You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							13061 lines
						
					
					
						
							417 KiB
						
					
					
				
			
		
		
	
	
							13061 lines
						
					
					
						
							417 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * About Marlin
 | |
|  *
 | |
|  * This firmware is a mashup between Sprinter and grbl.
 | |
|  *  - https://github.com/kliment/Sprinter
 | |
|  *  - https://github.com/simen/grbl/tree
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * -----------------
 | |
|  * G-Codes in Marlin
 | |
|  * -----------------
 | |
|  *
 | |
|  * Helpful G-code references:
 | |
|  *  - http://linuxcnc.org/handbook/gcode/g-code.html
 | |
|  *  - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
 | |
|  *
 | |
|  * Help to document Marlin's G-codes online:
 | |
|  *  - http://reprap.org/wiki/G-code
 | |
|  *  - https://github.com/MarlinFirmware/MarlinDocumentation
 | |
|  *
 | |
|  * -----------------
 | |
|  *
 | |
|  * "G" Codes
 | |
|  *
 | |
|  * G0   -> G1
 | |
|  * G1   - Coordinated Movement X Y Z E
 | |
|  * G2   - CW ARC
 | |
|  * G3   - CCW ARC
 | |
|  * G4   - Dwell S<seconds> or P<milliseconds>
 | |
|  * G5   - Cubic B-spline with XYZE destination and IJPQ offsets
 | |
|  * G10  - Retract filament according to settings of M207
 | |
|  * G11  - Retract recover filament according to settings of M208
 | |
|  * G12  - Clean tool
 | |
|  * G17  - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
 | |
|  * G18  - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
 | |
|  * G19  - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
 | |
|  * G20  - Set input units to inches
 | |
|  * G21  - Set input units to millimeters
 | |
|  * G26  - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
 | |
|  * G27  - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
 | |
|  * G28  - Home one or more axes
 | |
|  * G29  - Detailed Z probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 | |
|  * G30  - Single Z probe, probes bed at X Y location (defaults to current XY location)
 | |
|  * G31  - Dock sled (Z_PROBE_SLED only)
 | |
|  * G32  - Undock sled (Z_PROBE_SLED only)
 | |
|  * G33  - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
 | |
|  * G38  - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
 | |
|  * G42  - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
 | |
|  * G90  - Use Absolute Coordinates
 | |
|  * G91  - Use Relative Coordinates
 | |
|  * G92  - Set current position to coordinates given
 | |
|  *
 | |
|  * "M" Codes
 | |
|  *
 | |
|  * M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
 | |
|  * M1   -> M0
 | |
|  * M3   - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
 | |
|  * M4   - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
 | |
|  * M5   - Turn laser/spindle off
 | |
|  * M17  - Enable/Power all stepper motors
 | |
|  * M18  - Disable all stepper motors; same as M84
 | |
|  * M20  - List SD card. (Requires SDSUPPORT)
 | |
|  * M21  - Init SD card. (Requires SDSUPPORT)
 | |
|  * M22  - Release SD card. (Requires SDSUPPORT)
 | |
|  * M23  - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
 | |
|  * M24  - Start/resume SD print. (Requires SDSUPPORT)
 | |
|  * M25  - Pause SD print. (Requires SDSUPPORT)
 | |
|  * M26  - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
 | |
|  * M27  - Report SD print status. (Requires SDSUPPORT)
 | |
|  * M28  - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
 | |
|  * M29  - Stop SD write. (Requires SDSUPPORT)
 | |
|  * M30  - Delete file from SD: "M30 /path/file.gco"
 | |
|  * M31  - Report time since last M109 or SD card start to serial.
 | |
|  * M32  - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
 | |
|  *        Use P to run other files as sub-programs: "M32 P !filename#"
 | |
|  *        The '#' is necessary when calling from within sd files, as it stops buffer prereading
 | |
|  * M33  - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
 | |
|  * M34  - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
 | |
|  * M42  - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
 | |
|  * M43  - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
 | |
|  * M48  - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
 | |
|  * M75  - Start the print job timer.
 | |
|  * M76  - Pause the print job timer.
 | |
|  * M77  - Stop the print job timer.
 | |
|  * M78  - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
 | |
|  * M80  - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
 | |
|  * M81  - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
 | |
|  * M82  - Set E codes absolute (default).
 | |
|  * M83  - Set E codes relative while in Absolute (G90) mode.
 | |
|  * M84  - Disable steppers until next move, or use S<seconds> to specify an idle
 | |
|  *        duration after which steppers should turn off. S0 disables the timeout.
 | |
|  * M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | |
|  * M92  - Set planner.axis_steps_per_mm for one or more axes.
 | |
|  * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
 | |
|  * M104 - Set extruder target temp.
 | |
|  * M105 - Report current temperatures.
 | |
|  * M106 - Fan on.
 | |
|  * M107 - Fan off.
 | |
|  * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
 | |
|  * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
 | |
|  *        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
 | |
|  *        If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
 | |
|  * M110 - Set the current line number. (Used by host printing)
 | |
|  * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
 | |
|  * M112 - Emergency stop.
 | |
|  * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
 | |
|  * M114 - Report current position.
 | |
|  * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
 | |
|  * M117 - Display a message on the controller screen. (Requires an LCD)
 | |
|  * M119 - Report endstops status.
 | |
|  * M120 - Enable endstops detection.
 | |
|  * M121 - Disable endstops detection.
 | |
|  * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
 | |
|  * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
 | |
|  * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
 | |
|  * M128 - EtoP Open. (Requires BARICUDA)
 | |
|  * M129 - EtoP Closed. (Requires BARICUDA)
 | |
|  * M140 - Set bed target temp. S<temp>
 | |
|  * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
 | |
|  * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
 | |
|  * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
 | |
|  * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
 | |
|  * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
 | |
|  * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
 | |
|  * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
 | |
|  * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
 | |
|  *        Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
 | |
|  * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
 | |
|  * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
 | |
|  * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
 | |
|  * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
 | |
|  * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
 | |
|  * M205 - Set advanced settings. Current units apply:
 | |
|             S<print> T<travel> minimum speeds
 | |
|             B<minimum segment time>
 | |
|             X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
 | |
|  * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
 | |
|  * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
 | |
|  * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
 | |
|  * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
 | |
|           Every normal extrude-only move will be classified as retract depending on the direction.
 | |
|  * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
 | |
|  * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
 | |
|  * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
 | |
|  * M221 - Set Flow Percentage: "M221 S<percent>"
 | |
|  * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
 | |
|  * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
 | |
|  * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
 | |
|  * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
 | |
|  * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
 | |
|  * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
 | |
|  * M300 - Play beep sound S<frequency Hz> P<duration ms>
 | |
|  * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
 | |
|  * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
 | |
|  * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
 | |
|  * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
 | |
|  * M350 - Set microstepping mode. (Requires digital microstepping pins.)
 | |
|  * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
 | |
|  * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
 | |
|  * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
 | |
|  * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
 | |
|  * M400 - Finish all moves.
 | |
|  * M401 - Lower Z probe. (Requires a probe)
 | |
|  * M402 - Raise Z probe. (Requires a probe)
 | |
|  * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
 | |
|  * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
 | |
|  * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
 | |
|  * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
 | |
|  * M410 - Quickstop. Abort all planned moves.
 | |
|  * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
 | |
|  * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
 | |
|  * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
 | |
|  * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
 | |
|  * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
 | |
|  * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
 | |
|  * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
 | |
|  * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
|  * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
 | |
|  * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
 | |
|  * M666 - Set delta endstop adjustment. (Requires DELTA)
 | |
|  * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
 | |
|  * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
 | |
|  * M860 - Report the position of position encoder modules.
 | |
|  * M861 - Report the status of position encoder modules.
 | |
|  * M862 - Perform an axis continuity test for position encoder modules.
 | |
|  * M863 - Perform steps-per-mm calibration for position encoder modules.
 | |
|  * M864 - Change position encoder module I2C address.
 | |
|  * M865 - Check position encoder module firmware version.
 | |
|  * M866 - Report or reset position encoder module error count.
 | |
|  * M867 - Enable/disable or toggle error correction for position encoder modules.
 | |
|  * M868 - Report or set position encoder module error correction threshold.
 | |
|  * M869 - Report position encoder module error.
 | |
|  * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
 | |
|  * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
 | |
|  * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
 | |
|  * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
 | |
|  * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
 | |
|  * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
 | |
|  * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
 | |
|  * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
 | |
|  * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
 | |
|  * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
 | |
|  *
 | |
|  * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | |
|  * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | |
|  * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | |
|  * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | |
|  * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | |
|  *
 | |
|  * ************ Custom codes - This can change to suit future G-code regulations
 | |
|  * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
 | |
|  * M999 - Restart after being stopped by error
 | |
|  *
 | |
|  * "T" Codes
 | |
|  *
 | |
|  * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| 
 | |
| #include "ultralcd.h"
 | |
| #include "planner.h"
 | |
| #include "stepper.h"
 | |
| #include "endstops.h"
 | |
| #include "temperature.h"
 | |
| #include "cardreader.h"
 | |
| #include "configuration_store.h"
 | |
| #include "language.h"
 | |
| #include "pins_arduino.h"
 | |
| #include "math.h"
 | |
| #include "nozzle.h"
 | |
| #include "duration_t.h"
 | |
| #include "types.h"
 | |
| #include "gcode.h"
 | |
| 
 | |
| #if HAS_ABL
 | |
|   #include "vector_3.h"
 | |
|   #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|     #include "qr_solve.h"
 | |
|   #endif
 | |
| #elif ENABLED(MESH_BED_LEVELING)
 | |
|   #include "mesh_bed_leveling.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|   #include "planner_bezier.h"
 | |
| #endif
 | |
| 
 | |
| #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
 | |
|   #include "buzzer.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(USE_WATCHDOG)
 | |
|   #include "watchdog.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BLINKM)
 | |
|   #include "blinkm.h"
 | |
|   #include "Wire.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(PCA9632)
 | |
|   #include "pca9632.h"
 | |
| #endif
 | |
| 
 | |
| #if HAS_SERVOS
 | |
|   #include "servo.h"
 | |
| #endif
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|   #include "stepper_dac.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
|   #include "twibus.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|   #include "I2CPositionEncoder.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|   #include "endstop_interrupts.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|   void gcode_M100();
 | |
|   void M100_dump_routine(const char * const title, const char *start, const char *end);
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
|   CardReader card;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
|   TWIBus i2c;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(G38_PROBE_TARGET)
 | |
|   bool G38_move = false,
 | |
|        G38_endstop_hit = false;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|   #include "ubl.h"
 | |
|   extern bool defer_return_to_status;
 | |
|   extern bool ubl_lcd_map_control;
 | |
|   unified_bed_leveling ubl;
 | |
|   #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
 | |
|                            && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
 | |
|                            && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
 | |
|                            && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 )  \
 | |
|                            || isnan(ubl.z_values[0][0]))
 | |
| #endif
 | |
| 
 | |
| bool Running = true;
 | |
| 
 | |
| uint8_t marlin_debug_flags = DEBUG_NONE;
 | |
| 
 | |
| /**
 | |
|  * Cartesian Current Position
 | |
|  *   Used to track the logical position as moves are queued.
 | |
|  *   Used by 'line_to_current_position' to do a move after changing it.
 | |
|  *   Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
 | |
|  */
 | |
| float current_position[XYZE] = { 0.0 };
 | |
| 
 | |
| /**
 | |
|  * Cartesian Destination
 | |
|  *   A temporary position, usually applied to 'current_position'.
 | |
|  *   Set with 'gcode_get_destination' or 'set_destination_to_current'.
 | |
|  *   'line_to_destination' sets 'current_position' to 'destination'.
 | |
|  */
 | |
| float destination[XYZE] = { 0.0 };
 | |
| 
 | |
| /**
 | |
|  * axis_homed
 | |
|  *   Flags that each linear axis was homed.
 | |
|  *   XYZ on cartesian, ABC on delta, ABZ on SCARA.
 | |
|  *
 | |
|  * axis_known_position
 | |
|  *   Flags that the position is known in each linear axis. Set when homed.
 | |
|  *   Cleared whenever a stepper powers off, potentially losing its position.
 | |
|  */
 | |
| bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
 | |
| 
 | |
| /**
 | |
|  * GCode line number handling. Hosts may opt to include line numbers when
 | |
|  * sending commands to Marlin, and lines will be checked for sequentiality.
 | |
|  * M110 N<int> sets the current line number.
 | |
|  */
 | |
| static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
 | |
| 
 | |
| /**
 | |
|  * GCode Command Queue
 | |
|  * A simple ring buffer of BUFSIZE command strings.
 | |
|  *
 | |
|  * Commands are copied into this buffer by the command injectors
 | |
|  * (immediate, serial, sd card) and they are processed sequentially by
 | |
|  * the main loop. The process_next_command function parses the next
 | |
|  * command and hands off execution to individual handler functions.
 | |
|  */
 | |
| uint8_t commands_in_queue = 0; // Count of commands in the queue
 | |
| static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
 | |
|                cmd_queue_index_w = 0; // Ring buffer write position
 | |
| #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|   char command_queue[BUFSIZE][MAX_CMD_SIZE];  // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
 | |
| #else                                         // This can be collapsed back to the way it was soon.
 | |
| static char command_queue[BUFSIZE][MAX_CMD_SIZE];
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Next Injected Command pointer. NULL if no commands are being injected.
 | |
|  * Used by Marlin internally to ensure that commands initiated from within
 | |
|  * are enqueued ahead of any pending serial or sd card commands.
 | |
|  */
 | |
| static const char *injected_commands_P = NULL;
 | |
| 
 | |
| #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|   TempUnit input_temp_units = TEMPUNIT_C;
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Feed rates are often configured with mm/m
 | |
|  * but the planner and stepper like mm/s units.
 | |
|  */
 | |
| static const float homing_feedrate_mm_s[] PROGMEM = {
 | |
|   #if ENABLED(DELTA)
 | |
|     MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
 | |
|   #else
 | |
|     MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
 | |
|   #endif
 | |
|   MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
 | |
| };
 | |
| FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
 | |
| 
 | |
| float feedrate_mm_s = MMM_TO_MMS(1500.0);
 | |
| static float saved_feedrate_mm_s;
 | |
| int16_t feedrate_percentage = 100, saved_feedrate_percentage,
 | |
|     flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
 | |
| 
 | |
| bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
 | |
|      volumetric_enabled =
 | |
|         #if ENABLED(VOLUMETRIC_DEFAULT_ON)
 | |
|           true
 | |
|         #else
 | |
|           false
 | |
|         #endif
 | |
|       ;
 | |
| float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
 | |
|       volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
 | |
| 
 | |
| #if HAS_WORKSPACE_OFFSET
 | |
|   #if HAS_POSITION_SHIFT
 | |
|     // The distance that XYZ has been offset by G92. Reset by G28.
 | |
|     float position_shift[XYZ] = { 0 };
 | |
|   #endif
 | |
|   #if HAS_HOME_OFFSET
 | |
|     // This offset is added to the configured home position.
 | |
|     // Set by M206, M428, or menu item. Saved to EEPROM.
 | |
|     float home_offset[XYZ] = { 0 };
 | |
|   #endif
 | |
|   #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
 | |
|     // The above two are combined to save on computes
 | |
|     float workspace_offset[XYZ] = { 0 };
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| // Software Endstops are based on the configured limits.
 | |
| #if HAS_SOFTWARE_ENDSTOPS
 | |
|   bool soft_endstops_enabled = true;
 | |
| #endif
 | |
| float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
 | |
|       soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
 | |
| 
 | |
| #if FAN_COUNT > 0
 | |
|   int16_t fanSpeeds[FAN_COUNT] = { 0 };
 | |
|   #if ENABLED(PROBING_FANS_OFF)
 | |
|     bool fans_paused = false;
 | |
|     int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| // The active extruder (tool). Set with T<extruder> command.
 | |
| uint8_t active_extruder = 0;
 | |
| 
 | |
| // Relative Mode. Enable with G91, disable with G90.
 | |
| static bool relative_mode = false;
 | |
| 
 | |
| // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
 | |
| volatile bool wait_for_heatup = true;
 | |
| 
 | |
| // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
 | |
| #if HAS_RESUME_CONTINUE
 | |
|   volatile bool wait_for_user = false;
 | |
| #endif
 | |
| 
 | |
| const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
 | |
| 
 | |
| // Number of characters read in the current line of serial input
 | |
| static int serial_count = 0;
 | |
| 
 | |
| // Inactivity shutdown
 | |
| millis_t previous_cmd_ms = 0;
 | |
| static millis_t max_inactive_time = 0;
 | |
| static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
 | |
| 
 | |
| // Print Job Timer
 | |
| #if ENABLED(PRINTCOUNTER)
 | |
|   PrintCounter print_job_timer = PrintCounter();
 | |
| #else
 | |
|   Stopwatch print_job_timer = Stopwatch();
 | |
| #endif
 | |
| 
 | |
| // Buzzer - I2C on the LCD or a BEEPER_PIN
 | |
| #if ENABLED(LCD_USE_I2C_BUZZER)
 | |
|   #define BUZZ(d,f) lcd_buzz(d, f)
 | |
| #elif PIN_EXISTS(BEEPER)
 | |
|   Buzzer buzzer;
 | |
|   #define BUZZ(d,f) buzzer.tone(d, f)
 | |
| #else
 | |
|   #define BUZZ(d,f) NOOP
 | |
| #endif
 | |
| 
 | |
| static uint8_t target_extruder;
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
|   float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| #endif
 | |
| 
 | |
| #if HAS_ABL
 | |
|   float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
 | |
|   #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
 | |
| #elif defined(XY_PROBE_SPEED)
 | |
|   #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
 | |
| #else
 | |
|   #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|   #if ENABLED(DELTA)
 | |
|     #define ADJUST_DELTA(V) \
 | |
|       if (planner.abl_enabled) { \
 | |
|         const float zadj = bilinear_z_offset(V); \
 | |
|         delta[A_AXIS] += zadj; \
 | |
|         delta[B_AXIS] += zadj; \
 | |
|         delta[C_AXIS] += zadj; \
 | |
|       }
 | |
|   #else
 | |
|     #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
 | |
|   #endif
 | |
| #elif IS_KINEMATIC
 | |
|   #define ADJUST_DELTA(V) NOOP
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|   float z_endstop_adj =
 | |
|     #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
 | |
|       Z_DUAL_ENDSTOPS_ADJUSTMENT
 | |
|     #else
 | |
|       0
 | |
|     #endif
 | |
|   ;
 | |
| #endif
 | |
| 
 | |
| // Extruder offsets
 | |
| #if HOTENDS > 1
 | |
|   float hotend_offset[XYZ][HOTENDS];
 | |
| #endif
 | |
| 
 | |
| #if HAS_Z_SERVO_ENDSTOP
 | |
|   const int z_servo_angle[2] = Z_SERVO_ANGLES;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BARICUDA)
 | |
|   int baricuda_valve_pressure = 0;
 | |
|   int baricuda_e_to_p_pressure = 0;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   bool autoretract_enabled = false;
 | |
|   bool retracted[EXTRUDERS] = { false };
 | |
|   bool retracted_swap[EXTRUDERS] = { false };
 | |
| 
 | |
|   float retract_length = RETRACT_LENGTH;
 | |
|   float retract_length_swap = RETRACT_LENGTH_SWAP;
 | |
|   float retract_feedrate_mm_s = RETRACT_FEEDRATE;
 | |
|   float retract_zlift = RETRACT_ZLIFT;
 | |
|   float retract_recover_length = RETRACT_RECOVER_LENGTH;
 | |
|   float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | |
|   float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if HAS_POWER_SWITCH
 | |
|   bool powersupply_on =
 | |
|     #if ENABLED(PS_DEFAULT_OFF)
 | |
|       false
 | |
|     #else
 | |
|       true
 | |
|     #endif
 | |
|   ;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
| 
 | |
|   float delta[ABC],
 | |
|         endstop_adj[ABC] = { 0 };
 | |
| 
 | |
|   // These values are loaded or reset at boot time when setup() calls
 | |
|   // settings.load(), which calls recalc_delta_settings().
 | |
|   float delta_radius,
 | |
|         delta_tower_angle_trim[2],
 | |
|         delta_tower[ABC][2],
 | |
|         delta_diagonal_rod,
 | |
|         delta_calibration_radius,
 | |
|         delta_diagonal_rod_2_tower[ABC],
 | |
|         delta_segments_per_second,
 | |
|         delta_clip_start_height = Z_MAX_POS;
 | |
| 
 | |
|   float delta_safe_distance_from_top();
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|   int bilinear_grid_spacing[2], bilinear_start[2];
 | |
|   float bilinear_grid_factor[2],
 | |
|         z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
 | |
| #endif
 | |
| 
 | |
| #if IS_SCARA
 | |
|   // Float constants for SCARA calculations
 | |
|   const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
 | |
|               L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
 | |
|               L2_2 = sq(float(L2));
 | |
| 
 | |
|   float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
 | |
|         delta[ABC];
 | |
| #endif
 | |
| 
 | |
| float cartes[XYZ] = { 0 };
 | |
| 
 | |
| #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
|   bool filament_sensor = false;                                 // M405 turns on filament sensor control. M406 turns it off.
 | |
|   float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA,  // Nominal filament width. Change with M404.
 | |
|         filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA;    // Measured filament diameter
 | |
|   uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM,                 // Distance delay setting
 | |
|           measurement_delay[MAX_MEASUREMENT_DELAY + 1];         // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
 | |
|   int8_t filwidth_delay_index[2] = { 0, -1 };                   // Indexes into ring buffer
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|   static bool filament_ran_out = false;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
|   AdvancedPauseMenuResponse advanced_pause_menu_response;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
|   float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
 | |
|   #if MIXING_VIRTUAL_TOOLS > 1
 | |
|     float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| static bool send_ok[BUFSIZE];
 | |
| 
 | |
| #if HAS_SERVOS
 | |
|   Servo servo[NUM_SERVOS];
 | |
|   #define MOVE_SERVO(I, P) servo[I].move(P)
 | |
|   #if HAS_Z_SERVO_ENDSTOP
 | |
|     #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
 | |
|     #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CHDK
 | |
|   millis_t chdkHigh = 0;
 | |
|   bool chdkActive = false;
 | |
| #endif
 | |
| 
 | |
| #ifdef AUTOMATIC_CURRENT_CONTROL
 | |
|   bool auto_current_control = 0;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|   int lpq_len = 20;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
|   MarlinBusyState busy_state = NOT_BUSY;
 | |
|   static millis_t next_busy_signal_ms = 0;
 | |
|   uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
 | |
| #else
 | |
|   #define host_keepalive() NOOP
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|   I2CPositionEncodersMgr I2CPEM;
 | |
|   uint8_t blockBufferIndexRef = 0;
 | |
|   millis_t lastUpdateMillis;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(CNC_WORKSPACE_PLANES)
 | |
|   static WorkspacePlane workspace_plane = PLANE_XY;
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
 | |
| FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
 | |
| 
 | |
| #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
 | |
|   static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
 | |
|   static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
 | |
|   typedef void __void_##CONFIG##__
 | |
| 
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,   MIN_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,   MAX_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,  HOME_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, max_length,     MAX_LENGTH);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm,   HOME_BUMP_MM);
 | |
| XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
 | |
| 
 | |
| /**
 | |
|  * ***************************************************************************
 | |
|  * ******************************** FUNCTIONS ********************************
 | |
|  * ***************************************************************************
 | |
|  */
 | |
| 
 | |
| void stop();
 | |
| 
 | |
| void get_available_commands();
 | |
| void process_next_command();
 | |
| void prepare_move_to_destination();
 | |
| 
 | |
| void get_cartesian_from_steppers();
 | |
| void set_current_from_steppers_for_axis(const AxisEnum axis);
 | |
| 
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
|   void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|   void plan_cubic_move(const float offset[4]);
 | |
| #endif
 | |
| 
 | |
| void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
 | |
| void report_current_position();
 | |
| void report_current_position_detail();
 | |
| 
 | |
| #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|   void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
 | |
|     serialprintPGM(prefix);
 | |
|     SERIAL_CHAR('(');
 | |
|     SERIAL_ECHO(x);
 | |
|     SERIAL_ECHOPAIR(", ", y);
 | |
|     SERIAL_ECHOPAIR(", ", z);
 | |
|     SERIAL_CHAR(')');
 | |
|     if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
|   void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
 | |
|     print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
 | |
|   }
 | |
| 
 | |
|   #if HAS_ABL
 | |
|     void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
 | |
|       print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #define DEBUG_POS(SUFFIX,VAR) do { \
 | |
|     print_xyz(PSTR("  " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * sync_plan_position
 | |
|  *
 | |
|  * Set the planner/stepper positions directly from current_position with
 | |
|  * no kinematic translation. Used for homing axes and cartesian/core syncing.
 | |
|  */
 | |
| void sync_plan_position() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
 | |
|   #endif
 | |
|   planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| }
 | |
| inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
 | |
| 
 | |
| #if IS_KINEMATIC
 | |
| 
 | |
|   inline void sync_plan_position_kinematic() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
 | |
|     #endif
 | |
|     planner.set_position_mm_kinematic(current_position);
 | |
|   }
 | |
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
 | |
| 
 | |
| #else
 | |
| 
 | |
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
|   #include "SdFatUtil.h"
 | |
|   int freeMemory() { return SdFatUtil::FreeRam(); }
 | |
| #else
 | |
| extern "C" {
 | |
|   extern char __bss_end;
 | |
|   extern char __heap_start;
 | |
|   extern void* __brkval;
 | |
| 
 | |
|   int freeMemory() {
 | |
|     int free_memory;
 | |
|     if ((int)__brkval == 0)
 | |
|       free_memory = ((int)&free_memory) - ((int)&__bss_end);
 | |
|     else
 | |
|       free_memory = ((int)&free_memory) - ((int)__brkval);
 | |
|     return free_memory;
 | |
|   }
 | |
| }
 | |
| #endif // !SDSUPPORT
 | |
| 
 | |
| #if ENABLED(DIGIPOT_I2C)
 | |
|   extern void digipot_i2c_set_current(uint8_t channel, float current);
 | |
|   extern void digipot_i2c_init();
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Inject the next "immediate" command, when possible, onto the front of the queue.
 | |
|  * Return true if any immediate commands remain to inject.
 | |
|  */
 | |
| static bool drain_injected_commands_P() {
 | |
|   if (injected_commands_P != NULL) {
 | |
|     size_t i = 0;
 | |
|     char c, cmd[30];
 | |
|     strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
 | |
|     cmd[sizeof(cmd) - 1] = '\0';
 | |
|     while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
 | |
|     cmd[i] = '\0';
 | |
|     if (enqueue_and_echo_command(cmd))     // success?
 | |
|       injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
 | |
|   }
 | |
|   return (injected_commands_P != NULL);    // return whether any more remain
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Record one or many commands to run from program memory.
 | |
|  * Aborts the current queue, if any.
 | |
|  * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
 | |
|  */
 | |
| void enqueue_and_echo_commands_P(const char * const pgcode) {
 | |
|   injected_commands_P = pgcode;
 | |
|   drain_injected_commands_P(); // first command executed asap (when possible)
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Clear the Marlin command queue
 | |
|  */
 | |
| void clear_command_queue() {
 | |
|   cmd_queue_index_r = cmd_queue_index_w;
 | |
|   commands_in_queue = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Once a new command is in the ring buffer, call this to commit it
 | |
|  */
 | |
| inline void _commit_command(bool say_ok) {
 | |
|   send_ok[cmd_queue_index_w] = say_ok;
 | |
|   if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
 | |
|   commands_in_queue++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Copy a command from RAM into the main command buffer.
 | |
|  * Return true if the command was successfully added.
 | |
|  * Return false for a full buffer, or if the 'command' is a comment.
 | |
|  */
 | |
| inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
 | |
|   if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
 | |
|   strcpy(command_queue[cmd_queue_index_w], cmd);
 | |
|   _commit_command(say_ok);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Enqueue with Serial Echo
 | |
|  */
 | |
| bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
 | |
|   if (_enqueuecommand(cmd, say_ok)) {
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
 | |
|     SERIAL_CHAR('"');
 | |
|     SERIAL_EOL();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void setup_killpin() {
 | |
|   #if HAS_KILL
 | |
|     SET_INPUT_PULLUP(KILL_PIN);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
| 
 | |
|   void setup_filrunoutpin() {
 | |
|     #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
 | |
|       SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
 | |
|     #else
 | |
|       SET_INPUT(FIL_RUNOUT_PIN);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void setup_homepin(void) {
 | |
|   #if HAS_HOME
 | |
|     SET_INPUT_PULLUP(HOME_PIN);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void setup_powerhold() {
 | |
|   #if HAS_SUICIDE
 | |
|     OUT_WRITE(SUICIDE_PIN, HIGH);
 | |
|   #endif
 | |
|   #if HAS_POWER_SWITCH
 | |
|     #if ENABLED(PS_DEFAULT_OFF)
 | |
|       OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|     #else
 | |
|       OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | |
|     #endif
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void suicide() {
 | |
|   #if HAS_SUICIDE
 | |
|     OUT_WRITE(SUICIDE_PIN, LOW);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void servo_init() {
 | |
|   #if NUM_SERVOS >= 1 && HAS_SERVO_0
 | |
|     servo[0].attach(SERVO0_PIN);
 | |
|     servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 2 && HAS_SERVO_1
 | |
|     servo[1].attach(SERVO1_PIN);
 | |
|     servo[1].detach();
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 3 && HAS_SERVO_2
 | |
|     servo[2].attach(SERVO2_PIN);
 | |
|     servo[2].detach();
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 4 && HAS_SERVO_3
 | |
|     servo[3].attach(SERVO3_PIN);
 | |
|     servo[3].detach();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z_SERVO_ENDSTOP
 | |
|     /**
 | |
|      * Set position of Z Servo Endstop
 | |
|      *
 | |
|      * The servo might be deployed and positioned too low to stow
 | |
|      * when starting up the machine or rebooting the board.
 | |
|      * There's no way to know where the nozzle is positioned until
 | |
|      * homing has been done - no homing with z-probe without init!
 | |
|      *
 | |
|      */
 | |
|     STOW_Z_SERVO();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Stepper Reset (RigidBoard, et.al.)
 | |
|  */
 | |
| #if HAS_STEPPER_RESET
 | |
|   void disableStepperDrivers() {
 | |
|     OUT_WRITE(STEPPER_RESET_PIN, LOW);  // drive it down to hold in reset motor driver chips
 | |
|   }
 | |
|   void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); }  // set to input, which allows it to be pulled high by pullups
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
 | |
| 
 | |
|   void i2c_on_receive(int bytes) { // just echo all bytes received to serial
 | |
|     i2c.receive(bytes);
 | |
|   }
 | |
| 
 | |
|   void i2c_on_request() {          // just send dummy data for now
 | |
|     i2c.reply("Hello World!\n");
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if HAS_COLOR_LEDS
 | |
| 
 | |
|   void set_led_color(
 | |
|     const uint8_t r, const uint8_t g, const uint8_t b
 | |
|       #if ENABLED(RGBW_LED)
 | |
|         , const uint8_t w=0
 | |
|       #endif
 | |
|   ) {
 | |
| 
 | |
|     #if ENABLED(BLINKM)
 | |
| 
 | |
|       // This variant uses i2c to send the RGB components to the device.
 | |
|       SendColors(r, g, b);
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
 | |
| 
 | |
|       // This variant uses 3 separate pins for the RGB components.
 | |
|       // If the pins can do PWM then their intensity will be set.
 | |
|       WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
 | |
|       WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
 | |
|       WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
 | |
|       analogWrite(RGB_LED_R_PIN, r);
 | |
|       analogWrite(RGB_LED_G_PIN, g);
 | |
|       analogWrite(RGB_LED_B_PIN, b);
 | |
| 
 | |
|       #if ENABLED(RGBW_LED)
 | |
|         WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
 | |
|         analogWrite(RGB_LED_W_PIN, w);
 | |
|       #endif
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PCA9632)
 | |
|       // Update I2C LED driver
 | |
|       PCA9632_SetColor(r, g, b);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_COLOR_LEDS
 | |
| 
 | |
| void gcode_line_error(const char* err, bool doFlush = true) {
 | |
|   SERIAL_ERROR_START();
 | |
|   serialprintPGM(err);
 | |
|   SERIAL_ERRORLN(gcode_LastN);
 | |
|   //Serial.println(gcode_N);
 | |
|   if (doFlush) FlushSerialRequestResend();
 | |
|   serial_count = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get all commands waiting on the serial port and queue them.
 | |
|  * Exit when the buffer is full or when no more characters are
 | |
|  * left on the serial port.
 | |
|  */
 | |
| inline void get_serial_commands() {
 | |
|   static char serial_line_buffer[MAX_CMD_SIZE];
 | |
|   static bool serial_comment_mode = false;
 | |
| 
 | |
|   // If the command buffer is empty for too long,
 | |
|   // send "wait" to indicate Marlin is still waiting.
 | |
|   #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
 | |
|     static millis_t last_command_time = 0;
 | |
|     const millis_t ms = millis();
 | |
|     if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
 | |
|       SERIAL_ECHOLNPGM(MSG_WAIT);
 | |
|       last_command_time = ms;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Loop while serial characters are incoming and the queue is not full
 | |
|    */
 | |
|   while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
 | |
| 
 | |
|     char serial_char = MYSERIAL.read();
 | |
| 
 | |
|     /**
 | |
|      * If the character ends the line
 | |
|      */
 | |
|     if (serial_char == '\n' || serial_char == '\r') {
 | |
| 
 | |
|       serial_comment_mode = false; // end of line == end of comment
 | |
| 
 | |
|       if (!serial_count) continue; // skip empty lines
 | |
| 
 | |
|       serial_line_buffer[serial_count] = 0; // terminate string
 | |
|       serial_count = 0; //reset buffer
 | |
| 
 | |
|       char* command = serial_line_buffer;
 | |
| 
 | |
|       while (*command == ' ') command++; // skip any leading spaces
 | |
|       char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
 | |
|            *apos = strchr(command, '*');
 | |
| 
 | |
|       if (npos) {
 | |
| 
 | |
|         bool M110 = strstr_P(command, PSTR("M110")) != NULL;
 | |
| 
 | |
|         if (M110) {
 | |
|           char* n2pos = strchr(command + 4, 'N');
 | |
|           if (n2pos) npos = n2pos;
 | |
|         }
 | |
| 
 | |
|         gcode_N = strtol(npos + 1, NULL, 10);
 | |
| 
 | |
|         if (gcode_N != gcode_LastN + 1 && !M110) {
 | |
|           gcode_line_error(PSTR(MSG_ERR_LINE_NO));
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (apos) {
 | |
|           byte checksum = 0, count = 0;
 | |
|           while (command[count] != '*') checksum ^= command[count++];
 | |
| 
 | |
|           if (strtol(apos + 1, NULL, 10) != checksum) {
 | |
|             gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
 | |
|             return;
 | |
|           }
 | |
|           // if no errors, continue parsing
 | |
|         }
 | |
|         else {
 | |
|           gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         gcode_LastN = gcode_N;
 | |
|         // if no errors, continue parsing
 | |
|       }
 | |
|       else if (apos) { // No '*' without 'N'
 | |
|         gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Movement commands alert when stopped
 | |
|       if (IsStopped()) {
 | |
|         char* gpos = strchr(command, 'G');
 | |
|         if (gpos) {
 | |
|           const int codenum = strtol(gpos + 1, NULL, 10);
 | |
|           switch (codenum) {
 | |
|             case 0:
 | |
|             case 1:
 | |
|             case 2:
 | |
|             case 3:
 | |
|               SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|               LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|               break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       #if DISABLED(EMERGENCY_PARSER)
 | |
|         // If command was e-stop process now
 | |
|         if (strcmp(command, "M108") == 0) {
 | |
|           wait_for_heatup = false;
 | |
|           #if ENABLED(ULTIPANEL)
 | |
|             wait_for_user = false;
 | |
|           #endif
 | |
|         }
 | |
|         if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
 | |
|         if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
 | |
|       #endif
 | |
| 
 | |
|       #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
 | |
|         last_command_time = ms;
 | |
|       #endif
 | |
| 
 | |
|       // Add the command to the queue
 | |
|       _enqueuecommand(serial_line_buffer, true);
 | |
|     }
 | |
|     else if (serial_count >= MAX_CMD_SIZE - 1) {
 | |
|       // Keep fetching, but ignore normal characters beyond the max length
 | |
|       // The command will be injected when EOL is reached
 | |
|     }
 | |
|     else if (serial_char == '\\') {  // Handle escapes
 | |
|       if (MYSERIAL.available() > 0) {
 | |
|         // if we have one more character, copy it over
 | |
|         serial_char = MYSERIAL.read();
 | |
|         if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
 | |
|       }
 | |
|       // otherwise do nothing
 | |
|     }
 | |
|     else { // it's not a newline, carriage return or escape char
 | |
|       if (serial_char == ';') serial_comment_mode = true;
 | |
|       if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
 | |
|     }
 | |
| 
 | |
|   } // queue has space, serial has data
 | |
| }
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * Get commands from the SD Card until the command buffer is full
 | |
|    * or until the end of the file is reached. The special character '#'
 | |
|    * can also interrupt buffering.
 | |
|    */
 | |
|   inline void get_sdcard_commands() {
 | |
|     static bool stop_buffering = false,
 | |
|                 sd_comment_mode = false;
 | |
| 
 | |
|     if (!card.sdprinting) return;
 | |
| 
 | |
|     /**
 | |
|      * '#' stops reading from SD to the buffer prematurely, so procedural
 | |
|      * macro calls are possible. If it occurs, stop_buffering is triggered
 | |
|      * and the buffer is run dry; this character _can_ occur in serial com
 | |
|      * due to checksums, however, no checksums are used in SD printing.
 | |
|      */
 | |
| 
 | |
|     if (commands_in_queue == 0) stop_buffering = false;
 | |
| 
 | |
|     uint16_t sd_count = 0;
 | |
|     bool card_eof = card.eof();
 | |
|     while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
 | |
|       const int16_t n = card.get();
 | |
|       char sd_char = (char)n;
 | |
|       card_eof = card.eof();
 | |
|       if (card_eof || n == -1
 | |
|           || sd_char == '\n' || sd_char == '\r'
 | |
|           || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
 | |
|       ) {
 | |
|         if (card_eof) {
 | |
|           SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
 | |
|           card.printingHasFinished();
 | |
|           #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|             LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
 | |
|             set_led_color(0, 255, 0); // Green
 | |
|             #if HAS_RESUME_CONTINUE
 | |
|               enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
 | |
|             #else
 | |
|               safe_delay(1000);
 | |
|             #endif
 | |
|             set_led_color(0, 0, 0);   // OFF
 | |
|           #endif
 | |
|           card.checkautostart(true);
 | |
|         }
 | |
|         else if (n == -1) {
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
 | |
|         }
 | |
|         if (sd_char == '#') stop_buffering = true;
 | |
| 
 | |
|         sd_comment_mode = false; // for new command
 | |
| 
 | |
|         if (!sd_count) continue; // skip empty lines (and comment lines)
 | |
| 
 | |
|         command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
 | |
|         sd_count = 0; // clear sd line buffer
 | |
| 
 | |
|         _commit_command(false);
 | |
|       }
 | |
|       else if (sd_count >= MAX_CMD_SIZE - 1) {
 | |
|         /**
 | |
|          * Keep fetching, but ignore normal characters beyond the max length
 | |
|          * The command will be injected when EOL is reached
 | |
|          */
 | |
|       }
 | |
|       else {
 | |
|         if (sd_char == ';') sd_comment_mode = true;
 | |
|         if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * Add to the circular command queue the next command from:
 | |
|  *  - The command-injection queue (injected_commands_P)
 | |
|  *  - The active serial input (usually USB)
 | |
|  *  - The SD card file being actively printed
 | |
|  */
 | |
| void get_available_commands() {
 | |
| 
 | |
|   // if any immediate commands remain, don't get other commands yet
 | |
|   if (drain_injected_commands_P()) return;
 | |
| 
 | |
|   get_serial_commands();
 | |
| 
 | |
|   #if ENABLED(SDSUPPORT)
 | |
|     get_sdcard_commands();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set target_extruder from the T parameter or the active_extruder
 | |
|  *
 | |
|  * Returns TRUE if the target is invalid
 | |
|  */
 | |
| bool get_target_extruder_from_command(int code) {
 | |
|   if (parser.seen('T')) {
 | |
|     if (parser.value_byte() >= EXTRUDERS) {
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_CHAR('M');
 | |
|       SERIAL_ECHO(code);
 | |
|       SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", parser.value_byte());
 | |
|       return true;
 | |
|     }
 | |
|     target_extruder = parser.value_byte();
 | |
|   }
 | |
|   else
 | |
|     target_extruder = active_extruder;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
|   bool extruder_duplication_enabled = false; // Used in Dual X mode 2
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
| 
 | |
|   static float x_home_pos(const int extruder) {
 | |
|     if (extruder == 0)
 | |
|       return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
 | |
|     else
 | |
|       /**
 | |
|        * In dual carriage mode the extruder offset provides an override of the
 | |
|        * second X-carriage position when homed - otherwise X2_HOME_POS is used.
 | |
|        * This allows soft recalibration of the second extruder home position
 | |
|        * without firmware reflash (through the M218 command).
 | |
|        */
 | |
|       return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
 | |
|   }
 | |
| 
 | |
|   static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
 | |
| 
 | |
|   static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
 | |
|   static bool active_extruder_parked = false;        // used in mode 1 & 2
 | |
|   static float raised_parked_position[XYZE];         // used in mode 1
 | |
|   static millis_t delayed_move_time = 0;             // used in mode 1
 | |
|   static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
 | |
|   static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
 | |
| 
 | |
| #endif // DUAL_X_CARRIAGE
 | |
| 
 | |
| #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   /**
 | |
|    * Software endstops can be used to monitor the open end of
 | |
|    * an axis that has a hardware endstop on the other end. Or
 | |
|    * they can prevent axes from moving past endstops and grinding.
 | |
|    *
 | |
|    * To keep doing their job as the coordinate system changes,
 | |
|    * the software endstop positions must be refreshed to remain
 | |
|    * at the same positions relative to the machine.
 | |
|    */
 | |
|   void update_software_endstops(const AxisEnum axis) {
 | |
|     const float offs = 0.0
 | |
|       #if HAS_HOME_OFFSET
 | |
|         + home_offset[axis]
 | |
|       #endif
 | |
|       #if HAS_POSITION_SHIFT
 | |
|         + position_shift[axis]
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
 | |
|       workspace_offset[axis] = offs;
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (axis == X_AXIS) {
 | |
| 
 | |
|         // In Dual X mode hotend_offset[X] is T1's home position
 | |
|         float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
 | |
| 
 | |
|         if (active_extruder != 0) {
 | |
|           // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
 | |
|           soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
 | |
|           soft_endstop_max[X_AXIS] = dual_max_x + offs;
 | |
|         }
 | |
|         else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
 | |
|           // In Duplication Mode, T0 can move as far left as X_MIN_POS
 | |
|           // but not so far to the right that T1 would move past the end
 | |
|           soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
 | |
|           soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
 | |
|         }
 | |
|         else {
 | |
|           // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
 | |
|           soft_endstop_min[axis] = base_min_pos(axis) + offs;
 | |
|           soft_endstop_max[axis] = base_max_pos(axis) + offs;
 | |
|         }
 | |
|       }
 | |
|     #else
 | |
|       soft_endstop_min[axis] = base_min_pos(axis) + offs;
 | |
|       soft_endstop_max[axis] = base_max_pos(axis) + offs;
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("For ", axis_codes[axis]);
 | |
|         #if HAS_HOME_OFFSET
 | |
|           SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
 | |
|         #endif
 | |
|         #if HAS_POSITION_SHIFT
 | |
|           SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
 | |
|         #endif
 | |
|         SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
 | |
|         SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DELTA)
 | |
|       if (axis == Z_AXIS)
 | |
|         delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
 | |
| 
 | |
| #if HAS_M206_COMMAND
 | |
|   /**
 | |
|    * Change the home offset for an axis, update the current
 | |
|    * position and the software endstops to retain the same
 | |
|    * relative distance to the new home.
 | |
|    *
 | |
|    * Since this changes the current_position, code should
 | |
|    * call sync_plan_position soon after this.
 | |
|    */
 | |
|   static void set_home_offset(const AxisEnum axis, const float v) {
 | |
|     current_position[axis] += v - home_offset[axis];
 | |
|     home_offset[axis] = v;
 | |
|     update_software_endstops(axis);
 | |
|   }
 | |
| #endif // HAS_M206_COMMAND
 | |
| 
 | |
| /**
 | |
|  * Set an axis' current position to its home position (after homing).
 | |
|  *
 | |
|  * For Core and Cartesian robots this applies one-to-one when an
 | |
|  * individual axis has been homed.
 | |
|  *
 | |
|  * DELTA should wait until all homing is done before setting the XYZ
 | |
|  * current_position to home, because homing is a single operation.
 | |
|  * In the case where the axis positions are already known and previously
 | |
|  * homed, DELTA could home to X or Y individually by moving either one
 | |
|  * to the center. However, homing Z always homes XY and Z.
 | |
|  *
 | |
|  * SCARA should wait until all XY homing is done before setting the XY
 | |
|  * current_position to home, because neither X nor Y is at home until
 | |
|  * both are at home. Z can however be homed individually.
 | |
|  *
 | |
|  * Callers must sync the planner position after calling this!
 | |
|  */
 | |
| static void set_axis_is_at_home(const AxisEnum axis) {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   axis_known_position[axis] = axis_homed[axis] = true;
 | |
| 
 | |
|   #if HAS_POSITION_SHIFT
 | |
|     position_shift[axis] = 0;
 | |
|     update_software_endstops(axis);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE)
 | |
|     if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
 | |
|       current_position[X_AXIS] = x_home_pos(active_extruder);
 | |
|       return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(MORGAN_SCARA)
 | |
| 
 | |
|     /**
 | |
|      * Morgan SCARA homes XY at the same time
 | |
|      */
 | |
|     if (axis == X_AXIS || axis == Y_AXIS) {
 | |
| 
 | |
|       float homeposition[XYZ];
 | |
|       LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
 | |
| 
 | |
|       // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
 | |
|       // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
 | |
| 
 | |
|       /**
 | |
|        * Get Home position SCARA arm angles using inverse kinematics,
 | |
|        * and calculate homing offset using forward kinematics
 | |
|        */
 | |
|       inverse_kinematics(homeposition);
 | |
|       forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
 | |
| 
 | |
|       // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
 | |
|       // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
 | |
| 
 | |
|       current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
 | |
| 
 | |
|       /**
 | |
|        * SCARA home positions are based on configuration since the actual
 | |
|        * limits are determined by the inverse kinematic transform.
 | |
|        */
 | |
|       soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
 | |
|       soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
 | |
|     }
 | |
|     else
 | |
|   #endif
 | |
|   {
 | |
|     current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Z Probe Z Homing? Account for the probe's Z offset.
 | |
|    */
 | |
|   #if HAS_BED_PROBE && Z_HOME_DIR < 0
 | |
|     if (axis == Z_AXIS) {
 | |
|       #if HOMING_Z_WITH_PROBE
 | |
| 
 | |
|         current_position[Z_AXIS] -= zprobe_zoffset;
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
 | |
|             SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|       #elif ENABLED(DEBUG_LEVELING_FEATURE)
 | |
| 
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
 | |
| 
 | |
|       #endif
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       #if HAS_HOME_OFFSET
 | |
|         SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
 | |
|         SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
 | |
|       #endif
 | |
|       DEBUG_POS("", current_position);
 | |
|       SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|     I2CPEM.homed(axis);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Some planner shorthand inline functions
 | |
|  */
 | |
| inline float get_homing_bump_feedrate(const AxisEnum axis) {
 | |
|   static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
 | |
|   uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
 | |
|   if (hbd < 1) {
 | |
|     hbd = 10;
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
 | |
|   }
 | |
|   return homing_feedrate(axis) / hbd;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Move the planner to the current position from wherever it last moved
 | |
|  * (or from wherever it has been told it is located).
 | |
|  */
 | |
| inline void line_to_current_position() {
 | |
|   planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Move the planner to the position stored in the destination array, which is
 | |
|  * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
 | |
|  */
 | |
| inline void line_to_destination(const float fr_mm_s) {
 | |
|   planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
 | |
| }
 | |
| inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
 | |
| 
 | |
| inline void set_current_to_destination() { COPY(current_position, destination); }
 | |
| inline void set_destination_to_current() { COPY(destination, current_position); }
 | |
| 
 | |
| #if IS_KINEMATIC
 | |
|   /**
 | |
|    * Calculate delta, start a line, and set current_position to destination
 | |
|    */
 | |
|   void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
 | |
|     #endif
 | |
| 
 | |
|     refresh_cmd_timeout();
 | |
| 
 | |
|     #if UBL_DELTA
 | |
|       // ubl segmented line will do z-only moves in single segment
 | |
|       ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
 | |
|     #else
 | |
|       if ( current_position[X_AXIS] == destination[X_AXIS]
 | |
|         && current_position[Y_AXIS] == destination[Y_AXIS]
 | |
|         && current_position[Z_AXIS] == destination[Z_AXIS]
 | |
|         && current_position[E_AXIS] == destination[E_AXIS]
 | |
|       ) return;
 | |
| 
 | |
|       planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
 | |
|     #endif
 | |
| 
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| #endif // IS_KINEMATIC
 | |
| 
 | |
| /**
 | |
|  *  Plan a move to (X, Y, Z) and set the current_position
 | |
|  *  The final current_position may not be the one that was requested
 | |
|  */
 | |
| void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
 | |
|   const float old_feedrate_mm_s = feedrate_mm_s;
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
| 
 | |
|     if (!position_is_reachable_xy(lx, ly)) return;
 | |
| 
 | |
|     feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
 | |
| 
 | |
|     set_destination_to_current();          // sync destination at the start
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
 | |
|     #endif
 | |
| 
 | |
|     // when in the danger zone
 | |
|     if (current_position[Z_AXIS] > delta_clip_start_height) {
 | |
|       if (lz > delta_clip_start_height) {   // staying in the danger zone
 | |
|         destination[X_AXIS] = lx;           // move directly (uninterpolated)
 | |
|         destination[Y_AXIS] = ly;
 | |
|         destination[Z_AXIS] = lz;
 | |
|         prepare_uninterpolated_move_to_destination(); // set_current_to_destination
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
 | |
|         #endif
 | |
|         return;
 | |
|       }
 | |
|       else {
 | |
|         destination[Z_AXIS] = delta_clip_start_height;
 | |
|         prepare_uninterpolated_move_to_destination(); // set_current_to_destination
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (lz > current_position[Z_AXIS]) {    // raising?
 | |
|       destination[Z_AXIS] = lz;
 | |
|       prepare_uninterpolated_move_to_destination();   // set_current_to_destination
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     destination[X_AXIS] = lx;
 | |
|     destination[Y_AXIS] = ly;
 | |
|     prepare_move_to_destination();         // set_current_to_destination
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
 | |
|     #endif
 | |
| 
 | |
|     if (lz < current_position[Z_AXIS]) {    // lowering?
 | |
|       destination[Z_AXIS] = lz;
 | |
|       prepare_uninterpolated_move_to_destination();   // set_current_to_destination
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|   #elif IS_SCARA
 | |
| 
 | |
|     if (!position_is_reachable_xy(lx, ly)) return;
 | |
| 
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     // If Z needs to raise, do it before moving XY
 | |
|     if (destination[Z_AXIS] < lz) {
 | |
|       destination[Z_AXIS] = lz;
 | |
|       prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
 | |
|     }
 | |
| 
 | |
|     destination[X_AXIS] = lx;
 | |
|     destination[Y_AXIS] = ly;
 | |
|     prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
 | |
| 
 | |
|     // If Z needs to lower, do it after moving XY
 | |
|     if (destination[Z_AXIS] > lz) {
 | |
|       destination[Z_AXIS] = lz;
 | |
|       prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
 | |
|     }
 | |
| 
 | |
|   #else
 | |
| 
 | |
|     // If Z needs to raise, do it before moving XY
 | |
|     if (current_position[Z_AXIS] < lz) {
 | |
|       feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
 | |
|       current_position[Z_AXIS] = lz;
 | |
|       line_to_current_position();
 | |
|     }
 | |
| 
 | |
|     feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
 | |
|     current_position[X_AXIS] = lx;
 | |
|     current_position[Y_AXIS] = ly;
 | |
|     line_to_current_position();
 | |
| 
 | |
|     // If Z needs to lower, do it after moving XY
 | |
|     if (current_position[Z_AXIS] > lz) {
 | |
|       feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
 | |
|       current_position[Z_AXIS] = lz;
 | |
|       line_to_current_position();
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   stepper.synchronize();
 | |
| 
 | |
|   feedrate_mm_s = old_feedrate_mm_s;
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
 | |
|   #endif
 | |
| }
 | |
| void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
 | |
|   do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
 | |
| }
 | |
| void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
 | |
|   do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
 | |
| }
 | |
| void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
 | |
|   do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Prepare to do endstop or probe moves
 | |
| // with custom feedrates.
 | |
| //
 | |
| //  - Save current feedrates
 | |
| //  - Reset the rate multiplier
 | |
| //  - Reset the command timeout
 | |
| //  - Enable the endstops (for endstop moves)
 | |
| //
 | |
| static void setup_for_endstop_or_probe_move() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
 | |
|   #endif
 | |
|   saved_feedrate_mm_s = feedrate_mm_s;
 | |
|   saved_feedrate_percentage = feedrate_percentage;
 | |
|   feedrate_percentage = 100;
 | |
|   refresh_cmd_timeout();
 | |
| }
 | |
| 
 | |
| static void clean_up_after_endstop_or_probe_move() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
 | |
|   #endif
 | |
|   feedrate_mm_s = saved_feedrate_mm_s;
 | |
|   feedrate_percentage = saved_feedrate_percentage;
 | |
|   refresh_cmd_timeout();
 | |
| }
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
|   /**
 | |
|    * Raise Z to a minimum height to make room for a probe to move
 | |
|    */
 | |
|   inline void do_probe_raise(const float z_raise) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
 | |
|         SERIAL_CHAR(')');
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     float z_dest = LOGICAL_Z_POSITION(z_raise);
 | |
|     if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
 | |
|     #if ENABLED(DELTA)
 | |
|       z_dest -= home_offset[Z_AXIS];
 | |
|     #endif
 | |
| 
 | |
|     if (z_dest > current_position[Z_AXIS])
 | |
|       do_blocking_move_to_z(z_dest);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
 | |
| 
 | |
|   bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
 | |
|     #if ENABLED(HOME_AFTER_DEACTIVATE)
 | |
|       const bool xx = x && !axis_known_position[X_AXIS],
 | |
|                  yy = y && !axis_known_position[Y_AXIS],
 | |
|                  zz = z && !axis_known_position[Z_AXIS];
 | |
|     #else
 | |
|       const bool xx = x && !axis_homed[X_AXIS],
 | |
|                  yy = y && !axis_homed[Y_AXIS],
 | |
|                  zz = z && !axis_homed[Z_AXIS];
 | |
|     #endif
 | |
|     if (xx || yy || zz) {
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOPGM(MSG_HOME " ");
 | |
|       if (xx) SERIAL_ECHOPGM(MSG_X);
 | |
|       if (yy) SERIAL_ECHOPGM(MSG_Y);
 | |
|       if (zz) SERIAL_ECHOPGM(MSG_Z);
 | |
|       SERIAL_ECHOLNPGM(" " MSG_FIRST);
 | |
| 
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
 | |
|       #endif
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|   #ifndef SLED_DOCKING_OFFSET
 | |
|     #define SLED_DOCKING_OFFSET 0
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Method to dock/undock a sled designed by Charles Bell.
 | |
|    *
 | |
|    * stow[in]     If false, move to MAX_X and engage the solenoid
 | |
|    *              If true, move to MAX_X and release the solenoid
 | |
|    */
 | |
|   static void dock_sled(bool stow) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("dock_sled(", stow);
 | |
|         SERIAL_CHAR(')');
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     // Dock sled a bit closer to ensure proper capturing
 | |
|     do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
 | |
| 
 | |
|     #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
 | |
|       WRITE(SOL1_PIN, !stow); // switch solenoid
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(Z_PROBE_ALLEN_KEY)
 | |
| 
 | |
|   FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
 | |
|     do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
 | |
|   }
 | |
| 
 | |
|   void run_deploy_moves_script() {
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
 | |
|       do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
 | |
|       do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
 | |
|       do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
 | |
|       do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
 | |
|       do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   void run_stow_moves_script() {
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
 | |
|       do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
 | |
|       do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
 | |
|       do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
 | |
|       do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
 | |
|       #endif
 | |
|       const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
 | |
|       do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(PROBING_FANS_OFF)
 | |
| 
 | |
|   void fans_pause(const bool p) {
 | |
|     if (p != fans_paused) {
 | |
|       fans_paused = p;
 | |
|       if (p)
 | |
|         for (uint8_t x = 0; x < FAN_COUNT; x++) {
 | |
|           paused_fanSpeeds[x] = fanSpeeds[x];
 | |
|           fanSpeeds[x] = 0;
 | |
|         }
 | |
|       else
 | |
|         for (uint8_t x = 0; x < FAN_COUNT; x++)
 | |
|           fanSpeeds[x] = paused_fanSpeeds[x];
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PROBING_FANS_OFF
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
 | |
|   #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
 | |
|     #if ENABLED(Z_MIN_PROBE_ENDSTOP)
 | |
|       #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
 | |
|     #else
 | |
|       #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if QUIET_PROBING
 | |
|     void probing_pause(const bool p) {
 | |
|       #if ENABLED(PROBING_HEATERS_OFF)
 | |
|         thermalManager.pause(p);
 | |
|       #endif
 | |
|       #if ENABLED(PROBING_FANS_OFF)
 | |
|         fans_pause(p);
 | |
|       #endif
 | |
|       if (p) safe_delay(25);
 | |
|     }
 | |
|   #endif // QUIET_PROBING
 | |
| 
 | |
|   #if ENABLED(BLTOUCH)
 | |
| 
 | |
|     void bltouch_command(int angle) {
 | |
|       servo[Z_ENDSTOP_SERVO_NR].move(angle);  // Give the BL-Touch the command and wait
 | |
|       safe_delay(BLTOUCH_DELAY);
 | |
|     }
 | |
| 
 | |
|     void set_bltouch_deployed(const bool deploy) {
 | |
|       if (deploy && TEST_BLTOUCH()) {      // If BL-Touch says it's triggered
 | |
|         bltouch_command(BLTOUCH_RESET);    //  try to reset it.
 | |
|         bltouch_command(BLTOUCH_DEPLOY);   // Also needs to deploy and stow to
 | |
|         bltouch_command(BLTOUCH_STOW);     //  clear the triggered condition.
 | |
|         safe_delay(1500);                  // Wait for internal self-test to complete.
 | |
|                                            //  (Measured completion time was 0.65 seconds
 | |
|                                            //   after reset, deploy, and stow sequence)
 | |
|         if (TEST_BLTOUCH()) {              // If it still claims to be triggered...
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
 | |
|           stop();                          // punt!
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) {
 | |
|           SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
 | |
|           SERIAL_CHAR(')');
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|   #endif // BLTOUCH
 | |
| 
 | |
|   // returns false for ok and true for failure
 | |
|   bool set_probe_deployed(bool deploy) {
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         DEBUG_POS("set_probe_deployed", current_position);
 | |
|         SERIAL_ECHOLNPAIR("deploy: ", deploy);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (endstops.z_probe_enabled == deploy) return false;
 | |
| 
 | |
|     // Make room for probe
 | |
|     do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
 | |
| 
 | |
|     // When deploying make sure BLTOUCH is not already triggered
 | |
|     #if ENABLED(BLTOUCH)
 | |
|       if (deploy && TEST_BLTOUCH()) {      // If BL-Touch says it's triggered
 | |
|         bltouch_command(BLTOUCH_RESET);    // try to reset it.
 | |
|         bltouch_command(BLTOUCH_DEPLOY);   // Also needs to deploy and stow to
 | |
|         bltouch_command(BLTOUCH_STOW);     // clear the triggered condition.
 | |
|         safe_delay(1500);                  // wait for internal self test to complete
 | |
|                                            //   measured completion time was 0.65 seconds
 | |
|                                            //   after reset, deploy & stow sequence
 | |
|         if (TEST_BLTOUCH()) {              // If it still claims to be triggered...
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
 | |
|           stop();                          // punt!
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     #elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
 | |
|       #if ENABLED(Z_PROBE_SLED)
 | |
|         #define _AUE_ARGS true, false, false
 | |
|       #else
 | |
|         #define _AUE_ARGS
 | |
|       #endif
 | |
|       if (axis_unhomed_error(_AUE_ARGS)) {
 | |
|         SERIAL_ERROR_START();
 | |
|         SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
 | |
|         stop();
 | |
|         return true;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     const float oldXpos = current_position[X_AXIS],
 | |
|                 oldYpos = current_position[Y_AXIS];
 | |
| 
 | |
|     #ifdef _TRIGGERED_WHEN_STOWED_TEST
 | |
| 
 | |
|       // If endstop is already false, the Z probe is deployed
 | |
|       if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {     // closed after the probe specific actions.
 | |
|                                                        // Would a goto be less ugly?
 | |
|         //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
 | |
|                                                        // for a triggered when stowed manual probe.
 | |
| 
 | |
|         if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
 | |
|                                                      // otherwise an Allen-Key probe can't be stowed.
 | |
|     #endif
 | |
| 
 | |
|         #if ENABLED(SOLENOID_PROBE)
 | |
| 
 | |
|           #if HAS_SOLENOID_1
 | |
|             WRITE(SOL1_PIN, deploy);
 | |
|           #endif
 | |
| 
 | |
|         #elif ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|           dock_sled(!deploy);
 | |
| 
 | |
|         #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
 | |
| 
 | |
|           servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
 | |
| 
 | |
|         #elif ENABLED(Z_PROBE_ALLEN_KEY)
 | |
| 
 | |
|           deploy ? run_deploy_moves_script() : run_stow_moves_script();
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|     #ifdef _TRIGGERED_WHEN_STOWED_TEST
 | |
|       } // _TRIGGERED_WHEN_STOWED_TEST == deploy
 | |
| 
 | |
|       if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
 | |
| 
 | |
|         if (IsRunning()) {
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM("Z-Probe failed");
 | |
|           LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | |
|         }
 | |
|         stop();
 | |
|         return true;
 | |
| 
 | |
|       } // _TRIGGERED_WHEN_STOWED_TEST == deploy
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
 | |
|     endstops.enable_z_probe(deploy);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   static void do_probe_move(float z, float fr_mm_m) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
 | |
|     #endif
 | |
| 
 | |
|     // Deploy BLTouch at the start of any probe
 | |
|     #if ENABLED(BLTOUCH)
 | |
|       set_bltouch_deployed(true);
 | |
|     #endif
 | |
| 
 | |
|     #if QUIET_PROBING
 | |
|       probing_pause(true);
 | |
|     #endif
 | |
| 
 | |
|     // Move down until probe triggered
 | |
|     do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
 | |
| 
 | |
|     #if QUIET_PROBING
 | |
|       probing_pause(false);
 | |
|     #endif
 | |
| 
 | |
|     // Retract BLTouch immediately after a probe
 | |
|     #if ENABLED(BLTOUCH)
 | |
|       set_bltouch_deployed(false);
 | |
|     #endif
 | |
| 
 | |
|     // Clear endstop flags
 | |
|     endstops.hit_on_purpose();
 | |
| 
 | |
|     // Get Z where the steppers were interrupted
 | |
|     set_current_from_steppers_for_axis(Z_AXIS);
 | |
| 
 | |
|     // Tell the planner where we actually are
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   // Do a single Z probe and return with current_position[Z_AXIS]
 | |
|   // at the height where the probe triggered.
 | |
|   static float run_z_probe() {
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
 | |
|     #endif
 | |
| 
 | |
|     // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
 | |
|     refresh_cmd_timeout();
 | |
| 
 | |
|     #if ENABLED(PROBE_DOUBLE_TOUCH)
 | |
| 
 | |
|       // Do a first probe at the fast speed
 | |
|       do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         float first_probe_z = current_position[Z_AXIS];
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
 | |
|       #endif
 | |
| 
 | |
|       // move up by the bump distance
 | |
|       do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       // If the nozzle is above the travel height then
 | |
|       // move down quickly before doing the slow probe
 | |
|       float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
 | |
|       if (zprobe_zoffset < 0) z -= zprobe_zoffset;
 | |
|       #if ENABLED(DELTA)
 | |
|         z -= home_offset[Z_AXIS];
 | |
|       #endif
 | |
|       if (z < current_position[Z_AXIS])
 | |
|         do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     // move down slowly to find bed
 | |
|     do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
 | |
|     #endif
 | |
| 
 | |
|     // Debug: compare probe heights
 | |
|     #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
 | |
|         SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
 | |
|       }
 | |
|     #endif
 | |
|     return RAW_CURRENT_POSITION(Z) + zprobe_zoffset;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * - Move to the given XY
 | |
|    * - Deploy the probe, if not already deployed
 | |
|    * - Probe the bed, get the Z position
 | |
|    * - Depending on the 'stow' flag
 | |
|    *   - Stow the probe, or
 | |
|    *   - Raise to the BETWEEN height
 | |
|    * - Return the probed Z position
 | |
|    */
 | |
|   float probe_pt(const float &x, const float &y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR(">>> probe_pt(", x);
 | |
|         SERIAL_ECHOPAIR(", ", y);
 | |
|         SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
 | |
|         SERIAL_ECHOLNPGM("stow)");
 | |
|         DEBUG_POS("", current_position);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (!position_is_reachable_by_probe_xy(x, y)) return NAN;
 | |
| 
 | |
|     const float old_feedrate_mm_s = feedrate_mm_s;
 | |
| 
 | |
|     #if ENABLED(DELTA)
 | |
|       if (current_position[Z_AXIS] > delta_clip_start_height)
 | |
|         do_blocking_move_to_z(delta_clip_start_height);
 | |
|     #endif
 | |
| 
 | |
|     // Ensure a minimum height before moving the probe
 | |
|     do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
 | |
| 
 | |
|     feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
 | |
| 
 | |
|     // Move the probe to the given XY
 | |
|     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
 | |
| 
 | |
|     if (DEPLOY_PROBE()) return NAN;
 | |
| 
 | |
|     const float measured_z = run_z_probe();
 | |
| 
 | |
|     if (!stow)
 | |
|       do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
 | |
|     else
 | |
|       if (STOW_PROBE()) return NAN;
 | |
| 
 | |
|     if (verbose_level > 2) {
 | |
|       SERIAL_PROTOCOLPGM("Bed X: ");
 | |
|       SERIAL_PROTOCOL_F(x, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Y: ");
 | |
|       SERIAL_PROTOCOL_F(y, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Z: ");
 | |
|       SERIAL_PROTOCOL_F(measured_z, 3);
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
 | |
|     #endif
 | |
| 
 | |
|     feedrate_mm_s = old_feedrate_mm_s;
 | |
| 
 | |
|     return measured_z;
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if HAS_LEVELING
 | |
| 
 | |
|   bool leveling_is_valid() {
 | |
|     return
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
|         mbl.has_mesh()
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         !!bilinear_grid_spacing[X_AXIS]
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         true
 | |
|       #else // 3POINT, LINEAR
 | |
|         true
 | |
|       #endif
 | |
|     ;
 | |
|   }
 | |
| 
 | |
|   bool leveling_is_active() {
 | |
|     return
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
|         mbl.active()
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         ubl.state.active
 | |
|       #else
 | |
|         planner.abl_enabled
 | |
|       #endif
 | |
|     ;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Turn bed leveling on or off, fixing the current
 | |
|    * position as-needed.
 | |
|    *
 | |
|    * Disable: Current position = physical position
 | |
|    *  Enable: Current position = "unleveled" physical position
 | |
|    */
 | |
|   void set_bed_leveling_enabled(const bool enable/*=true*/) {
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|       const bool can_change = (!enable || leveling_is_valid());
 | |
|     #else
 | |
|       constexpr bool can_change = true;
 | |
|     #endif
 | |
| 
 | |
|     if (can_change && enable != leveling_is_active()) {
 | |
| 
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|         if (!enable)
 | |
|           planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 | |
| 
 | |
|         const bool enabling = enable && leveling_is_valid();
 | |
|         mbl.set_active(enabling);
 | |
|         if (enabling) planner.unapply_leveling(current_position);
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         #if PLANNER_LEVELING
 | |
|           if (ubl.state.active) {                       // leveling from on to off
 | |
|             // change unleveled current_position to physical current_position without moving steppers.
 | |
|             planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
 | |
|             ubl.state.active = false;                   // disable only AFTER calling apply_leveling
 | |
|           }
 | |
|           else {                                        // leveling from off to on
 | |
|             ubl.state.active = true;                    // enable BEFORE calling unapply_leveling, otherwise ignored
 | |
|             // change physical current_position to unleveled current_position without moving steppers.
 | |
|             planner.unapply_leveling(current_position);
 | |
|           }
 | |
|         #else
 | |
|           ubl.state.active = enable;                    // just flip the bit, current_position will be wrong until next move.
 | |
|         #endif
 | |
| 
 | |
|       #else // ABL
 | |
| 
 | |
|         #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|           // Force bilinear_z_offset to re-calculate next time
 | |
|           const float reset[XYZ] = { -9999.999, -9999.999, 0 };
 | |
|           (void)bilinear_z_offset(reset);
 | |
|         #endif
 | |
| 
 | |
|         // Enable or disable leveling compensation in the planner
 | |
|         planner.abl_enabled = enable;
 | |
| 
 | |
|         if (!enable)
 | |
|           // When disabling just get the current position from the steppers.
 | |
|           // This will yield the smallest error when first converted back to steps.
 | |
|           set_current_from_steppers_for_axis(
 | |
|             #if ABL_PLANAR
 | |
|               ALL_AXES
 | |
|             #else
 | |
|               Z_AXIS
 | |
|             #endif
 | |
|           );
 | |
|         else
 | |
|           // When enabling, remove compensation from the current position,
 | |
|           // so compensation will give the right stepper counts.
 | |
|           planner.unapply_leveling(current_position);
 | |
| 
 | |
|       #endif // ABL
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
| 
 | |
|     void set_z_fade_height(const float zfh) {
 | |
| 
 | |
|       const bool level_active = leveling_is_active();
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|         if (level_active)
 | |
|           set_bed_leveling_enabled(false);  // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
 | |
|         planner.z_fade_height = zfh;
 | |
|         planner.inverse_z_fade_height = RECIPROCAL(zfh);
 | |
|         if (level_active)
 | |
|           set_bed_leveling_enabled(true);  // turn back on after changing fade height
 | |
| 
 | |
|       #else
 | |
| 
 | |
|         planner.z_fade_height = zfh;
 | |
|         planner.inverse_z_fade_height = RECIPROCAL(zfh);
 | |
| 
 | |
|         if (level_active) {
 | |
|           set_current_from_steppers_for_axis(
 | |
|             #if ABL_PLANAR
 | |
|               ALL_AXES
 | |
|             #else
 | |
|               Z_AXIS
 | |
|             #endif
 | |
|           );
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|   #endif // LEVELING_FADE_HEIGHT
 | |
| 
 | |
|   /**
 | |
|    * Reset calibration results to zero.
 | |
|    */
 | |
|   void reset_bed_level() {
 | |
|     set_bed_leveling_enabled(false);
 | |
|     #if ENABLED(MESH_BED_LEVELING)
 | |
|       if (leveling_is_valid()) {
 | |
|         mbl.reset();
 | |
|         mbl.set_has_mesh(false);
 | |
|       }
 | |
|     #else
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
 | |
|       #endif
 | |
|       #if ABL_PLANAR
 | |
|         planner.bed_level_matrix.set_to_identity();
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
 | |
|         bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
 | |
|         for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
 | |
|           for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
 | |
|             z_values[x][y] = NAN;
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         ubl.reset();
 | |
|       #endif
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_LEVELING
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   /**
 | |
|    * Enable to produce output in JSON format suitable
 | |
|    * for SCAD or JavaScript mesh visualizers.
 | |
|    *
 | |
|    * Visualize meshes in OpenSCAD using the included script.
 | |
|    *
 | |
|    *   buildroot/shared/scripts/MarlinMesh.scad
 | |
|    */
 | |
|   //#define SCAD_MESH_OUTPUT
 | |
| 
 | |
|   /**
 | |
|    * Print calibration results for plotting or manual frame adjustment.
 | |
|    */
 | |
|   static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
 | |
|     #ifndef SCAD_MESH_OUTPUT
 | |
|       for (uint8_t x = 0; x < sx; x++) {
 | |
|         for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
 | |
|           SERIAL_PROTOCOLCHAR(' ');
 | |
|         SERIAL_PROTOCOL((int)x);
 | |
|       }
 | |
|       SERIAL_EOL();
 | |
|     #endif
 | |
|     #ifdef SCAD_MESH_OUTPUT
 | |
|       SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
 | |
|     #endif
 | |
|     for (uint8_t y = 0; y < sy; y++) {
 | |
|       #ifdef SCAD_MESH_OUTPUT
 | |
|         SERIAL_PROTOCOLPGM(" [");           // open sub-array
 | |
|       #else
 | |
|         if (y < 10) SERIAL_PROTOCOLCHAR(' ');
 | |
|         SERIAL_PROTOCOL((int)y);
 | |
|       #endif
 | |
|       for (uint8_t x = 0; x < sx; x++) {
 | |
|         SERIAL_PROTOCOLCHAR(' ');
 | |
|         const float offset = fn(x, y);
 | |
|         if (!isnan(offset)) {
 | |
|           if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
 | |
|           SERIAL_PROTOCOL_F(offset, precision);
 | |
|         }
 | |
|         else {
 | |
|           #ifdef SCAD_MESH_OUTPUT
 | |
|             for (uint8_t i = 3; i < precision + 3; i++)
 | |
|               SERIAL_PROTOCOLCHAR(' ');
 | |
|             SERIAL_PROTOCOLPGM("NAN");
 | |
|           #else
 | |
|             for (uint8_t i = 0; i < precision + 3; i++)
 | |
|               SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
 | |
|           #endif
 | |
|         }
 | |
|         #ifdef SCAD_MESH_OUTPUT
 | |
|           if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
 | |
|         #endif
 | |
|       }
 | |
|       #ifdef SCAD_MESH_OUTPUT
 | |
|         SERIAL_PROTOCOLCHAR(' ');
 | |
|         SERIAL_PROTOCOLCHAR(']');                     // close sub-array
 | |
|         if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|     #ifdef SCAD_MESH_OUTPUT
 | |
|       SERIAL_PROTOCOLPGM("];");                       // close 2D array
 | |
|     #endif
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|   /**
 | |
|    * Extrapolate a single point from its neighbors
 | |
|    */
 | |
|   static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPGM("Extrapolate [");
 | |
|         if (x < 10) SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO((int)x);
 | |
|         SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
 | |
|         SERIAL_CHAR(' ');
 | |
|         if (y < 10) SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO((int)y);
 | |
|         SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
 | |
|         SERIAL_CHAR(']');
 | |
|       }
 | |
|     #endif
 | |
|     if (!isnan(z_values[x][y])) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
 | |
|       #endif
 | |
|       return;  // Don't overwrite good values.
 | |
|     }
 | |
|     SERIAL_EOL();
 | |
| 
 | |
|     // Get X neighbors, Y neighbors, and XY neighbors
 | |
|     const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
 | |
|     float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
 | |
|           b1 = z_values[x ][y1], b2 = z_values[x ][y2],
 | |
|           c1 = z_values[x1][y1], c2 = z_values[x2][y2];
 | |
| 
 | |
|     // Treat far unprobed points as zero, near as equal to far
 | |
|     if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
 | |
|     if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
 | |
|     if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
 | |
| 
 | |
|     const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
 | |
| 
 | |
|     // Take the average instead of the median
 | |
|     z_values[x][y] = (a + b + c) / 3.0;
 | |
| 
 | |
|     // Median is robust (ignores outliers).
 | |
|     // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
 | |
|     //                                : ((c < b) ? b : (a < c) ? a : c);
 | |
|   }
 | |
| 
 | |
|   //Enable this if your SCARA uses 180° of total area
 | |
|   //#define EXTRAPOLATE_FROM_EDGE
 | |
| 
 | |
|   #if ENABLED(EXTRAPOLATE_FROM_EDGE)
 | |
|     #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
 | |
|       #define HALF_IN_X
 | |
|     #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
 | |
|       #define HALF_IN_Y
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Fill in the unprobed points (corners of circular print surface)
 | |
|    * using linear extrapolation, away from the center.
 | |
|    */
 | |
|   static void extrapolate_unprobed_bed_level() {
 | |
|     #ifdef HALF_IN_X
 | |
|       constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
 | |
|     #else
 | |
|       constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
 | |
|                         ctrx2 = (GRID_MAX_POINTS_X) / 2,     // right-of-center
 | |
|                         xlen = ctrx1;
 | |
|     #endif
 | |
| 
 | |
|     #ifdef HALF_IN_Y
 | |
|       constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
 | |
|     #else
 | |
|       constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
 | |
|                         ctry2 = (GRID_MAX_POINTS_Y) / 2,     // bottom-of-center
 | |
|                         ylen = ctry1;
 | |
|     #endif
 | |
| 
 | |
|     for (uint8_t xo = 0; xo <= xlen; xo++)
 | |
|       for (uint8_t yo = 0; yo <= ylen; yo++) {
 | |
|         uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
 | |
|         #ifndef HALF_IN_X
 | |
|           const uint8_t x1 = ctrx1 - xo;
 | |
|         #endif
 | |
|         #ifndef HALF_IN_Y
 | |
|           const uint8_t y1 = ctry1 - yo;
 | |
|           #ifndef HALF_IN_X
 | |
|             extrapolate_one_point(x1, y1, +1, +1);   //  left-below + +
 | |
|           #endif
 | |
|           extrapolate_one_point(x2, y1, -1, +1);     // right-below - +
 | |
|         #endif
 | |
|         #ifndef HALF_IN_X
 | |
|           extrapolate_one_point(x1, y2, +1, -1);     //  left-above + -
 | |
|         #endif
 | |
|         extrapolate_one_point(x2, y2, -1, -1);       // right-above - -
 | |
|       }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   static void print_bilinear_leveling_grid() {
 | |
|     SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
 | |
|     print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
 | |
|       [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
| 
 | |
|     #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
 | |
|     #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
 | |
|     #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
 | |
|     #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
 | |
|     float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
 | |
|     int bilinear_grid_spacing_virt[2] = { 0 };
 | |
|     float bilinear_grid_factor_virt[2] = { 0 };
 | |
| 
 | |
|     static void bed_level_virt_print() {
 | |
|       SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
 | |
|       print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
 | |
|         [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
 | |
|       );
 | |
|     }
 | |
| 
 | |
|     #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
 | |
|     float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
 | |
|       uint8_t ep = 0, ip = 1;
 | |
|       if (!x || x == ABL_TEMP_POINTS_X - 1) {
 | |
|         if (x) {
 | |
|           ep = GRID_MAX_POINTS_X - 1;
 | |
|           ip = GRID_MAX_POINTS_X - 2;
 | |
|         }
 | |
|         if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
 | |
|           return LINEAR_EXTRAPOLATION(
 | |
|             z_values[ep][y - 1],
 | |
|             z_values[ip][y - 1]
 | |
|           );
 | |
|         else
 | |
|           return LINEAR_EXTRAPOLATION(
 | |
|             bed_level_virt_coord(ep + 1, y),
 | |
|             bed_level_virt_coord(ip + 1, y)
 | |
|           );
 | |
|       }
 | |
|       if (!y || y == ABL_TEMP_POINTS_Y - 1) {
 | |
|         if (y) {
 | |
|           ep = GRID_MAX_POINTS_Y - 1;
 | |
|           ip = GRID_MAX_POINTS_Y - 2;
 | |
|         }
 | |
|         if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
 | |
|           return LINEAR_EXTRAPOLATION(
 | |
|             z_values[x - 1][ep],
 | |
|             z_values[x - 1][ip]
 | |
|           );
 | |
|         else
 | |
|           return LINEAR_EXTRAPOLATION(
 | |
|             bed_level_virt_coord(x, ep + 1),
 | |
|             bed_level_virt_coord(x, ip + 1)
 | |
|           );
 | |
|       }
 | |
|       return z_values[x - 1][y - 1];
 | |
|     }
 | |
| 
 | |
|     static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
 | |
|       return (
 | |
|           p[i-1] * -t * sq(1 - t)
 | |
|         + p[i]   * (2 - 5 * sq(t) + 3 * t * sq(t))
 | |
|         + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
 | |
|         - p[i+2] * sq(t) * (1 - t)
 | |
|       ) * 0.5;
 | |
|     }
 | |
| 
 | |
|     static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
 | |
|       float row[4], column[4];
 | |
|       for (uint8_t i = 0; i < 4; i++) {
 | |
|         for (uint8_t j = 0; j < 4; j++) {
 | |
|           column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
 | |
|         }
 | |
|         row[i] = bed_level_virt_cmr(column, 1, ty);
 | |
|       }
 | |
|       return bed_level_virt_cmr(row, 1, tx);
 | |
|     }
 | |
| 
 | |
|     void bed_level_virt_interpolate() {
 | |
|       bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
 | |
|       bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
 | |
|       bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
 | |
|       bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
 | |
|       for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
 | |
|         for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
 | |
|           for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
 | |
|             for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
 | |
|               if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
 | |
|                 continue;
 | |
|               z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
 | |
|                 bed_level_virt_2cmr(
 | |
|                   x + 1,
 | |
|                   y + 1,
 | |
|                   (float)tx / (BILINEAR_SUBDIVISIONS),
 | |
|                   (float)ty / (BILINEAR_SUBDIVISIONS)
 | |
|                 );
 | |
|             }
 | |
|     }
 | |
|   #endif // ABL_BILINEAR_SUBDIVISION
 | |
| 
 | |
|   // Refresh after other values have been updated
 | |
|   void refresh_bed_level() {
 | |
|     bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
 | |
|     bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
 | |
|     #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|       bed_level_virt_interpolate();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_BILINEAR
 | |
| 
 | |
| /**
 | |
|  * Home an individual linear axis
 | |
|  */
 | |
| static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
 | |
|       SERIAL_ECHOPAIR(", ", distance);
 | |
|       SERIAL_ECHOPAIR(", ", fr_mm_s);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
 | |
|     const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
 | |
|     if (deploy_bltouch) set_bltouch_deployed(true);
 | |
|   #endif
 | |
| 
 | |
|   #if QUIET_PROBING
 | |
|     if (axis == Z_AXIS) probing_pause(true);
 | |
|   #endif
 | |
| 
 | |
|   // Tell the planner we're at Z=0
 | |
|   current_position[axis] = 0;
 | |
| 
 | |
|   #if IS_SCARA
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|     current_position[axis] = distance;
 | |
|     inverse_kinematics(current_position);
 | |
|     planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
 | |
|   #else
 | |
|     sync_plan_position();
 | |
|     current_position[axis] = distance;
 | |
|     planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
 | |
|   #endif
 | |
| 
 | |
|   stepper.synchronize();
 | |
| 
 | |
|   #if QUIET_PROBING
 | |
|     if (axis == Z_AXIS) probing_pause(false);
 | |
|   #endif
 | |
| 
 | |
|   #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
 | |
|     if (deploy_bltouch) set_bltouch_deployed(false);
 | |
|   #endif
 | |
| 
 | |
|   endstops.hit_on_purpose();
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * TMC2130 specific sensorless homing using stallGuard2.
 | |
|  * stallGuard2 only works when in spreadCycle mode.
 | |
|  * spreadCycle and stealthChop are mutually exclusive.
 | |
|  */
 | |
| #if ENABLED(SENSORLESS_HOMING)
 | |
|   void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
 | |
|     #if ENABLED(STEALTHCHOP)
 | |
|       if (enable) {
 | |
|         st.coolstep_min_speed(1024UL * 1024UL - 1UL);
 | |
|         st.stealthChop(0);
 | |
|       }
 | |
|       else {
 | |
|         st.coolstep_min_speed(0);
 | |
|         st.stealthChop(1);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     st.diag1_stall(enable ? 1 : 0);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Home an individual "raw axis" to its endstop.
 | |
|  * This applies to XYZ on Cartesian and Core robots, and
 | |
|  * to the individual ABC steppers on DELTA and SCARA.
 | |
|  *
 | |
|  * At the end of the procedure the axis is marked as
 | |
|  * homed and the current position of that axis is updated.
 | |
|  * Kinematic robots should wait till all axes are homed
 | |
|  * before updating the current position.
 | |
|  */
 | |
| 
 | |
| #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
 | |
| 
 | |
| static void homeaxis(const AxisEnum axis) {
 | |
| 
 | |
|   #if IS_SCARA
 | |
|     // Only Z homing (with probe) is permitted
 | |
|     if (axis != Z_AXIS) { BUZZ(100, 880); return; }
 | |
|   #else
 | |
|     #define CAN_HOME(A) \
 | |
|       (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
 | |
|     if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   const int axis_home_dir =
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       (axis == X_AXIS) ? x_home_dir(active_extruder) :
 | |
|     #endif
 | |
|     home_dir(axis);
 | |
| 
 | |
|   // Homing Z towards the bed? Deploy the Z probe or endstop.
 | |
|   #if HOMING_Z_WITH_PROBE
 | |
|     if (axis == Z_AXIS && DEPLOY_PROBE()) return;
 | |
|   #endif
 | |
| 
 | |
|   // Set a flag for Z motor locking
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     if (axis == Z_AXIS) stepper.set_homing_flag(true);
 | |
|   #endif
 | |
| 
 | |
|   // Disable stealthChop if used. Enable diag1 pin on driver.
 | |
|   #if ENABLED(SENSORLESS_HOMING)
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   // Fast move towards endstop until triggered
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
 | |
|   #endif
 | |
|   do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
 | |
| 
 | |
|   // When homing Z with probe respect probe clearance
 | |
|   const float bump = axis_home_dir * (
 | |
|     #if HOMING_Z_WITH_PROBE
 | |
|       (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
 | |
|     #endif
 | |
|     home_bump_mm(axis)
 | |
|   );
 | |
| 
 | |
|   // If a second homing move is configured...
 | |
|   if (bump) {
 | |
|     // Move away from the endstop by the axis HOME_BUMP_MM
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
 | |
|     #endif
 | |
|     do_homing_move(axis, -bump);
 | |
| 
 | |
|     // Slow move towards endstop until triggered
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
 | |
|     #endif
 | |
|     do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     if (axis == Z_AXIS) {
 | |
|       float adj = FABS(z_endstop_adj);
 | |
|       bool lockZ1;
 | |
|       if (axis_home_dir > 0) {
 | |
|         adj = -adj;
 | |
|         lockZ1 = (z_endstop_adj > 0);
 | |
|       }
 | |
|       else
 | |
|         lockZ1 = (z_endstop_adj < 0);
 | |
| 
 | |
|       if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
 | |
| 
 | |
|       // Move to the adjusted endstop height
 | |
|       do_homing_move(axis, adj);
 | |
| 
 | |
|       if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
 | |
|       stepper.set_homing_flag(false);
 | |
|     } // Z_AXIS
 | |
|   #endif
 | |
| 
 | |
|   #if IS_SCARA
 | |
| 
 | |
|     set_axis_is_at_home(axis);
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   #elif ENABLED(DELTA)
 | |
| 
 | |
|     // Delta has already moved all three towers up in G28
 | |
|     // so here it re-homes each tower in turn.
 | |
|     // Delta homing treats the axes as normal linear axes.
 | |
| 
 | |
|     // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
 | |
|     if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
 | |
|       #endif
 | |
|       do_homing_move(axis, endstop_adj[axis] - 0.1);
 | |
|     }
 | |
| 
 | |
|   #else
 | |
| 
 | |
|     // For cartesian/core machines,
 | |
|     // set the axis to its home position
 | |
|     set_axis_is_at_home(axis);
 | |
|     sync_plan_position();
 | |
| 
 | |
|     destination[axis] = current_position[axis];
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
 | |
|     #endif
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   // Re-enable stealthChop if used. Disable diag1 pin on driver.
 | |
|   #if ENABLED(SENSORLESS_HOMING)
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   // Put away the Z probe
 | |
|   #if HOMING_Z_WITH_PROBE
 | |
|     if (axis == Z_AXIS && STOW_PROBE()) return;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   #endif
 | |
| } // homeaxis()
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   void retract(const bool retracting, const bool swapping = false) {
 | |
| 
 | |
|     static float hop_height;
 | |
| 
 | |
|     if (retracting == retracted[active_extruder]) return;
 | |
| 
 | |
|     const float old_feedrate_mm_s = feedrate_mm_s;
 | |
| 
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     if (retracting) {
 | |
| 
 | |
|       feedrate_mm_s = retract_feedrate_mm_s;
 | |
|       current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
 | |
|       sync_plan_position_e();
 | |
|       prepare_move_to_destination();
 | |
| 
 | |
|       if (retract_zlift > 0.01) {
 | |
|         hop_height = current_position[Z_AXIS];
 | |
|         // Pretend current position is lower
 | |
|         current_position[Z_AXIS] -= retract_zlift;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         // Raise up to the old current_position
 | |
|         prepare_move_to_destination();
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
| 
 | |
|       // If the height hasn't been lowered, undo the Z hop
 | |
|       if (retract_zlift > 0.01 && hop_height <= current_position[Z_AXIS]) {
 | |
|         // Pretend current position is higher. Z will lower on the next move
 | |
|         current_position[Z_AXIS] += retract_zlift;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         // Lower Z
 | |
|         prepare_move_to_destination();
 | |
|       }
 | |
| 
 | |
|       feedrate_mm_s = retract_recover_feedrate_mm_s;
 | |
|       const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
 | |
|       current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
 | |
|       sync_plan_position_e();
 | |
| 
 | |
|       // Recover E
 | |
|       prepare_move_to_destination();
 | |
|     }
 | |
| 
 | |
|     feedrate_mm_s = old_feedrate_mm_s;
 | |
|     retracted[active_extruder] = retracting;
 | |
| 
 | |
|   } // retract()
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
| 
 | |
|   void normalize_mix() {
 | |
|     float mix_total = 0.0;
 | |
|     for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
 | |
|     // Scale all values if they don't add up to ~1.0
 | |
|     if (!NEAR(mix_total, 1.0)) {
 | |
|       SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
 | |
|       for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     // Get mixing parameters from the GCode
 | |
|     // The total "must" be 1.0 (but it will be normalized)
 | |
|     // If no mix factors are given, the old mix is preserved
 | |
|     void gcode_get_mix() {
 | |
|       const char* mixing_codes = "ABCDHI";
 | |
|       byte mix_bits = 0;
 | |
|       for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
 | |
|         if (parser.seen(mixing_codes[i])) {
 | |
|           SBI(mix_bits, i);
 | |
|           float v = parser.value_float();
 | |
|           NOLESS(v, 0.0);
 | |
|           mixing_factor[i] = RECIPROCAL(v);
 | |
|         }
 | |
|       }
 | |
|       // If any mixing factors were included, clear the rest
 | |
|       // If none were included, preserve the last mix
 | |
|       if (mix_bits) {
 | |
|         for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|           if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
 | |
|         normalize_mix();
 | |
|       }
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ***************************************************************************
 | |
|  * ***************************** G-CODE HANDLING *****************************
 | |
|  * ***************************************************************************
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Set XYZE destination and feedrate from the current GCode command
 | |
|  *
 | |
|  *  - Set destination from included axis codes
 | |
|  *  - Set to current for missing axis codes
 | |
|  *  - Set the feedrate, if included
 | |
|  */
 | |
| void gcode_get_destination() {
 | |
|   LOOP_XYZE(i) {
 | |
|     if (parser.seen(axis_codes[i]))
 | |
|       destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
 | |
|     else
 | |
|       destination[i] = current_position[i];
 | |
|   }
 | |
| 
 | |
|   if (parser.seen('F') && parser.value_linear_units() > 0.0)
 | |
|     feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
 | |
| 
 | |
|   #if ENABLED(PRINTCOUNTER)
 | |
|     if (!DEBUGGING(DRYRUN))
 | |
|       print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
 | |
|   #endif
 | |
| 
 | |
|   // Get ABCDHI mixing factors
 | |
|   #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     gcode_get_mix();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * Output a "busy" message at regular intervals
 | |
|    * while the machine is not accepting commands.
 | |
|    */
 | |
|   void host_keepalive() {
 | |
|     const millis_t ms = millis();
 | |
|     if (host_keepalive_interval && busy_state != NOT_BUSY) {
 | |
|       if (PENDING(ms, next_busy_signal_ms)) return;
 | |
|       switch (busy_state) {
 | |
|         case IN_HANDLER:
 | |
|         case IN_PROCESS:
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
 | |
|           break;
 | |
|         case PAUSED_FOR_USER:
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
 | |
|           break;
 | |
|         case PAUSED_FOR_INPUT:
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
 | |
|   }
 | |
| 
 | |
| #endif // HOST_KEEPALIVE_FEATURE
 | |
| 
 | |
| 
 | |
| /**************************************************
 | |
|  ***************** GCode Handlers *****************
 | |
|  **************************************************/
 | |
| 
 | |
| /**
 | |
|  * G0, G1: Coordinated movement of X Y Z E axes
 | |
|  */
 | |
| inline void gcode_G0_G1(
 | |
|   #if IS_SCARA
 | |
|     bool fast_move=false
 | |
|   #endif
 | |
| ) {
 | |
|   if (IsRunning()) {
 | |
|     gcode_get_destination(); // For X Y Z E F
 | |
| 
 | |
|     #if ENABLED(FWRETRACT)
 | |
| 
 | |
|       if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) {
 | |
|         const float echange = destination[E_AXIS] - current_position[E_AXIS];
 | |
|         // Is this move an attempt to retract or recover?
 | |
|         if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
 | |
|           current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
 | |
|           sync_plan_position_e();  // AND from the planner
 | |
|           retract(!retracted[active_extruder]);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #endif // FWRETRACT
 | |
| 
 | |
|     #if IS_SCARA
 | |
|       fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
 | |
|     #else
 | |
|       prepare_move_to_destination();
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * G2: Clockwise Arc
 | |
|  * G3: Counterclockwise Arc
 | |
|  *
 | |
|  * This command has two forms: IJ-form and R-form.
 | |
|  *
 | |
|  *  - I specifies an X offset. J specifies a Y offset.
 | |
|  *    At least one of the IJ parameters is required.
 | |
|  *    X and Y can be omitted to do a complete circle.
 | |
|  *    The given XY is not error-checked. The arc ends
 | |
|  *     based on the angle of the destination.
 | |
|  *    Mixing I or J with R will throw an error.
 | |
|  *
 | |
|  *  - R specifies the radius. X or Y is required.
 | |
|  *    Omitting both X and Y will throw an error.
 | |
|  *    X or Y must differ from the current XY.
 | |
|  *    Mixing R with I or J will throw an error.
 | |
|  *
 | |
|  *  - P specifies the number of full circles to do
 | |
|  *    before the specified arc move.
 | |
|  *
 | |
|  *  Examples:
 | |
|  *
 | |
|  *    G2 I10           ; CW circle centered at X+10
 | |
|  *    G3 X20 Y12 R14   ; CCW circle with r=14 ending at X20 Y12
 | |
|  */
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
| 
 | |
|   inline void gcode_G2_G3(bool clockwise) {
 | |
|     if (IsRunning()) {
 | |
| 
 | |
|       #if ENABLED(SF_ARC_FIX)
 | |
|         const bool relative_mode_backup = relative_mode;
 | |
|         relative_mode = true;
 | |
|       #endif
 | |
| 
 | |
|       gcode_get_destination();
 | |
| 
 | |
|       #if ENABLED(SF_ARC_FIX)
 | |
|         relative_mode = relative_mode_backup;
 | |
|       #endif
 | |
| 
 | |
|       float arc_offset[2] = { 0.0, 0.0 };
 | |
|       if (parser.seen('R')) {
 | |
|         const float r = parser.value_linear_units(),
 | |
|                     p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
 | |
|                     p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
 | |
|         if (r && (p2 != p1 || q2 != q1)) {
 | |
|           const float e = clockwise ^ (r < 0) ? -1 : 1,           // clockwise -1/1, counterclockwise 1/-1
 | |
|                       dx = p2 - p1, dy = q2 - q1,                 // X and Y differences
 | |
|                       d = HYPOT(dx, dy),                          // Linear distance between the points
 | |
|                       h = SQRT(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
 | |
|                       mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
 | |
|                       sx = -dy / d, sy = dx / d,                  // Slope of the perpendicular bisector
 | |
|                       cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
 | |
|           arc_offset[0] = cx - p1;
 | |
|           arc_offset[1] = cy - q1;
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         if (parser.seen('I')) arc_offset[0] = parser.value_linear_units();
 | |
|         if (parser.seen('J')) arc_offset[1] = parser.value_linear_units();
 | |
|       }
 | |
| 
 | |
|       if (arc_offset[0] || arc_offset[1]) {
 | |
| 
 | |
|         #if ENABLED(ARC_P_CIRCLES)
 | |
|           // P indicates number of circles to do
 | |
|           int8_t circles_to_do = parser.seen('P') ? parser.value_byte() : 0;
 | |
|           if (!WITHIN(circles_to_do, 0, 100)) {
 | |
|             SERIAL_ERROR_START();
 | |
|             SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
 | |
|           }
 | |
|           while (circles_to_do--)
 | |
|             plan_arc(current_position, arc_offset, clockwise);
 | |
|         #endif
 | |
| 
 | |
|         // Send the arc to the planner
 | |
|         plan_arc(destination, arc_offset, clockwise);
 | |
|         refresh_cmd_timeout();
 | |
|       }
 | |
|       else {
 | |
|         // Bad arguments
 | |
|         SERIAL_ERROR_START();
 | |
|         SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // ARC_SUPPORT
 | |
| 
 | |
| /**
 | |
|  * G4: Dwell S<seconds> or P<milliseconds>
 | |
|  */
 | |
| inline void gcode_G4() {
 | |
|   millis_t dwell_ms = 0;
 | |
| 
 | |
|   if (parser.seen('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
 | |
|   if (parser.seen('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
 | |
| 
 | |
|   stepper.synchronize();
 | |
|   refresh_cmd_timeout();
 | |
|   dwell_ms += previous_cmd_ms;  // keep track of when we started waiting
 | |
| 
 | |
|   if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
 | |
| 
 | |
|   while (PENDING(millis(), dwell_ms)) idle();
 | |
| }
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * Parameters interpreted according to:
 | |
|    * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
 | |
|    * However I, J omission is not supported at this point; all
 | |
|    * parameters can be omitted and default to zero.
