("Done with line connect."));
}
//debug_current_and_destination(PSTR("Done with current circle."));
} while (location.x_index >= 0 && location.y_index >= 0 && g26_repeats--);
LEAVE:
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
retract_filament(destination);
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = x_pos; // Move back to the starting position
destination[Y_AXIS] = y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!keep_heaters_on) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0);
#endif
thermalManager.setTargetHotend(0, 0);
}
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
void look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL;
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL;
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
}
}
}
}
}
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
if (z != last_z) {
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
ubl_line_to_destination(feed_value, 0);
stepper.synchronize();
set_destination_to_current();
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta;
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
ubl_line_to_destination(feed_value, 0);
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
stepper.synchronize();
set_destination_to_current();
}
void retract_filament(float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
}
}
void un_retract_filament(float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
g26_retracted = false;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Z bumping by 0.500 to minimize scraping.");
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]+0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz+0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
un_retract_filament(destination);
//if (ubl.g26_debug_flag) {
// SERIAL_ECHOLNPGM(" doing printing move.");
// debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
//}
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool parse_G26_parameters() {
extrusion_multiplier = EXTRUSION_MULTIPLIER;
retraction_multiplier = RETRACTION_MULTIPLIER;
nozzle = NOZZLE;
filament_diameter = FILAMENT;
layer_height = LAYER_HEIGHT;
prime_length = PRIME_LENGTH;
bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP;
ooze_amount = OOZE_AMOUNT;
prime_flag = 0;
keep_heaters_on = false;
if (code_seen('B')) {
bed_temp = code_value_temp_abs();
if (!WITHIN(bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('C')) continue_with_closest++;
if (code_seen('L')) {
layer_height = code_value_linear_units();
if (!WITHIN(layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (code_seen('Q')) {
if (code_has_value()) {
retraction_multiplier = code_value_float();
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (code_seen('N') || code_seen('n')) {
nozzle = code_value_float();
if (!WITHIN(nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (code_seen('K')) keep_heaters_on++;
if (code_seen('O') && code_has_value())
ooze_amount = code_value_linear_units();
if (code_seen('P')) {
if (!code_has_value())
prime_flag = -1;
else {
prime_flag++;
prime_length = code_value_linear_units();
if (!WITHIN(prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (code_seen('F')) {
filament_diameter = code_value_linear_units();
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) {
hotend_temp = code_value_temp_abs();
if (!WITHIN(hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('M')) {
randomSeed(millis());
random_deviation = code_has_value() ? code_value_float() : 50.0;
}
if (code_seen('R')) {
g26_repeats = code_has_value() ? code_value_int() - 1 : 999;
if (g26_repeats <= 0) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be greater than 0.");
return UBL_ERR;
}
}
x_pos = current_position[X_AXIS];
y_pos = current_position[Y_AXIS];
if (code_seen('X')) {
x_pos = code_value_axis_units(X_AXIS);
if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
return UBL_ERR;
}
}
else
if (code_seen('Y')) {
y_pos = code_value_axis_units(Y_AXIS);
if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
return UBL_ERR;
}
}
/**
* We save the question of what to do with the Unified Bed Leveling System's Activation until the very
* end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
* alter the system's status. We wait until we know everything is correct before altering the state
* of the system.
*/
ubl.state.active = !code_seen('D');
return UBL_OK;
}
bool exit_from_g26() {
//strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
millis_t next;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (bed_temp > 25) {
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = true;
thermalManager.setTargetBed(bed_temp);
next = millis() + 5000UL;
while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged
ubl.has_control_of_lcd_panel = true;
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_to_current();
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
// So... We cheat to get a message up.
lcd_setstatuspgm(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = false;
}
else {
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += prime_length;
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
stepper.synchronize();
set_destination_to_current();
retract_filament(destination);
}
return UBL_OK;
}
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING