You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1836 lines
						
					
					
						
							57 KiB
						
					
					
				
			
		
		
	
	
							1836 lines
						
					
					
						
							57 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * configuration_store.cpp
 | |
|  *
 | |
|  * Settings and EEPROM storage
 | |
|  *
 | |
|  * IMPORTANT:  Whenever there are changes made to the variables stored in EEPROM
 | |
|  * in the functions below, also increment the version number. This makes sure that
 | |
|  * the default values are used whenever there is a change to the data, to prevent
 | |
|  * wrong data being written to the variables.
 | |
|  *
 | |
|  * ALSO: Variables in the Store and Retrieve sections must be in the same order.
 | |
|  *       If a feature is disabled, some data must still be written that, when read,
 | |
|  *       either sets a Sane Default, or results in No Change to the existing value.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define EEPROM_VERSION "V39"
 | |
| 
 | |
| // Change EEPROM version if these are changed:
 | |
| #define EEPROM_OFFSET 100
 | |
| 
 | |
| /**
 | |
|  * V39 EEPROM Layout:
 | |
|  *
 | |
|  *  100  Version                                    (char x4)
 | |
|  *  104  EEPROM CRC16                               (uint16_t)
 | |
|  *
 | |
|  *  106            E_STEPPERS                       (uint8_t)
 | |
|  *  107  M92 XYZE  planner.axis_steps_per_mm        (float x4 ... x8)
 | |
|  *  123  M203 XYZE planner.max_feedrate_mm_s        (float x4 ... x8)
 | |
|  *  139  M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
 | |
|  *  155  M204 P    planner.acceleration             (float)
 | |
|  *  159  M204 R    planner.retract_acceleration     (float)
 | |
|  *  163  M204 T    planner.travel_acceleration      (float)
 | |
|  *  167  M205 S    planner.min_feedrate_mm_s        (float)
 | |
|  *  171  M205 T    planner.min_travel_feedrate_mm_s (float)
 | |
|  *  175  M205 B    planner.min_segment_time         (ulong)
 | |
|  *  179  M205 X    planner.max_jerk[X_AXIS]         (float)
 | |
|  *  183  M205 Y    planner.max_jerk[Y_AXIS]         (float)
 | |
|  *  187  M205 Z    planner.max_jerk[Z_AXIS]         (float)
 | |
|  *  191  M205 E    planner.max_jerk[E_AXIS]         (float)
 | |
|  *  195  M206 XYZ  home_offset                      (float x3)
 | |
|  *  207  M218 XYZ  hotend_offset                    (float x3 per additional hotend)
 | |
|  *
 | |
|  * Global Leveling:
 | |
|  *  219            z_fade_height                    (float)
 | |
|  *
 | |
|  * MESH_BED_LEVELING:                               43 bytes
 | |
|  *  223  M420 S    from mbl.status                  (bool)
 | |
|  *  224            mbl.z_offset                     (float)
 | |
|  *  228            GRID_MAX_POINTS_X                (uint8_t)
 | |
|  *  229            GRID_MAX_POINTS_Y                (uint8_t)
 | |
|  *  230 G29 S3 XYZ z_values[][]                     (float x9, up to float x81) +288
 | |
|  *
 | |
|  * HAS_BED_PROBE:                                   4 bytes
 | |
|  *  266  M851      zprobe_zoffset                   (float)
 | |
|  *
 | |
|  * ABL_PLANAR:                                      36 bytes
 | |
|  *  270            planner.bed_level_matrix         (matrix_3x3 = float x9)
 | |
|  *
 | |
|  * AUTO_BED_LEVELING_BILINEAR:                      47 bytes
 | |
|  *  306            GRID_MAX_POINTS_X                (uint8_t)
 | |
|  *  307            GRID_MAX_POINTS_Y                (uint8_t)
 | |
|  *  308            bilinear_grid_spacing            (int x2)
 | |
|  *  312  G29 L F   bilinear_start                   (int x2)
 | |
|  *  316            z_values[][]                     (float x9, up to float x256) +988
 | |
|  *
 | |
|  * AUTO_BED_LEVELING_UBL:                           6 bytes
 | |
|  *  324  G29 A     ubl.state.active                 (bool)
 | |
|  *  325  G29 Z     ubl.state.z_offset               (float)
 | |
|  *  329  G29 S     ubl.state.storage_slot           (int8_t)
 | |
|  *
 | |
|  * DELTA:                                           48 bytes
 | |
|  *  348  M666 XYZ  endstop_adj                      (float x3)
 | |
|  *  360  M665 R    delta_radius                     (float)
 | |
|  *  364  M665 L    delta_diagonal_rod               (float)
 | |
|  *  368  M665 S    delta_segments_per_second        (float)
 | |
|  *  372  M665 B    delta_calibration_radius         (float)
 | |
|  *  376  M665 X    delta_tower_angle_trim[A]        (float)
 | |
|  *  380  M665 Y    delta_tower_angle_trim[B]        (float)
 | |
|  *  ---  M665 Z    delta_tower_angle_trim[C]        (float) is always 0.0
 | |
|  *
 | |
|  * Z_DUAL_ENDSTOPS:                                 48 bytes
 | |
|  *  348  M666 Z    z_endstop_adj                    (float)
 | |
|  *  ---            dummy data                       (float x11)
 | |
|  *
 | |
|  * ULTIPANEL:                                       6 bytes
 | |
|  *  396  M145 S0 H lcd_preheat_hotend_temp          (int x2)
 | |
|  *  400  M145 S0 B lcd_preheat_bed_temp             (int x2)
 | |
|  *  404  M145 S0 F lcd_preheat_fan_speed            (int x2)
 | |
|  *
 | |
|  * PIDTEMP:                                         66 bytes
 | |
|  *  408  M301 E0 PIDC  Kp[0], Ki[0], Kd[0], Kc[0]   (float x4)
 | |
|  *  424  M301 E1 PIDC  Kp[1], Ki[1], Kd[1], Kc[1]   (float x4)
 | |
|  *  440  M301 E2 PIDC  Kp[2], Ki[2], Kd[2], Kc[2]   (float x4)
 | |
|  *  456  M301 E3 PIDC  Kp[3], Ki[3], Kd[3], Kc[3]   (float x4)
 | |
|  *  472  M301 E4 PIDC  Kp[3], Ki[3], Kd[3], Kc[3]   (float x4)
 | |
|  *  488  M301 L        lpq_len                      (int)
 | |
|  *
 | |
|  * PIDTEMPBED:                                      12 bytes
 | |
|  *  490  M304 PID  thermalManager.bedKp, .bedKi, .bedKd (float x3)
 | |
|  *
 | |
|  * DOGLCD:                                          2 bytes
 | |
|  *  502  M250 C    lcd_contrast                     (uint16_t)
 | |
|  *
 | |
|  * FWRETRACT:                                       29 bytes
 | |
|  *  504  M209 S    autoretract_enabled              (bool)
 | |
|  *  505  M207 S    retract_length                   (float)
 | |
|  *  509  M207 W    retract_length_swap              (float)
 | |
|  *  513  M207 F    retract_feedrate_mm_s            (float)
 | |
|  *  517  M207 Z    retract_zlift                    (float)
 | |
|  *  521  M208 S    retract_recover_length           (float)
 | |
|  *  525  M208 W    retract_recover_length_swap      (float)
 | |
|  *  529  M208 F    retract_recover_feedrate_mm_s    (float)
 | |
|  *
 | |
|  * Volumetric Extrusion:                            21 bytes
 | |
|  *  533  M200 D    volumetric_enabled               (bool)
 | |
|  *  534  M200 T D  filament_size                    (float x5) (T0..3)
 | |
|  *
 | |
|  * HAVE_TMC2130:                                    20 bytes
 | |
|  *  554  M906 X    Stepper X current                (uint16_t)
 | |
|  *  556  M906 Y    Stepper Y current                (uint16_t)
 | |
|  *  558  M906 Z    Stepper Z current                (uint16_t)
 | |
|  *  560  M906 X2   Stepper X2 current               (uint16_t)
 | |
|  *  562  M906 Y2   Stepper Y2 current               (uint16_t)
 | |
|  *  564  M906 Z2   Stepper Z2 current               (uint16_t)
 | |
|  *  566  M906 E0   Stepper E0 current               (uint16_t)
 | |
|  *  568  M906 E1   Stepper E1 current               (uint16_t)
 | |
|  *  570  M906 E2   Stepper E2 current               (uint16_t)
 | |
|  *  572  M906 E3   Stepper E3 current               (uint16_t)
 | |
|  *  576  M906 E4   Stepper E4 current               (uint16_t)
 | |
|  *
 | |
|  * LIN_ADVANCE:                                     8 bytes
 | |
|  *  580  M900 K    extruder_advance_k               (float)
 | |
|  *  584  M900 WHD  advance_ed_ratio                 (float)
 | |
|  *
 | |
|  * HAS_MOTOR_CURRENT_PWM:
 | |
|  *  588  M907 X    Stepper XY current               (uint32_t)
 | |
|  *  592  M907 Z    Stepper Z current                (uint32_t)
 | |
|  *  596  M907 E    Stepper E current                (uint32_t)
 | |
|  *
 | |
|  *  600                                Minimum end-point
 | |
|  * 1921 (600 + 36 + 9 + 288 + 988)     Maximum end-point
 | |
|  *
 | |
|  * ========================================================================
 | |
|  * meshes_begin (between max and min end-point, directly above)
 | |
|  * -- MESHES --
 | |
|  * meshes_end
 | |
|  * -- MAT (Mesh Allocation Table) --                128 bytes (placeholder size)
 | |
|  * mat_end = E2END (0xFFF)
 | |
|  *
 | |
|  */
 | |
| #include "configuration_store.h"
 | |
| 
 | |
| MarlinSettings settings;
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "language.h"
 | |
| #include "endstops.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "stepper.h"
 | |
| 
 | |
| #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
 | |
|   #include "gcode.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
|   #include "mesh_bed_leveling.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(HAVE_TMC2130)
 | |
|   #include "stepper_indirection.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|   #include "ubl.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|   extern void refresh_bed_level();
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Post-process after Retrieve or Reset
 | |
|  */
 | |
| void MarlinSettings::postprocess() {
 | |
|   // steps per s2 needs to be updated to agree with units per s2
 | |
|   planner.reset_acceleration_rates();
 | |
| 
 | |
|   // Make sure delta kinematics are updated before refreshing the
 | |
|   // planner position so the stepper counts will be set correctly.
 | |
|   #if ENABLED(DELTA)
 | |
|     recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|   #endif
 | |
| 
 | |
|   // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
 | |
|   // and init stepper.count[], planner.position[] with current_position
 | |
|   planner.refresh_positioning();
 | |
| 
 | |
|   #if ENABLED(PIDTEMP)
 | |
|     thermalManager.updatePID();
 | |
|   #endif
 | |
| 
 | |
|   calculate_volumetric_multipliers();
 | |
| 
 | |
|   #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
 | |
|     // Software endstops depend on home_offset
 | |
|     LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|     set_z_fade_height(planner.z_fade_height);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BED_PROBE
 | |
|     refresh_zprobe_zoffset();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|     refresh_bed_level();
 | |
|     //set_bed_leveling_enabled(leveling_is_on);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_MOTOR_CURRENT_PWM
 | |
|     stepper.refresh_motor_power();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(EEPROM_SETTINGS)
 | |
| 
 | |
|   #define DUMMY_PID_VALUE 3000.0f
 | |
|   #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
 | |
|   #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
 | |
|   #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
 | |
|   #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
 | |
|   #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
 | |
| 
 | |
|   const char version[4] = EEPROM_VERSION;
 | |
| 
 | |
|   bool MarlinSettings::eeprom_error;
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|     int MarlinSettings::meshes_begin;
 | |
|   #endif
 | |
| 
 | |
|   void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
 | |
|     if (eeprom_error) return;
 | |
|     while (size--) {
 | |
|       uint8_t * const p = (uint8_t * const)pos;
 | |
|       uint8_t v = *value;
 | |
|       // EEPROM has only ~100,000 write cycles,
 | |
|       // so only write bytes that have changed!
 | |
|       if (v != eeprom_read_byte(p)) {
 | |
|         eeprom_write_byte(p, v);
 | |
|         if (eeprom_read_byte(p) != v) {
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
 | |
|           eeprom_error = true;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       crc16(crc, &v, 1);
 | |
|       pos++;
 | |
|       value++;
 | |
|     };
 | |
|   }
 | |
| 
 | |
|   void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
 | |
|     if (eeprom_error) return;
 | |
|     do {
 | |
|       uint8_t c = eeprom_read_byte((unsigned char*)pos);
 | |
|       *value = c;
 | |
|       crc16(crc, &c, 1);
 | |
|       pos++;
 | |
|       value++;
 | |
|     } while (--size);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M500 - Store Configuration
 | |
|    */
 | |
|   bool MarlinSettings::save() {
 | |
|     float dummy = 0.0f;
 | |
|     char ver[4] = "000";
 | |
| 
 | |
|     uint16_t working_crc = 0;
 | |
| 
 | |
|     EEPROM_START();
 | |
| 
 | |
|     eeprom_error = false;
 | |
| 
 | |
|     EEPROM_WRITE(ver);     // invalidate data first
 | |
|     EEPROM_SKIP(working_crc); // Skip the checksum slot
 | |
| 
 | |
|     working_crc = 0; // clear before first "real data"
 | |
| 
 | |
|     const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
 | |
|     EEPROM_WRITE(esteppers);
 | |
| 
 | |
|     EEPROM_WRITE(planner.axis_steps_per_mm);
 | |
|     EEPROM_WRITE(planner.max_feedrate_mm_s);
 | |
|     EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
 | |
| 
 | |
|     EEPROM_WRITE(planner.acceleration);
 | |
|     EEPROM_WRITE(planner.retract_acceleration);
 | |
|     EEPROM_WRITE(planner.travel_acceleration);
 | |
|     EEPROM_WRITE(planner.min_feedrate_mm_s);
 | |
|     EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
 | |
|     EEPROM_WRITE(planner.min_segment_time);
 | |
|     EEPROM_WRITE(planner.max_jerk);
 | |
|     #if !HAS_HOME_OFFSET
 | |
|       const float home_offset[XYZ] = { 0 };
 | |
|     #endif
 | |
|     #if ENABLED(DELTA)
 | |
|       dummy = 0.0;
 | |
|       EEPROM_WRITE(dummy);
 | |
|       EEPROM_WRITE(dummy);
 | |
|       dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
 | |
|       EEPROM_WRITE(dummy);
 | |
|     #else
 | |
|       EEPROM_WRITE(home_offset);
 | |
|     #endif
 | |
| 
 | |
|     #if HOTENDS > 1
 | |
|       // Skip hotend 0 which must be 0
 | |
|       for (uint8_t e = 1; e < HOTENDS; e++)
 | |
|         LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
 | |
|     #endif
 | |
| 
 | |
|     //
 | |
|     // Global Leveling
 | |
|     //
 | |
| 
 | |
|     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|       const float zfh = planner.z_fade_height;
 | |
|     #else
 | |
|       const float zfh = 10.0;
 | |
|     #endif
 | |
|     EEPROM_WRITE(zfh);
 | |
| 
 | |
|     //
 | |
|     // Mesh Bed Leveling
 | |
|     //
 | |
| 
 | |
|     #if ENABLED(MESH_BED_LEVELING)
 | |
|       // Compile time test that sizeof(mbl.z_values) is as expected
 | |
|       static_assert(
 | |
|         sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
 | |
|         "MBL Z array is the wrong size."
 | |
|       );
 | |
|       const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
 | |
|       const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
 | |
|       EEPROM_WRITE(leveling_is_on);
 | |
|       EEPROM_WRITE(mbl.z_offset);
 | |
|       EEPROM_WRITE(mesh_num_x);
 | |
|       EEPROM_WRITE(mesh_num_y);
 | |
|       EEPROM_WRITE(mbl.z_values);
 | |
|     #else // For disabled MBL write a default mesh
 | |
|       const bool leveling_is_on = false;
 | |
|       dummy = 0.0f;
 | |
|       const uint8_t mesh_num_x = 3, mesh_num_y = 3;
 | |
|       EEPROM_WRITE(leveling_is_on);
 | |
|       EEPROM_WRITE(dummy); // z_offset
 | |
|       EEPROM_WRITE(mesh_num_x);
 | |
|       EEPROM_WRITE(mesh_num_y);
 | |
|       for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
 | |
|     #endif // MESH_BED_LEVELING
 | |
| 
 | |
|     #if !HAS_BED_PROBE
 | |
|       const float zprobe_zoffset = 0;
 | |
|     #endif
 | |
|     EEPROM_WRITE(zprobe_zoffset);
 | |
| 
 | |
|     //
 | |
|     // Planar Bed Leveling matrix
 | |
|     //
 | |
| 
 | |
|     #if ABL_PLANAR
 | |
|       EEPROM_WRITE(planner.bed_level_matrix);
 | |
|     #else
 | |
|       dummy = 0.0;
 | |
|       for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
 | |
|     #endif
 | |
| 
 | |
|     //
 | |
|     // Bilinear Auto Bed Leveling
 | |
|     //
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|       // Compile time test that sizeof(z_values) is as expected
 | |
|       static_assert(
 | |
|         sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
 | |
|         "Bilinear Z array is the wrong size."
 | |
|       );
 | |
|       const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
 | |
|       EEPROM_WRITE(grid_max_x);            // 1 byte
 | |
|       EEPROM_WRITE(grid_max_y);            // 1 byte
 | |
|       EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
 | |
|       EEPROM_WRITE(bilinear_start);        // 2 ints
 | |
|       EEPROM_WRITE(z_values);              // 9-256 floats
 | |
|     #else
 | |
|       // For disabled Bilinear Grid write an empty 3x3 grid
 | |
|       const uint8_t grid_max_x = 3, grid_max_y = 3;
 | |
|       const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
 | |
|       dummy = 0.0f;
 | |
|       EEPROM_WRITE(grid_max_x);
 | |
|       EEPROM_WRITE(grid_max_y);
 | |
|       EEPROM_WRITE(bilinear_grid_spacing);
 | |
|       EEPROM_WRITE(bilinear_start);
 | |
|       for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
 | |
|     #endif // AUTO_BED_LEVELING_BILINEAR
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|       EEPROM_WRITE(ubl.state.active);
 | |
|       EEPROM_WRITE(ubl.state.z_offset);
 | |
|       EEPROM_WRITE(ubl.state.storage_slot);
 | |
|     #else
 | |
|       const bool ubl_active = false;
 | |
|       dummy = 0.0f;
 | |
|       const int8_t storage_slot = -1;
 | |
|       EEPROM_WRITE(ubl_active);
 | |
|       EEPROM_WRITE(dummy);
 | |
|       EEPROM_WRITE(storage_slot);
 | |
|     #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
|     // 9 floats for DELTA / Z_DUAL_ENDSTOPS
 | |
|     #if ENABLED(DELTA)
 | |
|       EEPROM_WRITE(endstop_adj);               // 3 floats
 | |
|       EEPROM_WRITE(delta_radius);              // 1 float
 | |
|       EEPROM_WRITE(delta_diagonal_rod);        // 1 float
 | |
|       EEPROM_WRITE(delta_segments_per_second); // 1 float
 | |
|       EEPROM_WRITE(delta_calibration_radius);  // 1 float
 | |
|       EEPROM_WRITE(delta_tower_angle_trim);    // 2 floats
 | |
|       dummy = 0.0f;
 | |
|       for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
 | |
|     #elif ENABLED(Z_DUAL_ENDSTOPS)
 | |
|       EEPROM_WRITE(z_endstop_adj);             // 1 float
 | |
|       dummy = 0.0f;
 | |
|       for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
 | |
|     #else
 | |
|       dummy = 0.0f;
 | |
|       for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
 | |
|     #endif
 | |
| 
 | |
|     #if DISABLED(ULTIPANEL)
 | |
|       constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
 | |
|                     lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
 | |
|                     lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
 | |
|     #endif
 | |
| 
 | |
|     EEPROM_WRITE(lcd_preheat_hotend_temp);
 | |
|     EEPROM_WRITE(lcd_preheat_bed_temp);
 | |
|     EEPROM_WRITE(lcd_preheat_fan_speed);
 | |
| 
 | |
|     for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
 | |
| 
 | |
|       #if ENABLED(PIDTEMP)
 | |
|         if (e < HOTENDS) {
 | |
|           EEPROM_WRITE(PID_PARAM(Kp, e));
 | |
|           EEPROM_WRITE(PID_PARAM(Ki, e));
 | |
|           EEPROM_WRITE(PID_PARAM(Kd, e));
 | |
|           #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|             EEPROM_WRITE(PID_PARAM(Kc, e));
 | |
|           #else
 | |
|             dummy = 1.0f; // 1.0 = default kc
 | |
|             EEPROM_WRITE(dummy);
 | |
|           #endif
 | |
|         }
 | |
|         else
 | |
|       #endif // !PIDTEMP
 | |
|         {
 | |
|           dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
 | |
|           EEPROM_WRITE(dummy); // Kp
 | |
|           dummy = 0.0f;
 | |
|           for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
 | |
|         }
 | |
| 
 | |
|     } // Hotends Loop
 | |
| 
 | |
|     #if DISABLED(PID_EXTRUSION_SCALING)
 | |
|       int lpq_len = 20;
 | |
|     #endif
 | |
|     EEPROM_WRITE(lpq_len);
 | |
| 
 | |
|     #if DISABLED(PIDTEMPBED)
 | |
|       dummy = DUMMY_PID_VALUE;
 | |
|       for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
 | |
|     #else
 | |
|       EEPROM_WRITE(thermalManager.bedKp);
 | |
|       EEPROM_WRITE(thermalManager.bedKi);
 | |
|       EEPROM_WRITE(thermalManager.bedKd);
 | |
|     #endif
 | |
| 
 | |
|     #if !HAS_LCD_CONTRAST
 | |
|       const uint16_t lcd_contrast = 32;
 | |
|     #endif
 | |
|     EEPROM_WRITE(lcd_contrast);
 | |
| 
 | |
|     #if ENABLED(FWRETRACT)
 | |
|       EEPROM_WRITE(autoretract_enabled);
 | |
|       EEPROM_WRITE(retract_length);
 | |
|       #if EXTRUDERS > 1
 | |
|         EEPROM_WRITE(retract_length_swap);
 | |
|       #else
 | |
|         dummy = 0.0f;
 | |
|         EEPROM_WRITE(dummy);
 | |
|       #endif
 | |
|       EEPROM_WRITE(retract_feedrate_mm_s);
 | |
|       EEPROM_WRITE(retract_zlift);
 | |
|       EEPROM_WRITE(retract_recover_length);
 | |
|       #if EXTRUDERS > 1
 | |
|         EEPROM_WRITE(retract_recover_length_swap);
 | |
|       #else
 | |
|         dummy = 0.0f;
 | |
|         EEPROM_WRITE(dummy);
 | |
|       #endif
 | |
|       EEPROM_WRITE(retract_recover_feedrate_mm_s);
 | |
|     #endif // FWRETRACT
 | |
| 
 | |
|     EEPROM_WRITE(volumetric_enabled);
 | |
| 
 | |
|     // Save filament sizes
 | |
|     for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
 | |
|       if (q < COUNT(filament_size)) dummy = filament_size[q];
 | |
|       EEPROM_WRITE(dummy);
 | |
|     }
 | |
| 
 | |
|     // Save TMC2130 Configuration, and placeholder values
 | |
|     uint16_t val;
 | |
|     #if ENABLED(HAVE_TMC2130)
 | |
|       #if ENABLED(X_IS_TMC2130)
 | |
|         val = stepperX.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(Y_IS_TMC2130)
 | |
|         val = stepperY.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(Z_IS_TMC2130)
 | |
|         val = stepperZ.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(X2_IS_TMC2130)
 | |
|         val = stepperX2.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(Y2_IS_TMC2130)
 | |
|         val = stepperY2.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(Z2_IS_TMC2130)
 | |
|         val = stepperZ2.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(E0_IS_TMC2130)
 | |
|         val = stepperE0.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(E1_IS_TMC2130)
 | |
|         val = stepperE1.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(E2_IS_TMC2130)
 | |
|         val = stepperE2.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(E3_IS_TMC2130)
 | |
|         val = stepperE3.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|       #if ENABLED(E4_IS_TMC2130)
 | |
|         val = stepperE4.getCurrent();
 | |
|       #else
 | |
|         val = 0;
 | |
|       #endif
 | |
|       EEPROM_WRITE(val);
 | |
|     #else
 | |
|       val = 0;
 | |
|       for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
 | |
|     #endif
 | |
| 
 | |
|     //
 | |
|     // Linear Advance
 | |
|     //
 | |
| 
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
|       EEPROM_WRITE(planner.extruder_advance_k);
 | |
|       EEPROM_WRITE(planner.advance_ed_ratio);
 | |
|     #else
 | |
|       dummy = 0.0f;
 | |
|       EEPROM_WRITE(dummy);
 | |
|       EEPROM_WRITE(dummy);
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_MOTOR_CURRENT_PWM
 | |
|       for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
 | |
|     #else
 | |
|       const uint32_t dummyui32 = 0;
 | |
|       for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
 | |
|     #endif
 | |
| 
 | |
|     if (!eeprom_error) {
 | |
|       const int eeprom_size = eeprom_index;
 | |
| 
 | |
|       const uint16_t final_crc = working_crc;
 | |
| 
 | |
|       // Write the EEPROM header
 | |
|       eeprom_index = EEPROM_OFFSET;
 | |
| 
 | |
|       EEPROM_WRITE(version);
 | |
|       EEPROM_WRITE(final_crc);
 | |
| 
 | |
|       // Report storage size
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
 | |
|       SERIAL_ECHOPAIR(" bytes; crc ", final_crc);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
 | |
|       if (ubl.state.storage_slot >= 0)
 | |
|         store_mesh(ubl.state.storage_slot);
 | |
|     #endif
 | |
| 
 | |
|     return !eeprom_error;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M501 - Retrieve Configuration
 | |
|    */
 | |
|   bool MarlinSettings::load() {
 | |
|     uint16_t working_crc = 0;
 | |
| 
 | |
|     EEPROM_START();
 | |
| 
 | |
|     char stored_ver[4];
 | |
|     EEPROM_READ(stored_ver);
 | |
| 
 | |
|     uint16_t stored_crc;
 | |
|     EEPROM_READ(stored_crc);
 | |
| 
 | |
|     // Version has to match or defaults are used
 | |
|     if (strncmp(version, stored_ver, 3) != 0) {
 | |
|       if (stored_ver[0] != 'V') {
 | |
|         stored_ver[0] = '?';
 | |
|         stored_ver[1] = '\0';
 | |
|       }
 | |
|       SERIAL_ECHO_START();
 | |
|       SERIAL_ECHOPGM("EEPROM version mismatch ");
 | |
|       SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
 | |
|       SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
 | |
|       reset();
 | |
|     }
 | |
|     else {
 | |
|       float dummy = 0;
 | |
| 
 | |
|       working_crc = 0; //clear before reading first "real data"
 | |
| 
 | |
|       // Number of esteppers may change
 | |
|       uint8_t esteppers;
 | |
|       EEPROM_READ(esteppers);
 | |
| 
 | |
|       // Get only the number of E stepper parameters previously stored
 | |
|       // Any steppers added later are set to their defaults
 | |
|       const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
 | |
|       const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
 | |
|       float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
 | |
|       uint32_t tmp3[XYZ + esteppers];
 | |
|       EEPROM_READ(tmp1);
 | |
|       EEPROM_READ(tmp2);
 | |
|       EEPROM_READ(tmp3);
 | |
|       LOOP_XYZE_N(i) {
 | |
|         planner.axis_steps_per_mm[i]          = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
 | |
|         planner.max_feedrate_mm_s[i]          = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
 | |
|         planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
 | |
|       }
 | |
| 
 | |
|       EEPROM_READ(planner.acceleration);
 | |
|       EEPROM_READ(planner.retract_acceleration);
 | |
|       EEPROM_READ(planner.travel_acceleration);
 | |
|       EEPROM_READ(planner.min_feedrate_mm_s);
 | |
|       EEPROM_READ(planner.min_travel_feedrate_mm_s);
 | |
|       EEPROM_READ(planner.min_segment_time);
 | |
|       EEPROM_READ(planner.max_jerk);
 | |
| 
 | |
|       #if !HAS_HOME_OFFSET
 | |
|         float home_offset[XYZ];
 | |
|       #endif
 | |
|       EEPROM_READ(home_offset);
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         home_offset[X_AXIS] = 0.0;
 | |
|         home_offset[Y_AXIS] = 0.0;
 | |
|         home_offset[Z_AXIS] -= DELTA_HEIGHT;
 | |
|       #endif
 | |
| 
 | |
|       #if HOTENDS > 1
 | |
|         // Skip hotend 0 which must be 0
 | |
|         for (uint8_t e = 1; e < HOTENDS; e++)
 | |
|           LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
 | |
|       #endif
 | |
| 
 | |
|       //
 | |
|       // Global Leveling
 | |
|       //
 | |
| 
 | |
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|         EEPROM_READ(planner.z_fade_height);
 | |
|       #else
 | |
|         EEPROM_READ(dummy);
 | |
|       #endif
 | |
| 
 | |
|       //
 | |
|       // Mesh (Manual) Bed Leveling
 | |
|       //
 | |
| 
 | |
|       bool leveling_is_on;
 | |
|       uint8_t mesh_num_x, mesh_num_y;
 | |
|       EEPROM_READ(leveling_is_on);
 | |
|       EEPROM_READ(dummy);
 | |
|       EEPROM_READ(mesh_num_x);
 | |
|       EEPROM_READ(mesh_num_y);
 | |
| 
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
|         mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
 | |
|         mbl.z_offset = dummy;
 | |
|         if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
 | |
|           // EEPROM data fits the current mesh
 | |
|           EEPROM_READ(mbl.z_values);
 | |
|         }
 | |
|         else {
 | |
|           // EEPROM data is stale
 | |
|           mbl.reset();
 | |
|           for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
 | |
|         }
 | |
|       #else
 | |
|         // MBL is disabled - skip the stored data
 | |
|         for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
 | |
|       #endif // MESH_BED_LEVELING
 | |
| 
 | |
|       #if !HAS_BED_PROBE
 | |
|         float zprobe_zoffset;
 | |
|       #endif
 | |
|       EEPROM_READ(zprobe_zoffset);
 | |
| 
 | |
|       //
 | |
|       // Planar Bed Leveling matrix
 | |
|       //
 | |
| 
 | |
|       #if ABL_PLANAR
 | |
|         EEPROM_READ(planner.bed_level_matrix);
 | |
|       #else
 | |
|         for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
 | |
|       #endif
 | |
| 
 | |
|       //
 | |
|       // Bilinear Auto Bed Leveling
 | |
|       //
 | |
| 
 | |
|       uint8_t grid_max_x, grid_max_y;
 | |
|       EEPROM_READ(grid_max_x);                       // 1 byte
 | |
|       EEPROM_READ(grid_max_y);                       // 1 byte
 | |
|       #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
 | |
|         if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
 | |
|           set_bed_leveling_enabled(false);
 | |
|           EEPROM_READ(bilinear_grid_spacing);        // 2 ints
 | |
|           EEPROM_READ(bilinear_start);               // 2 ints
 | |
|           EEPROM_READ(z_values);                     // 9 to 256 floats
 | |
|         }
 | |
|         else // EEPROM data is stale
 | |
|       #endif // AUTO_BED_LEVELING_BILINEAR
 | |
|         {
 | |
|           // Skip past disabled (or stale) Bilinear Grid data
 | |
|           int bgs[2], bs[2];
 | |
|           EEPROM_READ(bgs);
 | |
|           EEPROM_READ(bs);
 | |
|           for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
 | |
|         }
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         EEPROM_READ(ubl.state.active);
 | |
|         EEPROM_READ(ubl.state.z_offset);
 | |
|         EEPROM_READ(ubl.state.storage_slot);
 | |
|       #else
 | |
|         bool dummyb;
 | |
|         uint8_t dummyui8;
 | |
|         EEPROM_READ(dummyb);
 | |
|         EEPROM_READ(dummy);
 | |
|         EEPROM_READ(dummyui8);
 | |
|       #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         EEPROM_READ(endstop_adj);               // 3 floats
 | |
|         EEPROM_READ(delta_radius);              // 1 float
 | |
|         EEPROM_READ(delta_diagonal_rod);        // 1 float
 | |
|         EEPROM_READ(delta_segments_per_second); // 1 float
 | |
|         EEPROM_READ(delta_calibration_radius);  // 1 float
 | |
|         EEPROM_READ(delta_tower_angle_trim);    // 2 floats
 | |
|         dummy = 0.0f;
 | |
|         for (uint8_t q=3; q--;) EEPROM_READ(dummy);
 | |
|       #elif ENABLED(Z_DUAL_ENDSTOPS)
 | |
|         EEPROM_READ(z_endstop_adj);
 | |
|         dummy = 0.0f;
 | |
|         for (uint8_t q=11; q--;) EEPROM_READ(dummy);
 | |
|       #else
 | |
|         dummy = 0.0f;
 | |
|         for (uint8_t q=12; q--;) EEPROM_READ(dummy);
 | |
|       #endif
 | |
| 
 | |
|       #if DISABLED(ULTIPANEL)
 | |
|         int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 | |
|       #endif
 | |
| 
 | |
|       EEPROM_READ(lcd_preheat_hotend_temp);
 | |
|       EEPROM_READ(lcd_preheat_bed_temp);
 | |
|       EEPROM_READ(lcd_preheat_fan_speed);
 | |
| 
 | |
|       //EEPROM_ASSERT(
 | |
|       //  WITHIN(lcd_preheat_fan_speed, 0, 255),
 | |
|       //  "lcd_preheat_fan_speed out of range"
 | |
|       //);
 | |
| 
 | |
|       #if ENABLED(PIDTEMP)
 | |
|         for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
 | |
|           EEPROM_READ(dummy); // Kp
 | |
|           if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