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * G5: Cubic B-spline
 | |
|    */
 | |
|   inline void gcode_G5() {
 | |
|     if (IsRunning()) {
 | |
| 
 | |
|       gcode_get_destination();
 | |
| 
 | |
|       const float offset[] = {
 | |
|         parser.seen('I') ? parser.value_linear_units() : 0.0,
 | |
|         parser.seen('J') ? parser.value_linear_units() : 0.0,
 | |
|         parser.seen('P') ? parser.value_linear_units() : 0.0,
 | |
|         parser.seen('Q') ? parser.value_linear_units() : 0.0
 | |
|       };
 | |
| 
 | |
|       plan_cubic_move(offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   /**
 | |
|    * G10 - Retract filament according to settings of M207
 | |
|    * G11 - Recover filament according to settings of M208
 | |
|    */
 | |
|   inline void gcode_G10_G11(bool doRetract=false) {
 | |
|     #if EXTRUDERS > 1
 | |
|       if (doRetract) {
 | |
|         retracted_swap[active_extruder] = (parser.seen('S') && parser.value_bool()); // checks for swap retract argument
 | |
|       }
 | |
|     #endif
 | |
|     retract(doRetract
 | |
|      #if EXTRUDERS > 1
 | |
|       , retracted_swap[active_extruder]
 | |
|      #endif
 | |
|     );
 | |
|   }
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if ENABLED(NOZZLE_CLEAN_FEATURE)
 | |
|   /**
 | |
|    * G12: Clean the nozzle
 | |
|    */
 | |
|   inline void gcode_G12() {
 | |
|     // Don't allow nozzle cleaning without homing first
 | |
|     if (axis_unhomed_error()) return;
 | |
| 
 | |
|     const uint8_t pattern = parser.seen('P') ? parser.value_ushort() : 0,
 | |
|                   strokes = parser.seen('S') ? parser.value_ushort() : NOZZLE_CLEAN_STROKES,
 | |
|                   objects = parser.seen('T') ? parser.value_ushort() : NOZZLE_CLEAN_TRIANGLES;
 | |
|     const float radius = parser.seen('R') ? parser.value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
 | |
| 
 | |
|     Nozzle::clean(pattern, strokes, radius, objects);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(CNC_WORKSPACE_PLANES)
 | |
| 
 | |
|   void report_workspace_plane() {
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPGM("Workspace Plane ");
 | |
|     serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * G17: Select Plane XY
 | |
|    * G18: Select Plane ZX
 | |
|    * G19: Select Plane YZ
 | |
|    */
 | |
|   inline void gcode_G17() { workspace_plane = PLANE_XY; }
 | |
|   inline void gcode_G18() { workspace_plane = PLANE_ZX; }
 | |
|   inline void gcode_G19() { workspace_plane = PLANE_YZ; }
 | |
| 
 | |
| #endif // CNC_WORKSPACE_PLANES
 | |
| 
 | |
| #if ENABLED(INCH_MODE_SUPPORT)
 | |
|   /**
 | |
|    * G20: Set input mode to inches
 | |
|    */
 | |
|   inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
 | |
| 
 | |
|   /**
 | |
|    * G21: Set input mode to millimeters
 | |
|    */
 | |
|   inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(NOZZLE_PARK_FEATURE)
 | |
|   /**
 | |
|    * G27: Park the nozzle
 | |
|    */
 | |
|   inline void gcode_G27() {
 | |
|     // Don't allow nozzle parking without homing first
 | |
|     if (axis_unhomed_error()) return;
 | |
|     Nozzle::park(parser.seen('P') ? parser.value_ushort() : 0);
 | |
|   }
 | |
| #endif // NOZZLE_PARK_FEATURE
 | |
| 
 | |
| #if ENABLED(QUICK_HOME)
 | |
| 
 | |
|   static void quick_home_xy() {
 | |
| 
 | |
|     // Pretend the current position is 0,0
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
 | |
|     sync_plan_position();
 | |
| 
 | |
|     const int x_axis_home_dir =
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
|         x_home_dir(active_extruder)
 | |
|       #else
 | |
|         home_dir(X_AXIS)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     const float mlx = max_length(X_AXIS),
 | |
|                 mly = max_length(Y_AXIS),
 | |
|                 mlratio = mlx > mly ? mly / mlx : mlx / mly,
 | |
|                 fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
 | |
| 
 | |
|     do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
 | |
|     endstops.hit_on_purpose(); // clear endstop hit flags
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
 | |
|   }
 | |
| 
 | |
| #endif // QUICK_HOME
 | |
| 
 | |
| #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
| 
 | |
|   void log_machine_info() {
 | |
|     SERIAL_ECHOPGM("Machine Type: ");
 | |
|     #if ENABLED(DELTA)
 | |
|       SERIAL_ECHOLNPGM("Delta");
 | |
|     #elif IS_SCARA
 | |
|       SERIAL_ECHOLNPGM("SCARA");
 | |
|     #elif IS_CORE
 | |
|       SERIAL_ECHOLNPGM("Core");
 | |
|     #else
 | |
|       SERIAL_ECHOLNPGM("Cartesian");
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_ECHOPGM("Probe: ");
 | |
|     #if ENABLED(PROBE_MANUALLY)
 | |
|       SERIAL_ECHOLNPGM("PROBE_MANUALLY");
 | |
|     #elif ENABLED(FIX_MOUNTED_PROBE)
 | |
|       SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
 | |
|     #elif ENABLED(BLTOUCH)
 | |
|       SERIAL_ECHOLNPGM("BLTOUCH");
 | |
|     #elif HAS_Z_SERVO_ENDSTOP
 | |
|       SERIAL_ECHOLNPGM("SERVO PROBE");
 | |
|     #elif ENABLED(Z_PROBE_SLED)
 | |
|       SERIAL_ECHOLNPGM("Z_PROBE_SLED");
 | |
|     #elif ENABLED(Z_PROBE_ALLEN_KEY)
 | |
|       SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
 | |
|     #else
 | |
|       SERIAL_ECHOLNPGM("NONE");
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_BED_PROBE
 | |
|       SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
 | |
|       SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
 | |
|       SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
 | |
|       #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
 | |
|         SERIAL_ECHOPGM(" (Right");
 | |
|       #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
 | |
|         SERIAL_ECHOPGM(" (Left");
 | |
|       #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
 | |
|         SERIAL_ECHOPGM(" (Middle");
 | |
|       #else
 | |
|         SERIAL_ECHOPGM(" (Aligned With");
 | |
|       #endif
 | |
|       #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
 | |
|         SERIAL_ECHOPGM("-Back");
 | |
|       #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
 | |
|         SERIAL_ECHOPGM("-Front");
 | |
|       #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
 | |
|         SERIAL_ECHOPGM("-Center");
 | |
|       #endif
 | |
|       if (zprobe_zoffset < 0)
 | |
|         SERIAL_ECHOPGM(" & Below");
 | |
|       else if (zprobe_zoffset > 0)
 | |
|         SERIAL_ECHOPGM(" & Above");
 | |
|       else
 | |
|         SERIAL_ECHOPGM(" & Same Z as");
 | |
|       SERIAL_ECHOLNPGM(" Nozzle)");
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_ABL
 | |
|       SERIAL_ECHOPGM("Auto Bed Leveling: ");
 | |
|       #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|         SERIAL_ECHOPGM("LINEAR");
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         SERIAL_ECHOPGM("BILINEAR");
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
|         SERIAL_ECHOPGM("3POINT");
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         SERIAL_ECHOPGM("UBL");
 | |
|       #endif
 | |
|       if (leveling_is_active()) {
 | |
|         SERIAL_ECHOLNPGM(" (enabled)");
 | |
|         #if ABL_PLANAR
 | |
|           const float diff[XYZ] = {
 | |
|             stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
 | |
|             stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
 | |
|             stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
 | |
|           };
 | |
|           SERIAL_ECHOPGM("ABL Adjustment X");
 | |
|           if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
 | |
|           SERIAL_ECHO(diff[X_AXIS]);
 | |
|           SERIAL_ECHOPGM(" Y");
 | |
|           if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
 | |
|           SERIAL_ECHO(diff[Y_AXIS]);
 | |
|           SERIAL_ECHOPGM(" Z");
 | |
|           if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
 | |
|           SERIAL_ECHO(diff[Z_AXIS]);
 | |
|         #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|           SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
 | |
|         #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|           SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
 | |
|         #endif
 | |
|       }
 | |
|       else
 | |
|         SERIAL_ECHOLNPGM(" (disabled)");
 | |
| 
 | |
|       SERIAL_EOL();
 | |
| 
 | |
|     #elif ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|       SERIAL_ECHOPGM("Mesh Bed Leveling");
 | |
|       if (leveling_is_active()) {
 | |
|         float lz = current_position[Z_AXIS];
 | |
|         planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
 | |
|         SERIAL_ECHOLNPGM(" (enabled)");
 | |
|         SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
 | |
|       }
 | |
|       else
 | |
|         SERIAL_ECHOPGM(" (disabled)");
 | |
| 
 | |
|       SERIAL_EOL();
 | |
| 
 | |
|     #endif // MESH_BED_LEVELING
 | |
|   }
 | |
| 
 | |
| #endif // DEBUG_LEVELING_FEATURE
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
| 
 | |
|   /**
 | |
|    * A delta can only safely home all axes at the same time
 | |
|    * This is like quick_home_xy() but for 3 towers.
 | |
|    */
 | |
|   inline void home_delta() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
 | |
|     #endif
 | |
|     // Init the current position of all carriages to 0,0,0
 | |
|     ZERO(current_position);
 | |
|     sync_plan_position();
 | |
| 
 | |
|     // Move all carriages together linearly until an endstop is hit.
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
 | |
|     feedrate_mm_s = homing_feedrate(X_AXIS);
 | |
|     line_to_current_position();
 | |
|     stepper.synchronize();
 | |
|     endstops.hit_on_purpose(); // clear endstop hit flags
 | |
| 
 | |
|     // At least one carriage has reached the top.
 | |
|     // Now re-home each carriage separately.
 | |
|     HOMEAXIS(A);
 | |
|     HOMEAXIS(B);
 | |
|     HOMEAXIS(C);
 | |
| 
 | |
|     // Set all carriages to their home positions
 | |
|     // Do this here all at once for Delta, because
 | |
|     // XYZ isn't ABC. Applying this per-tower would
 | |
|     // give the impression that they are the same.
 | |
|     LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // DELTA
 | |
| 
 | |
| #if ENABLED(Z_SAFE_HOMING)
 | |
| 
 | |
|   inline void home_z_safely() {
 | |
| 
 | |
|     // Disallow Z homing if X or Y are unknown
 | |
|     if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
 | |
|       LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
 | |
|     #endif
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     /**
 | |
|      * Move the Z probe (or just the nozzle) to the safe homing point
 | |
|      */
 | |
|     destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
 | |
|     destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
 | |
|     destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
 | |
| 
 | |
|     #if HOMING_Z_WITH_PROBE
 | |
|       destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|       destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|     #endif
 | |
| 
 | |
|     if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
 | |
|       #endif
 | |
| 
 | |
|       // This causes the carriage on Dual X to unpark
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
|         active_extruder_parked = false;
 | |
|       #endif
 | |
| 
 | |
|       do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
 | |
|       HOMEAXIS(Z);
 | |
|     }
 | |
|     else {
 | |
|       LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // Z_SAFE_HOMING
 | |
| 
 | |
| #if ENABLED(PROBE_MANUALLY)
 | |
|   bool g29_in_progress = false;
 | |
| #else
 | |
|   constexpr bool g29_in_progress = false;
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * G28: Home all axes according to settings
 | |
|  *
 | |
|  * Parameters
 | |
|  *
 | |
|  *  None  Home to all axes with no parameters.
 | |
|  *        With QUICK_HOME enabled XY will home together, then Z.
 | |
|  *
 | |
|  * Cartesian parameters
 | |
|  *
 | |
|  *  X   Home to the X endstop
 | |
|  *  Y   Home to the Y endstop
 | |
|  *  Z   Home to the Z endstop
 | |
|  *
 | |
|  */
 | |
| inline void gcode_G28(const bool always_home_all) {
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOLNPGM(">>> gcode_G28");
 | |
|       log_machine_info();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Wait for planner moves to finish!
 | |
|   stepper.synchronize();
 | |
| 
 | |
|   // Cancel the active G29 session
 | |
|   #if ENABLED(PROBE_MANUALLY)
 | |
|     g29_in_progress = false;
 | |
|   #endif
 | |
| 
 | |
|   // Disable the leveling matrix before homing
 | |
|   #if HAS_LEVELING
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|       const bool ubl_state_at_entry = leveling_is_active();
 | |
|     #endif
 | |
|     set_bed_leveling_enabled(false);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(CNC_WORKSPACE_PLANES)
 | |
|     workspace_plane = PLANE_XY;
 | |
|   #endif
 | |
| 
 | |
|   // Always home with tool 0 active
 | |
|   #if HOTENDS > 1
 | |
|     const uint8_t old_tool_index = active_extruder;
 | |
|     tool_change(0, 0, true);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
|     extruder_duplication_enabled = false;
 | |
|   #endif
 | |
| 
 | |
|   setup_for_endstop_or_probe_move();
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
 | |
|   #endif
 | |
|   endstops.enable(true); // Enable endstops for next homing move
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
| 
 | |
|     home_delta();
 | |
|     UNUSED(always_home_all);
 | |
| 
 | |
|   #else // NOT DELTA
 | |
| 
 | |
|     const bool homeX = always_home_all || parser.seen('X'),
 | |
|                homeY = always_home_all || parser.seen('Y'),
 | |
|                homeZ = always_home_all || parser.seen('Z'),
 | |
|                home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
 | |
| 
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     #if Z_HOME_DIR > 0  // If homing away from BED do Z first
 | |
| 
 | |
|       if (home_all || homeZ) {
 | |
|         HOMEAXIS(Z);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       if (home_all || homeX || homeY) {
 | |
|         // Raise Z before homing any other axes and z is not already high enough (never lower z)
 | |
|         destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
 | |
|         if (destination[Z_AXIS] > current_position[Z_AXIS]) {
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING))
 | |
|               SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
 | |
|           #endif
 | |
| 
 | |
|           do_blocking_move_to_z(destination[Z_AXIS]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(QUICK_HOME)
 | |
| 
 | |
|       if (home_all || (homeX && homeY)) quick_home_xy();
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(HOME_Y_BEFORE_X)
 | |
| 
 | |
|       // Home Y
 | |
|       if (home_all || homeY) {
 | |
|         HOMEAXIS(Y);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     // Home X
 | |
|     if (home_all || homeX) {
 | |
| 
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|         // Always home the 2nd (right) extruder first
 | |
|         active_extruder = 1;
 | |
|         HOMEAXIS(X);
 | |
| 
 | |
|         // Remember this extruder's position for later tool change
 | |
|         inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
 | |
| 
 | |
|         // Home the 1st (left) extruder
 | |
|         active_extruder = 0;
 | |
|         HOMEAXIS(X);
 | |
| 
 | |
|         // Consider the active extruder to be parked
 | |
|         COPY(raised_parked_position, current_position);
 | |
|         delayed_move_time = 0;
 | |
|         active_extruder_parked = true;
 | |
| 
 | |
|       #else
 | |
| 
 | |
|         HOMEAXIS(X);
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if DISABLED(HOME_Y_BEFORE_X)
 | |
|       // Home Y
 | |
|       if (home_all || homeY) {
 | |
|         HOMEAXIS(Y);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     // Home Z last if homing towards the bed
 | |
|     #if Z_HOME_DIR < 0
 | |
|       if (home_all || homeZ) {
 | |
|         #if ENABLED(Z_SAFE_HOMING)
 | |
|           home_z_safely();
 | |
|         #else
 | |
|           HOMEAXIS(Z);
 | |
|         #endif
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
 | |
|         #endif
 | |
|       } // home_all || homeZ
 | |
|     #endif // Z_HOME_DIR < 0
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   #endif // !DELTA (gcode_G28)
 | |
| 
 | |
|   endstops.not_homing();
 | |
| 
 | |
|   #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
 | |
|     // move to a height where we can use the full xy-area
 | |
|     do_blocking_move_to_z(delta_clip_start_height);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|     set_bed_leveling_enabled(ubl_state_at_entry);
 | |
|   #endif
 | |
| 
 | |
|   clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|   // Restore the active tool after homing
 | |
|   #if HOTENDS > 1
 | |
|     tool_change(old_tool_index, 0, true);
 | |
|   #endif
 | |
| 
 | |
|   lcd_refresh();
 | |
| 
 | |
|   report_current_position();
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
 | |
|   #endif
 | |
| } // G28
 | |
| 
 | |
| void home_all_axes() { gcode_G28(true); }
 | |
| 
 | |
| #if HAS_PROBING_PROCEDURE
 | |
| 
 | |
|   void out_of_range_error(const char* p_edge) {
 | |
|     SERIAL_PROTOCOLPGM("?Probe ");
 | |
|     serialprintPGM(p_edge);
 | |
|     SERIAL_PROTOCOLLNPGM(" position out of range.");
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
 | |
| 
 | |
|   #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
 | |
|     extern bool lcd_wait_for_move;
 | |
|   #endif
 | |
| 
 | |
|   inline void _manual_goto_xy(const float &x, const float &y) {
 | |
|     const float old_feedrate_mm_s = feedrate_mm_s;
 | |
| 
 | |
|     #if MANUAL_PROBE_HEIGHT > 0
 | |
|       feedrate_mm_s = homing_feedrate(Z_AXIS);
 | |
|       current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
 | |
|       line_to_current_position();
 | |
|     #endif
 | |
| 
 | |
|     feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
 | |
|     current_position[X_AXIS] = LOGICAL_X_POSITION(x);
 | |
|     current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
 | |
|     line_to_current_position();
 | |
| 
 | |
|     #if MANUAL_PROBE_HEIGHT > 0
 | |
|       feedrate_mm_s = homing_feedrate(Z_AXIS);
 | |
|       current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); // just slightly over the bed
 | |
|       line_to_current_position();
 | |
|     #endif
 | |
| 
 | |
|     feedrate_mm_s = old_feedrate_mm_s;
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
 | |
|       lcd_wait_for_move = false;
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   // Save 130 bytes with non-duplication of PSTR
 | |
|   void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
 | |
| 
 | |
|   void mbl_mesh_report() {
 | |
|     SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
 | |
|     SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
 | |
|     SERIAL_PROTOCOLLNPGM("\nMeasured points:");
 | |
|     print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
 | |
|       [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   void mesh_probing_done() {
 | |
|     mbl.set_has_mesh(true);
 | |
|     home_all_axes();
 | |
|     set_bed_leveling_enabled(true);
 | |
|     #if ENABLED(MESH_G28_REST_ORIGIN)
 | |
|       current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
 | |
|       set_destination_to_current();
 | |
|       line_to_destination(homing_feedrate(Z_AXIS));
 | |
|       stepper.synchronize();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * G29: Mesh-based Z probe, probes a grid and produces a
 | |
|    *      mesh to compensate for variable bed height
 | |
|    *
 | |
|    * Parameters With MESH_BED_LEVELING:
 | |
|    *
 | |
|    *  S0              Produce a mesh report
 | |
|    *  S1              Start probing mesh points
 | |
|    *  S2              Probe the next mesh point
 | |
|    *  S3 Xn Yn Zn.nn  Manually modify a single point
 | |
|    *  S4 Zn.nn        Set z offset. Positive away from bed, negative closer to bed.
 | |
|    *  S5              Reset and disable mesh
 | |
|    *
 | |
|    * The S0 report the points as below
 | |
|    *
 | |
|    *  +----> X-axis  1-n
 | |
|    *  |
 | |
|    *  |
 | |
|    *  v Y-axis  1-n
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_G29() {
 | |
| 
 | |
|     static int mbl_probe_index = -1;
 | |
|     #if HAS_SOFTWARE_ENDSTOPS
 | |
|       static bool enable_soft_endstops;
 | |
|     #endif
 | |
| 
 | |
|     const MeshLevelingState state = parser.seen('S') ? (MeshLevelingState)parser.value_byte() : MeshReport;
 | |
|     if (!WITHIN(state, 0, 5)) {
 | |
|       SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int8_t px, py;
 | |
| 
 | |
|     switch (state) {
 | |
|       case MeshReport:
 | |
|         if (leveling_is_valid()) {
 | |
|           SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
 | |
|           mbl_mesh_report();
 | |
|         }
 | |
|         else
 | |
|           SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
 | |
|         break;
 | |
| 
 | |
|       case MeshStart:
 | |
|         mbl.reset();
 | |
|         mbl_probe_index = 0;
 | |
|         enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
 | |
|         break;
 | |
| 
 | |
|       case MeshNext:
 | |
|         if (mbl_probe_index < 0) {
 | |
|           SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
 | |
|           return;
 | |
|         }
 | |
|         // For each G29 S2...
 | |
|         if (mbl_probe_index == 0) {
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             // For the initial G29 S2 save software endstop state
 | |
|             enable_soft_endstops = soft_endstops_enabled;
 | |
|           #endif
 | |
|         }
 | |
|         else {
 | |
|           // For G29 S2 after adjusting Z.
 | |
|           mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             soft_endstops_enabled = enable_soft_endstops;
 | |
|           #endif
 | |
|         }
 | |
|         // If there's another point to sample, move there with optional lift.
 | |
|         if (mbl_probe_index < GRID_MAX_POINTS) {
 | |
|           mbl.zigzag(mbl_probe_index, px, py);
 | |
|           _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
 | |
| 
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             // Disable software endstops to allow manual adjustment
 | |
|             // If G29 is not completed, they will not be re-enabled
 | |
|             soft_endstops_enabled = false;
 | |
|           #endif
 | |
| 
 | |
|           mbl_probe_index++;
 | |
|         }
 | |
|         else {
 | |
|           // One last "return to the bed" (as originally coded) at completion
 | |
|           current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
 | |
|           line_to_current_position();
 | |
|           stepper.synchronize();
 | |
| 
 | |
|           // After recording the last point, activate home and activate
 | |
|           mbl_probe_index = -1;
 | |
|           SERIAL_PROTOCOLLNPGM("Mesh probing done.");
 | |
|           BUZZ(100, 659);
 | |
|           BUZZ(100, 698);
 | |
|           mesh_probing_done();
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshSet:
 | |
|         if (parser.seen('X')) {
 | |
|           px = parser.value_int() - 1;
 | |
|           if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
 | |
|             SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_CHAR('X'); echo_not_entered();
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (parser.seen('Y')) {
 | |
|           py = parser.value_int() - 1;
 | |
|           if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
|             SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_CHAR('Y'); echo_not_entered();
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (parser.seen('Z')) {
 | |
|           mbl.z_values[px][py] = parser.value_linear_units();
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_CHAR('Z'); echo_not_entered();
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshSetZOffset:
 | |
|         if (parser.seen('Z')) {
 | |
|           mbl.z_offset = parser.value_linear_units();
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_CHAR('Z'); echo_not_entered();
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshReset:
 | |
|         reset_bed_level();
 | |
|         break;
 | |
| 
 | |
|     } // switch(state)
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
| #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|   #if ABL_GRID
 | |
|     #if ENABLED(PROBE_Y_FIRST)
 | |
|       #define PR_OUTER_VAR xCount
 | |
|       #define PR_OUTER_END abl_grid_points_x
 | |
|       #define PR_INNER_VAR yCount
 | |
|       #define PR_INNER_END abl_grid_points_y
 | |
|     #else
 | |
|       #define PR_OUTER_VAR yCount
 | |
|       #define PR_OUTER_END abl_grid_points_y
 | |
|       #define PR_INNER_VAR xCount
 | |
|       #define PR_INNER_END abl_grid_points_x
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * G29: Detailed Z probe, probes the bed at 3 or more points.
 | |
|    *      Will fail if the printer has not been homed with G28.
 | |
|    *
 | |
|    * Enhanced G29 Auto Bed Leveling Probe Routine
 | |
|    *
 | |
|    *  D  Dry-Run mode. Just evaluate the bed Topology - Don't apply
 | |
|    *     or alter the bed level data. Useful to check the topology
 | |
|    *     after a first run of G29.
 | |
|    *
 | |
|    *  J  Jettison current bed leveling data
 | |
|    *
 | |
|    *  V  Set the verbose level (0-4). Example: "G29 V3"
 | |
|    *
 | |
|    * Parameters With LINEAR leveling only:
 | |
|    *
 | |
|    *  P  Set the size of the grid that will be probed (P x P points).
 | |
|    *     Example: "G29 P4"
 | |
|    *
 | |
|    *  X  Set the X size of the grid that will be probed (X x Y points).
 | |
|    *     Example: "G29 X7 Y5"
 | |
|    *
 | |
|    *  Y  Set the Y size of the grid that will be probed (X x Y points).
 | |
|    *
 | |
|    *  T  Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
 | |
|    *     This is useful for manual bed leveling and finding flaws in the bed (to
 | |
|    *     assist with part placement).
 | |
|    *     Not supported by non-linear delta printer bed leveling.
 | |
|    *
 | |
|    * Parameters With LINEAR and BILINEAR leveling only:
 | |
|    *
 | |
|    *  S  Set the XY travel speed between probe points (in units/min)
 | |
|    *
 | |
|    *  F  Set the Front limit of the probing grid
 | |
|    *  B  Set the Back limit of the probing grid
 | |
|    *  L  Set the Left limit of the probing grid
 | |
|    *  R  Set the Right limit of the probing grid
 | |
|    *
 | |
|    * Parameters with DEBUG_LEVELING_FEATURE only:
 | |
|    *
 | |
|    *  C  Make a totally fake grid with no actual probing.
 | |
|    *     For use in testing when no probing is possible.
 | |
|    *
 | |
|    * Parameters with BILINEAR leveling only:
 | |
|    *
 | |
|    *  Z  Supply an additional Z probe offset
 | |
|    *
 | |
|    * Extra parameters with PROBE_MANUALLY:
 | |
|    *
 | |
|    *  To do manual probing simply repeat G29 until the procedure is complete.
 | |
|    *  The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
 | |
|    *
 | |
|    *  Q  Query leveling and G29 state
 | |
|    *
 | |
|    *  A  Abort current leveling procedure
 | |
|    *
 | |
|    *  W  Write a mesh point. (Ignored during leveling.)
 | |
|    *  X  Required X for mesh point
 | |
|    *  Y  Required Y for mesh point
 | |
|    *  Z  Z for mesh point. Otherwise, current Z minus Z probe offset.
 | |
|    *
 | |
|    * Without PROBE_MANUALLY:
 | |
|    *
 | |
|    *  E  By default G29 will engage the Z probe, test the bed, then disengage.
 | |
|    *     Include "E" to engage/disengage the Z probe for each sample.
 | |
|    *     There's no extra effect if you have a fixed Z probe.
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_G29() {
 | |
| 
 | |
|     // G29 Q is also available if debugging
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       const bool query = parser.seen('Q');
 | |
|       const uint8_t old_debug_flags = marlin_debug_flags;
 | |
|       if (query) marlin_debug_flags |= DEBUG_LEVELING;
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         DEBUG_POS(">>> gcode_G29", current_position);
 | |
|         log_machine_info();
 | |
|       }
 | |
|       marlin_debug_flags = old_debug_flags;
 | |
|       #if DISABLED(PROBE_MANUALLY)
 | |
|         if (query) return;
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PROBE_MANUALLY)
 | |
|       const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
 | |
|       const bool faux = parser.seen('C') && parser.value_bool();
 | |
|     #elif ENABLED(PROBE_MANUALLY)
 | |
|       const bool faux = no_action;
 | |
|     #else
 | |
|       bool constexpr faux = false;
 | |
|     #endif
 | |
| 
 | |
|     // Don't allow auto-leveling without homing first
 | |
|     if (axis_unhomed_error()) return;
 | |
| 
 | |
|     // Define local vars 'static' for manual probing, 'auto' otherwise
 | |
|     #if ENABLED(PROBE_MANUALLY)
 | |
|       #define ABL_VAR static
 | |
|     #else
 | |
|       #define ABL_VAR
 | |
|     #endif
 | |
| 
 | |
|     ABL_VAR int verbose_level;
 | |
|     ABL_VAR float xProbe, yProbe, measured_z;
 | |
|     ABL_VAR bool dryrun, abl_should_enable;
 | |
| 
 | |
|     #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|       ABL_VAR int abl_probe_index;
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
 | |
|       ABL_VAR bool enable_soft_endstops = true;
 | |
|     #endif
 | |
| 
 | |
|     #if ABL_GRID
 | |
| 
 | |
|       #if ENABLED(PROBE_MANUALLY)
 | |
|         ABL_VAR uint8_t PR_OUTER_VAR;
 | |
|         ABL_VAR  int8_t PR_INNER_VAR;
 | |
|       #endif
 | |
| 
 | |
|       ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
 | |
|       ABL_VAR float xGridSpacing, yGridSpacing;
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|         ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
 | |
|                         abl_grid_points_y = GRID_MAX_POINTS_Y;
 | |
|         ABL_VAR bool do_topography_map;
 | |
|       #else // Bilinear
 | |
|         uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
 | |
|                           abl_grid_points_y = GRID_MAX_POINTS_Y;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
 | |
|         #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|           ABL_VAR int abl2;
 | |
|         #else // Bilinear
 | |
|           int constexpr abl2 = GRID_MAX_POINTS;
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|         ABL_VAR float zoffset;
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|         ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
 | |
| 
 | |
|         ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
 | |
|                      eqnBVector[GRID_MAX_POINTS],     // "B" vector of Z points
 | |
|                      mean;
 | |
|       #endif
 | |
| 
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
| 
 | |
|       int constexpr abl2 = 3;
 | |
| 
 | |
|       // Probe at 3 arbitrary points
 | |
|       ABL_VAR vector_3 points[3] = {
 | |
|         vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
 | |
|         vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
 | |
|         vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
 | |
|       };
 | |
| 
 | |
|     #endif // AUTO_BED_LEVELING_3POINT
 | |
| 
 | |
|     /**
 | |
|      * On the initial G29 fetch command parameters.
 | |
|      */
 | |
|     if (!g29_in_progress) {
 | |
| 
 | |
|       #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|         abl_probe_index = -1;
 | |
|       #endif
 | |
| 
 | |
|       abl_should_enable = leveling_is_active();
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|         if (parser.seen('W')) {
 | |
|           if (!leveling_is_valid()) {
 | |
|             SERIAL_ERROR_START();
 | |
|             SERIAL_ERRORLNPGM("No bilinear grid");
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           const float z = parser.seen('Z') && parser.has_value() ? parser.value_float() : RAW_CURRENT_POSITION(Z);
 | |
|           if (!WITHIN(z, -10, 10)) {
 | |
|             SERIAL_ERROR_START();
 | |
|             SERIAL_ERRORLNPGM("Bad Z value");
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           const float x = parser.seen('X') && parser.has_value() ? parser.value_float() : NAN,
 | |
|                       y = parser.seen('Y') && parser.has_value() ? parser.value_float() : NAN;
 | |
|           int8_t i = parser.seen('I') && parser.has_value() ? parser.value_byte() : -1,
 | |
|                  j = parser.seen('J') && parser.has_value() ? parser.value_byte() : -1;
 | |
| 
 | |
|           if (!isnan(x) && !isnan(y)) {
 | |
|             // Get nearest i / j from x / y
 | |
|             i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
 | |
|             j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
 | |
|             i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
 | |
|             j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
 | |
|           }
 | |
|           if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
 | |
|             set_bed_leveling_enabled(false);
 | |
|             z_values[i][j] = z;
 | |
|             #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|               bed_level_virt_interpolate();
 | |
|             #endif
 | |
|             set_bed_leveling_enabled(abl_should_enable);
 | |
|           }
 | |
|           return;
 | |
|         } // parser.seen('W')
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_LEVELING
 | |
| 
 | |
|         // Jettison bed leveling data
 | |
|         if (parser.seen('J')) {
 | |
|           reset_bed_level();
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       verbose_level = parser.seen('V') && parser.has_value() ? parser.value_int() : 0;
 | |
|       if (!WITHIN(verbose_level, 0, 4)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       dryrun = (parser.seen('D') && parser.value_bool())
 | |
|         #if ENABLED(PROBE_MANUALLY)
 | |
|           || no_action
 | |
|         #endif
 | |
|       ;
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|         do_topography_map = verbose_level > 2 || parser.seen('T');
 | |
| 
 | |
|         // X and Y specify points in each direction, overriding the default
 | |
|         // These values may be saved with the completed mesh
 | |
|         abl_grid_points_x = parser.seen('X') ? parser.value_int() : GRID_MAX_POINTS_X;
 | |
|         abl_grid_points_y = parser.seen('Y') ? parser.value_int() : GRID_MAX_POINTS_Y;
 | |
|         if (parser.seen('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
 | |
| 
 | |
|         if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
 | |
|           SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         abl2 = abl_grid_points_x * abl_grid_points_y;
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|         zoffset = parser.seen('Z') ? parser.value_linear_units() : 0;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ABL_GRID
 | |
| 
 | |
|         xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.seen('S') ? parser.value_linear_units() : XY_PROBE_SPEED);
 | |
| 
 | |
|         left_probe_bed_position = parser.seen('L') ? (int)parser.value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
 | |
|         right_probe_bed_position = parser.seen('R') ? (int)parser.value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
 | |
|         front_probe_bed_position = parser.seen('F') ? (int)parser.value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
 | |
|         back_probe_bed_position = parser.seen('B') ? (int)parser.value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
 | |
| 
 | |
|         const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
 | |
|                    left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
 | |
|                    right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
 | |
|                    right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
 | |
|                    front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
 | |
|                    front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
 | |
|                    back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
 | |
|                    back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
 | |
| 
 | |
|         if (left_out || right_out || front_out || back_out) {
 | |
|           if (left_out) {
 | |
|             out_of_range_error(PSTR("(L)eft"));
 | |
|             left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
 | |
|           }
 | |
|           if (right_out) {
 | |
|             out_of_range_error(PSTR("(R)ight"));
 | |
|             right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
 | |
|           }
 | |
|           if (front_out) {
 | |
|             out_of_range_error(PSTR("(F)ront"));
 | |
|             front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
 | |
|           }
 | |
|           if (back_out) {
 | |
|             out_of_range_error(PSTR("(B)ack"));
 | |
|             back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
 | |
|           }
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // probe at the points of a lattice grid
 | |
|         xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
 | |
|         yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
 | |
| 
 | |
|       #endif // ABL_GRID
 | |
| 
 | |
|       if (verbose_level > 0) {
 | |
|         SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
 | |
|         if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
 | |
|       }
 | |
| 
 | |
|       stepper.synchronize();
 | |
| 
 | |
|       // Disable auto bed leveling during G29
 | |
|       planner.abl_enabled = false;
 | |
| 
 | |
|       if (!dryrun) {
 | |
|         // Re-orient the current position without leveling
 | |
|         // based on where the steppers are positioned.
 | |
|         set_current_from_steppers_for_axis(ALL_AXES);
 | |
| 
 | |
|         // Sync the planner to where the steppers stopped
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|       }
 | |
| 
 | |
|       if (!faux) setup_for_endstop_or_probe_move();
 | |
| 
 | |
|       //xProbe = yProbe = measured_z = 0;
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
|         // Deploy the probe. Probe will raise if needed.
 | |
|         if (DEPLOY_PROBE()) {
 | |
|           planner.abl_enabled = abl_should_enable;
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|         if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
 | |
|           || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
 | |
|           || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
 | |
|           || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
 | |
|         ) {
 | |
|           if (dryrun) {
 | |
|             // Before reset bed level, re-enable to correct the position
 | |
|             planner.abl_enabled = abl_should_enable;
 | |
|           }
 | |
|           // Reset grid to 0.0 or "not probed". (Also disables ABL)
 | |
|           reset_bed_level();
 | |
| 
 | |
|           // Initialize a grid with the given dimensions
 | |
|           bilinear_grid_spacing[X_AXIS] = xGridSpacing;
 | |
|           bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
 | |
|           bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
 | |
|           bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
 | |
| 
 | |
|           // Can't re-enable (on error) until the new grid is written
 | |
|           abl_should_enable = false;
 | |
|         }
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|         mean = 0.0;
 | |
| 
 | |
|       #endif // AUTO_BED_LEVELING_LINEAR
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
 | |
|         #endif
 | |
| 
 | |
|         // Probe at 3 arbitrary points
 | |
|         points[0].z = points[1].z = points[2].z = 0;
 | |
| 
 | |
|       #endif // AUTO_BED_LEVELING_3POINT
 | |
| 
 | |
|     } // !g29_in_progress
 | |
| 
 | |
|     #if ENABLED(PROBE_MANUALLY)
 | |
| 
 | |
|       // For manual probing, get the next index to probe now.
 | |
|       // On the first probe this will be incremented to 0.
 | |
|       if (!no_action) {
 | |
|         ++abl_probe_index;
 | |
|         g29_in_progress = true;
 | |
|       }
 | |
| 
 | |
|       // Abort current G29 procedure, go back to idle state
 | |
|       if (seenA && g29_in_progress) {
 | |
|         SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
 | |
|         #if HAS_SOFTWARE_ENDSTOPS
 | |
|           soft_endstops_enabled = enable_soft_endstops;
 | |
|         #endif
 | |
|         planner.abl_enabled = abl_should_enable;
 | |
|         g29_in_progress = false;
 | |
|         #if ENABLED(LCD_BED_LEVELING)
 | |
|           lcd_wait_for_move = false;
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       // Query G29 status
 | |
|       if (verbose_level || seenQ) {
 | |
|         SERIAL_PROTOCOLPGM("Manual G29 ");
 | |
|         if (g29_in_progress) {
 | |
|           SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
 | |
|           SERIAL_PROTOCOLLNPAIR(" of ", abl2);
 | |
|         }
 | |
|         else
 | |
|           SERIAL_PROTOCOLLNPGM("idle");
 | |
|       }
 | |
| 
 | |
|       if (no_action) return;
 | |
| 
 | |
|       if (abl_probe_index == 0) {
 | |
|         // For the initial G29 save software endstop state
 | |
|         #if HAS_SOFTWARE_ENDSTOPS
 | |
|           enable_soft_endstops = soft_endstops_enabled;
 | |
|         #endif
 | |
|       }
 | |
|       else {
 | |
|         // For G29 after adjusting Z.
 | |
|         // Save the previous Z before going to the next point
 | |
|         measured_z = current_position[Z_AXIS];
 | |
| 
 | |
|         #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|           mean += measured_z;
 | |
|           eqnBVector[abl_probe_index] = measured_z;
 | |
|           eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
 | |
|           eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
 | |
|           eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
 | |
| 
 | |
|         #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|           z_values[xCount][yCount] = measured_z + zoffset;
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_PROTOCOLPAIR("Save X", xCount);
 | |
|               SERIAL_PROTOCOLPAIR(" Y", yCount);
 | |
|               SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|         #elif ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
| 
 | |
|           points[abl_probe_index].z = measured_z;
 | |
| 
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // If there's another point to sample, move there with optional lift.
 | |
|       //
 | |
| 
 | |
|       #if ABL_GRID
 | |
| 
 | |
|         // Skip any unreachable points
 | |
|         while (abl_probe_index < abl2) {
 | |
| 
 | |
|           // Set xCount, yCount based on abl_probe_index, with zig-zag
 | |
|           PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
 | |
|           PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
 | |
| 
 | |
|           // Probe in reverse order for every other row/column
 | |
|           bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
 | |
| 
 | |
|           if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
 | |
| 
 | |
|           const float xBase = xCount * xGridSpacing + left_probe_bed_position,
 | |
|                       yBase = yCount * yGridSpacing + front_probe_bed_position;
 | |
| 
 | |
|           xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
 | |
|           yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 | |
| 
 | |
|           #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|             indexIntoAB[xCount][yCount] = abl_probe_index;
 | |
|           #endif
 | |
| 
 | |
|           // Keep looping till a reachable point is found
 | |
|           if (position_is_reachable_xy(xProbe, yProbe)) break;
 | |
|           ++abl_probe_index;
 | |
|         }
 | |
| 
 | |
|         // Is there a next point to move to?
 | |
|         if (abl_probe_index < abl2) {
 | |
|           _manual_goto_xy(xProbe, yProbe); // Can be used here too!
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             // Disable software endstops to allow manual adjustment
 | |
|             // If G29 is not completed, they will not be re-enabled
 | |
|             soft_endstops_enabled = false;
 | |
|           #endif
 | |
|           return;
 | |
|         }
 | |
|         else {
 | |
| 
 | |
|           // Leveling done! Fall through to G29 finishing code below
 | |
| 
 | |
|           SERIAL_PROTOCOLLNPGM("Grid probing done.");
 | |
| 
 | |
|           // Re-enable software endstops, if needed
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             soft_endstops_enabled = enable_soft_endstops;
 | |
|           #endif
 | |
|         }
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
| 
 | |
|         // Probe at 3 arbitrary points
 | |
|         if (abl_probe_index < 3) {
 | |
|           xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
 | |
|           yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             // Disable software endstops to allow manual adjustment
 | |
|             // If G29 is not completed, they will not be re-enabled
 | |
|             soft_endstops_enabled = false;
 | |
|           #endif
 | |
|           return;
 | |
|         }
 | |
|         else {
 | |
| 
 | |
|           SERIAL_PROTOCOLLNPGM("3-point probing done.");
 | |
| 
 | |
|           // Re-enable software endstops, if needed
 | |
|           #if HAS_SOFTWARE_ENDSTOPS
 | |
|             soft_endstops_enabled = enable_soft_endstops;
 | |
|           #endif
 | |
| 
 | |
|           if (!dryrun) {
 | |
|             vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
 | |
|             if (planeNormal.z < 0) {
 | |
|               planeNormal.x *= -1;
 | |
|               planeNormal.y *= -1;
 | |
|               planeNormal.z *= -1;
 | |
|             }
 | |
|             planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
| 
 | |
|             // Can't re-enable (on error) until the new grid is written
 | |
|             abl_should_enable = false;
 | |
|           }
 | |
| 
 | |
|         }
 | |
| 
 | |
|       #endif // AUTO_BED_LEVELING_3POINT
 | |
| 
 | |
|     #else // !PROBE_MANUALLY
 | |
| 
 | |
|       const bool stow_probe_after_each = parser.seen('E');
 | |
| 
 | |
|       #if ABL_GRID
 | |
| 
 | |
|         bool zig = PR_OUTER_END & 1;  // Always end at RIGHT and BACK_PROBE_BED_POSITION
 | |
| 
 | |
|         // Outer loop is Y with PROBE_Y_FIRST disabled
 | |
|         for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
 | |
| 
 | |
|           int8_t inStart, inStop, inInc;
 | |
| 
 | |
|           if (zig) { // away from origin
 | |
|             inStart = 0;
 | |
|             inStop = PR_INNER_END;
 | |
|             inInc = 1;
 | |
|           }
 | |
|           else {     // towards origin
 | |
|             inStart = PR_INNER_END - 1;
 | |
|             inStop = -1;
 | |
|             inInc = -1;
 | |
|           }
 | |
| 
 | |
|           zig ^= true; // zag
 | |
| 
 | |
|           // Inner loop is Y with PROBE_Y_FIRST enabled
 | |
|           for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
 | |
| 
 | |
|             float xBase = left_probe_bed_position + xGridSpacing * xCount,
 | |
|                   yBase = front_probe_bed_position + yGridSpacing * yCount;
 | |
| 
 | |
|             xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
 | |
|             yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 | |
| 
 | |
|             #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
|               indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
 | |
|             #endif
 | |
| 
 | |
|             #if IS_KINEMATIC
 | |
|               // Avoid probing outside the round or hexagonal area
 | |
|               if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
 | |
|             #endif
 | |
| 
 | |
|             measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
 | |
| 
 | |
|             if (isnan(measured_z)) {
 | |
|               planner.abl_enabled = abl_should_enable;
 | |
|               return;
 | |
|             }
 | |
| 
 | |
|             #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|               mean += measured_z;
 | |
|               eqnBVector[abl_probe_index] = measured_z;
 | |
|               eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
 | |
|               eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
 | |
|               eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
 | |
| 
 | |
|             #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|               z_values[xCount][yCount] = measured_z + zoffset;
 | |
| 
 | |
|             #endif
 | |
| 
 | |
|             abl_should_enable = false;
 | |
|             idle();
 | |
| 
 | |
|           } // inner
 | |
|         } // outer
 | |
| 
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_3POINT)
 | |
| 
 | |
|         // Probe at 3 arbitrary points
 | |
| 
 | |
|         for (uint8_t i = 0; i < 3; ++i) {
 | |
|           // Retain the last probe position
 | |
|           xProbe = LOGICAL_X_POSITION(points[i].x);
 | |
|           yProbe = LOGICAL_Y_POSITION(points[i].y);
 | |
|           measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
 | |
|           if (isnan(measured_z)) {
 | |
|             planner.abl_enabled = abl_should_enable;
 | |
|             return;
 | |
|           }
 | |
|           points[i].z = measured_z;
 | |
|         }
 | |
| 
 | |
|         if (!dryrun) {
 | |
|           vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
 | |
|           if (planeNormal.z < 0) {
 | |
|             planeNormal.x *= -1;
 | |
|             planeNormal.y *= -1;
 | |
|             planeNormal.z *= -1;
 | |
|           }
 | |
|           planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
| 
 | |
|           // Can't re-enable (on error) until the new grid is written
 | |
|           abl_should_enable = false;
 | |
|         }
 | |
| 
 | |
|       #endif // AUTO_BED_LEVELING_3POINT
 | |
| 
 | |
|       // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
 | |
|       if (STOW_PROBE()) {
 | |
|         planner.abl_enabled = abl_should_enable;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     #endif // !PROBE_MANUALLY
 | |
| 
 | |
|     //
 | |
|     // G29 Finishing Code
 | |
|     //
 | |
|     // Unless this is a dry run, auto bed leveling will
 | |
|     // definitely be enabled after this point.
 | |
|     //
 | |
|     // If code above wants to continue leveling, it should
 | |
|     // return or loop before this point.
 | |
|     //
 | |
| 
 | |
|     // Restore state after probing
 | |
|     if (!faux) clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PROBE_MANUALLY)
 | |
|       g29_in_progress = false;
 | |
|       #if ENABLED(LCD_BED_LEVELING)
 | |
|         lcd_wait_for_move = false;
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|     // Calculate leveling, print reports, correct the position
 | |
|     #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|       if (!dryrun) extrapolate_unprobed_bed_level();
 | |
|       print_bilinear_leveling_grid();
 | |
| 
 | |
|       refresh_bed_level();
 | |
| 
 | |
|       #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|         bed_level_virt_print();
 | |
|       #endif
 | |
| 
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
 | |
| 
 | |
|       // For LINEAR leveling calculate matrix, print reports, correct the position
 | |
| 
 | |
|       /**
 | |
|        * solve the plane equation ax + by + d = z
 | |
|        * A is the matrix with rows [x y 1] for all the probed points
 | |
|        * B is the vector of the Z positions
 | |
|        * the normal vector to the plane is formed by the coefficients of the
 | |
|        * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | |
|        * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | |
|        */
 | |
|       float plane_equation_coefficients[3];
 | |
|       qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
 | |
| 
 | |
|       mean /= abl2;
 | |
| 
 | |
|       if (verbose_level) {
 | |
|         SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | |
|         SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
 | |
|         SERIAL_PROTOCOLPGM(" b: ");
 | |
|         SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
 | |
|         SERIAL_PROTOCOLPGM(" d: ");
 | |
|         SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
 | |
|         SERIAL_EOL();
 | |
|         if (verbose_level > 2) {
 | |
|           SERIAL_PROTOCOLPGM("Mean of sampled points: ");
 | |
|           SERIAL_PROTOCOL_F(mean, 8);
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create the matrix but don't correct the position yet
 | |
|       if (!dryrun) {
 | |
|         planner.bed_level_matrix = matrix_3x3::create_look_at(
 | |
|           vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
 | |
|         );
 | |
|       }
 | |
| 
 | |
|       // Show the Topography map if enabled
 | |
|       if (do_topography_map) {
 | |
| 
 | |
|         SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
 | |
|                                "   +--- BACK --+\n"
 | |
|                                "   |           |\n"
 | |
|                                " L |    (+)    | R\n"
 | |
|                                " E |           | I\n"
 | |
|                                " F | (-) N (+) | G\n"
 | |
|                                " T |           | H\n"
 | |
|                                "   |    (-)    | T\n"
 | |
|                                "   |           |\n"
 | |
|                                "   O-- FRONT --+\n"
 | |
|                                " (0,0)");
 | |
| 
 | |
|         float min_diff = 999;
 | |
| 
 | |
|         for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
 | |
|           for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
 | |
|             int ind = indexIntoAB[xx][yy];
 | |
|             float diff = eqnBVector[ind] - mean,
 | |
|                   x_tmp = eqnAMatrix[ind + 0 * abl2],
 | |
|                   y_tmp = eqnAMatrix[ind + 1 * abl2],
 | |
|                   z_tmp = 0;
 | |
| 
 | |
|             apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
 | |
| 
 | |
|             NOMORE(min_diff, eqnBVector[ind] - z_tmp);
 | |
| 
 | |
|             if (diff >= 0.0)
 | |
|               SERIAL_PROTOCOLPGM(" +");   // Include + for column alignment
 | |
|             else
 | |
|               SERIAL_PROTOCOLCHAR(' ');
 | |
|             SERIAL_PROTOCOL_F(diff, 5);
 | |
|           } // xx
 | |
|           SERIAL_EOL();
 | |
|         } // yy
 | |
|         SERIAL_EOL();
 | |
| 
 | |
|         if (verbose_level > 3) {
 | |
|           SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
 | |
| 
 | |
|           for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
 | |
|             for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
 | |
|               int ind = indexIntoAB[xx][yy];
 | |
|               float x_tmp = eqnAMatrix[ind + 0 * abl2],
 | |
|                     y_tmp = eqnAMatrix[ind + 1 * abl2],
 | |
|                     z_tmp = 0;
 | |
| 
 | |
|               apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
 | |
| 
 | |
|               float diff = eqnBVector[ind] - z_tmp - min_diff;
 | |
|               if (diff >= 0.0)
 | |
|                 SERIAL_PROTOCOLPGM(" +");
 | |
|               // Include + for column alignment
 | |
|               else
 | |
|                 SERIAL_PROTOCOLCHAR(' ');
 | |
|               SERIAL_PROTOCOL_F(diff, 5);
 | |
|             } // xx
 | |
|             SERIAL_EOL();
 | |
|           } // yy
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       } //do_topography_map
 | |
| 
 | |
|     #endif // AUTO_BED_LEVELING_LINEAR
 | |
| 
 | |
|     #if ABL_PLANAR
 | |
| 
 | |
|       // For LINEAR and 3POINT leveling correct the current position
 | |
| 
 | |
|       if (verbose_level > 0)
 | |
|         planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
 | |
| 
 | |
|       if (!dryrun) {
 | |
|         //
 | |
|         // Correct the current XYZ position based on the tilted plane.
 | |
|         //
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
 | |
|         #endif
 | |
| 
 | |
|         float converted[XYZ];
 | |
|         COPY(converted, current_position);
 | |
| 
 | |
|         planner.abl_enabled = true;
 | |
|         planner.unapply_leveling(converted); // use conversion machinery
 | |
|         planner.abl_enabled = false;
 | |
| 
 | |
|         // Use the last measured distance to the bed, if possible
 | |
|         if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
 | |
|           && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
 | |
|         ) {
 | |
|           const float simple_z = current_position[Z_AXIS] - measured_z;
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPAIR("Z from Probe:", simple_z);
 | |
|               SERIAL_ECHOPAIR("  Matrix:", converted[Z_AXIS]);
 | |
|               SERIAL_ECHOLNPAIR("  Discrepancy:", simple_z - converted[Z_AXIS]);
 | |
|             }
 | |
|           #endif
 | |
|           converted[Z_AXIS] = simple_z;
 | |
|         }
 | |
| 
 | |
|         // The rotated XY and corrected Z are now current_position
 | |
|         COPY(current_position, converted);
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|       if (!dryrun) {
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
 | |
|         #endif
 | |
| 
 | |
|         // Unapply the offset because it is going to be immediately applied
 | |
|         // and cause compensation movement in Z
 | |
|         current_position[Z_AXIS] -= bilinear_z_offset(current_position);
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #endif // ABL_PLANAR
 | |
| 
 | |
|     #ifdef Z_PROBE_END_SCRIPT
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
 | |
|       #endif
 | |
|       enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
 | |
|       stepper.synchronize();
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
 | |
|     #endif
 | |
| 
 | |
|     report_current_position();
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|     // Auto Bed Leveling is complete! Enable if possible.
 | |
|     planner.abl_enabled = dryrun ? abl_should_enable : true;
 | |
| 
 | |
|     if (planner.abl_enabled)
 | |
|       SYNC_PLAN_POSITION_KINEMATIC();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   /**
 | |
|    * G30: Do a single Z probe at the current XY
 | |
|    *
 | |
|    * Parameters:
 | |
|    *
 | |
|    *   X   Probe X position (default current X)
 | |
|    *   Y   Probe Y position (default current Y)
 | |
|    *   S0  Leave the probe deployed
 | |
|    */
 | |
|   inline void gcode_G30() {
 | |
|     const float xpos = parser.seen('X') ? parser.value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|                 ypos = parser.seen('Y') ? parser.value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| 
 | |
|     if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
 | |
| 
 | |
|     // Disable leveling so the planner won't mess with us
 | |
|     #if HAS_LEVELING
 | |
|       set_bed_leveling_enabled(false);
 | |
|     #endif
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     const float measured_z = probe_pt(xpos, ypos, !parser.seen('S') || parser.value_bool(), 1);
 | |
| 
 | |
|     if (!isnan(measured_z)) {
 | |
|       SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
 | |
|       SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
 | |
|       SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
 | |
|     }
 | |
| 
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|     /**
 | |
|      * G31: Deploy the Z probe
 | |
|      */
 | |
|     inline void gcode_G31() { DEPLOY_PROBE(); }
 | |
| 
 | |
|     /**
 | |
|      * G32: Stow the Z probe
 | |
|      */
 | |
|     inline void gcode_G32() { STOW_PROBE(); }
 | |
| 
 | |
|   #endif // Z_PROBE_SLED
 | |
| 
 | |
|   #if ENABLED(DELTA_AUTO_CALIBRATION)
 | |
|     /**
 | |
|      * G33 - Delta '1-4-7-point' Auto-Calibration
 | |
|      *       Calibrate height, endstops, delta radius, and tower angles.
 | |
|      *
 | |
|      * Parameters:
 | |
|      *
 | |
|      *   Pn  Number of probe points:
 | |
|      *
 | |
|      *      P1     Probe center and set height only.
 | |
|      *      P2     Probe center and towers. Set height, endstops, and delta radius.
 | |
|      *      P3     Probe all positions: center, towers and opposite towers. Set all.
 | |
|      *      P4-P7  Probe all positions at different locations and average them.
 | |
|      *
 | |
|      *   T   Don't calibrate tower angle corrections
 | |
|      *
 | |
|      *   Cn.nn Calibration precision; when omitted calibrates to maximum precision
 | |
|      *
 | |
|      *   Vn  Verbose level:
 | |
|      *
 | |
|      *      V0  Dry-run mode. Report settings and probe results. No calibration.
 | |
|      *      V1  Report settings
 | |
|      *      V2  Report settings and probe results
 | |
|      *
 | |
|      *   E   Engage the probe for each point
 | |
|      */
 | |
| 
 | |
|     void print_signed_float(const char * const prefix, const float &f) {
 | |
|       SERIAL_PROTOCOLPGM("  ");
 | |
|       serialprintPGM(prefix);
 | |
|       SERIAL_PROTOCOLCHAR(':');
 | |
|       if (f >= 0) SERIAL_CHAR('+');
 | |
|       SERIAL_PROTOCOL_F(f, 2);
 | |
|     }
 | |
| 
 | |
|     inline void gcode_G33() {
 | |
| 
 | |
|       const int8_t probe_points = parser.seen('P') ? parser.value_int() : DELTA_CALIBRATION_DEFAULT_POINTS;
 | |
|       if (!WITHIN(probe_points, 1, 7)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       const int8_t verbose_level = parser.seen('V') ? parser.value_byte() : 1;
 | |
|       if (!WITHIN(verbose_level, 0, 2)) {
 | |
|         SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       const float calibration_precision = parser.seen('C') ? parser.value_float() : 0.0;
 | |
|       if (calibration_precision < 0) {
 | |
|         SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       const bool towers_set = !parser.seen('T'),
 | |
|                  stow_after_each      = parser.seen('E') && parser.value_bool(),
 | |
|                  _1p_calibration      = probe_points == 1,
 | |
|                  _4p_calibration      = probe_points == 2,
 | |
|                  _4p_towers_points    = _4p_calibration && towers_set,
 | |
|                  _4p_opposite_points  = _4p_calibration && !towers_set,
 | |
|                  _7p_calibration      = probe_points >= 3,
 | |
|                  _7p_half_circle      = probe_points == 3,
 | |
|                  _7p_double_circle    = probe_points == 5,
 | |
|                  _7p_triple_circle    = probe_points == 6,
 | |
|                  _7p_quadruple_circle = probe_points == 7,
 | |
|                  _7p_multi_circle     = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
 | |
|                  _7p_intermed_points  = _7p_calibration && !_7p_half_circle;
 | |
| 
 | |
|       if (!_1p_calibration) {  // test if the outer radius is reachable
 | |
|         const float circles = (_7p_quadruple_circle ? 1.5 :
 | |
|                                _7p_triple_circle    ? 1.0 :
 | |
|                                _7p_double_circle    ? 0.5 : 0),
 | |
|                     radius = (1 + circles * 0.1) * delta_calibration_radius;
 | |
|         for (uint8_t axis = 1; axis < 13; ++axis) {
 | |
|           if (!position_is_reachable_xy(cos(RADIANS(180 + 30 * axis)) * radius, sin(RADIANS(180 + 30 * axis)) * radius)) {
 | |
|             SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
 | |
|       const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
 | |
|                   dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
 | |
|       int8_t iterations = 0;
 | |
|       float test_precision,
 | |
|             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
 | |
|             zero_std_dev_old = zero_std_dev,
 | |
|             e_old[XYZ] = {
 | |
|               endstop_adj[A_AXIS],
 | |
|               endstop_adj[B_AXIS],
 | |
|               endstop_adj[C_AXIS]
 | |
|             },
 | |
|             dr_old = delta_radius,
 | |
|             zh_old = home_offset[Z_AXIS],
 | |
|             alpha_old = delta_tower_angle_trim[A_AXIS],
 | |
|             beta_old = delta_tower_angle_trim[B_AXIS];
 | |
| 
 | |
|       SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
 | |
| 
 | |
|       stepper.synchronize();
 | |
|       #if HAS_LEVELING
 | |
|         reset_bed_level(); // After calibration bed-level data is no longer valid
 | |
|       #endif
 | |
|       #if HOTENDS > 1
 | |
|         const uint8_t old_tool_index = active_extruder;
 | |
|         tool_change(0, 0, true);
 | |
|       #endif
 | |
|       setup_for_endstop_or_probe_move();
 | |
|       DEPLOY_PROBE();
 | |
|       endstops.enable(true);
 | |
|       home_delta();
 | |
|       endstops.not_homing();
 | |
| 
 | |
|       // print settings
 | |
| 
 | |
|       SERIAL_PROTOCOLPGM("Checking... AC");
 | |
|       if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
 | |
|       SERIAL_EOL();
 | |
|       LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
 | |
| 
 | |
|       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
 | |
|       if (!_1p_calibration) {
 | |
|         print_signed_float(PSTR("  Ex"), endstop_adj[A_AXIS]);
 | |
|         print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
 | |
|         print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
 | |
|         SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
 | |
|       }
 | |
|       SERIAL_EOL();
 | |
|       if (_7p_calibration && towers_set) {
 | |
|         SERIAL_PROTOCOLPGM(".Tower angle :  ");
 | |
|         print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
 | |
|         print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
 | |
|         SERIAL_PROTOCOLPGM("  Tz:+0.00");
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
| 
 | |
|       home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1); // 1st probe to set height
 | |
|       do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
 | |
| 
 | |
|       do {
 | |
| 
 | |
|         float z_at_pt[13] = { 0.0 }, S1 = 0.0, S2 = 0.0;
 | |
|         int16_t N = 0;
 | |
| 
 | |
|         test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
 | |
| 
 | |
|         iterations++;
 | |
| 
 | |
|         // Probe the points
 | |
| 
 | |
|         if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
 | |
|           z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1);
 | |
|         }
 | |
|         if (_7p_calibration) { // probe extra center points
 | |
|           for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
 | |
|             const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
 | |
|             z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
 | |
|           }
 | |
|           z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
 | |
|         }
 | |
|         if (!_1p_calibration) {  // probe the radius
 | |
|           bool zig_zag = true;
 | |
|           const uint8_t start = _4p_opposite_points ? 3 : 1,
 | |
|                          step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
 | |
|           for (uint8_t axis = start; axis < 13; axis += step) {
 | |
|             const float offset_circles = _7p_quadruple_circle ? (zig_zag ? 1.5 : 1.0) :
 | |
|                                          _7p_triple_circle    ? (zig_zag ? 1.0 : 0.5) :
 | |
|                                          _7p_double_circle    ? (zig_zag ? 0.5 : 0.0) : 0;
 | |
|             for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
 | |
|               const float a = RADIANS(180 + 30 * axis),
 | |
|                           r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
 | |
|               z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
 | |
|             }
 | |
|             zig_zag = !zig_zag;
 | |
|             z_at_pt[axis] /= (2 * offset_circles + 1);
 | |
|           }
 | |
|         }
 | |
|         if (_7p_intermed_points) // average intermediates to tower and opposites
 | |
|           for (uint8_t axis = 1; axis <= 11; axis += 2)
 | |
|             z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
 | |
| 
 | |
|         S1 += z_at_pt[0];
 | |
|         S2 += sq(z_at_pt[0]);
 | |
|         N++;
 | |
|         if (!_1p_calibration) // std dev from zero plane
 | |
|           for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
 | |
|             S1 += z_at_pt[axis];
 | |
|             S2 += sq(z_at_pt[axis]);
 | |
|             N++;
 | |
|           }
 | |
|         zero_std_dev_old = zero_std_dev;
 | |
|         zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
 | |
| 
 | |
|         if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
 | |
| 
 | |
|         // Solve matrices
 | |
| 
 | |
|         if (zero_std_dev < test_precision && zero_std_dev > calibration_precision) {
 | |
|           COPY(e_old, endstop_adj);
 | |
|           dr_old = delta_radius;
 | |
|           zh_old = home_offset[Z_AXIS];
 | |
|           alpha_old = delta_tower_angle_trim[A_AXIS];
 | |
|           beta_old = delta_tower_angle_trim[B_AXIS];
 | |
| 
 | |
|           float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
 | |
|           const float r_diff = delta_radius - delta_calibration_radius,
 | |
|                       h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
 | |
|                       r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
 | |
|                       a_factor = 100.0 / delta_calibration_radius;               //1.25 for cal_rd = 80mm
 | |
| 
 | |
|           #define ZP(N,I) ((N) * z_at_pt[I])
 | |
|           #define Z1000(I) ZP(1.00, I)
 | |
|           #define Z1050(I) ZP(h_factor, I)
 | |
|           #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
 | |
|           #define Z0350(I) ZP(h_factor / 3.00, I)
 | |
|           #define Z0175(I) ZP(h_factor / 6.00, I)
 | |
|           #define Z2250(I) ZP(r_factor, I)
 | |
|           #define Z0750(I) ZP(r_factor / 3.00, I)
 | |
|           #define Z0375(I) ZP(r_factor / 6.00, I)
 | |
|           #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
 | |
|           #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
 | |
| 
 | |
|           switch (probe_points) {
 | |
|             case 1:
 | |
|               test_precision = 0.00;
 | |
|               LOOP_XYZ(i) e_delta[i] = Z1000(0);
 | |
|               break;
 | |
| 
 | |
|             case 2:
 | |
|               if (towers_set) {
 | |
|                 e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
 | |
|                 e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
 | |
|                 e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
 | |
|                 r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
 | |
|               }
 | |
|               else {
 | |
|                 e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
 | |
|                 e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
 | |
|                 e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
 | |
|                 r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
 | |
|               }
 | |
|               break;
 | |
| 
 | |
|             default:
 | |
|               e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
 | |
|               e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
 | |
|               e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
 | |
|               r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
 | |
| 
 | |
|               if (towers_set) {
 | |
|                 t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
 | |
|                 t_beta  = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
 | |
|               }
 | |
|               break;
 | |
|           }
 | |
| 
 | |
|           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
 | |
|           delta_radius += r_delta;
 | |
|           delta_tower_angle_trim[A_AXIS] += t_alpha;
 | |
|           delta_tower_angle_trim[B_AXIS] += t_beta;
 | |
| 
 | |
|           // adjust delta_height and endstops by the max amount
 | |
|           const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
 | |
|           home_offset[Z_AXIS] -= z_temp;
 | |
|           LOOP_XYZ(i) endstop_adj[i] -= z_temp;
 | |
| 
 | |
|           recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|         }
 | |
|         else if (zero_std_dev >= test_precision) {   // step one back
 | |
|           COPY(endstop_adj, e_old);
 | |
|           delta_radius = dr_old;
 | |
|           home_offset[Z_AXIS] = zh_old;
 | |
|           delta_tower_angle_trim[A_AXIS] = alpha_old;
 | |
|           delta_tower_angle_trim[B_AXIS] = beta_old;
 | |
| 
 | |
|           recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|         }
 | |
| 
 | |
|          // print report
 | |
| 
 | |
|         if (verbose_level != 1) {
 | |
|           SERIAL_PROTOCOLPGM(".    ");
 | |
|           print_signed_float(PSTR("c"), z_at_pt[0]);
 | |
|           if (_4p_towers_points || _7p_calibration) {
 | |
|             print_signed_float(PSTR("   x"), z_at_pt[1]);
 | |
|             print_signed_float(PSTR(" y"), z_at_pt[5]);
 | |
|             print_signed_float(PSTR(" z"), z_at_pt[9]);
 | |
|           }
 | |
|           if (!_4p_opposite_points) SERIAL_EOL();
 | |
|           if ((_4p_opposite_points) || _7p_calibration) {
 | |
|             if (_7p_calibration) {
 | |
|               SERIAL_CHAR('.');
 | |
|               SERIAL_PROTOCOL_SP(13);
 | |
|             }
 | |
|             print_signed_float(PSTR("  yz"), z_at_pt[7]);
 | |
|             print_signed_float(PSTR("zx"), z_at_pt[11]);
 | |
|             print_signed_float(PSTR("xy"), z_at_pt[3]);
 | |
|             SERIAL_EOL();
 | |
|           }
 | |
|         }
 | |
|         if (test_precision != 0.0) {                                 // !forced end
 | |
|           if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) {  // end iterations
 | |
|             SERIAL_PROTOCOLPGM("Calibration OK");
 | |
|             SERIAL_PROTOCOL_SP(36);
 | |
|             if (zero_std_dev >= test_precision)
 | |
|               SERIAL_PROTOCOLPGM("rolling back.");
 | |
|             else {
 | |
|               SERIAL_PROTOCOLPGM("std dev:");
 | |
|               SERIAL_PROTOCOL_F(zero_std_dev, 3);
 | |
|             }
 | |
|             SERIAL_EOL();
 | |
|             LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
 | |
|           }
 | |
|           else {                                                     // !end iterations
 | |
|             char mess[15] = "No convergence";
 | |
|             if (iterations < 31)
 | |
|               sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
 | |
|             SERIAL_PROTOCOL(mess);
 | |
|             SERIAL_PROTOCOL_SP(36);
 | |
|             SERIAL_PROTOCOLPGM("std dev:");
 | |
|             SERIAL_PROTOCOL_F(zero_std_dev, 3);
 | |
|             SERIAL_EOL();
 | |
|             lcd_setstatus(mess);
 | |
|           }
 | |
|           SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
 | |
|           if (!_1p_calibration) {
 | |
|             print_signed_float(PSTR("  Ex"), endstop_adj[A_AXIS]);
 | |
|             print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
 | |
|             print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
 | |
|             SERIAL_PROTOCOLPAIR("    Radius:", delta_radius);
 | |
|           }
 | |
|           SERIAL_EOL();
 | |
|           if (_7p_calibration && towers_set) {
 | |
|             SERIAL_PROTOCOLPGM(".Tower angle :  ");
 | |
|             print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
 | |
|             print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
 | |
|             SERIAL_PROTOCOLPGM("  Tz:+0.00");
 | |
|             SERIAL_EOL();
 | |
|           }
 | |
|           if (zero_std_dev >= test_precision || zero_std_dev <= calibration_precision)
 | |
|             serialprintPGM(save_message);
 | |
|             SERIAL_EOL();
 | |
|         }
 | |
|         else {                                                       // forced end
 | |
|           if (verbose_level == 0) {
 | |
|             SERIAL_PROTOCOLPGM("End DRY-RUN");
 | |
|             SERIAL_PROTOCOL_SP(39);
 | |
|             SERIAL_PROTOCOLPGM("std dev:");
 | |
|             SERIAL_PROTOCOL_F(zero_std_dev, 3);
 | |
|             SERIAL_EOL();
 | |
|           }
 | |
|           else {
 | |
|             SERIAL_PROTOCOLLNPGM("Calibration OK");
 | |
|             LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
 | |
|             SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
 | |
|             SERIAL_EOL();
 | |
|             serialprintPGM(save_message);
 | |
|             SERIAL_EOL();
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         endstops.enable(true);
 | |
|         home_delta();
 | |
|         endstops.not_homing();
 | |
| 
 | |
|       }
 | |
|       while (zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31);
 | |
| 
 | |
|       #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
 | |
|         do_blocking_move_to_z(delta_clip_start_height);
 | |
|       #endif
 | |
|       STOW_PROBE();
 | |
|       clean_up_after_endstop_or_probe_move();
 | |
|       #if HOTENDS > 1
 | |
|         tool_change(old_tool_index, 0, true);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|   #endif // DELTA_AUTO_CALIBRATION
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(G38_PROBE_TARGET)
 | |
| 
 | |
|   static bool G38_run_probe() {
 | |
| 
 | |
|     bool G38_pass_fail = false;
 | |
| 
 | |
|     // Get direction of move and retract
 | |
|     float retract_mm[XYZ];
 | |
|     LOOP_XYZ(i) {
 | |
|       float dist = destination[i] - current_position[i];
 | |
|       retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
 | |
|     }
 | |
| 
 | |
|     stepper.synchronize();  // wait until the machine is idle
 | |
| 
 | |
|     // Move until destination reached or target hit
 | |
|     endstops.enable(true);
 | |
|     G38_move = true;
 | |
|     G38_endstop_hit = false;
 | |
|     prepare_move_to_destination();
 | |
|     stepper.synchronize();
 | |
|     G38_move = false;
 | |
| 
 | |
|     endstops.hit_on_purpose();
 | |
|     set_current_from_steppers_for_axis(ALL_AXES);
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     if (G38_endstop_hit) {
 | |
| 
 | |
|       G38_pass_fail = true;
 | |
| 
 | |
|       #if ENABLED(PROBE_DOUBLE_TOUCH)
 | |
|         // Move away by the retract distance
 | |
|         set_destination_to_current();
 | |
|         LOOP_XYZ(i) destination[i] += retract_mm[i];
 | |
|         endstops.enable(false);
 | |
|         prepare_move_to_destination();
 | |
|         stepper.synchronize();
 | |
| 
 | |
|         feedrate_mm_s /= 4;
 | |
| 
 | |
|         // Bump the target more slowly
 | |
|         LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
 | |
| 
 | |
|         endstops.enable(true);
 | |
|         G38_move = true;
 | |
|         prepare_move_to_destination();
 | |
|         stepper.synchronize();
 | |
|         G38_move = false;
 | |
| 
 | |
|         set_current_from_steppers_for_axis(ALL_AXES);
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     endstops.hit_on_purpose();
 | |
|     endstops.not_homing();
 | |
|     return G38_pass_fail;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * G38.2 - probe toward workpiece, stop on contact, signal error if failure
 | |
|    * G38.3 - probe toward workpiece, stop on contact
 | |
|    *
 | |
|    * Like G28 except uses Z min probe for all axes
 | |
|    */
 | |
|   inline void gcode_G38(bool is_38_2) {
 | |
|     // Get X Y Z E F
 | |
|     gcode_get_destination();
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     // If any axis has enough movement, do the move
 | |
|     LOOP_XYZ(i)
 | |
|       if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
 | |
|         if (!parser.seen('F')) feedrate_mm_s = homing_feedrate(i);
 | |
|         // If G38.2 fails throw an error
 | |
|         if (!G38_run_probe() && is_38_2) {
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM("Failed to reach target");
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
|   }
 | |
| 
 | |
| #endif // G38_PROBE_TARGET
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   /**
 | |
|    * G42: Move X & Y axes to mesh coordinates (I & J)
 | |
|    */
 | |
|   inline void gcode_G42() {
 | |
|     if (IsRunning()) {
 | |
|       const bool hasI = parser.seen('I');
 | |
|       const int8_t ix = parser.has_value() ? parser.value_int() : 0;
 | |
|       const bool hasJ = parser.seen('J');
 | |
|       const int8_t iy = parser.has_value() ? parser.value_int() : 0;
 | |
| 
 | |
|       if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
 | |
|         SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
 | |
|         #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
 | |
|         #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
 | |
|       #elif ENABLED(MESH_BED_LEVELING)
 | |
|         #define _GET_MESH_X(I) mbl.index_to_xpos[I]
 | |
|         #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
 | |
|       #endif
 | |
| 
 | |
|       set_destination_to_current();
 | |
|       if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
 | |
|       if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
 | |
|       if (parser.seen('P') && parser.value_bool()) {
 | |
|         if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|         if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|       }
 | |
| 
 | |
|       if (parser.seen('F') && parser.value_linear_units() > 0.0)
 | |
|         feedrate_mm_s = MMM_TO_MMS(parser.value_linear_units());
 | |
| 
 | |
|       // SCARA kinematic has "safe" XY raw moves
 | |
|       #if IS_SCARA
 | |
|         prepare_uninterpolated_move_to_destination();
 | |
|       #else
 | |
|         prepare_move_to_destination();
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
| /**
 | |
|  * G92: Set current position to given X Y Z E
 | |
|  */
 | |
| inline void gcode_G92() {
 | |
|   bool didXYZ = false,
 | |
|        didE = parser.seen('E');
 | |
| 
 | |
|   if (!didE) stepper.synchronize();
 | |
| 
 | |
|   LOOP_XYZE(i) {
 | |
|     if (parser.seen(axis_codes[i])) {
 | |
|       #if IS_SCARA
 | |
|         current_position[i] = parser.value_axis_units((AxisEnum)i);
 | |
|         if (i != E_AXIS) didXYZ = true;
 | |
|       #else
 | |
|         #if HAS_POSITION_SHIFT
 | |
|           const float p = current_position[i];
 | |
|         #endif
 | |
|         float v = parser.value_axis_units((AxisEnum)i);
 | |
| 
 | |
|         current_position[i] = v;
 | |
| 
 | |
|         if (i != E_AXIS) {
 | |
|           didXYZ = true;
 | |
|           #if HAS_POSITION_SHIFT
 | |
|             position_shift[i] += v - p; // Offset the coordinate space
 | |
|             update_software_endstops((AxisEnum)i);
 | |
| 
 | |
|             #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|               I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]);
 | |
|             #endif
 | |
| 
 | |
|           #endif
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
|   if (didXYZ)
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|   else if (didE)
 | |
|     sync_plan_position_e();
 | |
| 
 | |
|   report_current_position();
 | |
| }
 | |
| 
 | |
| #if HAS_RESUME_CONTINUE
 | |
| 
 | |
|   /**
 | |
|    * M0: Unconditional stop - Wait for user button press on LCD
 | |
|    * M1: Conditional stop   - Wait for user button press on LCD
 | |
|    */
 | |
|   inline void gcode_M0_M1() {
 | |
|     const char * const args = parser.string_arg;
 | |
| 
 | |
|     millis_t ms = 0;
 | |
|     bool hasP = false, hasS = false;
 | |
|     if (parser.seen('P')) {
 | |
|       ms = parser.value_millis(); // milliseconds to wait
 | |
|       hasP = ms > 0;
 | |
|     }
 | |
|     if (parser.seen('S')) {
 | |
|       ms = parser.value_millis_from_seconds(); // seconds to wait
 | |
|       hasS = ms > 0;
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|       if (!hasP && !hasS && args && *args)
 | |
|         lcd_setstatus(args, true);
 | |
|       else {
 | |
|         LCD_MESSAGEPGM(MSG_USERWAIT);
 | |
|         #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
 | |
|           dontExpireStatus();
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       if (!hasP && !hasS && args && *args) {
 | |
|         SERIAL_ECHO_START();
 | |
|         SERIAL_ECHOLN(args);
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|     wait_for_user = true;
 | |
| 
 | |
|     stepper.synchronize();
 | |
|     refresh_cmd_timeout();
 | |
| 
 | |
|     if (ms > 0) {
 | |
|       ms += previous_cmd_ms;  // wait until this time for a click
 | |
|       while (PENDING(millis(), ms) && wait_for_user) idle();
 | |
|     }
 | |
|     else {
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         if (lcd_detected()) {
 | |
|           while (wait_for_user) idle();
 | |
|           IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|         }
 | |
|       #else
 | |
|         while (wait_for_user) idle();
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     wait_for_user = false;
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_RESUME_CONTINUE
 | |
| 
 | |
| #if ENABLED(SPINDLE_LASER_ENABLE)
 | |
|   /**
 | |
|    * M3: Spindle Clockwise
 | |
|    * M4: Spindle Counter-clockwise
 | |
|    *
 | |
|    *  S0 turns off spindle.
 | |
|    *
 | |
|    *  If no speed PWM output is defined then M3/M4 just turns it on.
 | |
|    *
 | |
|    *  At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
 | |
|    *  Hardware PWM is required. ISRs are too slow.
 | |
|    *
 | |
|    * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
 | |
|    *       No other settings give a PWM signal that goes from 0 to 5 volts.
 | |
|    *
 | |
|    *       The system automatically sets WGM to Mode 1, so no special
 | |
|    *       initialization is needed.
 | |
|    *
 | |
|    *       WGM bits for timer 2 are automatically set by the system to
 | |
|    *       Mode 1. This produces an acceptable 0 to 5 volt signal.
 | |
|    *       No special initialization is needed.
 | |
|    *
 | |
|    * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
 | |
|    *       factors for timers 2, 3, 4, and 5 are acceptable.
 | |
|    *
 | |
|    *  SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
 | |
|    *  the spindle/laser during power-up or when connecting to the host
 | |
|    *  (usually goes through a reset which sets all I/O pins to tri-state)
 | |
|    *
 | |
|    *  PWM duty cycle goes from 0 (off) to 255 (always on).
 | |
|    */
 | |
| 
 | |
|   // Wait for spindle to come up to speed
 | |
|   inline void delay_for_power_up() {
 | |
|     refresh_cmd_timeout();
 | |
|     while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
 | |
|   }
 | |
| 
 | |
|   // Wait for spindle to stop turning
 | |
|   inline void delay_for_power_down() {
 | |
|     refresh_cmd_timeout();
 | |
|     while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
 | |
|    *
 | |
|    * it accepts inputs of 0-255
 | |
|    */
 | |
| 
 | |
|   inline void ocr_val_mode() {
 | |
|     uint8_t spindle_laser_power = parser.value_byte();
 | |
|     WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
 | |
|     if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
 | |
|     analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
 | |
|   }
 | |
| 
 | |
|   inline void gcode_M3_M4(bool is_M3) {
 | |
| 
 | |
|     stepper.synchronize();   // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
 | |
|     #if SPINDLE_DIR_CHANGE
 | |
|       const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
 | |
|       if (SPINDLE_STOP_ON_DIR_CHANGE \
 | |
|          && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
 | |
|          && READ(SPINDLE_DIR_PIN) != rotation_dir
 | |
|       ) {
 | |
|         WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);  // turn spindle off
 | |
|         delay_for_power_down();
 | |
|       }
 | |
|       digitalWrite(SPINDLE_DIR_PIN, rotation_dir);
 | |
|     #endif
 | |
| 
 | |
|     /**
 | |
|      * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
 | |
|      * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
 | |
|      * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
 | |
|      */
 | |
|     #if ENABLED(SPINDLE_LASER_PWM)
 | |
|       if (parser.seen('O')) ocr_val_mode();
 | |
|       else {
 | |
|         const float spindle_laser_power = parser.seen('S') ? parser.value_float() : 0;
 | |
|         if (spindle_laser_power == 0) {
 | |
|           WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);                                    // turn spindle off (active low)
 | |
|           delay_for_power_down();
 | |
|         }
 | |
|         else {
 | |
|           int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE));  // convert RPM to PWM duty cycle
 | |
|           NOMORE(ocr_val, 255);                                                                             // limit to max the Atmel PWM will support
 | |
|           if (spindle_laser_power <= SPEED_POWER_MIN)
 | |
|             ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE));            // minimum setting
 | |
|           if (spindle_laser_power >= SPEED_POWER_MAX)
 | |
|             ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE));            // limit to max RPM
 | |
|           if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
 | |
|           WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT);                                     // turn spindle on (active low)
 | |
|           analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF);                                               // only write low byte
 | |
|           delay_for_power_up();
 | |
|         }
 | |
|       }
 | |
|     #else
 | |
|       WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
 | |
|       delay_for_power_up();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|  /**
 | |
|   * M5 turn off spindle
 | |
|   */
 | |
|   inline void gcode_M5() {
 | |
|     stepper.synchronize();
 | |
|     WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
 | |
|     delay_for_power_down();
 | |
|   }
 | |
| 
 | |
| #endif // SPINDLE_LASER_ENABLE
 | |
| 
 | |
| /**
 | |
|  * M17: Enable power on all stepper motors
 | |
|  */
 | |
| inline void gcode_M17() {
 | |
|   LCD_MESSAGEPGM(MSG_NO_MOVE);
 | |
|   enable_all_steppers();
 | |
| }
 | |
| 
 | |
| #if IS_KINEMATIC
 | |
|   #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
 | |
| #else
 | |
|   #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
| 
 | |
|   static float resume_position[XYZE];
 | |
|   static bool move_away_flag = false;
 | |
|   #if ENABLED(SDSUPPORT)
 | |
|     static bool sd_print_paused = false;
 | |
|   #endif
 | |
| 
 | |
|   static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
 | |
|     static millis_t next_buzz = 0;
 | |
|     static int8_t runout_beep = 0;
 | |
| 
 | |
|     if (init) next_buzz = runout_beep = 0;
 | |
| 
 | |
|     const millis_t ms = millis();
 | |
|     if (ELAPSED(ms, next_buzz)) {
 | |
|       if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
 | |
|         next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
 | |
|         BUZZ(300, 2000);
 | |
|         runout_beep++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static void ensure_safe_temperature() {
 | |
|     bool heaters_heating = true;
 | |
| 
 | |
|     wait_for_heatup = true;    // M108 will clear this
 | |
|     while (wait_for_heatup && heaters_heating) {
 | |
|       idle();
 | |
|       heaters_heating = false;
 | |
|       HOTEND_LOOP() {
 | |
|         if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
 | |
|           heaters_heating = true;
 | |
|           #if ENABLED(ULTIPANEL)
 | |
|             lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
 | |
|           #endif
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
 | |
|                           const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
 | |
|   ) {
 | |
|     if (move_away_flag) return false; // already paused
 | |
| 
 | |
|     if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
 | |
|       #if ENABLED(PREVENT_COLD_EXTRUSION)
 | |
|         if (!thermalManager.allow_cold_extrude &&
 | |
|             thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
 | |
|           return false;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       ensure_safe_temperature(); // wait for extruder to heat up before unloading
 | |
|     }
 | |
| 
 | |
|     // Indicate that the printer is paused
 | |
|     move_away_flag = true;
 | |
| 
 | |
|     // Pause the print job and timer
 | |
|     #if ENABLED(SDSUPPORT)
 | |
|       if (card.sdprinting) {
 | |
|         card.pauseSDPrint();
 | |
|         sd_print_paused = true;
 | |
|       }
 | |
|     #endif
 | |
|     print_job_timer.pause();
 | |
| 
 | |
|     // Show initial message and wait for synchronize steppers
 | |
|     if (show_lcd) {
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
 | |
|       #endif
 | |
|     }
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     // Save current position
 | |
|     COPY(resume_position, current_position);
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     if (retract) {
 | |
|       // Initial retract before move to filament change position
 | |
|       destination[E_AXIS] += retract;
 | |
|       RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
 | |
|     }
 | |
| 
 | |
|     // Lift Z axis
 | |
|     if (z_lift > 0) {
 | |
|       destination[Z_AXIS] += z_lift;
 | |
|       NOMORE(destination[Z_AXIS], Z_MAX_POS);
 | |
|       RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
 | |
|     }
 | |
| 
 | |
|     // Move XY axes to filament exchange position
 | |
|     destination[X_AXIS] = x_pos;
 | |
|     destination[Y_AXIS] = y_pos;
 | |
| 
 | |
|     clamp_to_software_endstops(destination);
 | |
|     RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     if (unload_length != 0) {
 | |
|       if (show_lcd) {
 | |
|         #if ENABLED(ULTIPANEL)
 | |
|           lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
 | |
|           idle();
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       // Unload filament
 | |
|       destination[E_AXIS] += unload_length;
 | |
|       RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
 | |
|       stepper.synchronize();
 | |
|     }
 | |
| 
 | |
|     if (show_lcd) {
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if HAS_BUZZER
 | |
|       filament_change_beep(max_beep_count, true);
 | |
|     #endif
 | |
| 
 | |
|     idle();
 | |
| 
 | |
|     // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
 | |
|     #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
 | |
|       disable_e_steppers();
 | |
|       safe_delay(100);
 | |
|     #endif
 | |
| 
 | |
|     // Start the heater idle timers
 | |
|     const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
 | |
| 
 | |
|     HOTEND_LOOP()
 | |
|       thermalManager.start_heater_idle_timer(e, nozzle_timeout);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
 | |
|     bool nozzle_timed_out = false;
 | |
| 
 | |
|     // Wait for filament insert by user and press button
 | |
|     KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|     wait_for_user = true;    // LCD click or M108 will clear this
 | |
|     while (wait_for_user) {
 | |
|       #if HAS_BUZZER
 | |
|         filament_change_beep(max_beep_count);
 | |
|       #endif
 | |
| 
 | |
|       // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
 | |
|       // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
 | |
|       if (!nozzle_timed_out)
 | |
|         HOTEND_LOOP()
 | |
|           nozzle_timed_out |= thermalManager.is_heater_idle(e);
 | |
| 
 | |
|       if (nozzle_timed_out) {
 | |
|         #if ENABLED(ULTIPANEL)
 | |
|           lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
 | |
|         #endif
 | |
| 
 | |
|         // Wait for LCD click or M108
 | |
|         while (wait_for_user) idle(true);
 | |
| 
 | |
|         // Re-enable the heaters if they timed out
 | |
|         HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
 | |
| 
 | |
|         // Wait for the heaters to reach the target temperatures
 | |
|         ensure_safe_temperature();
 | |
| 
 | |
|         #if ENABLED(ULTIPANEL)
 | |
|           lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
 | |
|         #endif
 | |
| 
 | |
|         // Start the heater idle timers
 | |
|         const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
 | |
| 
 | |
|         HOTEND_LOOP()
 | |
|           thermalManager.start_heater_idle_timer(e, nozzle_timeout);
 | |
| 
 | |
|         wait_for_user = true; /* Wait for user to load filament */
 | |
|         nozzle_timed_out = false;
 | |
| 
 | |
|         #if HAS_BUZZER
 | |
|           filament_change_beep(max_beep_count, true);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       idle(true);
 | |
|     }
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   }
 | |
| 
 | |
|   static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
 | |
|     bool nozzle_timed_out = false;
 | |
| 
 | |
|     if (!move_away_flag) return;
 | |
| 
 | |
|     // Re-enable the heaters if they timed out
 | |
|     HOTEND_LOOP() {
 | |
|       nozzle_timed_out |= thermalManager.is_heater_idle(e);
 | |
|       thermalManager.reset_heater_idle_timer(e);
 | |
|     }
 | |
| 
 | |
|     if (nozzle_timed_out) ensure_safe_temperature();
 | |
| 
 | |
|     #if HAS_BUZZER
 | |
|       filament_change_beep(max_beep_count, true);
 | |
|     #endif
 | |
| 
 | |
|     if (load_length != 0) {
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         // Show "insert filament"
 | |
|         if (nozzle_timed_out)
 | |
|           lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
 | |
|       #endif
 | |
| 
 | |
|       KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|       wait_for_user = true;    // LCD click or M108 will clear this
 | |
|       while (wait_for_user && nozzle_timed_out) {
 | |
|         #if HAS_BUZZER
 | |
|           filament_change_beep(max_beep_count);
 | |
|         #endif
 | |
|         idle(true);
 | |
|       }
 | |
|       KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         // Show "load" message
 | |
|         lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
 | |
|       #endif
 | |
| 
 | |
|       // Load filament
 | |
|       destination[E_AXIS] += load_length;
 | |
| 
 | |
|       RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
 | |
|       stepper.synchronize();
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
 | |
| 
 | |
|       float extrude_length = initial_extrude_length;
 | |
| 
 | |
|       do {
 | |
|         if (extrude_length > 0) {
 | |
|           // "Wait for filament extrude"
 | |
|           lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
 | |
| 
 | |
|           // Extrude filament to get into hotend
 | |
|           destination[E_AXIS] += extrude_length;
 | |
|           RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
 | |
|           stepper.synchronize();
 | |
|         }
 | |
| 
 | |
|         // Show "Extrude More" / "Resume" menu and wait for reply
 | |
|         KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|         wait_for_user = false;
 | |
|         lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
 | |
|         while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
 | |
|         KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|         extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
 | |
| 
 | |
|         // Keep looping if "Extrude More" was selected
 | |
|       } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
|       // "Wait for print to resume"
 | |
|       lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
 | |
|     #endif
 | |
| 
 | |
|     // Set extruder to saved position
 | |
|     destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
 | |
|     planner.set_e_position_mm(current_position[E_AXIS]);
 | |
| 
 | |
|     #if IS_KINEMATIC
 | |
|       // Move XYZ to starting position
 | |
|       planner.buffer_line_kinematic(resume_position, PAUSE_PARK_XY_FEEDRATE, active_extruder);
 | |
|     #else
 | |
|       // Move XY to starting position, then Z
 | |
|       destination[X_AXIS] = resume_position[X_AXIS];
 | |
|       destination[Y_AXIS] = resume_position[Y_AXIS];
 | |
|       RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
 | |
|       destination[Z_AXIS] = resume_position[Z_AXIS];
 | |
|       RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
 | |
|     #endif
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|       filament_ran_out = false;
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
|       // Show status screen
 | |
|       lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(SDSUPPORT)
 | |
|       if (sd_print_paused) {
 | |
|         card.startFileprint();
 | |
|         sd_print_paused = false;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     move_away_flag = false;
 | |
|   }
 | |
| #endif // ADVANCED_PAUSE_FEATURE
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * M20: List SD card to serial output
 | |
|    */
 | |
|   inline void gcode_M20() {
 | |
|     SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
 | |
|     card.ls();
 | |
|     SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M21: Init SD Card
 | |
|    */
 | |
|   inline void gcode_M21() { card.initsd(); }
 | |
| 
 | |
|   /**
 | |
|    * M22: Release SD Card
 | |
|    */
 | |
|   inline void gcode_M22() { card.release(); }
 | |
| 
 | |
|   /**
 | |
|    * M23: Open a file
 | |
|    */
 | |
|   inline void gcode_M23() { card.openFile(parser.string_arg, true); }
 | |
| 
 | |
|   /**
 | |
|    * M24: Start or Resume SD Print
 | |
|    */
 | |
|   inline void gcode_M24() {
 | |
|     #if ENABLED(PARK_HEAD_ON_PAUSE)
 | |
|       resume_print();
 | |
|     #endif
 | |
| 
 | |
|     card.startFileprint();
 | |
|     print_job_timer.start();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M25: Pause SD Print
 | |
|    */
 | |
|   inline void gcode_M25() {
 | |
|     card.pauseSDPrint();
 | |
|     print_job_timer.pause();
 | |
| 
 | |
|     #if ENABLED(PARK_HEAD_ON_PAUSE)
 | |
|       enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M26: Set SD Card file index
 | |
|    */
 | |
|   inline void gcode_M26() {
 | |
|     if (card.cardOK && parser.seen('S'))
 | |
|       card.setIndex(parser.value_long());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M27: Get SD Card status
 | |
|    */
 | |
|   inline void gcode_M27() { card.getStatus(); }
 | |
| 
 | |
|   /**
 | |
|    * M28: Start SD Write
 | |
|    */
 | |
|   inline void gcode_M28() { card.openFile(parser.string_arg, false); }
 | |
| 
 | |
|   /**
 | |
|    * M29: Stop SD Write
 | |
|    * Processed in write to file routine above
 | |
|    */
 | |
|   inline void gcode_M29() {
 | |
|     // card.saving = false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M30 <filename>: Delete SD Card file
 | |
|    */
 | |
|   inline void gcode_M30() {
 | |
|     if (card.cardOK) {
 | |
|       card.closefile();
 | |
|       card.removeFile(parser.string_arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * M31: Get the time since the start of SD Print (or last M109)
 | |
|  */
 | |
| inline void gcode_M31() {
 | |
|   char buffer[21];
 | |
|   duration_t elapsed = print_job_timer.duration();
 | |
|   elapsed.toString(buffer);
 | |
|   lcd_setstatus(buffer);
 | |
| 
 | |
|   SERIAL_ECHO_START();
 | |
|   SERIAL_ECHOLNPAIR("Print time: ", buffer);
 | |
| }
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * M32: Select file and start SD Print
 | |
|    */
 | |
|   inline void gcode_M32() {
 | |
|     if (card.sdprinting)
 | |
|       stepper.synchronize();
 | |
| 
 | |
|     char* namestartpos = parser.string_arg;
 | |
|     bool call_procedure = parser.seen('P');
 | |
| 
 | |
|     if (card.cardOK) {
 | |
|       card.openFile(namestartpos, true, call_procedure);
 | |
| 
 | |
|       if (parser.seen('S'))
 | |
|         card.setIndex(parser.value_long());
 | |
| 
 | |
|       card.startFileprint();
 | |
| 
 | |
|       // Procedure calls count as normal print time.
 | |
|       if (!call_procedure) print_job_timer.start();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
 | |
| 
 | |
|     /**
 | |
|      * M33: Get the long full path of a file or folder
 | |
|      *
 | |
|      * Parameters:
 | |
|      *   <dospath> Case-insensitive DOS-style path to a file or folder
 | |
|      *
 | |
|      * Example:
 | |
|      *   M33 miscel~1/armchair/armcha~1.gco
 | |
|      *
 | |
|      * Output:
 | |
|      *   /Miscellaneous/Armchair/Armchair.gcode
 | |
|      */
 | |
|     inline void gcode_M33() {
 | |
|       card.printLongPath(parser.string_arg);
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
 | |
|     /**
 | |
|      * M34: Set SD Card Sorting Options
 | |
|      */
 | |
|     inline void gcode_M34() {
 | |
|       if (parser.seen('S')) card.setSortOn(parser.value_bool());
 | |
|       if (parser.seen('F')) {
 | |
|         int v = parser.value_long();
 | |
|         card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
 | |
|       }
 | |
|       //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
 | |
|     }
 | |
|   #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
 | |
| 
 | |
|   /**
 | |
|    * M928: Start SD Write
 | |
|    */
 | |
|   inline void gcode_M928() {
 | |
|     card.openLogFile(parser.string_arg);
 | |
|   }
 | |
| 
 | |
| #endif // SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * Sensitive pin test for M42, M226
 | |
|  */
 | |
| static bool pin_is_protected(const int8_t pin) {
 | |
|   static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
 | |
|   for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
 | |
|     if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M42: Change pin status via GCode
 | |
|  *
 | |
|  *  P<pin>  Pin number (LED if omitted)
 | |
|  *  S<byte> Pin status from 0 - 255
 | |
|  */
 | |
| inline void gcode_M42() {
 | |
|   if (!parser.seen('S')) return;
 | |
| 
 | |
|   int pin_status = parser.value_int();
 | |
|   if (!WITHIN(pin_status, 0, 255)) return;
 | |
| 
 | |
|   int pin_number = parser.seen('P') ? parser.value_int() : LED_PIN;
 | |
|   if (pin_number < 0) return;
 | |
| 
 | |
|   if (pin_is_protected(pin_number)) {
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   pinMode(pin_number, OUTPUT);
 | |
|   digitalWrite(pin_number, pin_status);
 | |
|   analogWrite(pin_number, pin_status);
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
|     switch (pin_number) {
 | |
|       #if HAS_FAN0
 | |
|         case FAN_PIN: fanSpeeds[0] = pin_status; break;
 | |
|       #endif
 | |
|       #if HAS_FAN1
 | |
|         case FAN1_PIN: fanSpeeds[1] = pin_status; break;
 | |
|       #endif
 | |
|       #if HAS_FAN2
 | |
|         case FAN2_PIN: fanSpeeds[2] = pin_status; break;
 | |
|       #endif
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(PINS_DEBUGGING)
 | |
| 
 | |
|   #include "pinsDebug.h"
 | |
| 
 | |
|   inline void toggle_pins() {
 | |
|     const bool I_flag = parser.seen('I') && parser.value_bool();
 | |
|     const int repeat = parser.seen('R') ? parser.value_int() : 1,
 | |
|               start = parser.seen('S') ? parser.value_int() : 0,
 | |
|               end = parser.seen('E') ? parser.value_int() : NUM_DIGITAL_PINS - 1,
 | |
|               wait = parser.seen('W') ? parser.value_int() : 500;
 | |
| 
 | |
|     for (uint8_t pin = start; pin <= end; pin++) {
 | |
|       //report_pin_state_extended(pin, I_flag, false);
 | |
| 
 | |
|       if (!I_flag && pin_is_protected(pin)) {
 | |
|         report_pin_state_extended(pin, I_flag, true, "Untouched ");
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
|       else {
 | |
|         report_pin_state_extended(pin, I_flag, true, "Pulsing   ");
 | |
|         #ifdef AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
 | |
|           if (pin == 46) {
 | |
|             SET_OUTPUT(46);
 | |
|             for (int16_t j = 0; j < repeat; j++) {
 | |
|               WRITE(46, 0); safe_delay(wait);
 | |
|               WRITE(46, 1); safe_delay(wait);
 | |
|               WRITE(46, 0); safe_delay(wait);
 | |
|             }
 | |
|           }
 | |
|           else if (pin == 47) {
 | |
|             SET_OUTPUT(47);
 | |
|             for (int16_t j = 0; j < repeat; j++) {
 | |
|               WRITE(47, 0); safe_delay(wait);
 | |
|               WRITE(47, 1); safe_delay(wait);
 | |
|               WRITE(47, 0); safe_delay(wait);
 | |
|             }
 | |
|           }
 | |
|           else
 | |
|         #endif
 | |
|         {
 | |
|           pinMode(pin, OUTPUT);
 | |
|           for (int16_t j = 0; j < repeat; j++) {
 | |
|             digitalWrite(pin, 0); safe_delay(wait);
 | |
|             digitalWrite(pin, 1); safe_delay(wait);
 | |
|             digitalWrite(pin, 0); safe_delay(wait);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       }
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|     SERIAL_ECHOLNPGM("Done.");
 | |
| 
 | |
|   } // toggle_pins
 | |
| 
 | |
|   inline void servo_probe_test() {
 | |
|     #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
 | |
| 
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM("SERVO not setup");
 | |
| 
 | |
|     #elif !HAS_Z_SERVO_ENDSTOP
 | |
| 
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       const uint8_t probe_index = parser.seen('P') ? parser.value_byte() : Z_ENDSTOP_SERVO_NR;
 | |
| 
 | |
|       SERIAL_PROTOCOLLNPGM("Servo probe test");
 | |
|       SERIAL_PROTOCOLLNPAIR(".  using index:  ", probe_index);
 | |
|       SERIAL_PROTOCOLLNPAIR(".  deploy angle: ", z_servo_angle[0]);
 | |
|       SERIAL_PROTOCOLLNPAIR(".  stow angle:   ", z_servo_angle[1]);
 | |
| 
 | |
|       bool probe_inverting;
 | |
| 
 | |
|       #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
 | |
| 
 | |
|         #define PROBE_TEST_PIN Z_MIN_PIN
 | |
| 
 | |
|         SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
 | |
|         SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
 | |
|         SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
 | |
| 
 | |
|         #if Z_MIN_ENDSTOP_INVERTING
 | |
|           SERIAL_PROTOCOLLNPGM("true");
 | |
|         #else
 | |
|           SERIAL_PROTOCOLLNPGM("false");
 | |
|         #endif
 | |
| 
 | |
|         probe_inverting = Z_MIN_ENDSTOP_INVERTING;
 | |
| 
 | |
|       #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
 | |
| 
 | |
|         #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
 | |
|         SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
 | |
|         SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
 | |
|         SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
 | |
| 
 | |
|         #if Z_MIN_PROBE_ENDSTOP_INVERTING
 | |
|           SERIAL_PROTOCOLLNPGM("true");
 | |
|         #else
 | |
|           SERIAL_PROTOCOLLNPGM("false");
 | |
|         #endif
 | |
| 
 | |
|         probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
 | |
|       SET_INPUT_PULLUP(PROBE_TEST_PIN);
 | |
|       bool deploy_state, stow_state;
 | |
|       for (uint8_t i = 0; i < 4; i++) {
 | |
|         servo[probe_index].move(z_servo_angle[0]); //deploy
 | |
|         safe_delay(500);
 | |
|         deploy_state = digitalRead(PROBE_TEST_PIN);
 | |
|         servo[probe_index].move(z_servo_angle[1]); //stow
 | |
|         safe_delay(500);
 | |
|         stow_state = digitalRead(PROBE_TEST_PIN);
 | |
|       }
 | |
|       if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
 | |
| 
 | |
|       refresh_cmd_timeout();
 | |
| 
 | |
|       if (deploy_state != stow_state) {
 | |
|         SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
 | |
|         if (deploy_state) {
 | |
|           SERIAL_PROTOCOLLNPGM(".  DEPLOYED state: HIGH (logic 1)");
 | |
|           SERIAL_PROTOCOLLNPGM(".  STOWED (triggered) state: LOW (logic 0)");
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM(".  DEPLOYED state: LOW (logic 0)");
 | |
|           SERIAL_PROTOCOLLNPGM(".  STOWED (triggered) state: HIGH (logic 1)");
 | |
|         }
 | |
|         #if ENABLED(BLTOUCH)
 | |
|           SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
 | |
|         #endif
 | |
| 
 | |
|       }
 | |
|       else {                                           // measure active signal length
 | |
|         servo[probe_index].move(z_servo_angle[0]);     // deploy
 | |
|         safe_delay(500);
 | |
|         SERIAL_PROTOCOLLNPGM("please trigger probe");
 | |
|         uint16_t probe_counter = 0;
 | |
| 
 | |
|         // Allow 30 seconds max for operator to trigger probe
 | |
|         for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
 | |
| 
 | |
|           safe_delay(2);
 | |
| 
 | |
|           if (0 == j % (500 * 1)) // keep cmd_timeout happy
 | |
|             refresh_cmd_timeout();
 | |
| 
 | |
|           if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
 | |
| 
 | |
|             for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
 | |
|               safe_delay(2);
 | |
| 
 | |
|             if (probe_counter == 50)
 | |
|               SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
 | |
|             else if (probe_counter >= 2)
 | |
|               SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
 | |
|             else
 | |
|               SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
 | |
| 
 | |
|             servo[probe_index].move(z_servo_angle[1]); //stow
 | |
| 
 | |
|           }  // pulse detected
 | |
| 
 | |
|         } // for loop waiting for trigger
 | |
| 
 | |
|         if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
 | |
| 
 | |
|       } // measure active signal length
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|   } // servo_probe_test
 | |
| 
 | |
|   /**
 | |
|    * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
 | |
|    *
 | |
|    *  M43         - report name and state of pin(s)
 | |
|    *                  P<pin>  Pin to read or watch. If omitted, reads all pins.
 | |
|    *                  I       Flag to ignore Marlin's pin protection.
 | |
|    *
 | |
|    *  M43 W       - Watch pins -reporting changes- until reset, click, or M108.
 | |
|    *                  P<pin>  Pin to read or watch. If omitted, read/watch all pins.
 | |
|    *                  I       Flag to ignore Marlin's pin protection.
 | |
|    *
 | |
|    *  M43 E<bool> - Enable / disable background endstop monitoring
 | |
|    *                  - Machine continues to operate
 | |
|    *                  - Reports changes to endstops
 | |
|    *                  - Toggles LED_PIN when an endstop changes
 | |
|    *                  - Can not reliably catch the 5mS pulse from BLTouch type probes
 | |
|    *
 | |
|    *  M43 T       - Toggle pin(s) and report which pin is being toggled
 | |
|    *                  S<pin>  - Start Pin number.   If not given, will default to 0
 | |
|    *                  L<pin>  - End Pin number.   If not given, will default to last pin defined for this board
 | |
|    *                  I<bool> - Flag to ignore Marlin's pin protection.   Use with caution!!!!