 | |
|             // do not need to scale PID values as the values in EEPROM are already scaled
 | |
|             PID_PARAM(Kp, e) = dummy;
 | |
|             EEPROM_READ(PID_PARAM(Ki, e));
 | |
|             EEPROM_READ(PID_PARAM(Kd, e));
 | |
|             #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|               EEPROM_READ(PID_PARAM(Kc, e));
 | |
|             #else
 | |
|               EEPROM_READ(dummy);
 | |
|             #endif
 | |
|           }
 | |
|           else {
 | |
|             for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
 | |
|           }
 | |
|         }
 | |
|       #else // !PIDTEMP
 | |
|         // 4 x 4 = 16 slots for PID parameters
 | |
|         for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy);  // Kp, Ki, Kd, Kc
 | |
|       #endif // !PIDTEMP
 | |
| 
 | |
|       #if DISABLED(PID_EXTRUSION_SCALING)
 | |
|         int lpq_len;
 | |
|       #endif
 | |
|       EEPROM_READ(lpq_len);
 | |
| 
 | |
|       #if ENABLED(PIDTEMPBED)
 | |
|         EEPROM_READ(dummy); // bedKp
 | |
|         if (dummy != DUMMY_PID_VALUE) {
 | |
|           thermalManager.bedKp = dummy;
 | |
|           EEPROM_READ(thermalManager.bedKi);
 | |
|           EEPROM_READ(thermalManager.bedKd);
 | |
|         }
 | |
|       #else
 | |
|         for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
 | |
|       #endif
 | |
| 
 | |
|       #if !HAS_LCD_CONTRAST
 | |
|         uint16_t lcd_contrast;
 | |
|       #endif
 | |
|       EEPROM_READ(lcd_contrast);
 | |
| 
 | |
|       #if ENABLED(FWRETRACT)
 | |
|         EEPROM_READ(autoretract_enabled);
 | |
|         EEPROM_READ(retract_length);
 | |
|         #if EXTRUDERS > 1
 | |
|           EEPROM_READ(retract_length_swap);
 | |
|         #else
 | |
|           EEPROM_READ(dummy);
 | |
|         #endif
 | |
|         EEPROM_READ(retract_feedrate_mm_s);
 | |
|         EEPROM_READ(retract_zlift);
 | |
|         EEPROM_READ(retract_recover_length);
 | |
|         #if EXTRUDERS > 1
 | |
|           EEPROM_READ(retract_recover_length_swap);
 | |
|         #else
 | |
|           EEPROM_READ(dummy);
 | |
|         #endif
 | |
|         EEPROM_READ(retract_recover_feedrate_mm_s);
 | |
|       #endif // FWRETRACT
 | |
| 
 | |
|       EEPROM_READ(volumetric_enabled);
 | |
| 
 | |
|       for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
 | |
|         EEPROM_READ(dummy);
 | |
|         if (q < COUNT(filament_size)) filament_size[q] = dummy;
 | |
|       }
 | |
| 
 | |
|       uint16_t val;
 | |
|       #if ENABLED(HAVE_TMC2130)
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(X_IS_TMC2130)
 | |
|           stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(Y_IS_TMC2130)
 | |
|           stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(Z_IS_TMC2130)
 | |
|           stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(X2_IS_TMC2130)
 | |
|           stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(Y2_IS_TMC2130)
 | |
|           stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(Z2_IS_TMC2130)
 | |
|           stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(E0_IS_TMC2130)
 | |
|           stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(E1_IS_TMC2130)
 | |
|           stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(E2_IS_TMC2130)
 | |
|           stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(E3_IS_TMC2130)
 | |
|           stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|         EEPROM_READ(val);
 | |
|         #if ENABLED(E4_IS_TMC2130)
 | |
|           stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
 | |
|         #endif
 | |
|       #else
 | |
|         for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
 | |
|       #endif
 | |
| 
 | |
|       //
 | |
|       // Linear Advance
 | |
|       //
 | |
| 
 | |
|       #if ENABLED(LIN_ADVANCE)
 | |
|         EEPROM_READ(planner.extruder_advance_k);
 | |
|         EEPROM_READ(planner.advance_ed_ratio);
 | |
|       #else
 | |
|         EEPROM_READ(dummy);
 | |
|         EEPROM_READ(dummy);
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_MOTOR_CURRENT_PWM
 | |
|         for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
 | |
|       #else
 | |
|         uint32_t dummyui32;
 | |
|         for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
 | |
|       #endif
 | |
| 
 | |
|       if (working_crc == stored_crc) {
 | |
|           postprocess();
 | |
|           SERIAL_ECHO_START();
 | |
|           SERIAL_ECHO(version);
 | |
|           SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
 | |
|           SERIAL_ECHOPAIR(" bytes; crc ", working_crc);
 | |
|           SERIAL_ECHOLNPGM(")");
 | |
|       }
 | |
|       else {
 | |
|         SERIAL_ERROR_START();
 | |
|         SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
 | |
|         SERIAL_ERROR(stored_crc);
 | |
|         SERIAL_ERRORPGM(" != ");
 | |
|         SERIAL_ERROR(working_crc);
 | |
|         SERIAL_ERRORLNPGM(" (calculated)!");
 | |
|         reset();
 | |
|       }
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         meshes_begin = (eeprom_index + 32) & 0xFFF8;  // Pad the end of configuration data so it
 | |