 | |
|    *                  R       - Repeat pulses on each pin this number of times before continueing to next pin
 | |
|    *                  W       - Wait time (in miliseconds) between pulses.  If not given will default to 500
 | |
|    *
 | |
|    *  M43 S       - Servo probe test
 | |
|    *                  P<index> - Probe index (optional - defaults to 0
 | |
|    */
 | |
|   inline void gcode_M43() {
 | |
| 
 | |
|     if (parser.seen('T')) {   // must be first or else it's "S" and "E" parameters will execute endstop or servo test
 | |
|       toggle_pins();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Enable or disable endstop monitoring
 | |
|     if (parser.seen('E')) {
 | |
|       endstop_monitor_flag = parser.value_bool();
 | |
|       SERIAL_PROTOCOLPGM("endstop monitor ");
 | |
|       SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
 | |
|       SERIAL_PROTOCOLLNPGM("abled");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (parser.seen('S')) {
 | |
|       servo_probe_test();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Get the range of pins to test or watch
 | |
|     const uint8_t first_pin = parser.seen('P') ? parser.value_byte() : 0,
 | |
|                   last_pin = parser.seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
 | |
| 
 | |
|     if (first_pin > last_pin) return;
 | |
| 
 | |
|     const bool ignore_protection = parser.seen('I') && parser.value_bool();
 | |
| 
 | |
|     // Watch until click, M108, or reset
 | |
|     if (parser.seen('W') && parser.value_bool()) {
 | |
|       SERIAL_PROTOCOLLNPGM("Watching pins");
 | |
|       byte pin_state[last_pin - first_pin + 1];
 | |
|       for (int8_t pin = first_pin; pin <= last_pin; pin++) {
 | |
|         if (pin_is_protected(pin) && !ignore_protection) continue;
 | |
|         pinMode(pin, INPUT_PULLUP);
 | |
|         delay(1);
 | |
|         /*
 | |
|           if (IS_ANALOG(pin))
 | |
|             pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
 | |
|           else
 | |
|         //*/
 | |
|             pin_state[pin - first_pin] = digitalRead(pin);
 | |
|       }
 | |
| 
 | |
|       #if HAS_RESUME_CONTINUE
 | |
|         wait_for_user = true;
 | |
|         KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|       #endif
 | |
| 
 | |
|       for (;;) {
 | |
|         for (int8_t pin = first_pin; pin <= last_pin; pin++) {
 | |
|           if (pin_is_protected(pin) && !ignore_protection) continue;
 | |
|           const byte val =
 | |
|             /*
 | |
|               IS_ANALOG(pin)
 | |
|                 ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
 | |
|                 :
 | |
|             //*/
 | |
|               digitalRead(pin);
 | |
|           if (val != pin_state[pin - first_pin]) {
 | |
|             report_pin_state_extended(pin, ignore_protection, false);
 | |
|             pin_state[pin - first_pin] = val;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         #if HAS_RESUME_CONTINUE
 | |
|           if (!wait_for_user) {
 | |
|             KEEPALIVE_STATE(IN_HANDLER);
 | |
|             break;
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         safe_delay(200);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Report current state of selected pin(s)
 | |
|     for (uint8_t pin = first_pin; pin <= last_pin; pin++)
 | |
|       report_pin_state_extended(pin, ignore_protection, true);
 | |
|   }
 | |
| 
 | |
| #endif // PINS_DEBUGGING
 | |
| 
 | |
| #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
 | |
| 
 | |
|   /**
 | |
|    * M48: Z probe repeatability measurement function.
 | |
|    *
 | |
|    * Usage:
 | |
|    *   M48 <P#> <X#> <Y#> <V#> <E> <L#>
 | |
|    *     P = Number of sampled points (4-50, default 10)
 | |
|    *     X = Sample X position
 | |
|    *     Y = Sample Y position
 | |
|    *     V = Verbose level (0-4, default=1)
 | |
|    *     E = Engage Z probe for each reading
 | |
|    *     L = Number of legs of movement before probe
 | |
|    *     S = Schizoid (Or Star if you prefer)
 | |
|    *
 | |
|    * This function assumes the bed has been homed.  Specifically, that a G28 command
 | |
|    * as been issued prior to invoking the M48 Z probe repeatability measurement function.
 | |
|    * Any information generated by a prior G29 Bed leveling command will be lost and need to be
 | |
|    * regenerated.
 | |
|    */
 | |
|   inline void gcode_M48() {
 | |
| 
 | |
|     if (axis_unhomed_error()) return;
 | |
| 
 | |
|     const int8_t verbose_level = parser.seen('V') ? parser.value_byte() : 1;
 | |
|     if (!WITHIN(verbose_level, 0, 4)) {
 | |
|       SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (verbose_level > 0)
 | |
|       SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
 | |
| 
 | |
|     int8_t n_samples = parser.seen('P') ? parser.value_byte() : 10;
 | |
|     if (!WITHIN(n_samples, 4, 50)) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const bool stow_probe_after_each = parser.seen('E');
 | |
| 
 | |
|     float X_current = current_position[X_AXIS],
 | |
|           Y_current = current_position[Y_AXIS];
 | |
| 
 | |
|     const float X_probe_location = parser.seen('X') ? parser.value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|                 Y_probe_location = parser.seen('Y') ? parser.value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| 
 | |
|     #if DISABLED(DELTA)
 | |
|       if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
 | |
|         out_of_range_error(PSTR("X"));
 | |
|         return;
 | |
|       }
 | |
|       if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
 | |
|         out_of_range_error(PSTR("Y"));
 | |
|         return;
 | |
|       }
 | |
|     #else
 | |
|       if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
 | |
|         SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
 | |
|         return;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     bool seen_L = parser.seen('L');
 | |
|     uint8_t n_legs = seen_L ? parser.value_byte() : 0;
 | |
|     if (n_legs > 15) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
 | |
|       return;
 | |
|     }
 | |
|     if (n_legs == 1) n_legs = 2;
 | |
| 
 | |
|     bool schizoid_flag = parser.seen('S');
 | |
|     if (schizoid_flag && !seen_L) n_legs = 7;
 | |
| 
 | |
|     /**
 | |
|      * Now get everything to the specified probe point So we can safely do a
 | |
|      * probe to get us close to the bed.  If the Z-Axis is far from the bed,
 | |
|      * we don't want to use that as a starting point for each probe.
 | |
|      */
 | |
|     if (verbose_level > 2)
 | |
|       SERIAL_PROTOCOLLNPGM("Positioning the probe...");
 | |
| 
 | |
|     // Disable bed level correction in M48 because we want the raw data when we probe
 | |
| 
 | |
|     #if HAS_LEVELING
 | |
|       const bool was_enabled = leveling_is_active();
 | |
|       set_bed_leveling_enabled(false);
 | |
|     #endif
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     // Move to the first point, deploy, and probe
 | |
|     const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
 | |
|     if (isnan(t)) return;
 | |
| 
 | |
|     randomSeed(millis());
 | |
| 
 | |
|     double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
 | |
| 
 | |
|     for (uint8_t n = 0; n < n_samples; n++) {
 | |
|       if (n_legs) {
 | |
|         int dir = (random(0, 10) > 5.0) ? -1 : 1;  // clockwise or counter clockwise
 | |
|         float angle = random(0.0, 360.0),
 | |
|               radius = random(
 | |
|                 #if ENABLED(DELTA)
 | |
|                   DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
 | |
|                 #else
 | |
|                   5, X_MAX_LENGTH / 8
 | |
|                 #endif
 | |
|               );
 | |
| 
 | |
|         if (verbose_level > 3) {
 | |
|           SERIAL_ECHOPAIR("Starting radius: ", radius);
 | |
|           SERIAL_ECHOPAIR("   angle: ", angle);
 | |
|           SERIAL_ECHOPGM(" Direction: ");
 | |
|           if (dir > 0) SERIAL_ECHOPGM("Counter-");
 | |
|           SERIAL_ECHOLNPGM("Clockwise");
 | |
|         }
 | |
| 
 | |
|         for (uint8_t l = 0; l < n_legs - 1; l++) {
 | |
|           double delta_angle;
 | |
| 
 | |
|           if (schizoid_flag)
 | |
|             // The points of a 5 point star are 72 degrees apart.  We need to
 | |
|             // skip a point and go to the next one on the star.
 | |
|             delta_angle = dir * 2.0 * 72.0;
 | |
| 
 | |
|           else
 | |
|             // If we do this line, we are just trying to move further
 | |
|             // around the circle.
 | |
|             delta_angle = dir * (float) random(25, 45);
 | |
| 
 | |
|           angle += delta_angle;
 | |
| 
 | |
|           while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
 | |
|             angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
 | |
|           while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
 | |
|             angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
 | |
| 
 | |
|           X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
 | |
|           Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
 | |
| 
 | |
|           #if DISABLED(DELTA)
 | |
|             X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
 | |
|             Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
 | |
|           #else
 | |
|             // If we have gone out too far, we can do a simple fix and scale the numbers
 | |
|             // back in closer to the origin.
 | |
|             while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
 | |
|               X_current *= 0.8;
 | |
|               Y_current *= 0.8;
 | |
|               if (verbose_level > 3) {
 | |
|                 SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
 | |
|                 SERIAL_ECHOLNPAIR(", ", Y_current);
 | |
|               }
 | |
|             }
 | |
|           #endif
 | |
|           if (verbose_level > 3) {
 | |
|             SERIAL_PROTOCOLPGM("Going to:");
 | |
|             SERIAL_ECHOPAIR(" X", X_current);
 | |
|             SERIAL_ECHOPAIR(" Y", Y_current);
 | |
|             SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
 | |
|           }
 | |
|           do_blocking_move_to_xy(X_current, Y_current);
 | |
|         } // n_legs loop
 | |
|       } // n_legs
 | |
| 
 | |
|       // Probe a single point
 | |
|       sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
 | |
| 
 | |
|       /**
 | |
|        * Get the current mean for the data points we have so far
 | |
|        */
 | |
|       double sum = 0.0;
 | |
|       for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
 | |
|       mean = sum / (n + 1);
 | |
| 
 | |
|       NOMORE(min, sample_set[n]);
 | |
|       NOLESS(max, sample_set[n]);
 | |
| 
 | |
|       /**
 | |
|        * Now, use that mean to calculate the standard deviation for the
 | |
|        * data points we have so far
 | |
|        */
 | |
|       sum = 0.0;
 | |
|       for (uint8_t j = 0; j <= n; j++)
 | |
|         sum += sq(sample_set[j] - mean);
 | |
| 
 | |
|       sigma = SQRT(sum / (n + 1));
 | |
|       if (verbose_level > 0) {
 | |
|         if (verbose_level > 1) {
 | |
|           SERIAL_PROTOCOL(n + 1);
 | |
|           SERIAL_PROTOCOLPGM(" of ");
 | |
|           SERIAL_PROTOCOL((int)n_samples);
 | |
|           SERIAL_PROTOCOLPGM(": z: ");
 | |
|           SERIAL_PROTOCOL_F(sample_set[n], 3);
 | |
|           if (verbose_level > 2) {
 | |
|             SERIAL_PROTOCOLPGM(" mean: ");
 | |
|             SERIAL_PROTOCOL_F(mean, 4);
 | |
|             SERIAL_PROTOCOLPGM(" sigma: ");
 | |
|             SERIAL_PROTOCOL_F(sigma, 6);
 | |
|             SERIAL_PROTOCOLPGM(" min: ");
 | |
|             SERIAL_PROTOCOL_F(min, 3);
 | |
|             SERIAL_PROTOCOLPGM(" max: ");
 | |
|             SERIAL_PROTOCOL_F(max, 3);
 | |
|             SERIAL_PROTOCOLPGM(" range: ");
 | |
|             SERIAL_PROTOCOL_F(max-min, 3);
 | |
|           }
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     } // End of probe loop
 | |
| 
 | |
|     if (STOW_PROBE()) return;
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Finished!");
 | |
|     SERIAL_EOL();
 | |
| 
 | |
|     if (verbose_level > 0) {
 | |
|       SERIAL_PROTOCOLPGM("Mean: ");
 | |
|       SERIAL_PROTOCOL_F(mean, 6);
 | |
|       SERIAL_PROTOCOLPGM(" Min: ");
 | |
|       SERIAL_PROTOCOL_F(min, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Max: ");
 | |
|       SERIAL_PROTOCOL_F(max, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Range: ");
 | |
|       SERIAL_PROTOCOL_F(max-min, 3);
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Standard Deviation: ");
 | |
|     SERIAL_PROTOCOL_F(sigma, 6);
 | |
|     SERIAL_EOL();
 | |
|     SERIAL_EOL();
 | |
| 
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     // Re-enable bed level correction if it had been on
 | |
|     #if HAS_LEVELING
 | |
|       set_bed_leveling_enabled(was_enabled);
 | |
|     #endif
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
| #endif // Z_MIN_PROBE_REPEATABILITY_TEST
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
 | |
| 
 | |
|   inline void gcode_M49() {
 | |
|     ubl.g26_debug_flag ^= true;
 | |
|     SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
 | |
|     serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
 | |
| 
 | |
| /**
 | |
|  * M75: Start print timer
 | |
|  */
 | |
| inline void gcode_M75() { print_job_timer.start(); }
 | |
| 
 | |
| /**
 | |
|  * M76: Pause print timer
 | |
|  */
 | |
| inline void gcode_M76() { print_job_timer.pause(); }
 | |
| 
 | |
| /**
 | |
|  * M77: Stop print timer
 | |
|  */
 | |
| inline void gcode_M77() { print_job_timer.stop(); }
 | |
| 
 | |
| #if ENABLED(PRINTCOUNTER)
 | |
|   /**
 | |
|    * M78: Show print statistics
 | |
|    */
 | |
|   inline void gcode_M78() {
 | |
|     // "M78 S78" will reset the statistics
 | |
|     if (parser.seen('S') && parser.value_int() == 78)
 | |
|       print_job_timer.initStats();
 | |
|     else
 | |
|       print_job_timer.showStats();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M104: Set hot end temperature
 | |
|  */
 | |
| inline void gcode_M104() {
 | |
|   if (get_target_extruder_from_command(104)) return;
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|   #if ENABLED(SINGLENOZZLE)
 | |
|     if (target_extruder != active_extruder) return;
 | |
|   #endif
 | |
| 
 | |
|   if (parser.seen('S')) {
 | |
|     const int16_t temp = parser.value_celsius();
 | |
|     thermalManager.setTargetHotend(temp, target_extruder);
 | |
| 
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | |
|         thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|       /**
 | |
|        * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
 | |
|        * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
 | |
|        * standby mode, for instance in a dual extruder setup, without affecting
 | |
|        * the running print timer.
 | |
|        */
 | |
|       if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
 | |
|         print_job_timer.stop();
 | |
|         LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
 | |
|       lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(AUTOTEMP)
 | |
|     planner.autotemp_M104_M109();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if HAS_TEMP_HOTEND || HAS_TEMP_BED
 | |
| 
 | |
|   void print_heater_state(const float &c, const float &t,
 | |
|     #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|       const float r,
 | |
|     #endif
 | |
|     const int8_t e=-2
 | |
|   ) {
 | |
|     SERIAL_PROTOCOLCHAR(' ');
 | |
|     SERIAL_PROTOCOLCHAR(
 | |
|       #if HAS_TEMP_BED && HAS_TEMP_HOTEND
 | |
|         e == -1 ? 'B' : 'T'
 | |
|       #elif HAS_TEMP_HOTEND
 | |
|         'T'
 | |
|       #else
 | |
|         'B'
 | |
|       #endif
 | |
|     );
 | |
|     #if HOTENDS > 1
 | |
|       if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
 | |
|     #endif
 | |
|     SERIAL_PROTOCOLCHAR(':');
 | |
|     SERIAL_PROTOCOL(c);
 | |
|     SERIAL_PROTOCOLPAIR(" /" , t);
 | |
|     #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|       SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
 | |
|       SERIAL_PROTOCOLCHAR(')');
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   void print_heaterstates() {
 | |
|     #if HAS_TEMP_HOTEND
 | |
|       print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
 | |
|         #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|           , thermalManager.rawHotendTemp(target_extruder)
 | |
|         #endif
 | |
|       );
 | |
|     #endif
 | |
|     #if HAS_TEMP_BED
 | |
|       print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
 | |
|         #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|           thermalManager.rawBedTemp(),
 | |
|         #endif
 | |
|         -1 // BED
 | |
|       );
 | |
|     #endif
 | |
|     #if HOTENDS > 1
 | |
|       HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
 | |
|         #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|           thermalManager.rawHotendTemp(e),
 | |
|         #endif
 | |
|         e
 | |
|       );
 | |
|     #endif
 | |
|     SERIAL_PROTOCOLPGM(" @:");
 | |
|     SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
 | |
|     #if HAS_TEMP_BED
 | |
|       SERIAL_PROTOCOLPGM(" B@:");
 | |
|       SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
 | |
|     #endif
 | |
|     #if HOTENDS > 1
 | |
|       HOTEND_LOOP() {
 | |
|         SERIAL_PROTOCOLPAIR(" @", e);
 | |
|         SERIAL_PROTOCOLCHAR(':');
 | |
|         SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M105: Read hot end and bed temperature
 | |
|  */
 | |
| inline void gcode_M105() {
 | |
|   if (get_target_extruder_from_command(105)) return;
 | |
| 
 | |
|   #if HAS_TEMP_HOTEND || HAS_TEMP_BED
 | |
|     SERIAL_PROTOCOLPGM(MSG_OK);
 | |
|     print_heaterstates();
 | |
|   #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
 | |
|   #endif
 | |
| 
 | |
|   SERIAL_EOL();
 | |
| }
 | |
| 
 | |
| #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
 | |
| 
 | |
|   static uint8_t auto_report_temp_interval;
 | |
|   static millis_t next_temp_report_ms;
 | |
| 
 | |
|   /**
 | |
|    * M155: Set temperature auto-report interval. M155 S<seconds>
 | |
|    */
 | |
|   inline void gcode_M155() {
 | |
|     if (parser.seen('S')) {
 | |
|       auto_report_temp_interval = parser.value_byte();
 | |
|       NOMORE(auto_report_temp_interval, 60);
 | |
|       next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   inline void auto_report_temperatures() {
 | |
|     if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
 | |
|       next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
 | |
|       print_heaterstates();
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_REPORT_TEMPERATURES
 | |
| 
 | |
| #if FAN_COUNT > 0
 | |
| 
 | |
|   /**
 | |
|    * M106: Set Fan Speed
 | |
|    *
 | |
|    *  S<int>   Speed between 0-255
 | |
|    *  P<index> Fan index, if more than one fan
 | |
|    */
 | |
|   inline void gcode_M106() {
 | |
|     uint16_t s = parser.seen('S') ? parser.value_ushort() : 255,
 | |
|              p = parser.seen('P') ? parser.value_ushort() : 0;
 | |
|     NOMORE(s, 255);
 | |
|     if (p < FAN_COUNT) fanSpeeds[p] = s;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M107: Fan Off
 | |
|    */
 | |
|   inline void gcode_M107() {
 | |
|     uint16_t p = parser.seen('P') ? parser.value_ushort() : 0;
 | |
|     if (p < FAN_COUNT) fanSpeeds[p] = 0;
 | |
|   }
 | |
| 
 | |
| #endif // FAN_COUNT > 0
 | |
| 
 | |
| #if DISABLED(EMERGENCY_PARSER)
 | |
| 
 | |
|   /**
 | |
|    * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
 | |
|    */
 | |
|   inline void gcode_M108() { wait_for_heatup = false; }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * M112: Emergency Stop
 | |
|    */
 | |
|   inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * M410: Quickstop - Abort all planned moves
 | |
|    *
 | |
|    * This will stop the carriages mid-move, so most likely they
 | |
|    * will be out of sync with the stepper position after this.
 | |
|    */
 | |
|   inline void gcode_M410() { quickstop_stepper(); }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
 | |
|  *       Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
 | |
|  */
 | |
| 
 | |
| #ifndef MIN_COOLING_SLOPE_DEG
 | |
|   #define MIN_COOLING_SLOPE_DEG 1.50
 | |
| #endif
 | |
| #ifndef MIN_COOLING_SLOPE_TIME
 | |
|   #define MIN_COOLING_SLOPE_TIME 60
 | |
| #endif
 | |
| 
 | |
| inline void gcode_M109() {
 | |
| 
 | |
|   if (get_target_extruder_from_command(109)) return;
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|   #if ENABLED(SINGLENOZZLE)
 | |
|     if (target_extruder != active_extruder) return;
 | |
|   #endif
 | |
| 
 | |
|   const bool no_wait_for_cooling = parser.seen('S');
 | |
|   if (no_wait_for_cooling || parser.seen('R')) {
 | |
|     const int16_t temp = parser.value_celsius();
 | |
|     thermalManager.setTargetHotend(temp, target_extruder);
 | |
| 
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | |
|         thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|       /**
 | |
|        * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
 | |
|        * standby mode, (e.g., in a dual extruder setup) without affecting
 | |
|        * the running print timer.
 | |
|        */
 | |
|       if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
 | |
|         print_job_timer.stop();
 | |
|         LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|       }
 | |
|       else
 | |
|         print_job_timer.start();
 | |
|     #endif
 | |
| 
 | |
|     if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
 | |
|   }
 | |
|   else return;
 | |
| 
 | |
|   #if ENABLED(AUTOTEMP)
 | |
|     planner.autotemp_M104_M109();
 | |
|   #endif
 | |
| 
 | |
|   #if TEMP_RESIDENCY_TIME > 0
 | |
|     millis_t residency_start_ms = 0;
 | |
|     // Loop until the temperature has stabilized
 | |
|     #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
 | |
|   #else
 | |
|     // Loop until the temperature is very close target
 | |
|     #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
 | |
|   #endif
 | |
| 
 | |
|   float target_temp = -1.0, old_temp = 9999.0;
 | |
|   bool wants_to_cool = false;
 | |
|   wait_for_heatup = true;
 | |
|   millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
 | |
| 
 | |
|   KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
|   #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|     const float start_temp = thermalManager.degHotend(target_extruder);
 | |
|     uint8_t old_blue = 0;
 | |
|   #endif
 | |
| 
 | |
|   do {
 | |
|     // Target temperature might be changed during the loop
 | |
|     if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
 | |
|       wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
 | |
|       target_temp = thermalManager.degTargetHotend(target_extruder);
 | |
| 
 | |
|       // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
 | |
|       if (no_wait_for_cooling && wants_to_cool) break;
 | |
|     }
 | |
| 
 | |
|     now = millis();
 | |
|     if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
 | |
|       next_temp_ms = now + 1000UL;
 | |
|       print_heaterstates();
 | |
|       #if TEMP_RESIDENCY_TIME > 0
 | |
|         SERIAL_PROTOCOLPGM(" W:");
 | |
|         if (residency_start_ms)
 | |
|           SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
 | |
|         else
 | |
|           SERIAL_PROTOCOLCHAR('?');
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
| 
 | |
|     idle();
 | |
|     refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
 | |
| 
 | |
|     const float temp = thermalManager.degHotend(target_extruder);
 | |
| 
 | |
|     #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|       // Gradually change LED strip from violet to red as nozzle heats up
 | |
|       if (!wants_to_cool) {
 | |
|         const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
 | |
|         if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     #if TEMP_RESIDENCY_TIME > 0
 | |
| 
 | |
|       const float temp_diff = FABS(target_temp - temp);
 | |
| 
 | |
|       if (!residency_start_ms) {
 | |
|         // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
 | |
|         if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
 | |
|       }
 | |
|       else if (temp_diff > TEMP_HYSTERESIS) {
 | |
|         // Restart the timer whenever the temperature falls outside the hysteresis.
 | |
|         residency_start_ms = now;
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     // Prevent a wait-forever situation if R is misused i.e. M109 R0
 | |
|     if (wants_to_cool) {
 | |
|       // break after MIN_COOLING_SLOPE_TIME seconds
 | |
|       // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
 | |
|       if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
 | |
|         if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
 | |
|         next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
 | |
|         old_temp = temp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } while (wait_for_heatup && TEMP_CONDITIONS);
 | |
| 
 | |
|   if (wait_for_heatup) {
 | |
|     LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
 | |
|     #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|       #if ENABLED(RGBW_LED)
 | |
|         set_led_color(0, 0, 0, 255);  // Turn on the WHITE LED
 | |
|       #else
 | |
|         set_led_color(255, 255, 255); // Set LEDs All On
 | |
|       #endif
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   KEEPALIVE_STATE(IN_HANDLER);
 | |
| }
 | |
| 
 | |
| #if HAS_TEMP_BED
 | |
| 
 | |
|   #ifndef MIN_COOLING_SLOPE_DEG_BED
 | |
|     #define MIN_COOLING_SLOPE_DEG_BED 1.50
 | |
|   #endif
 | |
|   #ifndef MIN_COOLING_SLOPE_TIME_BED
 | |
|     #define MIN_COOLING_SLOPE_TIME_BED 60
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | |
|    *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | |
|    */
 | |
|   inline void gcode_M190() {
 | |
|     if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|     LCD_MESSAGEPGM(MSG_BED_HEATING);
 | |
|     const bool no_wait_for_cooling = parser.seen('S');
 | |
|     if (no_wait_for_cooling || parser.seen('R')) {
 | |
|       thermalManager.setTargetBed(parser.value_celsius());
 | |
|       #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|         if (parser.value_celsius() > BED_MINTEMP)
 | |
|           print_job_timer.start();
 | |
|       #endif
 | |
|     }
 | |
|     else return;
 | |
| 
 | |
|     #if TEMP_BED_RESIDENCY_TIME > 0
 | |
|       millis_t residency_start_ms = 0;
 | |
|       // Loop until the temperature has stabilized
 | |
|       #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
 | |
|     #else
 | |
|       // Loop until the temperature is very close target
 | |
|       #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
 | |
|     #endif
 | |
| 
 | |
|     float target_temp = -1.0, old_temp = 9999.0;
 | |
|     bool wants_to_cool = false;
 | |
|     wait_for_heatup = true;
 | |
|     millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
 | |
| 
 | |
|     KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
|     target_extruder = active_extruder; // for print_heaterstates
 | |
| 
 | |
|     #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|       const float start_temp = thermalManager.degBed();
 | |
|       uint8_t old_red = 255;
 | |
|     #endif
 | |
| 
 | |
|     do {
 | |
|       // Target temperature might be changed during the loop
 | |
|       if (target_temp != thermalManager.degTargetBed()) {
 | |
|         wants_to_cool = thermalManager.isCoolingBed();
 | |
|         target_temp = thermalManager.degTargetBed();
 | |
| 
 | |
|         // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
 | |
|         if (no_wait_for_cooling && wants_to_cool) break;
 | |
|       }
 | |
| 
 | |
|       now = millis();
 | |
|       if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
 | |
|         next_temp_ms = now + 1000UL;
 | |
|         print_heaterstates();
 | |
|         #if TEMP_BED_RESIDENCY_TIME > 0
 | |
|           SERIAL_PROTOCOLPGM(" W:");
 | |
|           if (residency_start_ms)
 | |
|             SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
 | |
|           else
 | |
|             SERIAL_PROTOCOLCHAR('?');
 | |
|         #endif
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
| 
 | |
|       idle();
 | |
|       refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
 | |
| 
 | |
|       const float temp = thermalManager.degBed();
 | |
| 
 | |
|       #if ENABLED(PRINTER_EVENT_LEDS)
 | |
|         // Gradually change LED strip from blue to violet as bed heats up
 | |
|         if (!wants_to_cool) {
 | |
|           const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
 | |
|           if (red != old_red) set_led_color((old_red = red), 0, 255);
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       #if TEMP_BED_RESIDENCY_TIME > 0
 | |
| 
 | |
|         const float temp_diff = FABS(target_temp - temp);
 | |
| 
 | |
|         if (!residency_start_ms) {
 | |
|           // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
 | |
|           if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
 | |
|         }
 | |
|         else if (temp_diff > TEMP_BED_HYSTERESIS) {
 | |
|           // Restart the timer whenever the temperature falls outside the hysteresis.
 | |
|           residency_start_ms = now;
 | |
|         }
 | |
| 
 | |
|       #endif // TEMP_BED_RESIDENCY_TIME > 0
 | |
| 
 | |
|       // Prevent a wait-forever situation if R is misused i.e. M190 R0
 | |
|       if (wants_to_cool) {
 | |
|         // Break after MIN_COOLING_SLOPE_TIME_BED seconds
 | |
|         // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
 | |
|         if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
 | |
|           if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
 | |
|           next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
 | |
|           old_temp = temp;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     } while (wait_for_heatup && TEMP_BED_CONDITIONS);
 | |
| 
 | |
|     if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_TEMP_BED
 | |
| 
 | |
| /**
 | |
|  * M110: Set Current Line Number
 | |
|  */
 | |
| inline void gcode_M110() {
 | |
|   if (parser.seen('N')) gcode_LastN = parser.value_long();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M111: Set the debug level
 | |
|  */
 | |
| inline void gcode_M111() {
 | |
|   marlin_debug_flags = parser.seen('S') ? parser.value_byte() : (uint8_t)DEBUG_NONE;
 | |
| 
 | |
|   const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
 | |
|   const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
 | |
|   const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
 | |
|   const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
 | |
|   const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
 | |
|   #endif
 | |
| 
 | |
|   const static char* const debug_strings[] PROGMEM = {
 | |
|     str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       , str_debug_32
 | |
|     #endif
 | |
|   };
 | |
| 
 | |
|   SERIAL_ECHO_START();
 | |
|   SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
 | |
|   if (marlin_debug_flags) {
 | |
|     uint8_t comma = 0;
 | |
|     for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
 | |
|       if (TEST(marlin_debug_flags, i)) {
 | |
|         if (comma++) SERIAL_CHAR(',');
 | |
|         serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     SERIAL_ECHOPGM(MSG_DEBUG_OFF);
 | |
|   }
 | |
|   SERIAL_EOL();
 | |
| }
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * M113: Get or set Host Keepalive interval (0 to disable)
 | |
|    *
 | |
|    *   S<seconds> Optional. Set the keepalive interval.
 | |
|    */
 | |
|   inline void gcode_M113() {
 | |
|     if (parser.seen('S')) {
 | |
|       host_keepalive_interval = parser.value_byte();
 | |
|       NOMORE(host_keepalive_interval, 60);
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BARICUDA)
 | |
| 
 | |
|   #if HAS_HEATER_1
 | |
|     /**
 | |
|      * M126: Heater 1 valve open
 | |
|      */
 | |
|     inline void gcode_M126() { baricuda_valve_pressure = parser.seen('S') ? parser.value_byte() : 255; }
 | |
|     /**
 | |
|      * M127: Heater 1 valve close
 | |
|      */
 | |
|     inline void gcode_M127() { baricuda_valve_pressure = 0; }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_HEATER_2
 | |
|     /**
 | |
|      * M128: Heater 2 valve open
 | |
|      */
 | |
|     inline void gcode_M128() { baricuda_e_to_p_pressure = parser.seen('S') ? parser.value_byte() : 255; }
 | |
|     /**
 | |
|      * M129: Heater 2 valve close
 | |
|      */
 | |
|     inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
 | |
|   #endif
 | |
| 
 | |
| #endif // BARICUDA
 | |
| 
 | |
| /**
 | |
|  * M140: Set bed temperature
 | |
|  */
 | |
| inline void gcode_M140() {
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
|   if (parser.seen('S')) thermalManager.setTargetBed(parser.value_celsius());
 | |
| }
 | |
| 
 | |
| #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|   /**
 | |
|    * M145: Set the heatup state for a material in the LCD menu
 | |
|    *
 | |
|    *   S<material> (0=PLA, 1=ABS)
 | |
|    *   H<hotend temp>
 | |
|    *   B<bed temp>
 | |
|    *   F<fan speed>
 | |
|    */
 | |
|   inline void gcode_M145() {
 | |
|     uint8_t material = parser.seen('S') ? (uint8_t)parser.value_int() : 0;
 | |
|     if (material >= COUNT(lcd_preheat_hotend_temp)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
 | |
|     }
 | |
|     else {
 | |
|       int v;
 | |
|       if (parser.seen('H')) {
 | |
|         v = parser.value_int();
 | |
|         lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
 | |
|       }
 | |
|       if (parser.seen('F')) {
 | |
|         v = parser.value_int();
 | |
|         lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
 | |
|       }
 | |
|       #if TEMP_SENSOR_BED != 0
 | |
|         if (parser.seen('B')) {
 | |
|           v = parser.value_int();
 | |
|           lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // ULTIPANEL
 | |
| 
 | |
| #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|   /**
 | |
|    * M149: Set temperature units
 | |
|    */
 | |
|   inline void gcode_M149() {
 | |
|          if (parser.seen('C')) parser.set_input_temp_units(TEMPUNIT_C);
 | |
|     else if (parser.seen('K')) parser.set_input_temp_units(TEMPUNIT_K);
 | |
|     else if (parser.seen('F')) parser.set_input_temp_units(TEMPUNIT_F);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if HAS_POWER_SWITCH
 | |
| 
 | |
|   /**
 | |
|    * M80   : Turn on the Power Supply
 | |
|    * M80 S : Report the current state and exit
 | |
|    */
 | |
|   inline void gcode_M80() {
 | |
| 
 | |
|     // S: Report the current power supply state and exit
 | |
|     if (parser.seen('S')) {
 | |
|       serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
 | |
| 
 | |
|     /**
 | |
|      * If you have a switch on suicide pin, this is useful
 | |
|      * if you want to start another print with suicide feature after
 | |
|      * a print without suicide...
 | |
|      */
 | |
|     #if HAS_SUICIDE
 | |
|       OUT_WRITE(SUICIDE_PIN, HIGH);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(HAVE_TMC2130)
 | |
|       delay(100);
 | |
|       tmc2130_init(); // Settings only stick when the driver has power
 | |
|     #endif
 | |
| 
 | |
|     powersupply_on = true;
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
|       LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_POWER_SWITCH
 | |
| 
 | |
| /**
 | |
|  * M81: Turn off Power, including Power Supply, if there is one.
 | |
|  *
 | |
|  *      This code should ALWAYS be available for EMERGENCY SHUTDOWN!
 | |
|  */
 | |
| inline void gcode_M81() {
 | |
|   thermalManager.disable_all_heaters();
 | |
|   stepper.finish_and_disable();
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
|     for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
 | |
|     #if ENABLED(PROBING_FANS_OFF)
 | |
|       fans_paused = false;
 | |
|       ZERO(paused_fanSpeeds);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   safe_delay(1000); // Wait 1 second before switching off
 | |
| 
 | |
|   #if HAS_SUICIDE
 | |
|     stepper.synchronize();
 | |
|     suicide();
 | |
|   #elif HAS_POWER_SWITCH
 | |
|     OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|     powersupply_on = false;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(ULTIPANEL)
 | |
|     LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M82: Set E codes absolute (default)
 | |
|  */
 | |
| inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
 | |
| 
 | |
| /**
 | |
|  * M83: Set E codes relative while in Absolute Coordinates (G90) mode
 | |
|  */
 | |
| inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
 | |
| 
 | |
| /**
 | |
|  * M18, M84: Disable stepper motors
 | |
|  */
 | |
| inline void gcode_M18_M84() {
 | |
|   if (parser.seen('S')) {
 | |
|     stepper_inactive_time = parser.value_millis_from_seconds();
 | |
|   }
 | |
|   else {
 | |
|     bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
 | |
|     if (all_axis) {
 | |
|       stepper.finish_and_disable();
 | |
|     }
 | |
|     else {
 | |
|       stepper.synchronize();
 | |
|       if (parser.seen('X')) disable_X();
 | |
|       if (parser.seen('Y')) disable_Y();
 | |
|       if (parser.seen('Z')) disable_Z();
 | |
|       #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
 | |
|         if (parser.seen('E')) disable_e_steppers();
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD)  //only needed if have an LCD
 | |
|       ubl_lcd_map_control = false;
 | |
|       defer_return_to_status = false;
 | |
|     #endif
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | |
|  */
 | |
| inline void gcode_M85() {
 | |
|   if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Multi-stepper support for M92, M201, M203
 | |
|  */
 | |
| #if ENABLED(DISTINCT_E_FACTORS)
 | |
|   #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
 | |
|   #define TARGET_EXTRUDER target_extruder
 | |
| #else
 | |
|   #define GET_TARGET_EXTRUDER(CMD) NOOP
 | |
|   #define TARGET_EXTRUDER 0
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
 | |
|  *      (Follows the same syntax as G92)
 | |
|  *
 | |
|  *      With multiple extruders use T to specify which one.
 | |
|  */
 | |
| inline void gcode_M92() {
 | |
| 
 | |
|   GET_TARGET_EXTRUDER(92);
 | |
| 
 | |
|   LOOP_XYZE(i) {
 | |
|     if (parser.seen(axis_codes[i])) {
 | |
|       if (i == E_AXIS) {
 | |
|         const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
 | |
|         if (value < 20.0) {
 | |
|           float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
 | |
|           planner.max_jerk[E_AXIS] *= factor;
 | |
|           planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
 | |
|           planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
 | |
|         }
 | |
|         planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
 | |
|       }
 | |
|       else {
 | |
|         planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   planner.refresh_positioning();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Output the current position to serial
 | |
|  */
 | |
| void report_current_position() {
 | |
|   SERIAL_PROTOCOLPGM("X:");
 | |
|   SERIAL_PROTOCOL(current_position[X_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" Y:");
 | |
|   SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" Z:");
 | |
|   SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" E:");
 | |
|   SERIAL_PROTOCOL(current_position[E_AXIS]);
 | |
| 
 | |
|   stepper.report_positions();
 | |
| 
 | |
|   #if IS_SCARA
 | |
|     SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
 | |
|     SERIAL_PROTOCOLLNPAIR("   Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
 | |
|     SERIAL_EOL();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #ifdef M114_DETAIL
 | |
| 
 | |
|   void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
 | |
|     char str[12];
 | |
|     for (uint8_t i = 0; i < n; i++) {
 | |
|       SERIAL_CHAR(' ');
 | |
|       SERIAL_CHAR(axis_codes[i]);
 | |
|       SERIAL_CHAR(':');
 | |
|       SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
 | |
|     }
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
|   inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
 | |
| 
 | |
|   void report_current_position_detail() {
 | |
| 
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("\nLogical:");
 | |
|     report_xyze(current_position);
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Raw:    ");
 | |
|     const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
 | |
|     report_xyz(raw);
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Leveled:");
 | |
|     float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
 | |
|     planner.apply_leveling(leveled);
 | |
|     report_xyz(leveled);
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("UnLevel:");
 | |
|     float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
 | |
|     planner.unapply_leveling(unleveled);
 | |
|     report_xyz(unleveled);
 | |
| 
 | |
|     #if IS_KINEMATIC
 | |
|       #if IS_SCARA
 | |
|         SERIAL_PROTOCOLPGM("ScaraK: ");
 | |
|       #else
 | |
|         SERIAL_PROTOCOLPGM("DeltaK: ");
 | |
|       #endif
 | |
|       inverse_kinematics(leveled);  // writes delta[]
 | |
|       report_xyz(delta);
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Stepper:");
 | |
|     const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
 | |
|     report_xyze(step_count, 4, 0);
 | |
| 
 | |
|     #if IS_SCARA
 | |
|       const float deg[XYZ] = {
 | |
|         stepper.get_axis_position_degrees(A_AXIS),
 | |
|         stepper.get_axis_position_degrees(B_AXIS)
 | |
|       };
 | |
|       SERIAL_PROTOCOLPGM("Degrees:");
 | |
|       report_xyze(deg, 2);
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("FromStp:");
 | |
|     get_cartesian_from_steppers();  // writes cartes[XYZ] (with forward kinematics)
 | |
|     const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
 | |
|     report_xyze(from_steppers);
 | |
| 
 | |
|     const float diff[XYZE] = {
 | |
|       from_steppers[X_AXIS] - leveled[X_AXIS],
 | |
|       from_steppers[Y_AXIS] - leveled[Y_AXIS],
 | |
|       from_steppers[Z_AXIS] - leveled[Z_AXIS],
 | |
|       from_steppers[E_AXIS] - current_position[E_AXIS]
 | |
|     };
 | |
|     SERIAL_PROTOCOLPGM("Differ: ");
 | |
|     report_xyze(diff);
 | |
|   }
 | |
| #endif // M114_DETAIL
 | |
| 
 | |
| /**
 | |
|  * M114: Report current position to host
 | |
|  */
 | |
| inline void gcode_M114() {
 | |
| 
 | |
|   #ifdef M114_DETAIL
 | |
|     if (parser.seen('D')) {
 | |
|       report_current_position_detail();
 | |
|       return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   stepper.synchronize();
 | |
|   report_current_position();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M115: Capabilities string
 | |
|  */
 | |
| inline void gcode_M115() {
 | |
|   SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
 | |
| 
 | |
|   #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
 | |
| 
 | |
|     // EEPROM (M500, M501)
 | |
|     #if ENABLED(EEPROM_SETTINGS)
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
 | |
|     #endif
 | |
| 
 | |
|     // AUTOREPORT_TEMP (M155)
 | |
|     #if ENABLED(AUTO_REPORT_TEMPERATURES)
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
 | |
|     #endif
 | |
| 
 | |
|     // PROGRESS (M530 S L, M531 <file>, M532 X L)
 | |
|     SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
 | |
| 
 | |
|     // AUTOLEVEL (G29)
 | |
|     #if HAS_ABL
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
 | |
|     #endif
 | |
| 
 | |
|     // Z_PROBE (G30)
 | |
|     #if HAS_BED_PROBE
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
 | |
|     #endif
 | |
| 
 | |
|     // MESH_REPORT (M420 V)
 | |
|     #if HAS_LEVELING
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
 | |
|     #endif
 | |
| 
 | |
|     // SOFTWARE_POWER (G30)
 | |
|     #if HAS_POWER_SWITCH
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
 | |
|     #endif
 | |
| 
 | |
|     // CASE LIGHTS (M355)
 | |
|     #if HAS_CASE_LIGHT
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
 | |
|       if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
 | |
|         SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
 | |
|       }
 | |
|       else
 | |
|         SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
 | |
|     #endif
 | |
| 
 | |
|     // EMERGENCY_PARSER (M108, M112, M410)
 | |
|     #if ENABLED(EMERGENCY_PARSER)
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
 | |
|     #else
 | |
|       SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
 | |
|     #endif
 | |
| 
 | |
|   #endif // EXTENDED_CAPABILITIES_REPORT
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M117: Set LCD Status Message
 | |
|  */
 | |
| inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
 | |
| 
 | |
| /**
 | |
|  * M119: Output endstop states to serial output
 | |
|  */
 | |
| inline void gcode_M119() { endstops.M119(); }
 | |
| 
 | |
| /**
 | |
|  * M120: Enable endstops and set non-homing endstop state to "enabled"
 | |
|  */
 | |
| inline void gcode_M120() { endstops.enable_globally(true); }
 | |
| 
 | |
| /**
 | |
|  * M121: Disable endstops and set non-homing endstop state to "disabled"
 | |
|  */
 | |
| inline void gcode_M121() { endstops.enable_globally(false); }
 | |
| 
 | |
| #if ENABLED(PARK_HEAD_ON_PAUSE)
 | |
| 
 | |
|   /**
 | |
|    * M125: Store current position and move to filament change position.
 | |
|    *       Called on pause (by M25) to prevent material leaking onto the
 | |
|    *       object. On resume (M24) the head will be moved back and the
 | |
|    *       print will resume.
 | |
|    *
 | |
|    *       If Marlin is compiled without SD Card support, M125 can be
 | |
|    *       used directly to pause the print and move to park position,
 | |
|    *       resuming with a button click or M108.
 | |
|    *
 | |
|    *    L = override retract length
 | |
|    *    X = override X
 | |
|    *    Y = override Y
 | |
|    *    Z = override Z raise
 | |
|    */
 | |
|   inline void gcode_M125() {
 | |
| 
 | |
|     // Initial retract before move to filament change position
 | |
|     const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
 | |
|       #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
 | |
|         - (PAUSE_PARK_RETRACT_LENGTH)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Lift Z axis
 | |
|     const float z_lift = parser.seen('Z') ? parser.value_linear_units() :
 | |
|       #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
 | |
|         PAUSE_PARK_Z_ADD
 | |
|       #else
 | |
|         0
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Move XY axes to filament change position or given position
 | |
|     const float x_pos = parser.seen('X') ? parser.value_linear_units() : 0
 | |
|       #ifdef PAUSE_PARK_X_POS
 | |
|         + PAUSE_PARK_X_POS
 | |
|       #endif
 | |
|       #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
 | |
|         + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
 | |
|       #endif
 | |
|     ;
 | |
|     const float y_pos = parser.seen('Y') ? parser.value_linear_units() : 0
 | |
|       #ifdef PAUSE_PARK_Y_POS
 | |
|         + PAUSE_PARK_Y_POS
 | |
|       #endif
 | |
|       #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
 | |
|         + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     const bool job_running = print_job_timer.isRunning();
 | |
| 
 | |
|     if (pause_print(retract, z_lift, x_pos, y_pos)) {
 | |
|       #if DISABLED(SDSUPPORT)
 | |
|         // Wait for lcd click or M108
 | |
|         wait_for_filament_reload();
 | |
| 
 | |
|         // Return to print position and continue
 | |
|         resume_print();
 | |
| 
 | |
|         if (job_running) print_job_timer.start();
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PARK_HEAD_ON_PAUSE
 | |
| 
 | |
| #if HAS_COLOR_LEDS
 | |
| 
 | |
|   /**
 | |
|    * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
 | |
|    *
 | |
|    * Always sets all 3 or 4 components. If a component is left out, set to 0.
 | |
|    *
 | |
|    * Examples:
 | |
|    *
 | |
|    *   M150 R255       ; Turn LED red
 | |
|    *   M150 R255 U127  ; Turn LED orange (PWM only)
 | |
|    *   M150            ; Turn LED off
 | |
|    *   M150 R U B      ; Turn LED white
 | |
|    *   M150 W          ; Turn LED white using a white LED
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M150() {
 | |
|     set_led_color(
 | |
|       parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
 | |
|       parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
 | |
|       parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
 | |
|       #if ENABLED(RGBW_LED)
 | |
|         , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
 | |
|       #endif
 | |
|     );
 | |
|   }
 | |
| 
 | |
| #endif // HAS_COLOR_LEDS
 | |
| 
 | |
| /**
 | |
|  * M200: Set filament diameter and set E axis units to cubic units
 | |
|  *
 | |
|  *    T<extruder> - Optional extruder number. Current extruder if omitted.
 | |
|  *    D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
 | |
|  */
 | |
| inline void gcode_M200() {
 | |
| 
 | |
|   if (get_target_extruder_from_command(200)) return;
 | |
| 
 | |
|   if (parser.seen('D')) {
 | |
|     // setting any extruder filament size disables volumetric on the assumption that
 | |
|     // slicers either generate in extruder values as cubic mm or as as filament feeds
 | |
|     // for all extruders
 | |
|     volumetric_enabled = (parser.value_linear_units() != 0.0);
 | |
|     if (volumetric_enabled) {
 | |
|       filament_size[target_extruder] = parser.value_linear_units();
 | |
|       // make sure all extruders have some sane value for the filament size
 | |
|       for (uint8_t i = 0; i < COUNT(filament_size); i++)
 | |
|         if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|     }
 | |
|   }
 | |
|   calculate_volumetric_multipliers();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | |
|  *
 | |
|  *       With multiple extruders use T to specify which one.
 | |
|  */
 | |
| inline void gcode_M201() {
 | |
| 
 | |
|   GET_TARGET_EXTRUDER(201);
 | |
| 
 | |
|   LOOP_XYZE(i) {
 | |
|     if (parser.seen(axis_codes[i])) {
 | |
|       const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
 | |
|       planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
 | |
|     }
 | |
|   }
 | |
|   // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | |
|   planner.reset_acceleration_rates();
 | |
| }
 | |
| 
 | |
| #if 0 // Not used for Sprinter/grbl gen6
 | |
|   inline void gcode_M202() {
 | |
|     LOOP_XYZE(i) {
 | |
|       if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
 | |
|  *
 | |
|  *       With multiple extruders use T to specify which one.
 | |
|  */
 | |
| inline void gcode_M203() {
 | |
| 
 | |
|   GET_TARGET_EXTRUDER(203);
 | |
| 
 | |
|   LOOP_XYZE(i)
 | |
|     if (parser.seen(axis_codes[i])) {
 | |
|       const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
 | |
|       planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
 | |
|  *
 | |
|  *    P = Printing moves
 | |
|  *    R = Retract only (no X, Y, Z) moves
 | |
|  *    T = Travel (non printing) moves
 | |
|  *
 | |
|  *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 | |
|  */
 | |
| inline void gcode_M204() {
 | |
|   if (parser.seen('S')) {  // Kept for legacy compatibility. Should NOT BE USED for new developments.
 | |
|     planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
 | |
|     SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
 | |
|   }
 | |
|   if (parser.seen('P')) {
 | |
|     planner.acceleration = parser.value_linear_units();
 | |
|     SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
 | |
|   }
 | |
|   if (parser.seen('R')) {
 | |
|     planner.retract_acceleration = parser.value_linear_units();
 | |
|     SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
 | |
|   }
 | |
|   if (parser.seen('T')) {
 | |
|     planner.travel_acceleration = parser.value_linear_units();
 | |
|     SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M205: Set Advanced Settings
 | |
|  *
 | |
|  *    S = Min Feed Rate (units/s)
 | |
|  *    T = Min Travel Feed Rate (units/s)
 | |
|  *    B = Min Segment Time (µs)
 | |
|  *    X = Max X Jerk (units/sec^2)
 | |
|  *    Y = Max Y Jerk (units/sec^2)
 | |
|  *    Z = Max Z Jerk (units/sec^2)
 | |
|  *    E = Max E Jerk (units/sec^2)
 | |
|  */
 | |
| inline void gcode_M205() {
 | |
|   if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
 | |
|   if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
 | |
|   if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
 | |
|   if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
 | |
|   if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
 | |
|   if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
 | |
|   if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
 | |
| }
 | |
| 
 | |
| #if HAS_M206_COMMAND
 | |
| 
 | |
|   /**
 | |
|    * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
 | |
|    *
 | |
|    * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
 | |
|    * ***              M206 for SCARA will remain enabled in 1.1.x for compatibility.
 | |
|    * ***              In the next 1.2 release, it will simply be disabled by default.
 | |
|    */
 | |
|   inline void gcode_M206() {
 | |
|     LOOP_XYZ(i)
 | |
|       if (parser.seen(axis_codes[i]))
 | |
|         set_home_offset((AxisEnum)i, parser.value_linear_units());
 | |
| 
 | |
|     #if ENABLED(MORGAN_SCARA)
 | |
|       if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
 | |
|       if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
 | |
|     #endif
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_M206_COMMAND
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
|   /**
 | |
|    * M665: Set delta configurations
 | |
|    *
 | |
|    *    H = delta height
 | |
|    *    L = diagonal rod
 | |
|    *    R = delta radius
 | |
|    *    S = segments per second
 | |
|    *    B = delta calibration radius
 | |
|    *    X = Alpha (Tower 1) angle trim
 | |
|    *    Y = Beta (Tower 2) angle trim
 | |
|    *    Z = Rotate A and B by this angle
 | |
|    */
 | |
|   inline void gcode_M665() {
 | |
|     if (parser.seen('H')) {
 | |
|       home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
 | |
|       current_position[Z_AXIS] += parser.value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
 | |
|       update_software_endstops(Z_AXIS);
 | |
|     }
 | |
|     if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
 | |
|     if (parser.seen('R')) delta_radius = parser.value_linear_units();
 | |
|     if (parser.seen('S')) delta_segments_per_second = parser.value_float();
 | |
|     if (parser.seen('B')) delta_calibration_radius = parser.value_float();
 | |
|     if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
 | |
|     if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
 | |
|     if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
 | |
|       delta_tower_angle_trim[A_AXIS] -= parser.value_float();
 | |
|       delta_tower_angle_trim[B_AXIS] -= parser.value_float();
 | |
|     }
 | |
|     recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|   }
 | |
|   /**
 | |
|    * M666: Set delta endstop adjustment
 | |
|    */
 | |
|   inline void gcode_M666() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOLNPGM(">>> gcode_M666");
 | |
|       }
 | |
|     #endif
 | |
|     LOOP_XYZ(i) {
 | |
|       if (parser.seen(axis_codes[i])) {
 | |
|         endstop_adj[i] = parser.value_linear_units();
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
 | |
|             SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
 | |
|           }
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOLNPGM("<<< gcode_M666");
 | |
|       }
 | |
|     #endif
 | |
|     // normalize endstops so all are <=0; set the residue to delta height
 | |
|     const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
 | |
|     home_offset[Z_AXIS] -= z_temp;
 | |
|     LOOP_XYZ(i) endstop_adj[i] -= z_temp;
 | |
|   }
 | |
| 
 | |
| #elif IS_SCARA
 | |
| 
 | |
|   /**
 | |
|    * M665: Set SCARA settings
 | |
|    *
 | |
|    * Parameters:
 | |
|    *
 | |
|    *   S[segments-per-second] - Segments-per-second
 | |
|    *   P[theta-psi-offset]    - Theta-Psi offset, added to the shoulder (A/X) angle
 | |
|    *   T[theta-offset]        - Theta     offset, added to the elbow    (B/Y) angle
 | |
|    *
 | |
|    *   A, P, and X are all aliases for the shoulder angle
 | |
|    *   B, T, and Y are all aliases for the elbow angle
 | |
|    */
 | |
|   inline void gcode_M665() {
 | |
|     if (parser.seen('S')) delta_segments_per_second = parser.value_float();
 | |
| 
 | |
|     const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
 | |
|     const uint8_t sumAPX = hasA + hasP + hasX;
 | |
|     if (sumAPX == 1)
 | |
|       home_offset[A_AXIS] = parser.value_float();
 | |
|     else if (sumAPX > 1) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
 | |
|     const uint8_t sumBTY = hasB + hasT + hasY;
 | |
|     if (sumBTY == 1)
 | |
|       home_offset[B_AXIS] = parser.value_float();
 | |
|     else if (sumBTY > 1) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
 | |
| 
 | |
|   /**
 | |
|    * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
 | |
|    */
 | |
|   inline void gcode_M666() {
 | |
|     if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
 | |
|     SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
 | |
|   }
 | |
| 
 | |
| #endif // !DELTA && Z_DUAL_ENDSTOPS
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   /**
 | |
|    * M207: Set firmware retraction values
 | |
|    *
 | |
|    *   S[+units]    retract_length
 | |
|    *   W[+units]    retract_length_swap (multi-extruder)
 | |
|    *   F[units/min] retract_feedrate_mm_s
 | |
|    *   Z[units]     retract_zlift
 | |
|    */
 | |
|   inline void gcode_M207() {
 | |
|     if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
 | |
|     if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
 | |
|     if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
 | |
|     #if EXTRUDERS > 1
 | |
|       if (parser.seen('W')) retract_length_swap = parser.value_axis_units(E_AXIS);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M208: Set firmware un-retraction values
 | |
|    *
 | |
|    *   S[+units]    retract_recover_length (in addition to M207 S*)
 | |
|    *   W[+units]    retract_recover_length_swap (multi-extruder)
 | |
|    *   F[units/min] retract_recover_feedrate_mm_s
 | |
|    */
 | |
|   inline void gcode_M208() {
 | |
|     if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
 | |
|     if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
 | |
|     #if EXTRUDERS > 1
 | |
|       if (parser.seen('W')) retract_recover_length_swap = parser.value_axis_units(E_AXIS);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M209: Enable automatic retract (M209 S1)
 | |
|    *   For slicers that don't support G10/11, reversed extrude-only
 | |
|    *   moves will be classified as retraction.
 | |
|    */
 | |
|   inline void gcode_M209() {
 | |
|     if (parser.seen('S')) {
 | |
|       autoretract_enabled = parser.value_bool();
 | |
|       for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| /**
 | |
|  * M211: Enable, Disable, and/or Report software endstops
 | |
|  *
 | |
|  * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
 | |
|  */
 | |
| inline void gcode_M211() {
 | |
|   SERIAL_ECHO_START();
 | |
|   #if HAS_SOFTWARE_ENDSTOPS
 | |
|     if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
 | |
|     SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
 | |
|     serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
 | |
|   #else
 | |
|     SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
 | |
|     SERIAL_ECHOPGM(MSG_OFF);
 | |
|   #endif
 | |
|   SERIAL_ECHOPGM(MSG_SOFT_MIN);
 | |
|   SERIAL_ECHOPAIR(    MSG_X, soft_endstop_min[X_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
 | |
|   SERIAL_ECHOPGM(MSG_SOFT_MAX);
 | |
|   SERIAL_ECHOPAIR(    MSG_X, soft_endstop_max[X_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
 | |
|   SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
 | |
| }
 | |
| 
 | |
| #if HOTENDS > 1
 | |
| 
 | |
|   /**
 | |
|    * M218 - set hotend offset (in linear units)
 | |
|    *
 | |
|    *   T<tool>
 | |
|    *   X<xoffset>
 | |
|    *   Y<yoffset>
 | |
|    *   Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
 | |
|    */
 | |
|   inline void gcode_M218() {
 | |
|     if (get_target_extruder_from_command(218) || target_extruder == 0) return;
 | |
| 
 | |
|     if (parser.seen('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
 | |
|     if (parser.seen('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
 | |
| 
 | |
|     #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
 | |
|       if (parser.seen('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|     HOTEND_LOOP() {
 | |
|       SERIAL_CHAR(' ');
 | |
|       SERIAL_ECHO(hotend_offset[X_AXIS][e]);
 | |
|       SERIAL_CHAR(',');
 | |
|       SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
 | |
|       #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
 | |
|       #endif
 | |
|     }
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
| #endif // HOTENDS > 1
 | |
| 
 | |
| /**
 | |
|  * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 | |
|  */
 | |
| inline void gcode_M220() {
 | |
|   if (parser.seen('S')) feedrate_percentage = parser.value_int();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M221: Set extrusion percentage (M221 T0 S95)
 | |
|  */
 | |
| inline void gcode_M221() {
 | |
|   if (get_target_extruder_from_command(221)) return;
 | |
|   if (parser.seen('S'))
 | |
|     flow_percentage[target_extruder] = parser.value_int();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
 | |
|  */
 | |
| inline void gcode_M226() {
 | |
|   if (parser.seen('P')) {
 | |
|     int pin_number = parser.value_int(),
 | |
|         pin_state = parser.seen('S') ? parser.value_int() : -1; // required pin state - default is inverted
 | |
| 
 | |
|     if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
 | |
| 
 | |
|       int target = LOW;
 | |
| 
 | |
|       stepper.synchronize();
 | |
| 
 | |
|       pinMode(pin_number, INPUT);
 | |
|       switch (pin_state) {
 | |
|         case 1:
 | |
|           target = HIGH;
 | |
|           break;
 | |
|         case 0:
 | |
|           target = LOW;
 | |
|           break;
 | |
|         case -1:
 | |
|           target = !digitalRead(pin_number);
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       while (digitalRead(pin_number) != target) idle();
 | |
| 
 | |
|     } // pin_state -1 0 1 && pin_number > -1
 | |
|   } // parser.seen('P')
 | |
| }
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
| 
 | |
|   /**
 | |
|    * M260: Send data to a I2C slave device
 | |
|    *
 | |
|    * This is a PoC, the formating and arguments for the GCODE will
 | |
|    * change to be more compatible, the current proposal is:
 | |
|    *
 | |
|    *  M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
 | |
|    *
 | |
|    *  M260 B<byte-1 value in base 10>
 | |
|    *  M260 B<byte-2 value in base 10>
 | |
|    *  M260 B<byte-3 value in base 10>
 | |
|    *
 | |
|    *  M260 S1 ; Send the buffered data and reset the buffer
 | |
|    *  M260 R1 ; Reset the buffer without sending data
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M260() {
 | |
|     // Set the target address
 | |
|     if (parser.seen('A')) i2c.address(parser.value_byte());
 | |
| 
 | |
|     // Add a new byte to the buffer
 | |
|     if (parser.seen('B')) i2c.addbyte(parser.value_byte());
 | |
| 
 | |
|     // Flush the buffer to the bus
 | |
|     if (parser.seen('S')) i2c.send();
 | |
| 
 | |
|     // Reset and rewind the buffer
 | |
|     else if (parser.seen('R')) i2c.reset();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M261: Request X bytes from I2C slave device
 | |
|    *
 | |
|    * Usage: M261 A<slave device address base 10> B<number of bytes>
 | |
|    */
 | |
|   inline void gcode_M261() {
 | |
|     if (parser.seen('A')) i2c.address(parser.value_byte());
 | |
| 
 | |
|     uint8_t bytes = parser.seen('B') ? parser.value_byte() : 1;
 | |
| 
 | |
|     if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
 | |
|       i2c.relay(bytes);
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLN("Bad i2c request");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // EXPERIMENTAL_I2CBUS
 | |
| 
 | |
| #if HAS_SERVOS
 | |
| 
 | |
|   /**
 | |
|    * M280: Get or set servo position. P<index> [S<angle>]
 | |
|    */
 | |
|   inline void gcode_M280() {
 | |
|     if (!parser.seen('P')) return;
 | |
|     int servo_index = parser.value_int();
 | |
|     if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
 | |
|       if (parser.seen('S'))
 | |
|         MOVE_SERVO(servo_index, parser.value_int());
 | |
|       else {
 | |
|         SERIAL_ECHO_START();
 | |
|         SERIAL_ECHOPAIR(" Servo ", servo_index);
 | |
|         SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ECHOPAIR("Servo ", servo_index);
 | |
|       SERIAL_ECHOLNPGM(" out of range");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAS_SERVOS
 | |
| 
 | |
| #if HAS_BUZZER
 | |
| 
 | |
|   /**
 | |
|    * M300: Play beep sound S<frequency Hz> P<duration ms>
 | |
|    */
 | |
|   inline void gcode_M300() {
 | |
|     uint16_t const frequency = parser.seen('S') ? parser.value_ushort() : 260;
 | |
|     uint16_t duration = parser.seen('P') ? parser.value_ushort() : 1000;
 | |
| 
 | |
|     // Limits the tone duration to 0-5 seconds.
 | |
|     NOMORE(duration, 5000);
 | |
| 
 | |
|     BUZZ(duration, frequency);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BUZZER
 | |
| 
 | |
| #if ENABLED(PIDTEMP)
 | |
| 
 | |
|   /**
 | |
|    * M301: Set PID parameters P I D (and optionally C, L)
 | |
|    *
 | |
|    *   P[float] Kp term
 | |
|    *   I[float] Ki term (unscaled)
 | |
|    *   D[float] Kd term (unscaled)
 | |
|    *
 | |
|    * With PID_EXTRUSION_SCALING:
 | |
|    *
 | |
|    *   C[float] Kc term
 | |
|    *   L[float] LPQ length
 | |
|    */
 | |
|   inline void gcode_M301() {
 | |
| 
 | |
|     // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
 | |
|     // default behaviour (omitting E parameter) is to update for extruder 0 only
 | |
|     int e = parser.seen('E') ? parser.value_int() : 0; // extruder being updated
 | |
| 
 | |
|     if (e < HOTENDS) { // catch bad input value
 | |
|       if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
 | |
|       if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
 | |
|       if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
 | |
|       #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|         if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
 | |
|         if (parser.seen('L')) lpq_len = parser.value_float();
 | |
|         NOMORE(lpq_len, LPQ_MAX_LEN);
 | |
|       #endif
 | |
| 
 | |
|       thermalManager.updatePID();
 | |
|       SERIAL_ECHO_START();
 | |
|       #if ENABLED(PID_PARAMS_PER_HOTEND)
 | |
|         SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
 | |
|       #endif // PID_PARAMS_PER_HOTEND
 | |
|       SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
 | |
|       SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
 | |
|       SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
 | |
|       #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|         //Kc does not have scaling applied above, or in resetting defaults
 | |
|         SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PIDTEMP
 | |
| 
 | |
| #if ENABLED(PIDTEMPBED)
 | |
| 
 | |
|   inline void gcode_M304() {
 | |
|     if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
 | |
|     if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
 | |
|     if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
 | |
| 
 | |
|     thermalManager.updatePID();
 | |
| 
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
 | |
|     SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
 | |
|     SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
 | |
|   }
 | |
| 
 | |
| #endif // PIDTEMPBED
 | |
| 
 | |
| #if defined(CHDK) || HAS_PHOTOGRAPH
 | |
| 
 | |
|   /**
 | |
|    * M240: Trigger a camera by emulating a Canon RC-1
 | |
|    *       See http://www.doc-diy.net/photo/rc-1_hacked/
 | |
|    */
 | |
|   inline void gcode_M240() {
 | |
|     #ifdef CHDK
 | |
| 
 | |
|       OUT_WRITE(CHDK, HIGH);
 | |
|       chdkHigh = millis();
 | |
|       chdkActive = true;
 | |
| 
 | |
|     #elif HAS_PHOTOGRAPH
 | |
| 
 | |
|       const uint8_t NUM_PULSES = 16;
 | |
|       const float PULSE_LENGTH = 0.01524;
 | |
|       for (int i = 0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|       }
 | |
|       delay(7.33);
 | |
|       for (int i = 0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|       }
 | |
| 
 | |
|     #endif // !CHDK && HAS_PHOTOGRAPH
 | |
|   }
 | |
| 
 | |
| #endif // CHDK || PHOTOGRAPH_PIN
 | |
| 
 | |
| #if HAS_LCD_CONTRAST
 | |
| 
 | |
|   /**
 | |
|    * M250: Read and optionally set the LCD contrast
 | |
|    */
 | |
|   inline void gcode_M250() {
 | |
|     if (parser.seen('C')) set_lcd_contrast(parser.value_int());
 | |
|     SERIAL_PROTOCOLPGM("lcd contrast value: ");
 | |
|     SERIAL_PROTOCOL(lcd_contrast);
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_LCD_CONTRAST
 | |
| 
 | |
| #if ENABLED(PREVENT_COLD_EXTRUSION)
 | |
| 
 | |
|   /**
 | |
|    * M302: Allow cold extrudes, or set the minimum extrude temperature
 | |
|    *
 | |
|    *       S<temperature> sets the minimum extrude temperature
 | |
|    *       P<bool> enables (1) or disables (0) cold extrusion
 | |
|    *
 | |
|    *  Examples:
 | |
|    *
 | |
|    *       M302         ; report current cold extrusion state
 | |
|    *       M302 P0      ; enable cold extrusion checking
 | |
|    *       M302 P1      ; disables cold extrusion checking
 | |
|    *       M302 S0      ; always allow extrusion (disables checking)
 | |
|    *       M302 S170    ; only allow extrusion above 170
 | |
|    *       M302 S170 P1 ; set min extrude temp to 170 but leave disabled
 | |
|    */
 | |
|   inline void gcode_M302() {
 | |
|     bool seen_S = parser.seen('S');
 | |
|     if (seen_S) {
 | |
|       thermalManager.extrude_min_temp = parser.value_celsius();
 | |
|       thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
 | |
|     }
 | |
| 
 | |
|     if (parser.seen('P'))
 | |
|       thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
 | |
|     else if (!seen_S) {
 | |
|       // Report current state
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
 | |
|       SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
 | |
|       SERIAL_ECHOLNPGM("C)");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PREVENT_COLD_EXTRUSION
 | |
| 
 | |
| /**
 | |
|  * M303: PID relay autotune
 | |
|  *
 | |
|  *       S<temperature> sets the target temperature. (default 150C)
 | |
|  *       E<extruder> (-1 for the bed) (default 0)
 | |
|  *       C<cycles>
 | |
|  *       U<bool> with a non-zero value will apply the result to current settings
 | |
|  */
 | |
| inline void gcode_M303() {
 | |
|   #if HAS_PID_HEATING
 | |
|     const int e = parser.seen('E') ? parser.value_int() : 0,
 | |
|               c = parser.seen('C') ? parser.value_int() : 5;
 | |
|     const bool u = parser.seen('U') && parser.value_bool();
 | |
| 
 | |
|     int16_t temp = parser.seen('S') ? parser.value_celsius() : (e < 0 ? 70 : 150);
 | |
| 
 | |
|     if (WITHIN(e, 0, HOTENDS - 1))
 | |
|       target_extruder = e;
 | |
| 
 | |
|     KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
 | |
| 
 | |
|     thermalManager.PID_autotune(temp, e, c, u);
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   #else
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(MORGAN_SCARA)
 | |
| 
 | |
|   bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
 | |
|     if (IsRunning()) {
 | |
|       forward_kinematics_SCARA(delta_a, delta_b);
 | |
|       destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
 | |
|       destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
 | |
|       destination[Z_AXIS] = current_position[Z_AXIS];
 | |
|       prepare_move_to_destination();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | |
|    */
 | |
|   inline bool gcode_M360() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta 0");
 | |
|     return SCARA_move_to_cal(0, 120);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | |
|    */
 | |
|   inline bool gcode_M361() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta 90");
 | |
|     return SCARA_move_to_cal(90, 130);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | |
|    */
 | |
|   inline bool gcode_M362() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Psi 0");
 | |
|     return SCARA_move_to_cal(60, 180);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | |
|    */
 | |
|   inline bool gcode_M363() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Psi 90");
 | |
|     return SCARA_move_to_cal(50, 90);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
 | |
|    */
 | |
|   inline bool gcode_M364() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
 | |
|     return SCARA_move_to_cal(45, 135);
 | |
|   }
 | |
| 
 | |
| #endif // SCARA
 | |
| 
 | |
| #if ENABLED(EXT_SOLENOID)
 | |
| 
 | |
|   void enable_solenoid(const uint8_t num) {
 | |
|     switch (num) {
 | |
|       case 0:
 | |
|         OUT_WRITE(SOL0_PIN, HIGH);
 | |
|         break;
 | |
|         #if HAS_SOLENOID_1 && EXTRUDERS > 1
 | |
|           case 1:
 | |
|             OUT_WRITE(SOL1_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|         #if HAS_SOLENOID_2 && EXTRUDERS > 2
 | |
|           case 2:
 | |
|             OUT_WRITE(SOL2_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|         #if HAS_SOLENOID_3 && EXTRUDERS > 3
 | |
|           case 3:
 | |
|             OUT_WRITE(SOL3_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|         #if HAS_SOLENOID_4 && EXTRUDERS > 4
 | |
|           case 4:
 | |
|             OUT_WRITE(SOL4_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|       default:
 | |
|         SERIAL_ECHO_START();
 | |
|         SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
 | |
| 
 | |
|   void disable_all_solenoids() {
 | |
|     OUT_WRITE(SOL0_PIN, LOW);
 | |
|     #if HAS_SOLENOID_1 && EXTRUDERS > 1
 | |
|       OUT_WRITE(SOL1_PIN, LOW);
 | |
|     #endif
 | |
|     #if HAS_SOLENOID_2 && EXTRUDERS > 2
 | |
|       OUT_WRITE(SOL2_PIN, LOW);
 | |
|     #endif
 | |
|     #if HAS_SOLENOID_3 && EXTRUDERS > 3
 | |
|       OUT_WRITE(SOL3_PIN, LOW);
 | |
|     #endif
 | |
|     #if HAS_SOLENOID_4 && EXTRUDERS > 4
 | |
|       OUT_WRITE(SOL4_PIN, LOW);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M380: Enable solenoid on the active extruder
 | |
|    */
 | |
|   inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
 | |
| 
 | |
|   /**
 | |
|    * M381: Disable all solenoids
 | |
|    */
 | |
|   inline void gcode_M381() { disable_all_solenoids(); }
 | |
| 
 | |
| #endif // EXT_SOLENOID
 | |
| 
 | |
| /**
 | |
|  * M400: Finish all moves
 | |
|  */
 | |
| inline void gcode_M400() { stepper.synchronize(); }
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   /**
 | |
|    * M401: Engage Z Servo endstop if available
 | |
|    */
 | |
|   inline void gcode_M401() { DEPLOY_PROBE(); }
 | |
| 
 | |
|   /**
 | |
|    * M402: Retract Z Servo endstop if enabled
 | |
|    */
 | |
|   inline void gcode_M402() { STOW_PROBE(); }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
| 
 | |
|   /**
 | |
|    * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
 | |
|    */
 | |
|   inline void gcode_M404() {
 | |
|     if (parser.seen('W')) {
 | |
|       filament_width_nominal = parser.value_linear_units();
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
 | |
|       SERIAL_PROTOCOLLN(filament_width_nominal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M405: Turn on filament sensor for control
 | |
|    */
 | |
|   inline void gcode_M405() {
 | |
|     // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
 | |
|     // everything else, it uses parser.value_int() instead of parser.value_linear_units().
 | |
|     if (parser.seen('D')) meas_delay_cm = parser.value_byte();
 | |
|     NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
 | |
| 
 | |
|     if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
 | |
|       const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
 | |
| 
 | |
|       for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
 | |
|         measurement_delay[i] = temp_ratio;
 | |
| 
 | |
|       filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
 | |
|     }
 | |
| 
 | |
|     filament_sensor = true;
 | |
| 
 | |
|     //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | |
|     //SERIAL_PROTOCOL(filament_width_meas);
 | |
|     //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
 | |
|     //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M406: Turn off filament sensor for control
 | |
|    */
 | |
|   inline void gcode_M406() { filament_sensor = false; }
 | |
| 
 | |
|   /**
 | |
|    * M407: Get measured filament diameter on serial output
 | |
|    */
 | |
|   inline void gcode_M407() {
 | |
|     SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | |
|     SERIAL_PROTOCOLLN(filament_width_meas);
 | |
|   }
 | |
| 
 | |
| #endif // FILAMENT_WIDTH_SENSOR
 | |
| 
 | |
| void quickstop_stepper() {
 | |
|   stepper.quick_stop();
 | |
|   stepper.synchronize();
 | |
|   set_current_from_steppers_for_axis(ALL_AXES);
 | |
|   SYNC_PLAN_POSITION_KINEMATIC();
 | |
| }
 | |
| 
 | |
| #if HAS_LEVELING
 | |
|   /**
 | |
|    * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
 | |
|    *
 | |
|    *   S[bool]   Turns leveling on or off
 | |
|    *   Z[height] Sets the Z fade height (0 or none to disable)
 | |
|    *   V[bool]   Verbose - Print the leveling grid
 | |
|    *
 | |
|    * With AUTO_BED_LEVELING_UBL only:
 | |
|    *
 | |
|    *   L[index]  Load UBL mesh from index (0 is default)
 | |
|    */
 | |
|   inline void gcode_M420() {
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|       // L to load a mesh from the EEPROM
 | |
|       if (parser.seen('L')) {
 | |
| 
 | |
|         #if ENABLED(EEPROM_SETTINGS)
 | |
|           const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
 | |
|           const int16_t a = settings.calc_num_meshes();
 | |
| 
 | |
|           if (!a) {
 | |
|             SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           if (!WITHIN(storage_slot, 0, a - 1)) {
 | |
|             SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
 | |
|             SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           settings.load_mesh(storage_slot);
 | |
|           ubl.state.storage_slot = storage_slot;
 | |
| 
 | |
|         #else
 | |
| 
 | |
|           SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
 | |
|           return;
 | |
| 
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       // L to load a mesh from the EEPROM
 | |
|       if (parser.seen('L') || parser.seen('V')) {
 | |
|         ubl.display_map(0);  // Currently only supports one map type
 | |
|         SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
 | |
|         SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
 | |
|       }
 | |
| 
 | |
|     #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
|     // V to print the matrix or mesh
 | |
|     if (parser.seen('V')) {
 | |
|       #if ABL_PLANAR
 | |
|         planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
 | |
|       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         if (leveling_is_valid()) {
 | |
|           print_bilinear_leveling_grid();
 | |
|           #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|             bed_level_virt_print();
 | |
|           #endif
 | |
|         }
 | |
|       #elif ENABLED(MESH_BED_LEVELING)
 | |
|         if (leveling_is_valid()) {
 | |
|           SERIAL_ECHOLNPGM("Mesh Bed Level data:");
 | |
|           mbl_mesh_report();
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     bool to_enable = false;
 | |
|     if (parser.seen('S')) {
 | |
|       to_enable = parser.value_bool();
 | |
|       set_bed_leveling_enabled(to_enable);
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|       if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
 | |
|     #endif
 | |
| 
 | |
|     const bool new_status = leveling_is_active();
 | |
| 
 | |
|     if (to_enable && !new_status) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
 | |
|     }
 | |
| 
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
 | |
| 
 | |
|     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOPGM("Fade Height ");
 | |
|       if (planner.z_fade_height > 0.0)
 | |
|         SERIAL_ECHOLN(planner.z_fade_height);
 | |
|       else
 | |
|         SERIAL_ECHOLNPGM(MSG_OFF);
 | |
|     #endif
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   /**
 | |
|    * M421: Set a single Mesh Bed Leveling Z coordinate
 | |
|    *
 | |
|    * Usage:
 | |
|    *   M421 X<linear> Y<linear> Z<linear>
 | |
|    *   M421 X<linear> Y<linear> Q<offset>
 | |
|    *   M421 I<xindex> J<yindex> Z<linear>
 | |
|    *   M421 I<xindex> J<yindex> Q<offset>
 | |
|    */
 | |
|   inline void gcode_M421() {
 | |
|     const bool hasX = parser.seen('X'), hasI = parser.seen('I');
 | |
|     const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
 | |
|     const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
 | |
|     const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
 | |
|     const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
 | |
| 
 | |
|     if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
 | |
|     }
 | |
|     else if (ix < 0 || iy < 0) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
 | |
|     }
 | |
|     else
 | |
|       mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|   /**
 | |
|    * M421: Set a single Mesh Bed Leveling Z coordinate
 | |
|    *
 | |
|    * Usage:
 | |
|    *   M421 I<xindex> J<yindex> Z<linear>
 | |
|    *   M421 I<xindex> J<yindex> Q<offset>
 | |
|    */
 | |
|   inline void gcode_M421() {
 | |
|     const bool hasI = parser.seen('I');
 | |
|     const int8_t ix = hasI ? parser.value_int() : -1;
 | |
|     const bool hasJ = parser.seen('J');
 | |
|     const int8_t iy = hasJ ? parser.value_int() : -1;
 | |
|     const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
 | |
| 
 | |
|     if (!hasI || !hasJ || !(hasZ || hasQ)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
 | |
|     }
 | |
|     else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
 | |
|     }
 | |
|     else {
 | |
|       z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
 | |
|       #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|         bed_level_virt_interpolate();
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|   /**
 | |
|    * M421: Set a single Mesh Bed Leveling Z coordinate
 | |
|    *
 | |
|    * Usage:
 | |
|    *   M421 I<xindex> J<yindex> Z<linear>
 | |
|    *   M421 I<xindex> J<yindex> Q<offset>
 | |
|    *   M421 C Z<linear>
 | |
|    *   M421 C Q<offset>
 | |
|    */
 | |
|   inline void gcode_M421() {
 | |
|     const bool hasC = parser.seen('C'), hasI = parser.seen('I');
 | |
|     int8_t ix = hasI ? parser.value_int() : -1;
 | |
|     const bool hasJ = parser.seen('J');
 | |
|     int8_t iy = hasJ ? parser.value_int() : -1;
 | |
|     const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
 | |
| 
 | |
|     if (hasC) {
 | |
|       const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
 | |
|       ix = location.x_index;
 | |
|       iy = location.y_index;
 | |
|     }
 | |
| 
 | |
|     if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
 | |
|     }
 | |
|     else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
 | |
|     }
 | |
|     else
 | |
|       ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
| #if HAS_M206_COMMAND
 | |
| 
 | |
|   /**
 | |
|    * M428: Set home_offset based on the distance between the
 | |
|    *       current_position and the nearest "reference point."
 | |
|    *       If an axis is past center its endstop position
 | |
|    *       is the reference-point. Otherwise it uses 0. This allows
 | |
|    *       the Z offset to be set near the bed when using a max endstop.
 | |
|    *
 | |
|    *       M428 can't be used more than 2cm away from 0 or an endstop.
 | |
|    *
 | |
|    *       Use M206 to set these values directly.
 | |
|    */
 | |
|   inline void gcode_M428() {
 | |
|     bool err = false;
 | |
|     LOOP_XYZ(i) {
 | |
|       if (axis_homed[i]) {
 | |
|         const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
 | |
|                     diff = base - RAW_POSITION(current_position[i], i);
 | |
|         if (WITHIN(diff, -20, 20)) {
 | |
|           set_home_offset((AxisEnum)i, diff);
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_ERROR_START();
 | |
|           SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
 | |
|           LCD_ALERTMESSAGEPGM("Err: Too far!");
 | |
|           BUZZ(200, 40);
 | |
|           err = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!err) {
 | |
|       SYNC_PLAN_POSITION_KINEMATIC();
 | |
|       report_current_position();
 | |
|       LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
 | |
|       BUZZ(100, 659);
 | |
|       BUZZ(100, 698);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAS_M206_COMMAND
 | |
| 
 | |
| /**
 | |
|  * M500: Store settings in EEPROM
 | |
|  */
 | |
| inline void gcode_M500() {
 | |
|   (void)settings.save();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M501: Read settings from EEPROM
 | |
|  */
 | |
| inline void gcode_M501() {
 | |
|   (void)settings.load();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M502: Revert to default settings
 | |
|  */
 | |
| inline void gcode_M502() {
 | |
|   (void)settings.reset();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M503: print settings currently in memory
 | |
|  */
 | |
| inline void gcode_M503() {
 | |
|   (void)settings.report(parser.seen('S') && !parser.value_bool());
 | |
| }
 | |
| 
 | |
| #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
| 
 | |
|   /**
 | |
|    * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
 | |
|    */
 | |
|   inline void gcode_M540() {
 | |
|     if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
 | |
|   }
 | |
| 
 | |
| #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
 | |
|     static float last_zoffset = NAN;
 | |
| 
 | |
|     if (!isnan(last_zoffset)) {
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
 | |
|         const float diff = zprobe_zoffset - last_zoffset;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         // Correct bilinear grid for new probe offset
 | |
|         if (diff) {
 | |
|           for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
 | |
|             for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
 | |
|               z_values[x][y] -= diff;
 | |
|         }
 | |
|         #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|           bed_level_virt_interpolate();
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
 | |
|         if (!no_babystep && leveling_is_active())
 | |
|           thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
 | |
|       #else
 | |
|         UNUSED(no_babystep);
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DELTA) // correct the delta_height
 | |
|         home_offset[Z_AXIS] -= diff;
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     last_zoffset = zprobe_zoffset;
 | |
|   }
 | |
| 
 | |
|   inline void gcode_M851() {
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
 | |
|     if (parser.seen('Z')) {
 | |
|       const float value = parser.value_linear_units();
 | |
|       if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
 | |
|         zprobe_zoffset = value;
 | |
|         refresh_zprobe_zoffset();
 | |
|         SERIAL_ECHO(zprobe_zoffset);
 | |
|       }
 | |
|       else
 | |
|         SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
 | |
|     }
 | |
|     else
 | |
|       SERIAL_ECHOPAIR(": ", zprobe_zoffset);
 | |
| 
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * M600: Pause for filament change
 | |
|    *
 | |
|    *  E[distance] - Retract the filament this far (negative value)
 | |
|    *  Z[distance] - Move the Z axis by this distance
 | |
|    *  X[position] - Move to this X position, with Y
 | |
|    *  Y[position] - Move to this Y position, with X
 | |
|    *  U[distance] - Retract distance for removal (negative value) (manual reload)
 | |
|    *  L[distance] - Extrude distance for insertion (positive value) (manual reload)
 | |
|    *  B[count]    - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
 | |
|    *
 | |
|    *  Default values are used for omitted arguments.
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M600() {
 | |
| 
 | |
|     #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
 | |
|       // Don't allow filament change without homing first
 | |
|       if (axis_unhomed_error()) home_all_axes();
 | |
|     #endif
 | |
| 
 | |
|     // Initial retract before move to filament change position
 | |
|     const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
 | |
|       #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
 | |
|         - (PAUSE_PARK_RETRACT_LENGTH)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Lift Z axis
 | |
|     const float z_lift = parser.seen('Z') ? parser.value_linear_units() :
 | |
|       #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
 | |
|         PAUSE_PARK_Z_ADD
 | |
|       #else
 | |
|         0
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Move XY axes to filament exchange position
 | |
|     const float x_pos = parser.seen('X') ? parser.value_linear_units() : 0
 | |
|       #ifdef PAUSE_PARK_X_POS
 | |
|         + PAUSE_PARK_X_POS
 | |
|       #endif
 | |
|     ;
 | |
|     const float y_pos = parser.seen('Y') ? parser.value_linear_units() : 0
 | |
|       #ifdef PAUSE_PARK_Y_POS
 | |
|         + PAUSE_PARK_Y_POS
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Unload filament
 | |
|     const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
 | |
|       #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
 | |
|         - (FILAMENT_CHANGE_UNLOAD_LENGTH)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     // Load filament
 | |
|     const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
 | |
|       #ifdef FILAMENT_CHANGE_LOAD_LENGTH
 | |
|         + FILAMENT_CHANGE_LOAD_LENGTH
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     const int beep_count = parser.seen('B') ? parser.value_int() :
 | |
|       #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
 | |
|         FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
 | |
|       #else
 | |
|         -1
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     const bool job_running = print_job_timer.isRunning();
 | |
| 
 | |
|     if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
 | |
|       wait_for_filament_reload(beep_count);
 | |
|       resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
 | |
|     }
 | |
| 
 | |
|     // Resume the print job timer if it was running
 | |
|     if (job_running) print_job_timer.start();
 | |
|   }
 | |
| 
 | |
| #endif // ADVANCED_PAUSE_FEATURE
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   /**
 | |
|    * M605: Set dual x-carriage movement mode
 | |
|    *
 | |
|    *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
 | |
|    *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
 | |
|    *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
 | |
|    *                         units x-offset and an optional differential hotend temperature of
 | |
|    *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
 | |
|    *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
 | |
|    *
 | |
|    *    Note: the X axis should be homed after changing dual x-carriage mode.
 | |
|    */
 | |
|   inline void gcode_M605() {
 | |
|     stepper.synchronize();
 | |
|     if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
 | |
|     switch (dual_x_carriage_mode) {
 | |
|       case DXC_FULL_CONTROL_MODE:
 | |
|       case DXC_AUTO_PARK_MODE:
 | |
|         break;
 | |
|       case DXC_DUPLICATION_MODE:
 | |
|         if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
 | |
|         if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
 | |
|         SERIAL_ECHO_START();
 | |
|         SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO(hotend_offset[X_AXIS][0]);
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO(duplicate_extruder_x_offset);
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
 | |
|         break;
 | |
|       default:
 | |
|         dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
|         break;
 | |
|     }
 | |
|     active_extruder_parked = false;
 | |
|     extruder_duplication_enabled = false;
 | |
|     delayed_move_time = 0;
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
| 
 | |
|   inline void gcode_M605() {
 | |
|     stepper.synchronize();
 | |
|     extruder_duplication_enabled = parser.seen('S') && parser.value_int() == (int)DXC_DUPLICATION_MODE;
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
 | |
|   }
 | |
| 
 | |
| #endif // DUAL_NOZZLE_DUPLICATION_MODE
 | |
| 
 | |
| #if ENABLED(LIN_ADVANCE)
 | |
|   /**
 | |
|    * M900: Set and/or Get advance K factor and WH/D ratio
 | |
|    *
 | |
|    *  K<factor>                  Set advance K factor
 | |
|    *  R<ratio>                   Set ratio directly (overrides WH/D)
 | |
|    *  W<width> H<height> D<diam> Set ratio from WH/D
 | |
|    */
 | |
|   inline void gcode_M900() {
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     const float newK = parser.seen('K') ? parser.value_float() : -1;
 | |
|     if (newK >= 0) planner.extruder_advance_k = newK;
 | |
| 
 | |
|     float newR = parser.seen('R') ? parser.value_float() : -1;
 | |
|     if (newR < 0) {
 | |
|       const float newD = parser.seen('D') ? parser.value_float() : -1,
 | |
|                   newW = parser.seen('W') ? parser.value_float() : -1,
 | |
|                   newH = parser.seen('H') ? parser.value_float() : -1;
 | |
|       if (newD >= 0 && newW >= 0 && newH >= 0)
 | |
|         newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
 | |
|     }
 | |
|     if (newR >= 0) planner.advance_ed_ratio = newR;
 | |
| 
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
 | |
|     SERIAL_ECHOPGM(" E/D=");
 | |
|     const float ratio = planner.advance_ed_ratio;
 | |
|     if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
| #endif // LIN_ADVANCE
 | |
| 
 | |
| #if ENABLED(HAVE_TMC2130)
 | |
| 
 | |
|   static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
 | |
|     SERIAL_CHAR(name);
 | |
|     SERIAL_ECHOPGM(" axis driver current: ");
 | |
|     SERIAL_ECHOLN(st.getCurrent());
 | |
|   }
 | |
|   static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
 | |
|     st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
 | |
|     tmc2130_get_current(st, name);
 | |
|   }
 | |
| 
 | |
|   static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
 | |
|     SERIAL_CHAR(name);
 | |
|     SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
 | |
|     serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
 | |
|     SERIAL_EOL();
 | |
|   }
 | |
|   static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
 | |
|     st.clear_otpw();
 | |
|     SERIAL_CHAR(name);
 | |
|     SERIAL_ECHOLNPGM(" prewarn flag cleared");
 | |
|   }
 | |
| 
 | |
|   static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
 | |
|     SERIAL_CHAR(name);
 | |
|     SERIAL_ECHOPGM(" stealthChop max speed set to ");
 | |
|     SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
 | |
|   }
 | |
|   static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
 | |
|     st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
 | |
|     tmc2130_get_pwmthrs(st, name, spmm);
 | |
|   }
 | |
| 
 | |
|   static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
 | |
|     SERIAL_CHAR(name);
 | |
|     SERIAL_ECHOPGM(" driver homing sensitivity set to ");
 | |
|     SERIAL_ECHOLN(st.sgt());
 | |
|   }
 | |
|   static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
 | |
|     st.sgt(sgt_val);
 | |
|     tmc2130_get_sgt(st, name);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M906: Set motor current in milliamps using axis codes X, Y, Z, E
 | |
|    * Report driver currents when no axis specified
 | |
|    *
 | |
|    * S1: Enable automatic current control
 | |
|    * S0: Disable
 | |
|    */
 | |
|   inline void gcode_M906() {
 | |
|     uint16_t values[XYZE];
 | |
|     LOOP_XYZE(i)
 | |
|       values[i] = parser.seen(axis_codes[i]) ? parser.value_int() : 0;
 | |
| 
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
 | |
|       else tmc2130_get_current(stepperX, 'X');
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
 | |
|       else tmc2130_get_current(stepperY, 'Y');
 | |
|     #endif
 | |
|     #if ENABLED(Z_IS_TMC2130)
 | |
|       if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
 | |
|       else tmc2130_get_current(stepperZ, 'Z');
 | |
|     #endif
 | |
|     #if ENABLED(E0_IS_TMC2130)
 | |
|       if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
 | |
|       else tmc2130_get_current(stepperE0, 'E');
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
 | |
|       if (parser.seen('S')) auto_current_control = parser.value_bool();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
 | |
|    * The flag is held by the library and persist until manually cleared by M912
 | |
|    */
 | |
|   inline void gcode_M911() {
 | |
|     const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
 | |
|              reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
 | |
|     #endif
 | |
|     #if ENABLED(Z_IS_TMC2130)
 | |
|       if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
 | |
|     #endif
 | |
|     #if ENABLED(E0_IS_TMC2130)
 | |
|       if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
 | |
|    */
 | |
|   inline void gcode_M912() {
 | |
|     const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
 | |
|              clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
 | |
|     #endif
 | |
|     #if ENABLED(Z_IS_TMC2130)
 | |
|       if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
 | |
|     #endif
 | |
|     #if ENABLED(E0_IS_TMC2130)
 | |
|       if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M913: Set HYBRID_THRESHOLD speed.
 | |
|    */
 | |
|   #if ENABLED(HYBRID_THRESHOLD)
 | |
|     inline void gcode_M913() {
 | |
|       uint16_t values[XYZE];
 | |
|       LOOP_XYZE(i)
 | |
|         values[i] = parser.seen(axis_codes[i]) ? parser.value_int() : 0;
 | |
| 
 | |
|       #if ENABLED(X_IS_TMC2130)
 | |
|         if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
 | |
|         else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
 | |
|       #endif
 | |
|       #if ENABLED(Y_IS_TMC2130)
 | |
|         if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
 | |
|         else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
 | |
|       #endif
 | |
|       #if ENABLED(Z_IS_TMC2130)
 | |
|         if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
 | |
|         else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
 | |
|       #endif
 | |
|       #if ENABLED(E0_IS_TMC2130)
 | |
|         if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
 | |
|         else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
 | |
|       #endif
 | |
|     }
 | |
|   #endif // HYBRID_THRESHOLD
 | |
| 
 | |
|   /**
 | |
|    * M914: Set SENSORLESS_HOMING sensitivity.
 | |
|    */
 | |
|   #if ENABLED(SENSORLESS_HOMING)
 | |
|     inline void gcode_M914() {
 | |
|       #if ENABLED(X_IS_TMC2130)
 | |
|         if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
 | |
|         else tmc2130_get_sgt(stepperX, 'X');
 | |
|       #endif
 | |
|       #if ENABLED(Y_IS_TMC2130)
 | |
|         if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
 | |
|         else tmc2130_get_sgt(stepperY, 'Y');
 | |
|       #endif
 | |
|     }
 | |
|   #endif // SENSORLESS_HOMING
 | |
| 
 | |
| #endif // HAVE_TMC2130
 | |
| 
 | |
| /**
 | |
|  * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 | |
|  */
 | |
| inline void gcode_M907() {
 | |
|   #if HAS_DIGIPOTSS
 | |
| 
 | |
|     LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
 | |
|     if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
 | |
|     if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
 | |
| 
 | |
|   #elif HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|       if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
 | |
|     #endif
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|       if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
 | |
|     #endif
 | |
|     #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|       if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
 | |
|     #endif
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DIGIPOT_I2C)
 | |
|     // this one uses actual amps in floating point
 | |
|     LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
 | |
|     // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
 | |
|     for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|     if (parser.seen('S')) {
 | |
|       const float dac_percent = parser.value_float();
 | |
|       for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
 | |
|     }
 | |
|     LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
 | |
| 
 | |
|   /**
 | |
|    * M908: Control digital trimpot directly (M908 P<pin> S<current>)
 | |
|    */
 | |
|   inline void gcode_M908() {
 | |
|     #if HAS_DIGIPOTSS
 | |
|       stepper.digitalPotWrite(
 | |
|         parser.seen('P') ? parser.value_int() : 0,
 | |
|         parser.seen('S') ? parser.value_int() : 0
 | |
|       );
 | |
|     #endif
 | |
|     #ifdef DAC_STEPPER_CURRENT
 | |
|       dac_current_raw(
 | |
|         parser.seen('P') ? parser.value_byte() : -1,
 | |
|         parser.seen('S') ? parser.value_ushort() : 0
 | |
|       );
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
 | |
| 
 | |
|     inline void gcode_M909() { dac_print_values(); }
 | |
| 
 | |
|     inline void gcode_M910() { dac_commit_eeprom(); }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
| #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
 | |
| 
 | |
| #if HAS_MICROSTEPS
 | |
| 
 | |
|   // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | |
|   inline void gcode_M350() {
 | |
|     if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
 | |
|     LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
 | |
|     if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
 | |
|     stepper.microstep_readings();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
 | |
|    *       S# determines MS1 or MS2, X# sets the pin high/low.
 | |
|    */
 | |
|   inline void gcode_M351() {
 | |
|     if (parser.seen('S')) switch (parser.value_byte()) {
 | |
|       case 1:
 | |
|         LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
 | |
|         if (parser.seen('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
 | |
|         break;
 | |
|       case 2:
 | |
|         LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
 | |
|         if (parser.seen('B')) stepper.microstep_ms(4, -1, parser.value_byte());
 | |
|         break;
 | |
|     }
 | |
|     stepper.microstep_readings();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_MICROSTEPS
 | |
| 
 | |
| #if HAS_CASE_LIGHT
 | |
|   #ifndef INVERT_CASE_LIGHT
 | |
|     #define INVERT_CASE_LIGHT false
 | |
|   #endif
 | |
|   int case_light_brightness;  // LCD routine wants INT
 | |
|   bool case_light_on;
 | |
| 
 | |
|   void update_case_light() {
 | |
|     pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
 | |
|     uint8_t case_light_bright = (uint8_t)case_light_brightness;
 | |
|     if (case_light_on) {
 | |
|       if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
 | |
|         analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
 | |
|       }
 | |
|       else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH );
 | |
|     }
 | |
|     else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
 | |
|   }
 | |
| #endif // HAS_CASE_LIGHT
 | |
| 
 | |
| /**
 | |
|  * M355: Turn case light on/off and set brightness
 | |
|  *
 | |
|  *   P<byte>  Set case light brightness (PWM pin required - ignored otherwise)
 | |
|  *
 | |
|  *   S<bool>  Set case light on/off
 | |
|  *
 | |
|  *   When S turns on the light on a PWM pin then the current brightness level is used/restored
 | |
|  *
 | |
|  *   M355 P200 S0 turns off the light & sets the brightness level
 | |
|  *   M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
 | |
|  */
 | |
| inline void gcode_M355() {
 | |
|   #if HAS_CASE_LIGHT
 | |
|     uint8_t args = 0;
 | |
|     if (parser.seen('P')) ++args, case_light_brightness = parser.value_byte();
 | |
|     if (parser.seen('S')) ++args, case_light_on = parser.value_bool();
 | |
|     if (args) update_case_light();
 | |
| 
 | |
|     // always report case light status
 | |
|     SERIAL_ECHO_START();
 | |
|     if (!case_light_on) {
 | |
|       SERIAL_ECHOLN("Case light: off");
 | |
|     }
 | |
|     else {
 | |
|       if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
 | |
|       else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
 | |
|     }
 | |
| 
 | |
|   #else
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
 | |
|   #endif // HAS_CASE_LIGHT
 | |
| }
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
| 
 | |
|   /**
 | |
|    * M163: Set a single mix factor for a mixing extruder
 | |
|    *       This is called "weight" by some systems.
 | |
|    *
 | |
|    *   S[index]   The channel index to set
 | |
|    *   P[float]   The mix value
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M163() {
 | |
|     const int mix_index = parser.seen('S') ? parser.value_int() : 0;
 | |
|     if (mix_index < MIXING_STEPPERS) {
 | |
|       float mix_value = parser.seen('P') ? parser.value_float() : 0.0;
 | |
|       NOLESS(mix_value, 0.0);
 | |
|       mixing_factor[mix_index] = RECIPROCAL(mix_value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if MIXING_VIRTUAL_TOOLS > 1
 | |
| 
 | |
|     /**
 | |
|      * M164: Store the current mix factors as a virtual tool.
 | |
|      *
 | |
|      *   S[index]   The virtual tool to store
 | |
|      *
 | |
|      */
 | |
|     inline void gcode_M164() {
 | |
|       const int tool_index = parser.seen('S') ? parser.value_int() : 0;
 | |
|       if (tool_index < MIXING_VIRTUAL_TOOLS) {
 | |
|         normalize_mix();
 | |
|         for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|           mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     /**
 | |
|      * M165: Set multiple mix factors for a mixing extruder.
 | |
|      *       Factors that are left out will be set to 0.
 | |
|      *       All factors together must add up to 1.0.
 | |
|      *
 | |
|      *   A[factor] Mix factor for extruder stepper 1
 | |
|      *   B[factor] Mix factor for extruder stepper 2
 | |
|      *   C[factor] Mix factor for extruder stepper 3
 | |
|      *   D[factor] Mix factor for extruder stepper 4
 | |
|      *   H[factor] Mix factor for extruder stepper 5
 | |
|      *   I[factor] Mix factor for extruder stepper 6
 | |
|      *
 | |
|      */
 | |
|     inline void gcode_M165() { gcode_get_mix(); }
 | |
|   #endif
 | |
| 
 | |
| #endif // MIXING_EXTRUDER
 | |
| 
 | |
| /**
 | |
|  * M999: Restart after being stopped
 | |
|  *
 | |
|  * Default behaviour is to flush the serial buffer and request
 | |
|  * a resend to the host starting on the last N line received.
 | |
|  *
 | |
|  * Sending "M999 S1" will resume printing without flushing the
 | |
|  * existing command buffer.
 | |
|  *
 | |
|  */
 | |
| inline void gcode_M999() {
 | |
|   Running = true;
 | |
|   lcd_reset_alert_level();
 | |
| 
 | |
|   if (parser.seen('S') && parser.value_bool()) return;
 | |
| 
 | |
|   // gcode_LastN = Stopped_gcode_LastN;
 | |
|   FlushSerialRequestResend();
 | |
| }
 | |
| 
 | |
| #if ENABLED(SWITCHING_EXTRUDER)
 | |
|   #if EXTRUDERS > 3
 | |
|     #define REQ_ANGLES 4
 | |
|     #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
 | |
|   #else
 | |
|     #define REQ_ANGLES 2
 | |
|     #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
 | |
|   #endif
 | |
|   inline void move_extruder_servo(const uint8_t e) {
 | |
|     constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
 | |
|     static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
 | |
|     stepper.synchronize();
 | |
|     #if EXTRUDERS & 1
 | |
|       if (e < EXTRUDERS - 1)
 | |
|     #endif
 | |
|     {
 | |
|       MOVE_SERVO(_SERVO_NR, angles[e]);
 | |
|       safe_delay(500);
 | |
|     }
 | |
|   }
 | |
| #endif // SWITCHING_EXTRUDER
 | |
| 
 | |
| #if ENABLED(SWITCHING_NOZZLE)
 | |
|   inline void move_nozzle_servo(const uint8_t e) {
 | |
|     const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
 | |
|     stepper.synchronize();
 | |
|     MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
 | |
|     safe_delay(500);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| inline void invalid_extruder_error(const uint8_t e) {
 | |
|   SERIAL_ECHO_START();
 | |
|   SERIAL_CHAR('T');
 | |
|   SERIAL_ECHO_F(e, DEC);
 | |
|   SERIAL_CHAR(' ');
 | |
|   SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform a tool-change, which may result in moving the
 | |
|  * previous tool out of the way and the new tool into place.
 | |
|  */
 | |
| void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
 | |
|   #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
 | |
| 
 | |
|     if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
 | |
|       return invalid_extruder_error(tmp_extruder);
 | |
| 
 | |
|     // T0-Tnnn: Switch virtual tool by changing the mix
 | |
|     for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
 | |
|       mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
 | |
| 
 | |
|   #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
 | |
| 
 | |
|     if (tmp_extruder >= EXTRUDERS)
 | |
|       return invalid_extruder_error(tmp_extruder);
 | |
| 
 | |
|     #if HOTENDS > 1
 | |
| 
 | |
|       const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
 | |
| 
 | |
|       feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
 | |
| 
 | |
|       if (tmp_extruder != active_extruder) {
 | |
|         if (!no_move && axis_unhomed_error()) {
 | |
|           SERIAL_ECHOLNPGM("No move on toolchange");
 | |
|           no_move = true;
 | |
|         }
 | |
| 
 | |
|         // Save current position to destination, for use later
 | |
|         set_destination_to_current();
 | |
| 
 | |
|         #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPGM("Dual X Carriage Mode ");
 | |
|               switch (dual_x_carriage_mode) {
 | |
|                 case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
 | |
|                 case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
 | |
|                 case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
 | |
|               }
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           const float xhome = x_home_pos(active_extruder);
 | |
|           if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
 | |
|               && IsRunning()
 | |
|               && (delayed_move_time || current_position[X_AXIS] != xhome)
 | |
|           ) {
 | |
|             float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
 | |
|             #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
 | |
|               NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
 | |
|             #endif
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 SERIAL_ECHOLNPAIR("Raise to ", raised_z);
 | |
|                 SERIAL_ECHOLNPAIR("MoveX to ", xhome);
 | |
|                 SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
 | |
|               }
 | |
|             #endif
 | |
|             // Park old head: 1) raise 2) move to park position 3) lower
 | |
|             for (uint8_t i = 0; i < 3; i++)
 | |
|               planner.buffer_line(
 | |
|                 i == 0 ? current_position[X_AXIS] : xhome,
 | |
|                 current_position[Y_AXIS],
 | |
|                 i == 2 ? current_position[Z_AXIS] : raised_z,
 | |
|                 current_position[E_AXIS],
 | |
|                 planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
 | |
|                 active_extruder
 | |
|               );
 | |
|             stepper.synchronize();
 | |
|           }
 | |
| 
 | |
|           // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
 | |
|           current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
 | |
|           current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
 | |
| 
 | |
|           // Activate the new extruder
 | |
|           active_extruder = tmp_extruder;
 | |
| 
 | |
|           // This function resets the max/min values - the current position may be overwritten below.
 | |
|           set_axis_is_at_home(X_AXIS);
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
 | |
|           #endif
 | |
| 
 | |
|           // Only when auto-parking are carriages safe to move
 | |
|           if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
 | |
| 
 | |
|           switch (dual_x_carriage_mode) {
 | |
|             case DXC_FULL_CONTROL_MODE:
 | |
|               // New current position is the position of the activated extruder
 | |
|               current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
 | |
|               // Save the inactive extruder's position (from the old current_position)
 | |
|               inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
 | |
|               break;
 | |
|             case DXC_AUTO_PARK_MODE:
 | |
|               // record raised toolhead position for use by unpark
 | |
|               COPY(raised_parked_position, current_position);
 | |
|               raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
 | |
|               #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
 | |
|                 NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
 | |
|               #endif
 | |
|               active_extruder_parked = true;
 | |
|               delayed_move_time = 0;
 | |
|               break;
 | |
|             case DXC_DUPLICATION_MODE:
 | |
|               // If the new extruder is the left one, set it "parked"
 | |
|               // This triggers the second extruder to move into the duplication position
 | |
|               active_extruder_parked = (active_extruder == 0);
 | |
| 
 | |
|               if (active_extruder_parked)
 | |
|                 current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
 | |
|               else
 | |
|                 current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
 | |
|               inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
 | |
|               extruder_duplication_enabled = false;
 | |
|               #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|                 if (DEBUGGING(LEVELING)) {
 | |
|                   SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
 | |
|                   SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
 | |
|                 }
 | |
|               #endif
 | |
|               break;
 | |
|           }
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
 | |
|               DEBUG_POS("New extruder (parked)", current_position);
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
 | |
|         #else // !DUAL_X_CARRIAGE
 | |
| 
 | |
|           #if ENABLED(SWITCHING_NOZZLE)
 | |
|             #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
 | |
|             // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
 | |
|             const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
 | |
|                         z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
 | |
| 
 | |
|             // Always raise by some amount (destination copied from current_position earlier)
 | |
|             current_position[Z_AXIS] += z_raise;
 | |
|             planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
 | |
|             move_nozzle_servo(tmp_extruder);
 | |
|           #endif
 | |
| 
 | |
|           /**
 | |
|            * Set current_position to the position of the new nozzle.
 | |
|            * Offsets are based on linear distance, so we need to get
 | |
|            * the resulting position in coordinate space.
 | |
|            *
 | |
|            * - With grid or 3-point leveling, offset XYZ by a tilted vector
 | |
|            * - With mesh leveling, update Z for the new position
 | |
|            * - Otherwise, just use the raw linear distance
 | |
|            *
 | |
|            * Software endstops are altered here too. Consider a case where:
 | |
|            *   E0 at X=0 ... E1 at X=10
 | |
|            * When we switch to E1 now X=10, but E1 can't move left.
 | |
|            * To express this we apply the change in XY to the software endstops.
 | |
|            * E1 can move farther right than E0, so the right limit is extended.
 | |
|            *
 | |
|            * Note that we don't adjust the Z software endstops. Why not?
 | |
|            * Consider a case where Z=0 (here) and switching to E1 makes Z=1
 | |
|            * because the bed is 1mm lower at the new position. As long as
 | |
|            * the first nozzle is out of the way, the carriage should be
 | |
|            * allowed to move 1mm lower. This technically "breaks" the
 | |
|            * Z software endstop. But this is technically correct (and
 | |
|            * there is no viable alternative).
 | |
|            */
 | |
|           #if ABL_PLANAR
 | |
|             // Offset extruder, make sure to apply the bed level rotation matrix
 | |
|             vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
 | |
|                                                hotend_offset[Y_AXIS][tmp_extruder],
 | |
|                                                0),
 | |
|                      act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
 | |
|                                                hotend_offset[Y_AXIS][active_extruder],
 | |
|                                                0),
 | |
|                      offset_vec = tmp_offset_vec - act_offset_vec;
 | |
| 
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
 | |
|                 act_offset_vec.debug(PSTR("act_offset_vec"));
 | |
|                 offset_vec.debug(PSTR("offset_vec (BEFORE)"));
 | |
|               }
 | |
|             #endif
 | |
| 
 | |
|             offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
 | |
| 
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
 | |
|             #endif
 | |
| 
 | |
|             // Adjustments to the current position
 | |
|             const float xydiff[2] = { offset_vec.x, offset_vec.y };
 | |
|             current_position[Z_AXIS] += offset_vec.z;
 | |
| 
 | |
|           #else // !ABL_PLANAR
 | |
| 
 | |
|             const float xydiff[2] = {
 | |
|               hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
 | |
|               hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
 | |
|             };
 | |
| 
 | |
|             #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|               if (leveling_is_active()) {
 | |
|                 #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|                   if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
 | |
|                 #endif
 | |
|                 float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
 | |
|                       y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
 | |
|                       z1 = current_position[Z_AXIS], z2 = z1;
 | |
|                 planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
 | |
|                 planner.apply_leveling(x2, y2, z2);
 | |
|                 current_position[Z_AXIS] += z2 - z1;
 | |
|                 #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|                   if (DEBUGGING(LEVELING))
 | |
|                     SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
 | |
|                 #endif
 | |
|               }
 | |
| 
 | |
|             #endif // MESH_BED_LEVELING
 | |
| 
 | |
|           #endif // !HAS_ABL
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
 | |
|               SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
 | |
|               SERIAL_ECHOLNPGM(" }");
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           // The newly-selected extruder XY is actually at...
 | |
|           current_position[X_AXIS] += xydiff[X_AXIS];
 | |
|           current_position[Y_AXIS] += xydiff[Y_AXIS];
 | |
|           #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
 | |
|             for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
 | |
|               #if HAS_POSITION_SHIFT
 | |
|                 position_shift[i] += xydiff[i];
 | |
|               #endif
 | |
|               update_software_endstops((AxisEnum)i);
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           // Set the new active extruder
 | |
|           active_extruder = tmp_extruder;
 | |
| 
 | |
|         #endif // !DUAL_X_CARRIAGE
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
 | |
|         #endif
 | |
| 
 | |
|         // Tell the planner the new "current position"
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|         // Move to the "old position" (move the extruder into place)
 | |
|         if (!no_move && IsRunning()) {
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
 | |
|           #endif
 | |
|           prepare_move_to_destination();
 | |
|         }
 | |
| 
 | |
|         #if ENABLED(SWITCHING_NOZZLE)
 | |
|           // Move back down, if needed. (Including when the new tool is higher.)
 | |
|           if (z_raise != z_diff) {
 | |
|             destination[Z_AXIS] += z_diff;
 | |
|             feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
 | |
|             prepare_move_to_destination();
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|       } // (tmp_extruder != active_extruder)
 | |
| 
 | |
|       stepper.synchronize();
 | |
| 
 | |
|       #if ENABLED(EXT_SOLENOID)
 | |
|         disable_all_solenoids();
 | |
|         enable_solenoid_on_active_extruder();
 | |
|       #endif // EXT_SOLENOID
 | |
| 
 | |
|       feedrate_mm_s = old_feedrate_mm_s;
 | |
| 
 | |
|     #else // HOTENDS <= 1
 | |
| 
 | |
|       UNUSED(fr_mm_s);
 | |
|       UNUSED(no_move);
 | |
| 
 | |
|       // Set the new active extruder
 | |
|       active_extruder = tmp_extruder;
 | |
| 
 | |
|     #endif // HOTENDS <= 1
 | |
| 
 | |
|     #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
 | |
|       move_extruder_servo(active_extruder);
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
 | |
| 
 | |
|   #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * T0-T3: Switch tool, usually switching extruders
 | |
|  *
 | |
|  *   F[units/min] Set the movement feedrate
 | |
|  *   S1           Don't move the tool in XY after change
 | |
|  */
 | |
| inline void gcode_T(uint8_t tmp_extruder) {
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
 | |
|       SERIAL_CHAR(')');
 | |
|       SERIAL_EOL();
 | |
|       DEBUG_POS("BEFORE", current_position);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
 | |
| 
 | |
|     tool_change(tmp_extruder);
 | |
| 
 | |
|   #elif HOTENDS > 1
 | |
| 
 | |
|     tool_change(
 | |
|       tmp_extruder,
 | |
|       parser.seen('F') ? MMM_TO_MMS(parser.value_linear_units()) : 0.0,
 | |
|       (tmp_extruder == active_extruder) || (parser.seen('S') && parser.value_bool())
 | |
|     );
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       DEBUG_POS("AFTER", current_position);
 | |
|       SERIAL_ECHOLNPGM("<<< gcode_T");
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Process a single command and dispatch it to its handler
 | |
|  * This is called from the main loop()
 | |
|  */
 | |
| void process_next_command() {
 | |
|   char * const current_command = command_queue[cmd_queue_index_r];
 | |
| 
 | |
|   if (DEBUGGING(ECHO)) {
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOLN(current_command);
 | |
|     #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|       SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
 | |
|       M100_dump_routine("   Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|   // Parse the next command in the queue
 | |
|   parser.parse(current_command);
 | |
| 
 | |
|   // Handle a known G, M, or T
 | |
|   switch (parser.command_letter) {
 | |
|     case 'G': switch (parser.codenum) {
 | |
| 
 | |
|       // G0, G1
 | |
|       case 0:
 | |
|       case 1:
 | |
|         #if IS_SCARA
 | |
|           gcode_G0_G1(parser.codenum == 0);
 | |
|         #else
 | |
|           gcode_G0_G1();
 | |
|         #endif
 | |
|         break;
 | |
| 
 | |
|       // G2, G3
 | |
|       #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
 | |
|         case 2: // G2  - CW ARC
 | |
|         case 3: // G3  - CCW ARC
 | |
|           gcode_G2_G3(parser.codenum == 2);
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       // G4 Dwell
 | |
|       case 4:
 | |
|         gcode_G4();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|         // G5
 | |
|         case 5: // G5  - Cubic B_spline
 | |
|           gcode_G5();
 | |
|           break;
 | |
|       #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
|       #if ENABLED(FWRETRACT)
 | |
|         case 10: // G10: retract
 | |
|         case 11: // G11: retract_recover
 | |
|           gcode_G10_G11(parser.codenum == 10);
 | |
|           break;
 | |
|       #endif // FWRETRACT
 | |
| 
 | |
|       #if ENABLED(NOZZLE_CLEAN_FEATURE)
 | |
|         case 12:
 | |
|           gcode_G12(); // G12: Nozzle Clean
 | |
|           break;
 | |
|       #endif // NOZZLE_CLEAN_FEATURE
 | |
| 
 | |
|       #if ENABLED(CNC_WORKSPACE_PLANES)
 | |
|         case 17: // G17: Select Plane XY
 | |
|           gcode_G17();
 | |
|           break;
 | |
|         case 18: // G18: Select Plane ZX
 | |
|           gcode_G18();
 | |
|           break;
 | |
|         case 19: // G19: Select Plane YZ
 | |
|           gcode_G19();
 | |
|           break;
 | |
|       #endif // CNC_WORKSPACE_PLANES
 | |
| 
 | |
|       #if ENABLED(INCH_MODE_SUPPORT)
 | |
|         case 20: //G20: Inch Mode
 | |
|           gcode_G20();
 | |
|           break;
 | |
| 
 | |
|         case 21: //G21: MM Mode
 | |
|           gcode_G21();
 | |
|           break;
 | |
|       #endif // INCH_MODE_SUPPORT
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
 | |
|         case 26: // G26: Mesh Validation Pattern generation
 | |
|           gcode_G26();
 | |
|           break;
 | |
|       #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
|       #if ENABLED(NOZZLE_PARK_FEATURE)
 | |
|         case 27: // G27: Nozzle Park
 | |
|           gcode_G27();
 | |
|           break;
 | |
|       #endif // NOZZLE_PARK_FEATURE
 | |
| 
 | |
|       case 28: // G28: Home all axes, one at a time
 | |
|         gcode_G28(false);
 | |
|         break;
 | |
| 
 | |
|       #if HAS_LEVELING
 | |
|         case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
 | |
|                  // or provides access to the UBL System if enabled.
 | |
|           gcode_G29();
 | |
|           break;
 | |
|       #endif // HAS_LEVELING
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
| 
 | |
|         case 30: // G30 Single Z probe
 | |
|           gcode_G30();
 | |
|           break;
 | |
| 
 | |
|         #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|             case 31: // G31: dock the sled
 | |
|               gcode_G31();
 | |
|               break;
 | |
| 
 | |
|             case 32: // G32: undock the sled
 | |
|               gcode_G32();
 | |
|               break;
 | |
| 
 | |
|         #endif // Z_PROBE_SLED
 | |
| 
 | |
|         #if ENABLED(DELTA_AUTO_CALIBRATION)
 | |
| 
 | |
|           case 33: // G33: Delta Auto-Calibration
 | |
|             gcode_G33();
 | |
|             break;
 | |
| 
 | |
|         #endif // DELTA_AUTO_CALIBRATION
 | |
| 
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       #if ENABLED(G38_PROBE_TARGET)
 | |
|         case 38: // G38.2 & G38.3
 | |
|           if (subcode == 2 || subcode == 3)
 | |
|             gcode_G38(subcode == 2);
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 90: // G90
 | |
|         relative_mode = false;
 | |
|         break;
 | |
|       case 91: // G91
 | |
|         relative_mode = true;
 | |
|         break;
 | |
| 
 | |
|       case 92: // G92
 | |
|         gcode_G92();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
 | |
|         case 42:
 | |
|           gcode_G42();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DEBUG_GCODE_PARSER)
 | |
|         case 800:
 | |
|           parser.debug(); // GCode Parser Test for G
 | |
|           break;
 | |
|       #endif
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case 'M': switch (parser.codenum) {
 | |
|       #if HAS_RESUME_CONTINUE
 | |
|         case 0: // M0: Unconditional stop - Wait for user button press on LCD
 | |
|         case 1: // M1: Conditional stop - Wait for user button press on LCD
 | |
|           gcode_M0_M1();
 | |
|           break;
 | |
|       #endif // ULTIPANEL
 | |
| 
 | |
|       #if ENABLED(SPINDLE_LASER_ENABLE)
 | |
|         case 3:
 | |
|           gcode_M3_M4(true);   // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
 | |
|           break;               // synchronizes with movement commands
 | |
|         case 4:
 | |
|           gcode_M3_M4(false);  // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
 | |
|           break;               // synchronizes with movement commands
 | |
|         case 5:
 | |
|           gcode_M5();     // M5 - turn spindle/laser off
 | |
|           break;          // synchronizes with movement commands
 | |
|       #endif
 | |
|       case 17: // M17: Enable all stepper motors
 | |
|         gcode_M17();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(SDSUPPORT)
 | |
|         case 20: // M20: list SD card
 | |
|           gcode_M20(); break;
 | |
|         case 21: // M21: init SD card
 | |
|           gcode_M21(); break;
 | |
|         case 22: // M22: release SD card
 | |
|           gcode_M22(); break;
 | |
|         case 23: // M23: Select file
 | |
|           gcode_M23(); break;
 | |
|         case 24: // M24: Start SD print
 | |
|           gcode_M24(); break;
 | |
|         case 25: // M25: Pause SD print
 | |
|           gcode_M25(); break;
 | |
|         case 26: // M26: Set SD index
 | |
|           gcode_M26(); break;
 | |
|         case 27: // M27: Get SD status
 | |
|           gcode_M27(); break;
 | |
|         case 28: // M28: Start SD write
 | |
|           gcode_M28(); break;
 | |
|         case 29: // M29: Stop SD write
 | |
|           gcode_M29(); break;
 | |
|         case 30: // M30 <filename> Delete File
 | |
|           gcode_M30(); break;
 | |
|         case 32: // M32: Select file and start SD print
 | |
|           gcode_M32(); break;
 | |
| 
 | |
|         #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
 | |
|           case 33: // M33: Get the long full path to a file or folder
 | |
|             gcode_M33(); break;
 | |
|         #endif
 | |
| 
 | |
|         #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
 | |
|           case 34: //M34 - Set SD card sorting options
 | |
|             gcode_M34(); break;
 | |
|         #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
 | |
| 
 | |
|         case 928: // M928: Start SD write
 | |
|           gcode_M928(); break;
 | |
|       #endif // SDSUPPORT
 | |
| 
 | |
|       case 31: // M31: Report time since the start of SD print or last M109
 | |
|         gcode_M31(); break;
 | |
| 
 | |
|       case 42: // M42: Change pin state
 | |
|         gcode_M42(); break;
 | |
| 
 | |
|       #if ENABLED(PINS_DEBUGGING)
 | |
|         case 43: // M43: Read pin state
 | |
|           gcode_M43(); break;
 | |
|       #endif
 | |
| 
 | |
| 
 | |
|       #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
 | |
|         case 48: // M48: Z probe repeatability test
 | |
|           gcode_M48();
 | |
|           break;
 | |
|       #endif // Z_MIN_PROBE_REPEATABILITY_TEST
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
 | |
|         case 49: // M49: Turn on or off G26 debug flag for verbose output
 | |
|           gcode_M49();
 | |
|           break;
 | |
|       #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
 | |
| 
 | |
|       case 75: // M75: Start print timer
 | |
|         gcode_M75(); break;
 | |
|       case 76: // M76: Pause print timer
 | |
|         gcode_M76(); break;
 | |
|       case 77: // M77: Stop print timer
 | |
|         gcode_M77(); break;
 | |
| 
 | |
|       #if ENABLED(PRINTCOUNTER)
 | |
|         case 78: // M78: Show print statistics
 | |
|           gcode_M78(); break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|         case 100: // M100: Free Memory Report
 | |
|           gcode_M100();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 104: // M104: Set hot end temperature
 | |
|         gcode_M104();
 | |
|         break;
 | |
| 
 | |
|       case 110: // M110: Set Current Line Number
 | |
|         gcode_M110();
 | |
|         break;
 | |
| 
 | |
|       case 111: // M111: Set debug level
 | |
|         gcode_M111();
 | |
|         break;
 | |
| 
 | |
|       #if DISABLED(EMERGENCY_PARSER)
 | |
| 
 | |
|         case 108: // M108: Cancel Waiting
 | |
|           gcode_M108();
 | |
|           break;
 | |
| 
 | |
|         case 112: // M112: Emergency Stop
 | |
|           gcode_M112();
 | |
|           break;
 | |
| 
 | |
|         case 410: // M410 quickstop - Abort all the planned moves.
 | |
|           gcode_M410();
 | |
|           break;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
|         case 113: // M113: Set Host Keepalive interval
 | |
|           gcode_M113();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 140: // M140: Set bed temperature
 | |
|         gcode_M140();
 | |
|         break;
 | |
| 
 | |
|       case 105: // M105: Report current temperature
 | |
|         gcode_M105();
 | |
|         KEEPALIVE_STATE(NOT_BUSY);
 | |
|         return; // "ok" already printed
 | |
| 
 | |
|       #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
 | |
|         case 155: // M155: Set temperature auto-report interval
 | |
|           gcode_M155();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 109: // M109: Wait for hotend temperature to reach target
 | |
|         gcode_M109();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_TEMP_BED
 | |
|         case 190: // M190: Wait for bed temperature to reach target
 | |
|           gcode_M190();
 | |
|           break;
 | |
|       #endif // HAS_TEMP_BED
 | |
| 
 | |
|       #if FAN_COUNT > 0
 | |
|         case 106: // M106: Fan On
 | |
|           gcode_M106();
 | |
|           break;
 | |
|         case 107: // M107: Fan Off
 | |
|           gcode_M107();
 | |
|           break;
 | |
|       #endif // FAN_COUNT > 0
 | |
| 
 | |
|       #if ENABLED(PARK_HEAD_ON_PAUSE)
 | |
|         case 125: // M125: Store current position and move to filament change position
 | |
|           gcode_M125(); break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(BARICUDA)
 | |
|         // PWM for HEATER_1_PIN
 | |
|         #if HAS_HEATER_1
 | |
|           case 126: // M126: valve open
 | |
|             gcode_M126();
 | |
|             break;
 | |
|           case 127: // M127: valve closed
 | |
|             gcode_M127();
 | |
|             break;
 | |
|         #endif // HAS_HEATER_1
 | |
| 
 | |
|         // PWM for HEATER_2_PIN
 | |
|         #if HAS_HEATER_2
 | |
|           case 128: // M128: valve open
 | |
|             gcode_M128();
 | |
|             break;
 | |
|           case 129: // M129: valve closed
 | |
|             gcode_M129();
 | |
|             break;
 | |
|         #endif // HAS_HEATER_2
 | |
|       #endif // BARICUDA
 | |
| 
 | |
|       #if HAS_POWER_SWITCH
 | |
| 
 | |
|         case 80: // M80: Turn on Power Supply
 | |
|           gcode_M80();
 | |
|           break;
 | |
| 
 | |
|       #endif // HAS_POWER_SWITCH
 | |
| 
 | |
|       case 81: // M81: Turn off Power, including Power Supply, if possible
 | |
|         gcode_M81();
 | |
|         break;
 | |
| 
 | |
|       case 82: // M82: Set E axis normal mode (same as other axes)
 | |
|         gcode_M82();
 | |
|         break;
 | |
|       case 83: // M83: Set E axis relative mode
 | |
|         gcode_M83();
 | |
|         break;
 | |
|       case 18: // M18 => M84
 | |
|       case 84: // M84: Disable all steppers or set timeout
 | |
|         gcode_M18_M84();
 | |
|         break;
 | |
|       case 85: // M85: Set inactivity stepper shutdown timeout
 | |
|         gcode_M85();
 | |
|         break;
 | |
|       case 92: // M92: Set the steps-per-unit for one or more axes
 | |
|         gcode_M92();
 | |
|         break;
 | |
|       case 114: // M114: Report current position
 | |
|         gcode_M114();
 | |
|         break;
 | |
|       case 115: // M115: Report capabilities
 | |
|         gcode_M115();
 | |
|         break;
 | |
|       case 117: // M117: Set LCD message text, if possible
 | |
|         gcode_M117();
 | |
|         break;
 | |
|       case 119: // M119: Report endstop states
 | |
|         gcode_M119();
 | |
|         break;
 | |
|       case 120: // M120: Enable endstops
 | |
|         gcode_M120();
 | |
|         break;
 | |
|       case 121: // M121: Disable endstops
 | |
|         gcode_M121();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|         case 145: // M145: Set material heatup parameters
 | |
|           gcode_M145();
 | |
|           break;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|         case 149: // M149: Set temperature units
 | |
|           gcode_M149();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_COLOR_LEDS
 | |
| 
 | |
|         case 150: // M150: Set Status LED Color
 | |
|           gcode_M150();
 | |
|           break;
 | |
| 
 | |
|       #endif // HAS_COLOR_LEDS
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         case 163: // M163: Set a component weight for mixing extruder
 | |
|           gcode_M163();
 | |
|           break;
 | |
|         #if MIXING_VIRTUAL_TOOLS > 1
 | |
|           case 164: // M164: Save current mix as a virtual extruder
 | |
|             gcode_M164();
 | |
|             break;
 | |
|         #endif
 | |
|         #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|           case 165: // M165: Set multiple mix weights
 | |
|             gcode_M165();
 | |
|             break;
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       case 200: // M200: Set filament diameter, E to cubic units
 | |
|         gcode_M200();
 | |
|         break;
 | |
|       case 201: // M201: Set max acceleration for print moves (units/s^2)
 | |
|         gcode_M201();
 | |
|         break;
 | |
|       #if 0 // Not used for Sprinter/grbl gen6
 | |
|         case 202: // M202
 | |
|           gcode_M202();
 | |
|           break;
 | |
|       #endif
 | |
|       case 203: // M203: Set max feedrate (units/sec)
 | |
|         gcode_M203();
 | |
|         break;
 | |
|       case 204: // M204: Set acceleration
 | |
|         gcode_M204();
 | |
|         break;
 | |
|       case 205: //M205: Set advanced settings
 | |
|         gcode_M205();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_M206_COMMAND
 | |
|         case 206: // M206: Set home offsets
 | |
|           gcode_M206();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         case 665: // M665: Set delta configurations
 | |
|           gcode_M665();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
 | |
|         case 666: // M666: Set delta or dual endstop adjustment
 | |
|           gcode_M666();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(FWRETRACT)
 | |
|         case 207: // M207: Set Retract Length, Feedrate, and Z lift
 | |
|           gcode_M207();
 | |
|           break;
 | |
|         case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
 | |
|           gcode_M208();
 | |
|           break;
 | |
|         case 209: // M209: Turn Automatic Retract Detection on/off
 | |
|           gcode_M209();
 | |
|           break;
 | |
|       #endif // FWRETRACT
 | |
| 
 | |
|       case 211: // M211: Enable, Disable, and/or Report software endstops
 | |
|         gcode_M211();
 | |
|         break;
 | |
| 
 | |
|       #if HOTENDS > 1
 | |
|         case 218: // M218: Set a tool offset
 | |
|           gcode_M218();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
 | |
|         gcode_M220();
 | |
|         break;
 | |
| 
 | |
|       case 221: // M221: Set Flow Percentage
 | |
|         gcode_M221();
 | |
|         break;
 | |
| 
 | |
|       case 226: // M226: Wait until a pin reaches a state
 | |
|         gcode_M226();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_SERVOS
 | |
|         case 280: // M280: Set servo position absolute
 | |
|           gcode_M280();
 | |
|           break;
 | |
|       #endif // HAS_SERVOS
 | |
| 
 | |
|       #if HAS_BUZZER
 | |
|         case 300: // M300: Play beep tone
 | |
|           gcode_M300();
 | |
|           break;
 | |
|       #endif // HAS_BUZZER
 | |
| 
 | |
|       #if ENABLED(PIDTEMP)
 | |
|         case 301: // M301: Set hotend PID parameters
 | |
|           gcode_M301();
 | |
|           break;
 | |
|       #endif // PIDTEMP
 | |
| 
 | |
|       #if ENABLED(PIDTEMPBED)
 | |
|         case 304: // M304: Set bed PID parameters
 | |
|           gcode_M304();
 | |
|           break;
 | |
|       #endif // PIDTEMPBED
 | |
| 
 | |
|       #if defined(CHDK) || HAS_PHOTOGRAPH
 | |
|         case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
 | |
|           gcode_M240();
 | |
|           break;
 | |
|       #endif // CHDK || PHOTOGRAPH_PIN
 | |
| 
 | |
|       #if HAS_LCD_CONTRAST
 | |
|         case 250: // M250: Set LCD contrast
 | |
|           gcode_M250();
 | |
|           break;
 | |
|       #endif // HAS_LCD_CONTRAST
 | |
| 
 | |
|       #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
| 
 | |
|         case 260: // M260: Send data to an i2c slave
 | |
|           gcode_M260();
 | |
|           break;
 | |
| 
 | |
|         case 261: // M261: Request data from an i2c slave
 | |
|           gcode_M261();
 | |
|           break;
 | |
| 
 | |
|       #endif // EXPERIMENTAL_I2CBUS
 | |
| 
 | |
|       #if ENABLED(PREVENT_COLD_EXTRUSION)
 | |
|         case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
 | |
|           gcode_M302();
 | |
|           break;
 | |
|       #endif // PREVENT_COLD_EXTRUSION
 | |
| 
 | |
|       case 303: // M303: PID autotune
 | |
|         gcode_M303();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(MORGAN_SCARA)
 | |
|         case 360:  // M360: SCARA Theta pos1
 | |
|           if (gcode_M360()) return;
 | |
|           break;
 | |
|         case 361:  // M361: SCARA Theta pos2
 | |
|           if (gcode_M361()) return;
 | |
|           break;
 | |
|         case 362:  // M362: SCARA Psi pos1
 | |
|           if (gcode_M362()) return;
 | |
|           break;
 | |
|         case 363:  // M363: SCARA Psi pos2
 | |
|           if (gcode_M363()) return;
 | |
|           break;
 | |
|         case 364:  // M364: SCARA Psi pos3 (90 deg to Theta)
 | |
|           if (gcode_M364()) return;
 | |
|           break;
 | |
|       #endif // SCARA
 | |
| 
 | |
|       case 400: // M400: Finish all moves
 | |
|         gcode_M400();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
|         case 401: // M401: Deploy probe
 | |
|           gcode_M401();
 | |
|           break;
 | |
|         case 402: // M402: Stow probe
 | |
|           gcode_M402();
 | |
|           break;
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
|         case 404:  // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
 | |
|           gcode_M404();
 | |
|           break;
 | |
|         case 405:  // M405: Turn on filament sensor for control
 | |
|           gcode_M405();
 | |
|           break;
 | |
|         case 406:  // M406: Turn off filament sensor for control
 | |
|           gcode_M406();
 | |
|           break;
 | |
|         case 407:   // M407: Display measured filament diameter
 | |
|           gcode_M407();
 | |
|           break;
 | |
|       #endif // FILAMENT_WIDTH_SENSOR
 | |
| 
 | |
|       #if HAS_LEVELING
 | |
|         case 420: // M420: Enable/Disable Bed Leveling
 | |
|           gcode_M420();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         case 421: // M421: Set a Mesh Bed Leveling Z coordinate
 | |
|           gcode_M421();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_M206_COMMAND
 | |
|         case 428: // M428: Apply current_position to home_offset
 | |
|           gcode_M428();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 500: // M500: Store settings in EEPROM
 | |
|         gcode_M500();
 | |
|         break;
 | |
|       case 501: // M501: Read settings from EEPROM
 | |
|         gcode_M501();
 | |
|         break;
 | |
|       case 502: // M502: Revert to default settings
 | |
|         gcode_M502();
 | |
|         break;
 | |
|       case 503: // M503: print settings currently in memory
 | |
|         gcode_M503();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
|         case 540: // M540: Set abort on endstop hit for SD printing
 | |
|           gcode_M540();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
|         case 851: // M851: Set Z Probe Z Offset
 | |
|           gcode_M851();
 | |
|           break;
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
|         case 600: // M600: Pause for filament change
 | |
|           gcode_M600();
 | |
|           break;
 | |
|       #endif // ADVANCED_PAUSE_FEATURE
 | |
| 
 | |
|       #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
|         case 605: // M605: Set Dual X Carriage movement mode
 | |
|           gcode_M605();
 | |
|           break;
 | |
|       #endif // DUAL_X_CARRIAGE
 | |
| 
 | |
|       #if ENABLED(LIN_ADVANCE)
 | |
|         case 900: // M900: Set advance K factor.
 | |
|           gcode_M900();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(HAVE_TMC2130)
 | |
|         case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
 | |
|           gcode_M906();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 907: // M907: Set digital trimpot motor current using axis codes.
 | |
|         gcode_M907();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
 | |
| 
 | |
|         case 908: // M908: Control digital trimpot directly.
 | |
|           gcode_M908();
 | |
|           break;
 | |
| 
 | |
|         #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
 | |
| 
 | |
|           case 909: // M909: Print digipot/DAC current value
 | |
|             gcode_M909();
 | |
|             break;
 | |
| 
 | |
|           case 910: // M910: Commit digipot/DAC value to external EEPROM
 | |
|             gcode_M910();
 | |
|             break;
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|       #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
 | |
| 
 | |
|       #if ENABLED(HAVE_TMC2130)
 | |
|         case 911: // M911: Report TMC2130 prewarn triggered flags
 | |
|           gcode_M911();
 | |
|           break;
 | |
| 
 | |
|         case 912: // M911: Clear TMC2130 prewarn triggered flags
 | |
|           gcode_M912();
 | |
|           break;
 | |
| 
 | |
|         #if ENABLED(HYBRID_THRESHOLD)
 | |
|           case 913: // M913: Set HYBRID_THRESHOLD speed.
 | |
|             gcode_M913();
 | |
|             break;
 | |
|         #endif
 | |
| 
 | |
|         #if ENABLED(SENSORLESS_HOMING)
 | |
|           case 914: // M914: Set SENSORLESS_HOMING sensitivity.
 | |
|             gcode_M914();
 | |
|             break;
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_MICROSTEPS
 | |
| 
 | |
|         case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | |
|           gcode_M350();
 | |
|           break;
 | |
| 
 | |
|         case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
 | |
|           gcode_M351();
 | |
|           break;
 | |
| 
 | |
|       #endif // HAS_MICROSTEPS
 | |
| 
 | |
|       case 355: // M355 set case light brightness
 | |
|         gcode_M355();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(DEBUG_GCODE_PARSER)
 | |
|         case 800:
 | |
|           parser.debug(); // GCode Parser Test for M
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(I2C_POSITION_ENCODERS)
 | |
| 
 | |
|         case 860: // M860 Report encoder module position
 | |
|           gcode_M860();
 | |
|           break;
 | |
| 
 | |
|         case 861: // M861 Report encoder module status
 | |
|           gcode_M861();
 | |
|           break;
 | |
| 
 | |
|         case 862: // M862 Perform axis test
 | |
|           gcode_M862();
 | |
|           break;
 | |
| 
 | |
|         case 863: // M863 Calibrate steps/mm
 | |
|           gcode_M863();
 | |
|           break;
 | |
| 
 | |
|         case 864: // M864 Change module address
 | |
|           gcode_M864();
 | |
|           break;
 | |
| 
 | |
|         case 865: // M865 Check module firmware version
 | |
|           gcode_M865();
 | |
|           break;
 | |
| 
 | |
|         case 866: // M866 Report axis error count
 | |
|           gcode_M866();
 | |
|           break;
 | |
| 
 | |
|         case 867: // M867 Toggle error correction
 | |
|           gcode_M867();
 | |
|           break;
 | |
| 
 | |
|         case 868: // M868 Set error correction threshold
 | |
|           gcode_M868();
 | |
|           break;
 | |
| 
 | |
|         case 869: // M869 Report axis error
 | |
|           gcode_M869();
 | |
|           break;
 | |
| 
 | |
|       #endif // I2C_POSITION_ENCODERS
 | |
| 
 | |
|       case 999: // M999: Restart after being Stopped
 | |
|         gcode_M999();
 | |
|         break;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case 'T':
 | |
|       gcode_T(parser.codenum);
 | |
|       break;
 | |
| 
 | |
|     default: parser.unknown_command_error();
 | |
|   }
 | |
| 
 | |
|   KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
|   ok_to_send();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Send a "Resend: nnn" message to the host to
 | |
|  * indicate that a command needs to be re-sent.
 | |
|  */
 | |
| void FlushSerialRequestResend() {
 | |
|   //char command_queue[cmd_queue_index_r][100]="Resend:";
 | |
|   MYSERIAL.flush();
 | |
|   SERIAL_PROTOCOLPGM(MSG_RESEND);
 | |
|   SERIAL_PROTOCOLLN(gcode_LastN + 1);
 | |
|   ok_to_send();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Send an "ok" message to the host, indicating
 | |
|  * that a command was successfully processed.
 | |
|  *
 | |
|  * If ADVANCED_OK is enabled also include:
 | |
|  *   N<int>  Line number of the command, if any
 | |
|  *   P<int>  Planner space remaining
 | |
|  *   B<int>  Block queue space remaining
 | |
|  */
 | |
| void ok_to_send() {
 | |
|   refresh_cmd_timeout();
 | |
|   if (!send_ok[cmd_queue_index_r]) return;
 | |
|   SERIAL_PROTOCOLPGM(MSG_OK);
 | |
|   #if ENABLED(ADVANCED_OK)
 | |
|     char* p = command_queue[cmd_queue_index_r];
 | |
|     if (*p == 'N') {
 | |
|       SERIAL_PROTOCOL(' ');
 | |
|       SERIAL_ECHO(*p++);
 | |
|       while (NUMERIC_SIGNED(*p))
 | |
|         SERIAL_ECHO(*p++);
 | |
|     }
 | |
|     SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
 | |
|     SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
 | |
|   #endif
 | |
|   SERIAL_EOL();
 | |
| }
 | |
| 
 | |
| #if HAS_SOFTWARE_ENDSTOPS
 | |
| 
 | |
|   /**
 | |
|    * Constrain the given coordinates to the software endstops.
 | |
|    */
 | |
| 
 | |
|   // NOTE: This makes no sense for delta beds other than Z-axis.
 | |
|   //       For delta the X/Y would need to be clamped at
 | |
|   //       DELTA_PRINTABLE_RADIUS from center of bed, but delta
 | |
|   //       now enforces is_position_reachable for X/Y regardless
 | |
|   //       of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
 | |
|   //       redundant here.  Probably should #ifdef out the X/Y
 | |
|   //       axis clamps here for delta and just leave the Z clamp.
 | |
| 
 | |
|   void clamp_to_software_endstops(float target[XYZ]) {
 | |
|     if (!soft_endstops_enabled) return;
 | |
|     #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
 | |
|       NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
 | |
|       NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
 | |
|       NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
 | |
|     #endif
 | |
|     #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
 | |
|       NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
 | |
|       NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
 | |
|       NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
| 
 | |
|   #if ENABLED(ABL_BILINEAR_SUBDIVISION)
 | |
|     #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
 | |
|     #define ABL_BG_FACTOR(A)  bilinear_grid_factor_virt[A]
 | |
|     #define ABL_BG_POINTS_X   ABL_GRID_POINTS_VIRT_X
 | |
|     #define ABL_BG_POINTS_Y   ABL_GRID_POINTS_VIRT_Y
 | |
|     #define ABL_BG_GRID(X,Y)  z_values_virt[X][Y]
 | |
|   #else
 | |
|     #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
 | |
|     #define ABL_BG_FACTOR(A)  bilinear_grid_factor[A]
 | |
|     #define ABL_BG_POINTS_X   GRID_MAX_POINTS_X
 | |
|     #define ABL_BG_POINTS_Y   GRID_MAX_POINTS_Y
 | |
|     #define ABL_BG_GRID(X,Y)  z_values[X][Y]
 | |
|   #endif
 | |
| 
 | |
|   // Get the Z adjustment for non-linear bed leveling
 | |
|   float bilinear_z_offset(const float logical[XYZ]) {
 | |
| 
 | |
|     static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
 | |
|                  last_x = -999.999, last_y = -999.999;
 | |
| 
 | |
|     // Whole units for the grid line indices. Constrained within bounds.
 | |
|     static int8_t gridx, gridy, nextx, nexty,
 | |
|                   last_gridx = -99, last_gridy = -99;
 | |
| 
 | |
|     // XY relative to the probed area
 | |
|     const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
 | |
|                 y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
 | |
| 
 | |
|     #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
 | |
|       // Keep using the last grid box
 | |
|       #define FAR_EDGE_OR_BOX 2
 | |
|     #else
 | |
|       // Just use the grid far edge
 | |
|       #define FAR_EDGE_OR_BOX 1
 | |
|     #endif
 | |
| 
 | |
|     if (last_x != x) {
 | |
|       last_x = x;
 | |
|       ratio_x = x * ABL_BG_FACTOR(X_AXIS);
 | |
|       const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
 | |
|       ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
 | |
| 
 | |
|       #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
 | |
|         // Beyond the grid maintain height at grid edges
 | |
|         NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
 | |
|       #endif
 | |
| 
 | |
|       gridx = gx;
 | |
|       nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
 | |
|     }
 | |
| 
 | |
|     if (last_y != y || last_gridx != gridx) {
 | |
| 
 | |
|       if (last_y != y) {
 | |
|         last_y = y;
 | |
|         ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
 | |
|         const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
 | |
|         ratio_y -= gy;
 | |
| 
 | |
|         #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
 | |
|           // Beyond the grid maintain height at grid edges
 | |
|           NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
 | |
|         #endif
 | |
| 
 | |
|         gridy = gy;
 | |
|         nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
 | |
|       }
 | |
| 
 | |
|       if (last_gridx != gridx || last_gridy != gridy) {
 | |
|         last_gridx = gridx;
 | |
|         last_gridy = gridy;
 | |
|         // Z at the box corners
 | |
|         z1 = ABL_BG_GRID(gridx, gridy);       // left-front
 | |
|         d2 = ABL_BG_GRID(gridx, nexty) - z1;  // left-back (delta)
 | |
|         z3 = ABL_BG_GRID(nextx, gridy);       // right-front
 | |
|         d4 = ABL_BG_GRID(nextx, nexty) - z3;  // right-back (delta)
 | |
|       }
 | |
| 
 | |
|       // Bilinear interpolate. Needed since y or gridx has changed.
 | |
|                   L = z1 + d2 * ratio_y;   // Linear interp. LF -> LB
 | |
|       const float R = z3 + d4 * ratio_y;   // Linear interp. RF -> RB
 | |
| 
 | |
|       D = R - L;
 | |
|     }
 | |
| 
 | |
|     const float offset = L + ratio_x * D;   // the offset almost always changes
 | |
| 
 | |
|     /*
 | |
|     static float last_offset = 0;
 | |
|     if (FABS(last_offset - offset) > 0.2) {
 | |
|       SERIAL_ECHOPGM("Sudden Shift at ");
 | |
|       SERIAL_ECHOPAIR("x=", x);
 | |
|       SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
 | |
|       SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
 | |
|       SERIAL_ECHOPAIR(" y=", y);
 | |
|       SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
 | |
|       SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
 | |
|       SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
 | |
|       SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
 | |
|       SERIAL_ECHOPAIR(" z1=", z1);
 | |
|       SERIAL_ECHOPAIR(" z2=", z2);
 | |
|       SERIAL_ECHOPAIR(" z3=", z3);
 | |
|       SERIAL_ECHOLNPAIR(" z4=", z4);
 | |
|       SERIAL_ECHOPAIR(" L=", L);
 | |
|       SERIAL_ECHOPAIR(" R=", R);
 | |
|       SERIAL_ECHOLNPAIR(" offset=", offset);
 | |
|     }
 | |
|     last_offset = offset;
 | |
|     //*/
 | |
| 
 | |
|     return offset;
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_BILINEAR
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
| 
 | |
|   /**
 | |
|    * Recalculate factors used for delta kinematics whenever
 | |
|    * settings have been changed (e.g., by M665).
 | |
|    */
 | |
|   void recalc_delta_settings(float radius, float diagonal_rod) {
 | |
|     const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
 | |
|                 drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
 | |
|     delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
 | |
|     delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
 | |
|     delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
 | |
|     delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
 | |
|     delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
 | |
|     delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
 | |
|     delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
 | |
|     delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
 | |
|     delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DELTA_FAST_SQRT)
 | |
|     /**
 | |
|      * Fast inverse sqrt from Quake III Arena
 | |
|      * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
 | |
|      */
 | |
|     float Q_rsqrt(float number) {
 | |
|       long i;
 | |
|       float x2, y;
 | |
|       const float threehalfs = 1.5f;
 | |
|       x2 = number * 0.5f;
 | |
|       y  = number;
 | |
|       i  = * ( long * ) &y;                       // evil floating point bit level hacking
 | |
|       i  = 0x5F3759DF - ( i >> 1 );               // what the f***?
 | |
|       y  = * ( float * ) &i;
 | |
|       y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
 | |
|       // y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed
 | |
|       return y;
 | |
|     }
 | |
| 
 | |
|     #define _SQRT(n) (1.0f / Q_rsqrt(n))
 | |
| 
 | |
|   #else
 | |
| 
 | |
|     #define _SQRT(n) SQRT(n)
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Delta Inverse Kinematics
 | |
|    *
 | |
|    * Calculate the tower positions for a given logical
 | |
|    * position, storing the result in the delta[] array.
 | |
|    *
 | |
|    * This is an expensive calculation, requiring 3 square
 | |
|    * roots per segmented linear move, and strains the limits
 | |
|    * of a Mega2560 with a Graphical Display.
 | |
|    *
 | |
|    * Suggested optimizations include:
 | |
|    *
 | |
|    * - Disable the home_offset (M206) and/or position_shift (G92)
 | |
|    *   features to remove up to 12 float additions.
 | |
|    *
 | |
|    * - Use a fast-inverse-sqrt function and add the reciprocal.
 | |
|    *   (see above)
 | |
|    */
 | |
| 
 | |
|   // Macro to obtain the Z position of an individual tower
 | |
|   #define DELTA_Z(T) raw[Z_AXIS] + _SQRT(     \
 | |
|     delta_diagonal_rod_2_tower[T] - HYPOT2(   \
 | |
|         delta_tower[T][X_AXIS] - raw[X_AXIS], \
 | |
|         delta_tower[T][Y_AXIS] - raw[Y_AXIS]  \
 | |
|       )                                       \
 | |
|     )
 | |
| 
 | |
|   #define DELTA_RAW_IK() do {        \
 | |
|     delta[A_AXIS] = DELTA_Z(A_AXIS); \
 | |
|     delta[B_AXIS] = DELTA_Z(B_AXIS); \
 | |
|     delta[C_AXIS] = DELTA_Z(C_AXIS); \
 | |
|   }while(0)
 | |
| 
 | |
|   #define DELTA_LOGICAL_IK() do {      \
 | |
|     const float raw[XYZ] = {           \
 | |
|       RAW_X_POSITION(logical[X_AXIS]), \
 | |
|       RAW_Y_POSITION(logical[Y_AXIS]), \
 | |
|       RAW_Z_POSITION(logical[Z_AXIS])  \
 | |
|     };                                 \
 | |
|     DELTA_RAW_IK();                    \
 | |
|   }while(0)
 | |
| 
 | |
|   #define DELTA_DEBUG() do { \
 | |
|       SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
 | |
|       SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]);          \
 | |
|       SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]);        \
 | |
|       SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);   \
 | |
|       SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);        \
 | |
|       SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);      \
 | |
|     }while(0)
 | |
| 
 | |
|   void inverse_kinematics(const float logical[XYZ]) {
 | |
|     DELTA_LOGICAL_IK();
 | |
|     // DELTA_DEBUG();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Calculate the highest Z position where the
 | |
|    * effector has the full range of XY motion.
 | |
|    */
 | |
|   float delta_safe_distance_from_top() {
 | |
|     float cartesian[XYZ] = {
 | |
|       LOGICAL_X_POSITION(0),
 | |
|       LOGICAL_Y_POSITION(0),
 | |
|       LOGICAL_Z_POSITION(0)
 | |
|     };
 | |
|     inverse_kinematics(cartesian);
 | |
|     float distance = delta[A_AXIS];
 | |
|     cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
 | |
|     inverse_kinematics(cartesian);
 | |
|     return FABS(distance - delta[A_AXIS]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Delta Forward Kinematics
 | |
|    *
 | |
|    * See the Wikipedia article "Trilateration"
 | |
|    * https://en.wikipedia.org/wiki/Trilateration
 | |
|    *
 | |
|    * Establish a new coordinate system in the plane of the
 | |
|    * three carriage points. This system has its origin at
 | |
|    * tower1, with tower2 on the X axis. Tower3 is in the X-Y
 | |
|    * plane with a Z component of zero.
 | |
|    * We will define unit vectors in this coordinate system
 | |
|    * in our original coordinate system. Then when we calculate
 | |
|    * the Xnew, Ynew and Znew values, we can translate back into
 | |
|    * the original system by moving along those unit vectors
 | |
|    * by the corresponding values.
 | |
|    *
 | |
|    * Variable names matched to Marlin, c-version, and avoid the
 | |
|    * use of any vector library.
 | |
|    *
 | |
|    * by Andreas Hardtung 2016-06-07
 | |
|    * based on a Java function from "Delta Robot Kinematics V3"
 | |
|    * by Steve Graves
 | |
|    *
 | |
|    * The result is stored in the cartes[] array.
 | |
|    */
 | |
|   void forward_kinematics_DELTA(float z1, float z2, float z3) {
 | |
|     // Create a vector in old coordinates along x axis of new coordinate
 | |
|     float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
 | |
| 
 | |
|     // Get the Magnitude of vector.
 | |
|     float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
 | |
| 
 | |
|     // Create unit vector by dividing by magnitude.
 | |
|     float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
 | |
| 
 | |
|     // Get the vector from the origin of the new system to the third point.
 | |
|     float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
 | |
| 
 | |
|     // Use the dot product to find the component of this vector on the X axis.
 | |
|     float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
 | |
| 
 | |
|     // Create a vector along the x axis that represents the x component of p13.
 | |
|     float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
 | |
| 
 | |
|     // Subtract the X component from the original vector leaving only Y. We use the
 | |
|     // variable that will be the unit vector after we scale it.
 | |
|     float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
 | |
| 
 | |
|     // The magnitude of Y component
 | |
|     float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
 | |
| 
 | |
|     // Convert to a unit vector
 | |
|     ey[0] /= j; ey[1] /= j;  ey[2] /= j;
 | |
| 
 | |
|     // The cross product of the unit x and y is the unit z
 | |
|     // float[] ez = vectorCrossProd(ex, ey);
 | |
|     float ez[3] = {
 | |
|       ex[1] * ey[2] - ex[2] * ey[1],
 | |
|       ex[2] * ey[0] - ex[0] * ey[2],
 | |
|       ex[0] * ey[1] - ex[1] * ey[0]
 | |
|     };
 | |
| 
 | |
|     // We now have the d, i and j values defined in Wikipedia.
 | |
|     // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
 | |
|     float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
 | |
|           Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
 | |
|           Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
 | |
| 
 | |
|     // Start from the origin of the old coordinates and add vectors in the
 | |
|     // old coords that represent the Xnew, Ynew and Znew to find the point
 | |
|     // in the old system.
 | |
|     cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
 | |
|     cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
 | |
|     cartes[Z_AXIS] =             z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
 | |
|   }
 | |
| 
 | |
|   void forward_kinematics_DELTA(float point[ABC]) {
 | |
|     forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
 | |
|   }
 | |
| 
 | |
| #endif // DELTA
 | |
| 
 | |
| /**
 | |
|  * Get the stepper positions in the cartes[] array.
 | |
|  * Forward kinematics are applied for DELTA and SCARA.
 | |
|  *
 | |
|  * The result is in the current coordinate space with
 | |
|  * leveling applied. The coordinates need to be run through
 | |
|  * unapply_leveling to obtain the "ideal" coordinates
 | |
|  * suitable for current_position, etc.
 | |
|  */
 | |
| void get_cartesian_from_steppers() {
 | |
|   #if ENABLED(DELTA)
 | |
|     forward_kinematics_DELTA(
 | |
|       stepper.get_axis_position_mm(A_AXIS),
 | |
|       stepper.get_axis_position_mm(B_AXIS),
 | |
|       stepper.get_axis_position_mm(C_AXIS)
 | |
|     );
 | |
|     cartes[X_AXIS] += LOGICAL_X_POSITION(0);
 | |
|     cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
 | |
|     cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
 | |
|   #elif IS_SCARA
 | |
|     forward_kinematics_SCARA(
 | |
|       stepper.get_axis_position_degrees(A_AXIS),
 | |
|       stepper.get_axis_position_degrees(B_AXIS)
 | |
|     );
 | |
|     cartes[X_AXIS] += LOGICAL_X_POSITION(0);
 | |
|     cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
 | |
|     cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
 | |
|   #else
 | |
|     cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
 | |
|     cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
 | |
|     cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the current_position for an axis based on
 | |
|  * the stepper positions, removing any leveling that
 | |
|  * may have been applied.
 | |
|  */
 | |
| void set_current_from_steppers_for_axis(const AxisEnum axis) {
 | |
|   get_cartesian_from_steppers();
 | |
|   #if PLANNER_LEVELING
 | |
|     planner.unapply_leveling(cartes);
 | |
|   #endif
 | |
|   if (axis == ALL_AXES)
 | |
|     COPY(current_position, cartes);
 | |
|   else
 | |
|     current_position[axis] = cartes[axis];
 | |
| }
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   /**
 | |
|    * Prepare a mesh-leveled linear move in a Cartesian setup,
 | |
|    * splitting the move where it crosses mesh borders.
 | |
|    */
 | |
|   void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
 | |
|     int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
 | |
|         cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
 | |
|         cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
 | |
|         cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
 | |
|     NOMORE(cx1, GRID_MAX_POINTS_X - 2);
 | |
|     NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
 | |
|     NOMORE(cx2, GRID_MAX_POINTS_X - 2);
 | |
|     NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
 | |
| 
 | |
|     if (cx1 == cx2 && cy1 == cy2) {
 | |
|       // Start and end on same mesh square
 | |
|       line_to_destination(fr_mm_s);
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
 | |
| 
 | |
|     float normalized_dist, end[XYZE];
 | |
| 
 | |
|     // Split at the left/front border of the right/top square
 | |
|     const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
 | |
|     if (cx2 != cx1 && TEST(x_splits, gcx)) {
 | |
|       COPY(end, destination);
 | |
|       destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
 | |
|       normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
 | |
|       destination[Y_AXIS] = MBL_SEGMENT_END(Y);
 | |
|       CBI(x_splits, gcx);
 | |
|     }
 | |
|     else if (cy2 != cy1 && TEST(y_splits, gcy)) {
 | |
|       COPY(end, destination);
 | |
|       destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
 | |
|       normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
 | |
|       destination[X_AXIS] = MBL_SEGMENT_END(X);
 | |
|       CBI(y_splits, gcy);
 | |
|     }
 | |
|     else {
 | |
|       // Already split on a border
 | |
|       line_to_destination(fr_mm_s);
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     destination[Z_AXIS] = MBL_SEGMENT_END(Z);
 | |
|     destination[E_AXIS] = MBL_SEGMENT_END(E);
 | |
| 
 | |
|     // Do the split and look for more borders
 | |
|     mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
 | |
| 
 | |
|     // Restore destination from stack
 | |
|     COPY(destination, end);
 | |
|     mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
 | |
| 
 | |
|   #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
 | |
| 
 | |
|   /**
 | |
|    * Prepare a bilinear-leveled linear move on Cartesian,
 | |
|    * splitting the move where it crosses grid borders.
 | |
|    */
 | |
|   void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
 | |
|     int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
 | |
|         cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
 | |
|         cx2 = CELL_INDEX(X, destination[X_AXIS]),
 | |
|         cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
 | |
|     cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
 | |
|     cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
 | |
|     cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
 | |
|     cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
 | |
| 
 | |
|     if (cx1 == cx2 && cy1 == cy2) {
 | |
|       // Start and end on same mesh square
 | |
|       line_to_destination(fr_mm_s);
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
 | |
| 
 | |
|     float normalized_dist, end[XYZE];
 | |
| 
 | |
|     // Split at the left/front border of the right/top square
 | |
|     const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
 | |
|     if (cx2 != cx1 && TEST(x_splits, gcx)) {
 | |
|       COPY(end, destination);
 | |
|       destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
 | |
|       normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
 | |
|       destination[Y_AXIS] = LINE_SEGMENT_END(Y);
 | |
|       CBI(x_splits, gcx);
 | |
|     }
 | |
|     else if (cy2 != cy1 && TEST(y_splits, gcy)) {
 | |
|       COPY(end, destination);
 | |
|       destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
 | |
|       normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
 | |
|       destination[X_AXIS] = LINE_SEGMENT_END(X);
 | |
|       CBI(y_splits, gcy);
 | |
|     }
 | |
|     else {
 | |
|       // Already split on a border
 | |
|       line_to_destination(fr_mm_s);
 | |
|       set_current_to_destination();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     destination[Z_AXIS] = LINE_SEGMENT_END(Z);
 | |
|     destination[E_AXIS] = LINE_SEGMENT_END(E);
 | |
| 
 | |
|     // Do the split and look for more borders
 | |
|     bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
 | |
| 
 | |
|     // Restore destination from stack
 | |
|     COPY(destination, end);
 | |
|     bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
 | |
|   }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_BILINEAR
 | |
| 
 | |
| #if IS_KINEMATIC && !UBL_DELTA
 | |
| 
 | |
|   /**
 | |
|    * Prepare a linear move in a DELTA or SCARA setup.
 | |
|    *
 | |
|    * This calls planner.buffer_line several times, adding
 | |
|    * small incremental moves for DELTA or SCARA.
 | |
|    */
 | |
|   inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
 | |
| 
 | |
|     // Get the top feedrate of the move in the XY plane
 | |
|     const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
 | |
| 
 | |
|     // If the move is only in Z/E don't split up the move
 | |
|     if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
 | |
|       planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Fail if attempting move outside printable radius
 | |
|     if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
 | |
| 
 | |
|     // Get the cartesian distances moved in XYZE
 | |
|     const float difference[XYZE] = {
 | |
|       ltarget[X_AXIS] - current_position[X_AXIS],
 | |
|       ltarget[Y_AXIS] - current_position[Y_AXIS],
 | |
|       ltarget[Z_AXIS] - current_position[Z_AXIS],
 | |
|       ltarget[E_AXIS] - current_position[E_AXIS]
 | |
|     };
 | |
| 
 | |
|     // Get the linear distance in XYZ
 | |
|     float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | |
| 
 | |
|     // If the move is very short, check the E move distance
 | |
|     if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
 | |
| 
 | |
|     // No E move either? Game over.
 | |
|     if (UNEAR_ZERO(cartesian_mm)) return true;
 | |
| 
 | |
|     // Minimum number of seconds to move the given distance
 | |
|     const float seconds = cartesian_mm / _feedrate_mm_s;
 | |
| 
 | |
|     // The number of segments-per-second times the duration
 | |
|     // gives the number of segments
 | |
|     uint16_t segments = delta_segments_per_second * seconds;
 | |
| 
 | |
|     // For SCARA minimum segment size is 0.25mm
 | |
|     #if IS_SCARA
 | |
|       NOMORE(segments, cartesian_mm * 4);
 | |
|     #endif
 | |
| 
 | |
|     // At least one segment is required
 | |
|     NOLESS(segments, 1);
 | |
| 
 | |
|     // The approximate length of each segment
 | |
|     const float inv_segments = 1.0 / float(segments),
 | |
|                 segment_distance[XYZE] = {
 | |
|                   difference[X_AXIS] * inv_segments,
 | |
|                   difference[Y_AXIS] * inv_segments,
 | |
|                   difference[Z_AXIS] * inv_segments,
 | |
|                   difference[E_AXIS] * inv_segments
 | |
|                 };
 | |
| 
 | |
|     // SERIAL_ECHOPAIR("mm=", cartesian_mm);
 | |
|     // SERIAL_ECHOPAIR(" seconds=", seconds);
 | |
|     // SERIAL_ECHOLNPAIR(" segments=", segments);
 | |
| 
 | |
|     #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
 | |
|       // SCARA needs to scale the feed rate from mm/s to degrees/s
 | |
|       const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
 | |
|                   feed_factor = inv_segment_length * _feedrate_mm_s;
 | |
|       float oldA = stepper.get_axis_position_degrees(A_AXIS),
 | |
|             oldB = stepper.get_axis_position_degrees(B_AXIS);
 | |
|     #endif
 | |
| 
 | |
|     // Get the logical current position as starting point
 | |
|     float logical[XYZE];
 | |
|     COPY(logical, current_position);
 | |
| 
 | |
|     // Drop one segment so the last move is to the exact target.
 | |
|     // If there's only 1 segment, loops will be skipped entirely.
 | |
|     --segments;
 | |
| 
 | |
|     // Calculate and execute the segments
 | |
|     for (uint16_t s = segments + 1; --s;) {
 | |
|       LOOP_XYZE(i) logical[i] += segment_distance[i];
 | |
|       #if ENABLED(DELTA)
 | |
|         DELTA_LOGICAL_IK(); // Delta can inline its kinematics
 | |
|       #else
 | |
|         inverse_kinematics(logical);
 | |
|       #endif
 | |
| 
 | |
|       ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
 | |
| 
 | |
|       #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
 | |
|         // For SCARA scale the feed rate from mm/s to degrees/s
 | |
|         // Use ratio between the length of the move and the larger angle change
 | |
|         const float adiff = abs(delta[A_AXIS] - oldA),
 | |
|                     bdiff = abs(delta[B_AXIS] - oldB);
 | |
|         planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
 | |
|         oldA = delta[A_AXIS];
 | |
|         oldB = delta[B_AXIS];
 | |
|       #else
 | |
|         planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     // Since segment_distance is only approximate,
 | |
|     // the final move must be to the exact destination.
 | |
| 
 | |
|     #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
 | |
|       // For SCARA scale the feed rate from mm/s to degrees/s
 | |
|       // With segments > 1 length is 1 segment, otherwise total length
 | |
|       inverse_kinematics(ltarget);
 | |
|       ADJUST_DELTA(ltarget);
 | |
|       const float adiff = abs(delta[A_AXIS] - oldA),
 | |
|                   bdiff = abs(delta[B_AXIS] - oldB);
 | |
|       planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
 | |
|     #else
 | |
|       planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
 | |
|     #endif
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #else // !IS_KINEMATIC || UBL_DELTA
 | |
| 
 | |
|   /**
 | |
|    * Prepare a linear move in a Cartesian setup.
 | |
|    * If Mesh Bed Leveling is enabled, perform a mesh move.
 | |
|    *
 | |
|    * Returns true if the caller didn't update current_position.
 | |
|    */
 | |
|   inline bool prepare_move_to_destination_cartesian() {
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|       const float fr_scaled = MMS_SCALED(feedrate_mm_s);
 | |
|       if (ubl.state.active) { // direct use of ubl.state.active for speed
 | |
|         ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
 | |
|         return true;
 | |
|       }
 | |
|       else
 | |
|         line_to_destination(fr_scaled);
 | |
|     #else
 | |
|       // Do not use feedrate_percentage for E or Z only moves
 | |
|       if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
 | |
|         line_to_destination();
 | |
|       else {
 | |
|         const float fr_scaled = MMS_SCALED(feedrate_mm_s);
 | |
|         #if ENABLED(MESH_BED_LEVELING)
 | |
|           if (mbl.active()) { // direct used of mbl.active() for speed
 | |
|             mesh_line_to_destination(fr_scaled);
 | |
|             return true;
 | |
|           }
 | |
|           else
 | |
|         #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|           if (planner.abl_enabled) { // direct use of abl_enabled for speed
 | |
|             bilinear_line_to_destination(fr_scaled);
 | |
|             return true;
 | |
|           }
 | |
|           else
 | |
|         #endif
 | |
|             line_to_destination(fr_scaled);
 | |
|       }
 | |
|     #endif
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #endif // !IS_KINEMATIC || UBL_DELTA
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   /**
 | |
|    * Prepare a linear move in a dual X axis setup
 | |
|    */
 | |
|   inline bool prepare_move_to_destination_dualx() {
 | |
|     if (active_extruder_parked) {
 | |
|       switch (dual_x_carriage_mode) {
 | |
|         case DXC_FULL_CONTROL_MODE:
 | |
|           break;
 | |
|         case DXC_AUTO_PARK_MODE:
 | |
|           if (current_position[E_AXIS] == destination[E_AXIS]) {
 | |
|             // This is a travel move (with no extrusion)
 | |
|             // Skip it, but keep track of the current position
 | |
|             // (so it can be used as the start of the next non-travel move)
 | |
|             if (delayed_move_time != 0xFFFFFFFFUL) {
 | |
|               set_current_to_destination();
 | |
|               NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
 | |
|               delayed_move_time = millis();
 | |
|               return true;
 | |
|             }
 | |
|           }
 | |
|           // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
 | |
|           for (uint8_t i = 0; i < 3; i++)
 | |
|             planner.buffer_line(
 | |
|               i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
 | |
|               i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
 | |
|               i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
 | |
|               current_position[E_AXIS],
 | |
|               i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
 | |
|               active_extruder
 | |
|             );
 | |
|           delayed_move_time = 0;
 | |
|           active_extruder_parked = false;
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
 | |
|           #endif
 | |
|           break;
 | |
|         case DXC_DUPLICATION_MODE:
 | |
|           if (active_extruder == 0) {
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
 | |
|                 SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
 | |
|               }
 | |
|             #endif
 | |
|             // move duplicate extruder into correct duplication position.
 | |
|             planner.set_position_mm(
 | |
|               LOGICAL_X_POSITION(inactive_extruder_x_pos),
 | |
|               current_position[Y_AXIS],
 | |
|               current_position[Z_AXIS],
 | |
|               current_position[E_AXIS]
 | |
|             );
 | |
|             planner.buffer_line(
 | |
|               current_position[X_AXIS] + duplicate_extruder_x_offset,
 | |
|               current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
 | |
|               planner.max_feedrate_mm_s[X_AXIS], 1
 | |
|             );
 | |
|             SYNC_PLAN_POSITION_KINEMATIC();
 | |
|             stepper.synchronize();
 | |
|             extruder_duplication_enabled = true;
 | |
|             active_extruder_parked = false;
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
 | |
|             #endif
 | |
|           }
 | |
|           else {
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
 | |
|             #endif
 | |
|           }
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #endif // DUAL_X_CARRIAGE
 | |
| 
 | |
| /**
 | |
|  * Prepare a single move and get ready for the next one
 | |
|  *
 | |
|  * This may result in several calls to planner.buffer_line to
 | |
|  * do smaller moves for DELTA, SCARA, mesh moves, etc.
 | |
|  */
 | |
| void prepare_move_to_destination() {
 | |
|   clamp_to_software_endstops(destination);
 | |
|   refresh_cmd_timeout();
 | |
| 
 | |
|   #if ENABLED(PREVENT_COLD_EXTRUSION)
 | |
| 
 | |
|     if (!DEBUGGING(DRYRUN)) {
 | |
|       if (destination[E_AXIS] != current_position[E_AXIS]) {
 | |
|         if (thermalManager.tooColdToExtrude(active_extruder)) {
 | |
|           current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | |
|         }
 | |
|         #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | |
|           if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
 | |
|             current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | |
|             SERIAL_ECHO_START();
 | |
|             SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | |
|           }
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   if (
 | |
|     #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
 | |
|       ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
 | |
|     #elif IS_KINEMATIC
 | |
|       prepare_kinematic_move_to(destination)
 | |
|     #elif ENABLED(DUAL_X_CARRIAGE)
 | |
|       prepare_move_to_destination_dualx()
 | |
|     #else
 | |
|       prepare_move_to_destination_cartesian()
 | |
|     #endif
 | |
|   ) return;
 | |
| 
 | |
|   set_current_to_destination();
 | |
| }
 | |
| 
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
| 
 | |
|   #if N_ARC_CORRECTION < 1
 | |
|     #undef N_ARC_CORRECTION
 | |
|     #define N_ARC_CORRECTION 1
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Plan an arc in 2 dimensions
 | |
|    *
 | |
|    * The arc is approximated by generating many small linear segments.
 | |
|    * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
 | |
|    * Arcs should only be made relatively large (over 5mm), as larger arcs with
 | |
|    * larger segments will tend to be more efficient. Your slicer should have
 | |
|    * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | |
|    */
 | |
|   void plan_arc(
 | |
|     float logical[XYZE], // Destination position
 | |
|     float *offset,       // Center of rotation relative to current_position
 | |
|     uint8_t clockwise    // Clockwise?
 | |
|   ) {
 | |
|     #if ENABLED(CNC_WORKSPACE_PLANES)
 | |
|       AxisEnum p_axis, q_axis, l_axis;
 | |
|       switch (workspace_plane) {
 | |
|         case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
 | |
|         case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
 | |
|         case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
 | |
|       }
 | |
|     #else
 | |
|       constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
 | |
|     #endif
 | |
| 
 | |
|     // Radius vector from center to current location
 | |
|     float r_P = -offset[0], r_Q = -offset[1];
 | |
| 
 | |
|     const float radius = HYPOT(r_P, r_Q),
 | |
|                 center_P = current_position[p_axis] - r_P,
 | |
|                 center_Q = current_position[q_axis] - r_Q,
 | |
|                 rt_X = logical[p_axis] - center_P,
 | |
|                 rt_Y = logical[q_axis] - center_Q,
 | |
|                 linear_travel = logical[l_axis] - current_position[l_axis],
 | |
|                 extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
 | |
| 
 | |
|     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | |
|     float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
 | |
|     if (angular_travel < 0) angular_travel += RADIANS(360);
 | |
|     if (clockwise) angular_travel -= RADIANS(360);
 | |
| 
 | |
|     // Make a circle if the angular rotation is 0 and the target is current position
 | |
|     if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
 | |
|       angular_travel = RADIANS(360);
 | |
| 
 | |
|     const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
 | |
|     if (mm_of_travel < 0.001) return;
 | |
| 
 | |
|     uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
 | |
|     if (segments == 0) segments = 1;
 | |
| 
 | |
|     /**
 | |
|      * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | |
|      * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 | |
|      *     r_T = [cos(phi) -sin(phi);
 | |
|      *            sin(phi)  cos(phi)] * r ;
 | |
|      *
 | |
|      * For arc generation, the center of the circle is the axis of rotation and the radius vector is
 | |
|      * defined from the circle center to the initial position. Each line segment is formed by successive
 | |
|      * vector rotations. This requires only two cos() and sin() computations to form the rotation
 | |
|      * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 | |
|      * all double numbers are single precision on the Arduino. (True double precision will not have
 | |
|      * round off issues for CNC applications.) Single precision error can accumulate to be greater than
 | |
|      * tool precision in some cases. Therefore, arc path correction is implemented.
 | |
|      *
 | |
|      * Small angle approximation may be used to reduce computation overhead further. This approximation
 | |
|      * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
 | |
|      * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 | |
|      * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
 | |
|      * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 | |
|      * issue for CNC machines with the single precision Arduino calculations.
 | |
|      *
 | |
|      * This approximation also allows plan_arc to immediately insert a line segment into the planner
 | |
|      * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 | |
|      * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
 | |
|      * This is important when there are successive arc motions.
 | |
|      */
 | |
|     // Vector rotation matrix values
 | |
|     float arc_target[XYZE];
 | |
|     const float theta_per_segment = angular_travel / segments,
 | |
|                 linear_per_segment = linear_travel / segments,
 | |
|                 extruder_per_segment = extruder_travel / segments,
 | |
|                 sin_T = theta_per_segment,
 | |
|                 cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
 | |
| 
 | |
|     // Initialize the linear axis
 | |
|     arc_target[l_axis] = current_position[l_axis];
 | |
| 
 | |
|     // Initialize the extruder axis
 | |
|     arc_target[E_AXIS] = current_position[E_AXIS];
 | |
| 
 | |
|     const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
 | |
| 
 | |
|     millis_t next_idle_ms = millis() + 200UL;
 | |
| 
 | |
|     #if N_ARC_CORRECTION > 1
 | |
|       int8_t count = N_ARC_CORRECTION;
 | |
|     #endif
 | |
| 
 | |
|     for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
 | |
| 
 | |
|       thermalManager.manage_heater();
 | |
|       if (ELAPSED(millis(), next_idle_ms)) {
 | |
|         next_idle_ms = millis() + 200UL;
 | |
|         idle();
 | |
|       }
 | |
| 
 | |
|       #if N_ARC_CORRECTION > 1
 | |
|         if (--count) {
 | |
|           // Apply vector rotation matrix to previous r_P / 1
 | |
|           const float r_new_Y = r_P * sin_T + r_Q * cos_T;
 | |
|           r_P = r_P * cos_T - r_Q * sin_T;
 | |
|           r_Q = r_new_Y;
 | |
|         }
 | |
|         else
 | |
|       #endif
 | |
|       {
 | |
|         #if N_ARC_CORRECTION > 1
 | |
|           count = N_ARC_CORRECTION;
 | |
|         #endif
 | |
| 
 | |
|         // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | |
|         // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | |
|         // To reduce stuttering, the sin and cos could be computed at different times.
 | |
|         // For now, compute both at the same time.
 | |
|         const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
 | |
|         r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
 | |
|         r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
 | |
|       }
 | |
| 
 | |
|       // Update arc_target location
 | |
|       arc_target[p_axis] = center_P + r_P;
 | |
|       arc_target[q_axis] = center_Q + r_Q;
 | |
|       arc_target[l_axis] += linear_per_segment;
 | |
|       arc_target[E_AXIS] += extruder_per_segment;
 | |
| 
 | |
|       clamp_to_software_endstops(arc_target);
 | |
| 
 | |
|       planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
 | |
|     }
 | |
| 
 | |
|     // Ensure last segment arrives at target location.
 | |
|     planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
 | |
| 
 | |
|     // As far as the parser is concerned, the position is now == target. In reality the
 | |
|     // motion control system might still be processing the action and the real tool position
 | |
|     // in any intermediate location.
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
| 
 | |
|   void plan_cubic_move(const float offset[4]) {
 | |
|     cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
 | |
| 
 | |
|     // As far as the parser is concerned, the position is now == destination. In reality the
 | |
|     // motion control system might still be processing the action and the real tool position
 | |
|     // in any intermediate location.
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| 
 | |
| #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
| #if ENABLED(USE_CONTROLLER_FAN)
 | |
| 
 | |
|   void controllerFan() {
 | |
|     static millis_t lastMotorOn = 0, // Last time a motor was turned on
 | |
|                     nextMotorCheck = 0; // Last time the state was checked
 | |
|     const millis_t ms = millis();
 | |
|     if (ELAPSED(ms, nextMotorCheck)) {
 | |
|       nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
 | |
|       if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
 | |
|           || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
 | |
|           #if E_STEPPERS > 1
 | |
|             || E1_ENABLE_READ == E_ENABLE_ON
 | |
|             #if HAS_X2_ENABLE
 | |
|               || X2_ENABLE_READ == X_ENABLE_ON
 | |
|             #endif
 | |
|             #if E_STEPPERS > 2
 | |
|               || E2_ENABLE_READ == E_ENABLE_ON
 | |
|               #if E_STEPPERS > 3
 | |
|                 || E3_ENABLE_READ == E_ENABLE_ON
 | |
|                 #if E_STEPPERS > 4
 | |
|                   || E4_ENABLE_READ == E_ENABLE_ON
 | |
|                 #endif // E_STEPPERS > 4
 | |
|               #endif // E_STEPPERS > 3
 | |
|             #endif // E_STEPPERS > 2
 | |
|           #endif // E_STEPPERS > 1
 | |
|       ) {
 | |
|         lastMotorOn = ms; //... set time to NOW so the fan will turn on
 | |
|       }
 | |
| 
 | |
|       // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
 | |
|       uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
 | |
| 
 | |
|       // allows digital or PWM fan output to be used (see M42 handling)
 | |
|       WRITE(CONTROLLER_FAN_PIN, speed);
 | |
|       analogWrite(CONTROLLER_FAN_PIN, speed);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // USE_CONTROLLER_FAN
 | |
| 
 | |
| #if ENABLED(MORGAN_SCARA)
 | |
| 
 | |
|   /**
 | |
|    * Morgan SCARA Forward Kinematics. Results in cartes[].
 | |
|    * Maths and first version by QHARLEY.
 | |
|    * Integrated into Marlin and slightly restructured by Joachim Cerny.
 | |
|    */
 | |
|   void forward_kinematics_SCARA(const float &a, const float &b) {
 | |
| 
 | |
|     float a_sin = sin(RADIANS(a)) * L1,
 | |
|           a_cos = cos(RADIANS(a)) * L1,
 | |
|           b_sin = sin(RADIANS(b)) * L2,
 | |
|           b_cos = cos(RADIANS(b)) * L2;
 | |
| 
 | |
|     cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X;  //theta
 | |
|     cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y;  //theta+phi
 | |
| 
 | |
|     /*
 | |
|       SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
 | |
|       SERIAL_ECHOPAIR(" b=", b);
 | |
|       SERIAL_ECHOPAIR(" a_sin=", a_sin);
 | |
|       SERIAL_ECHOPAIR(" a_cos=", a_cos);
 | |
|       SERIAL_ECHOPAIR(" b_sin=", b_sin);
 | |
|       SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
 | |
|       SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
 | |
|       SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
 | |
|     //*/
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Morgan SCARA Inverse Kinematics. Results in delta[].
 | |
|    *
 | |
|    * See http://forums.reprap.org/read.php?185,283327
 | |
|    *
 | |
|    * Maths and first version by QHARLEY.
 | |
|    * Integrated into Marlin and slightly restructured by Joachim Cerny.
 | |
|    */
 | |
|   void inverse_kinematics(const float logical[XYZ]) {
 | |
| 
 | |
|     static float C2, S2, SK1, SK2, THETA, PSI;
 | |
| 
 | |
|     float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X,  // Translate SCARA to standard X Y
 | |
|           sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor.
 | |
| 
 | |
|     if (L1 == L2)
 | |
|       C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
 | |
|     else
 | |
|       C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
 | |
| 
 | |
|     S2 = SQRT(1 - sq(C2));
 | |
| 
 | |
|     // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
 | |
|     SK1 = L1 + L2 * C2;
 | |
| 
 | |
|     // Rotated Arm2 gives the distance from Arm1 to Arm2
 | |
|     SK2 = L2 * S2;
 | |
| 
 | |
|     // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
 | |
|     THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
 | |
| 
 | |
|     // Angle of Arm2
 | |
|     PSI = ATAN2(S2, C2);
 | |
| 
 | |
|     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
 | |
|     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
 | |
|     delta[C_AXIS] = logical[Z_AXIS];
 | |
| 
 | |
|     /*
 | |
|       DEBUG_POS("SCARA IK", logical);
 | |
|       DEBUG_POS("SCARA IK", delta);
 | |
|       SERIAL_ECHOPAIR("  SCARA (x,y) ", sx);
 | |
|       SERIAL_ECHOPAIR(",", sy);
 | |
|       SERIAL_ECHOPAIR(" C2=", C2);
 | |
|       SERIAL_ECHOPAIR(" S2=", S2);
 | |
|       SERIAL_ECHOPAIR(" Theta=", THETA);
 | |
|       SERIAL_ECHOLNPAIR(" Phi=", PHI);
 | |
|     //*/
 | |
|   }
 | |
| 
 | |
| #endif // MORGAN_SCARA
 | |
| 
 | |
| #if ENABLED(TEMP_STAT_LEDS)
 | |
| 
 | |
|   static bool red_led = false;
 | |
|   static millis_t next_status_led_update_ms = 0;
 | |
| 
 | |
|   void handle_status_leds(void) {
 | |
|     if (ELAPSED(millis(), next_status_led_update_ms)) {
 | |
|       next_status_led_update_ms += 500; // Update every 0.5s
 | |
|       float max_temp = 0.0;
 | |
|       #if HAS_TEMP_BED
 | |
|         max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
 | |
|       #endif
 | |
|       HOTEND_LOOP()
 | |
|         max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
 | |
|       const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
 | |
|       if (new_led != red_led) {
 | |
|         red_led = new_led;
 | |
|         #if PIN_EXISTS(STAT_LED_RED)
 | |
|           WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
 | |
|           #if PIN_EXISTS(STAT_LED_BLUE)
 | |
|             WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
 | |
|           #endif
 | |
|         #else
 | |
|           WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
| 
 | |
|   void handle_filament_runout() {
 | |
|     if (!filament_ran_out) {
 | |
|       filament_ran_out = true;
 | |
|       enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
 | |
|       stepper.synchronize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // FILAMENT_RUNOUT_SENSOR
 | |
| 
 | |
| #if ENABLED(FAST_PWM_FAN)
 | |
| 
 | |
|   void setPwmFrequency(uint8_t pin, int val) {
 | |
|     val &= 0x07;
 | |
|     switch (digitalPinToTimer(pin)) {
 | |
|       #ifdef TCCR0A
 | |
|         #if !AVR_AT90USB1286_FAMILY
 | |
|           case TIMER0A:
 | |
|         #endif
 | |
|         case TIMER0B:
 | |
|           //_SET_CS(0, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR1A
 | |
|         case TIMER1A:
 | |
|         case TIMER1B:
 | |
|           //_SET_CS(1, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR2
 | |
|         case TIMER2:
 | |
|         case TIMER2:
 | |
|           _SET_CS(2, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR2A
 | |
|         case TIMER2A:
 | |
|         case TIMER2B:
 | |
|           _SET_CS(2, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR3A
 | |
|         case TIMER3A:
 | |
|         case TIMER3B:
 | |
|         case TIMER3C:
 | |
|           _SET_CS(3, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR4A
 | |
|         case TIMER4A:
 | |
|         case TIMER4B:
 | |
|         case TIMER4C:
 | |
|           _SET_CS(4, val);
 | |
|           break;
 | |
|       #endif
 | |
|       #ifdef TCCR5A
 | |
|         case TIMER5A:
 | |
|         case TIMER5B:
 | |
|         case TIMER5C:
 | |
|           _SET_CS(5, val);
 | |
|           break;
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // FAST_PWM_FAN
 | |
| 
 | |
| float calculate_volumetric_multiplier(float diameter) {
 | |
|   if (!volumetric_enabled || diameter == 0) return 1.0;
 | |
|   return 1.0 / (M_PI * sq(diameter * 0.5));
 | |
| }
 | |
| 
 | |
| void calculate_volumetric_multipliers() {
 | |
|   for (uint8_t i = 0; i < COUNT(filament_size); i++)
 | |
|     volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
 | |
| }
 | |
| 
 | |
| void enable_all_steppers() {
 | |
|   enable_X();
 | |
|   enable_Y();
 | |
|   enable_Z();
 | |
|   enable_E0();
 | |
|   enable_E1();
 | |
|   enable_E2();
 | |
|   enable_E3();
 | |
|   enable_E4();
 | |
| }
 | |
| 
 | |
| void disable_e_steppers() {
 | |
|   disable_E0();
 | |
|   disable_E1();
 | |
|   disable_E2();
 | |
|   disable_E3();
 | |
|   disable_E4();
 | |
| }
 | |
| 
 | |
| void disable_all_steppers() {
 | |
|   disable_X();
 | |
|   disable_Y();
 | |
|   disable_Z();
 | |
|   disable_e_steppers();
 | |
| }
 | |
| 
 | |
| #if ENABLED(HAVE_TMC2130)
 | |
| 
 | |
|   void automatic_current_control(TMC2130Stepper &st, String axisID) {
 | |
|     // Check otpw even if we don't use automatic control. Allows for flag inspection.
 | |
|     const bool is_otpw = st.checkOT();
 | |
| 
 | |
|     // Report if a warning was triggered
 | |
|     static bool previous_otpw = false;
 | |
|     if (is_otpw && !previous_otpw) {
 | |
|       char timestamp[10];
 | |
|       duration_t elapsed = print_job_timer.duration();
 | |
|       const bool has_days = (elapsed.value > 60*60*24L);
 | |
|       (void)elapsed.toDigital(timestamp, has_days);
 | |
|       SERIAL_ECHO(timestamp);
 | |
|       SERIAL_ECHOPGM(": ");
 | |
|       SERIAL_ECHO(axisID);
 | |
|       SERIAL_ECHOLNPGM(" driver overtemperature warning!");
 | |
|     }
 | |
|     previous_otpw = is_otpw;
 | |
| 
 | |
|     #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
 | |
|       // Return if user has not enabled current control start with M906 S1.
 | |
|       if (!auto_current_control) return;
 | |
| 
 | |
|       /**
 | |
|        * Decrease current if is_otpw is true.
 | |
|        * Bail out if driver is disabled.
 | |
|        * Increase current if OTPW has not been triggered yet.
 | |
|        */
 | |
|       uint16_t current = st.getCurrent();
 | |
|       if (is_otpw) {
 | |
|         st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #if ENABLED(REPORT_CURRENT_CHANGE)
 | |
|           SERIAL_ECHO(axisID);
 | |
|           SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       else if (!st.isEnabled())
 | |
|         return;
 | |
| 
 | |
|       else if (!is_otpw && !st.getOTPW()) {
 | |
|         current += CURRENT_STEP;
 | |
|         if (current <= AUTO_ADJUST_MAX) {
 | |
|           st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
 | |
|           #if ENABLED(REPORT_CURRENT_CHANGE)
 | |
|             SERIAL_ECHO(axisID);
 | |
|             SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
 | |
|           #endif
 | |
|         }
 | |
|       }
 | |
|       SERIAL_EOL();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   void checkOverTemp() {
 | |
|     static millis_t next_cOT = 0;
 | |
|     if (ELAPSED(millis(), next_cOT)) {
 | |
|       next_cOT = millis() + 5000;
 | |
|       #if ENABLED(X_IS_TMC2130)
 | |
|         automatic_current_control(stepperX, "X");
 | |
|       #endif
 | |
|       #if ENABLED(Y_IS_TMC2130)
 | |
|         automatic_current_control(stepperY, "Y");
 | |
|       #endif
 | |
|       #if ENABLED(Z_IS_TMC2130)
 | |
|         automatic_current_control(stepperZ, "Z");
 | |
|       #endif
 | |
|       #if ENABLED(X2_IS_TMC2130)
 | |
|         automatic_current_control(stepperX2, "X2");
 | |
|       #endif
 | |
|       #if ENABLED(Y2_IS_TMC2130)
 | |
|         automatic_current_control(stepperY2, "Y2");
 | |
|       #endif
 | |
|       #if ENABLED(Z2_IS_TMC2130)
 | |
|         automatic_current_control(stepperZ2, "Z2");
 | |
|       #endif
 | |
|       #if ENABLED(E0_IS_TMC2130)
 | |
|         automatic_current_control(stepperE0, "E0");
 | |
|       #endif
 | |
|       #if ENABLED(E1_IS_TMC2130)
 | |
|         automatic_current_control(stepperE1, "E1");
 | |
|       #endif
 | |
|       #if ENABLED(E2_IS_TMC2130)
 | |
|         automatic_current_control(stepperE2, "E2");
 | |
|       #endif
 | |
|       #if ENABLED(E3_IS_TMC2130)
 | |
|         automatic_current_control(stepperE3, "E3");
 | |
|       #endif
 | |
|       #if ENABLED(E4_IS_TMC2130)
 | |
|         automatic_current_control(stepperE4, "E4");
 | |
|       #endif
 | |
|       #if ENABLED(E4_IS_TMC2130)
 | |
|         automatic_current_control(stepperE4);
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAVE_TMC2130
 | |
| 
 | |
| /**
 | |
|  * Manage several activities:
 | |
|  *  - Check for Filament Runout
 | |
|  *  - Keep the command buffer full
 | |
|  *  - Check for maximum inactive time between commands
 | |
|  *  - Check for maximum inactive time between stepper commands
 | |
|  *  - Check if pin CHDK needs to go LOW
 | |
|  *  - Check for KILL button held down
 | |
|  *  - Check for HOME button held down
 | |
|  *  - Check if cooling fan needs to be switched on
 | |
|  *  - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
 | |
|  */
 | |
| void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
 | |
| 
 | |
|   #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|     if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
 | |
|       handle_filament_runout();
 | |
|   #endif
 | |
| 
 | |
|   if (commands_in_queue < BUFSIZE) get_available_commands();
 | |
| 
 | |
|   const millis_t ms = millis();
 | |
| 
 | |
|   if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
 | |
|     kill(PSTR(MSG_KILLED));
 | |
|   }
 | |
| 
 | |
|   // Prevent steppers timing-out in the middle of M600
 | |
|   #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
 | |
|     #define MOVE_AWAY_TEST !move_away_flag
 | |
|   #else
 | |
|     #define MOVE_AWAY_TEST true
 | |
|   #endif
 | |
| 
 | |
|   if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
 | |
|       && !ignore_stepper_queue && !planner.blocks_queued()) {
 | |
|     #if ENABLED(DISABLE_INACTIVE_X)
 | |
|       disable_X();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_Y)
 | |
|       disable_Y();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_Z)
 | |
|       disable_Z();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_E)
 | |
|       disable_e_steppers();
 | |
|     #endif
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD)  //only needed if have an LCD
 | |
|       ubl_lcd_map_control = false;
 | |
|       defer_return_to_status = false;
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
 | |
|     if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
 | |
|       chdkActive = false;
 | |
|       WRITE(CHDK, LOW);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_KILL
 | |
| 
 | |
|     // Check if the kill button was pressed and wait just in case it was an accidental
 | |
|     // key kill key press
 | |
|     // -------------------------------------------------------------------------------
 | |
|     static int killCount = 0;   // make the inactivity button a bit less responsive
 | |
|     const int KILL_DELAY = 750;
 | |
|     if (!READ(KILL_PIN))
 | |
|       killCount++;
 | |
|     else if (killCount > 0)
 | |
|       killCount--;
 | |
| 
 | |
|     // Exceeded threshold and we can confirm that it was not accidental
 | |
|     // KILL the machine
 | |
|     // ----------------------------------------------------------------
 | |
|     if (killCount >= KILL_DELAY) {
 | |
|       SERIAL_ERROR_START();
 | |
|       SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
 | |
|       kill(PSTR(MSG_KILLED));
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_HOME
 | |
|     // Check to see if we have to home, use poor man's debouncer
 | |
|     // ---------------------------------------------------------
 | |
|     static int homeDebounceCount = 0;   // poor man's debouncing count
 | |
|     const int HOME_DEBOUNCE_DELAY = 2500;
 | |
|     if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
 | |
|       if (!homeDebounceCount) {
 | |
|         enqueue_and_echo_commands_P(PSTR("G28"));
 | |
|         LCD_MESSAGEPGM(MSG_AUTO_HOME);
 | |
|       }
 | |
|       if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
 | |
|         homeDebounceCount++;
 | |
|       else
 | |
|         homeDebounceCount = 0;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(USE_CONTROLLER_FAN)
 | |
|     controllerFan(); // Check if fan should be turned on to cool stepper drivers down
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
 | |
|     if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
 | |
|       && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
 | |
|       bool oldstatus;
 | |
|       #if ENABLED(SWITCHING_EXTRUDER)
 | |
|         oldstatus = E0_ENABLE_READ;
 | |
|         enable_E0();
 | |
|       #else // !SWITCHING_EXTRUDER
 | |
|         switch (active_extruder) {
 | |
|           case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
 | |
|           #if E_STEPPERS > 1
 | |
|             case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
 | |
|             #if E_STEPPERS > 2
 | |
|               case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
 | |
|               #if E_STEPPERS > 3
 | |
|                 case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
 | |
|                 #if E_STEPPERS > 4
 | |
|                   case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
 | |
|                 #endif // E_STEPPERS > 4
 | |
|               #endif // E_STEPPERS > 3
 | |
|             #endif // E_STEPPERS > 2
 | |
|           #endif // E_STEPPERS > 1
 | |
|         }
 | |
|       #endif // !SWITCHING_EXTRUDER
 | |
| 
 | |
|       previous_cmd_ms = ms; // refresh_cmd_timeout()
 | |
| 
 | |
|       const float olde = current_position[E_AXIS];
 | |
|       current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
 | |
|       planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
 | |
|       current_position[E_AXIS] = olde;
 | |
|       planner.set_e_position_mm(olde);
 | |
|       stepper.synchronize();
 | |
|       #if ENABLED(SWITCHING_EXTRUDER)
 | |
|         E0_ENABLE_WRITE(oldstatus);
 | |
|       #else
 | |
|         switch (active_extruder) {
 | |
|           case 0: E0_ENABLE_WRITE(oldstatus); break;
 | |
|           #if E_STEPPERS > 1
 | |
|             case 1: E1_ENABLE_WRITE(oldstatus); break;
 | |
|             #if E_STEPPERS > 2
 | |
|               case 2: E2_ENABLE_WRITE(oldstatus); break;
 | |
|               #if E_STEPPERS > 3
 | |
|                 case 3: E3_ENABLE_WRITE(oldstatus); break;
 | |
|                 #if E_STEPPERS > 4
 | |
|                   case 4: E4_ENABLE_WRITE(oldstatus); break;
 | |
|                 #endif // E_STEPPERS > 4
 | |
|               #endif // E_STEPPERS > 3
 | |
|             #endif // E_STEPPERS > 2
 | |
|           #endif // E_STEPPERS > 1
 | |
|         }
 | |
|       #endif // !SWITCHING_EXTRUDER
 | |
|     }
 | |
|   #endif // EXTRUDER_RUNOUT_PREVENT
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE)
 | |
|     // handle delayed move timeout
 | |
|     if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
 | |
|       // travel moves have been received so enact them
 | |
|       delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
 | |
|       set_destination_to_current();
 | |
|       prepare_move_to_destination();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(TEMP_STAT_LEDS)
 | |
|     handle_status_leds();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(HAVE_TMC2130)
 | |
|     checkOverTemp();
 | |
|   #endif
 | |
| 
 | |
|   planner.check_axes_activity();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Standard idle routine keeps the machine alive
 | |
|  */
 | |
| void idle(
 | |
|   #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
|     bool no_stepper_sleep/*=false*/
 | |
|   #endif
 | |
| ) {
 | |
|   lcd_update();
 | |
| 
 | |
|   host_keepalive();
 | |
| 
 | |
|   #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
 | |
|     auto_report_temperatures();
 | |
|   #endif
 | |
| 
 | |
|   manage_inactivity(
 | |
|     #if ENABLED(ADVANCED_PAUSE_FEATURE)
 | |
|       no_stepper_sleep
 | |
|     #endif
 | |
|   );
 | |
| 
 | |
|   thermalManager.manage_heater();
 | |
| 
 | |
|   #if ENABLED(PRINTCOUNTER)
 | |
|     print_job_timer.tick();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
 | |
|     buzzer.tick();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|     if (planner.blocks_queued() &&
 | |
|         ( (blockBufferIndexRef != planner.block_buffer_head) ||
 | |
|           ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
 | |
|       blockBufferIndexRef = planner.block_buffer_head;
 | |
|       I2CPEM.update();
 | |
|       lastUpdateMillis = millis();
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Kill all activity and lock the machine.
 | |
|  * After this the machine will need to be reset.
 | |
|  */
 | |
| void kill(const char* lcd_msg) {
 | |
|   SERIAL_ERROR_START();
 | |
|   SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
 | |
| 
 | |
|   thermalManager.disable_all_heaters();
 | |
|   disable_all_steppers();
 | |
| 
 | |
|   #if ENABLED(ULTRA_LCD)
 | |
|     kill_screen(lcd_msg);
 | |
|   #else
 | |
|     UNUSED(lcd_msg);
 | |
|   #endif
 | |
| 
 | |
|   _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
 | |
|   cli(); // Stop interrupts
 | |
| 
 | |
|   _delay_ms(250); //Wait to ensure all interrupts routines stopped
 | |
|   thermalManager.disable_all_heaters(); //turn off heaters again
 | |
| 
 | |
|   #if HAS_POWER_SWITCH
 | |
|     SET_INPUT(PS_ON_PIN);
 | |
|   #endif
 | |
| 
 | |
|   suicide();
 | |
|   while (1) {
 | |
|     #if ENABLED(USE_WATCHDOG)
 | |
|       watchdog_reset();
 | |
|     #endif
 | |
|   } // Wait for reset
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Turn off heaters and stop the print in progress
 | |
|  * After a stop the machine may be resumed with M999
 | |
|  */
 | |
| void stop() {
 | |
|   thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
 | |
| 
 | |
|   #if ENABLED(PROBING_FANS_OFF)
 | |
|     if (fans_paused) fans_pause(false); // put things back the way they were
 | |
|   #endif
 | |
| 
 | |
|   if (IsRunning()) {
 | |
|     Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|     LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|     safe_delay(350);       // allow enough time for messages to get out before stopping
 | |
|     Running = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Marlin entry-point: Set up before the program loop
 | |
|  *  - Set up the kill pin, filament runout, power hold
 | |
|  *  - Start the serial port
 | |
|  *  - Print startup messages and diagnostics
 | |
|  *  - Get EEPROM or default settings
 | |
|  *  - Initialize managers for:
 | |
|  *    • temperature
 | |
|  *    • planner
 | |
|  *    • watchdog
 | |
|  *    • stepper
 | |
|  *    • photo pin
 | |
|  *    • servos
 | |
|  *    • LCD controller
 | |
|  *    • Digipot I2C
 | |
|  *    • Z probe sled
 | |
|  *    • status LEDs
 | |
|  */
 | |
| void setup() {
 | |
| 
 | |
|   #ifdef DISABLE_JTAG
 | |
|     // Disable JTAG on AT90USB chips to free up pins for IO
 | |
|     MCUCR = 0x80;
 | |
|     MCUCR = 0x80;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|     setup_filrunoutpin();
 | |
|   #endif
 | |
| 
 | |
|   setup_killpin();
 | |
| 
 | |
|   setup_powerhold();
 | |
| 
 | |
|   #if HAS_STEPPER_RESET
 | |
|     disableStepperDrivers();
 | |
|   #endif
 | |
| 
 | |
|   MYSERIAL.begin(BAUDRATE);
 | |
|   SERIAL_PROTOCOLLNPGM("start");
 | |
|   SERIAL_ECHO_START();
 | |
| 
 | |
|   // Check startup - does nothing if bootloader sets MCUSR to 0
 | |
|   byte mcu = MCUSR;
 | |
|   if (mcu &  1) SERIAL_ECHOLNPGM(MSG_POWERUP);
 | |
|   if (mcu &  2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
 | |
|   if (mcu &  4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
 | |
|   if (mcu &  8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
 | |
|   if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
 | |
|   MCUSR = 0;
 | |
| 
 | |
|   SERIAL_ECHOPGM(MSG_MARLIN);
 | |
|   SERIAL_CHAR(' ');
 | |
|   SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
 | |
|   SERIAL_EOL();
 | |
| 
 | |
|   #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
 | |
|     SERIAL_ECHO_START();
 | |
|     SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
 | |
|     SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
 | |
|     SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
 | |
|     SERIAL_ECHOLNPGM("Compiled: " __DATE__);
 | |
|   #endif
 | |
| 
 | |
|   SERIAL_ECHO_START();
 | |
|   SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
 | |
|   SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
 | |
| 
 | |
|   // Send "ok" after commands by default
 | |
|   for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
 | |
| 
 | |
|   // Load data from EEPROM if available (or use defaults)
 | |
|   // This also updates variables in the planner, elsewhere
 | |
|   (void)settings.load();
 | |
| 
 | |
|   #if HAS_M206_COMMAND
 | |
|     // Initialize current position based on home_offset
 | |
|     COPY(current_position, home_offset);
 | |
|   #else
 | |
|     ZERO(current_position);
 | |
|   #endif
 | |
| 
 | |
|   // Vital to init stepper/planner equivalent for current_position
 | |
|   SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   thermalManager.init();    // Initialize temperature loop
 | |
| 
 | |
|   #if ENABLED(USE_WATCHDOG)
 | |
|     watchdog_init();
 | |
|   #endif
 | |
| 
 | |
|   stepper.init();    // Initialize stepper, this enables interrupts!
 | |
|   servo_init();
 | |
| 
 | |
|   #if HAS_PHOTOGRAPH
 | |
|     OUT_WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_CASE_LIGHT
 | |
|     case_light_on = CASE_LIGHT_DEFAULT_ON;
 | |
|     case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
 | |
|     update_case_light();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(SPINDLE_LASER_ENABLE)
 | |
|     OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);  // init spindle to off
 | |
|     #if SPINDLE_DIR_CHANGE
 | |
|       OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0);  // init rotation to clockwise (M3)
 | |
|     #endif
 | |
|     #if ENABLED(SPINDLE_LASER_PWM)
 | |
|       SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
 | |
|       analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0);  // set to lowest speed
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BED_PROBE
 | |
|     endstops.enable_z_probe(false);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(USE_CONTROLLER_FAN)
 | |
|     SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_STEPPER_RESET
 | |
|     enableStepperDrivers();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DIGIPOT_I2C)
 | |
|     digipot_i2c_init();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|     dac_init();
 | |
|   #endif
 | |
| 
 | |
|   #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
 | |
|     OUT_WRITE(SOL1_PIN, LOW); // turn it off
 | |
|   #endif
 | |
| 
 | |
|   setup_homepin();
 | |
| 
 | |
|   #if PIN_EXISTS(STAT_LED_RED)
 | |
|     OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
 | |
|   #endif
 | |
| 
 | |
|   #if PIN_EXISTS(STAT_LED_BLUE)
 | |
|     OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
 | |
|     SET_OUTPUT(RGB_LED_R_PIN);
 | |
|     SET_OUTPUT(RGB_LED_G_PIN);
 | |
|     SET_OUTPUT(RGB_LED_B_PIN);
 | |
|     #if ENABLED(RGBW_LED)
 | |
|       SET_OUTPUT(RGB_LED_W_PIN);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   lcd_init();
 | |
|   #if ENABLED(SHOW_BOOTSCREEN)
 | |
|     #if ENABLED(DOGLCD)
 | |
|       safe_delay(BOOTSCREEN_TIMEOUT);
 | |
|     #elif ENABLED(ULTRA_LCD)
 | |
|       bootscreen();
 | |
|       #if DISABLED(SDSUPPORT)
 | |
|         lcd_init();
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
 | |
|     // Initialize mixing to 100% color 1
 | |
|     for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|       mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
 | |
|     for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
 | |
|       for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|         mixing_virtual_tool_mix[t][i] = mixing_factor[i];
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(BLTOUCH)
 | |
|     // Make sure any BLTouch error condition is cleared
 | |
|     bltouch_command(BLTOUCH_RESET);
 | |
|     set_bltouch_deployed(true);
 | |
|     set_bltouch_deployed(false);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(I2C_POSITION_ENCODERS)
 | |
|     I2CPEM.init();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
 | |
|     i2c.onReceive(i2c_on_receive);
 | |
|     i2c.onRequest(i2c_on_request);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|     setup_endstop_interrupts();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(SWITCHING_EXTRUDER)
 | |
|     move_extruder_servo(0);  // Initialize extruder servo
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(SWITCHING_NOZZLE)
 | |
|     move_nozzle_servo(0);  // Initialize nozzle servo
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The main Marlin program loop
 | |
|  *
 | |
|  *  - Save or log commands to SD
 | |
|  *  - Process available commands (if not saving)
 | |
|  *  - Call heater manager
 | |
|  *  - Call inactivity manager
 | |
|  *  - Call endstop manager
 | |
|  *  - Call LCD update
 | |
|  */
 | |
| void loop() {
 | |
|   if (commands_in_queue < BUFSIZE) get_available_commands();
 | |
| 
 | |
|   #if ENABLED(SDSUPPORT)
 | |
|     card.checkautostart(false);
 | |
|   #endif
 | |
| 
 | |
|   if (commands_in_queue) {
 | |
| 
 | |
|     #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|       if (card.saving) {
 | |
|         char* command = command_queue[cmd_queue_index_r];
 | |
|         if (strstr_P(command, PSTR("M29"))) {
 | |
|           // M29 closes the file
 | |
|           card.closefile();
 | |
|           SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
 | |
|           ok_to_send();
 | |
|         }
 | |
|         else {
 | |
|           // Write the string from the read buffer to SD
 | |
|           card.write_command(command);
 | |
|           if (card.logging)
 | |
|             process_next_command(); // The card is saving because it's logging
 | |
|           else
 | |
|             ok_to_send();
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|         process_next_command();
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       process_next_command();
 | |
| 
 | |
|     #endif // SDSUPPORT
 | |
| 
 | |
|     // The queue may be reset by a command handler or by code invoked by idle() within a handler
 | |
|     if (commands_in_queue) {
 | |
|       --commands_in_queue;
 | |
|       if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
 | |
|     }
 | |
|   }
 | |
|   endstops.report_state();
 | |
|   idle();
 | |
| }
 | |
| 
 |