|                                                       // can float up or down a little bit without
 | |
|                                                       // disrupting the mesh data
 | |
|         ubl.report_state();
 | |
| 
 | |
|         if (!ubl.sanity_check()) {
 | |
|           SERIAL_EOL();
 | |
|           ubl.echo_name();
 | |
|           SERIAL_ECHOLNPGM(" initialized.\n");
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLPGM("?Can't enable ");
 | |
|           ubl.echo_name();
 | |
|           SERIAL_PROTOCOLLNPGM(".");
 | |
|           ubl.reset();
 | |
|         }
 | |
| 
 | |
|         if (ubl.state.storage_slot >= 0) {
 | |
|           load_mesh(ubl.state.storage_slot);
 | |
|           SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot);
 | |
|           SERIAL_ECHOLNPGM(" loaded from storage.");
 | |
|         }
 | |
|         else {
 | |
|           ubl.reset();
 | |
|           SERIAL_ECHOLNPGM("UBL System reset()");
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(EEPROM_CHITCHAT)
 | |
|       report();
 | |
|     #endif
 | |
| 
 | |
|     return !eeprom_error;
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|     void ubl_invalid_slot(const int s) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Invalid slot.");
 | |
|       SERIAL_PROTOCOL(s);
 | |
|       SERIAL_PROTOCOLLNPGM(" mesh slots available.");
 | |
|     }
 | |
| 
 | |
|     int MarlinSettings::calc_num_meshes() {
 | |
|       //obviously this will get more sophisticated once we've added an actual MAT
 | |
| 
 | |
|       if (meshes_begin <= 0) return 0;
 | |
| 
 | |
|       return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
 | |
|     }
 | |
| 
 | |
|     void MarlinSettings::store_mesh(int8_t slot) {
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|         const int a = calc_num_meshes();
 | |
|         if (!WITHIN(slot, 0, a - 1)) {
 | |
|           ubl_invalid_slot(a);
 | |
|           SERIAL_PROTOCOLPAIR("E2END=", E2END);
 | |
|           SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
 | |
|           SERIAL_PROTOCOLLNPAIR(" slot=", slot);
 | |
|           SERIAL_EOL();
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         uint16_t crc = 0;
 | |
|         int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
 | |
| 
 | |
|         write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
 | |
| 
 | |
|         // Write crc to MAT along with other data, or just tack on to the beginning or end
 | |
| 
 | |
|         SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
 | |
| 
 | |
|       #else
 | |
| 
 | |
|         // Other mesh types
 | |
| 
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|         const int16_t a = settings.calc_num_meshes();
 | |
| 
 | |
|         if (!WITHIN(slot, 0, a - 1)) {
 | |
|           ubl_invalid_slot(a);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         uint16_t crc = 0;
 | |
|         int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
 | |
|         uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
 | |
|         read_data(pos, dest, sizeof(ubl.z_values), &crc);
 | |
| 
 | |
|         // Compare crc with crc from MAT, or read from end
 | |
| 
 | |
|         SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
 | |
| 
 | |
|       #else
 | |
| 
 | |
|         // Other mesh types
 | |
| 
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     //void MarlinSettings::delete_mesh() { return; }
 | |
|     //void MarlinSettings::defrag_meshes() { return; }
 | |
| 
 | |
|   #endif // AUTO_BED_LEVELING_UBL
 | |
| 
 | |
| #else // !EEPROM_SETTINGS
 | |
| 
 | |
|   bool MarlinSettings::save() {
 | |
|     SERIAL_ERROR_START();
 | |
|     SERIAL_ERRORLNPGM("EEPROM disabled");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #endif // !EEPROM_SETTINGS
 | |
| 
 | |
| /**
 | |
|  * M502 - Reset Configuration
 | |
|  */
 | |
| void MarlinSettings::reset() {
 | |
|   static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
 | |
|   static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
 | |
|   LOOP_XYZE_N(i) {
 | |
|     planner.axis_steps_per_mm[i]          = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
 | |
|     planner.max_feedrate_mm_s[i]          = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
 | |
|     planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
 | |
|   }
 | |
| 
 | |
|   planner.acceleration = DEFAULT_ACCELERATION;
 | |
|   planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
 | |
|   planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
 | |
|   planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
 | |
|   planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
 | |
|   planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
 | |
|   planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
 | |
|   planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
 | |
|   planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
 | |
|   planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
 | |
| 
 | |
|   #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|     planner.z_fade_height = 0.0;
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_HOME_OFFSET
 | |
|     ZERO(home_offset);
 | |
|   #endif
 | |
| 
 | |
|   #if HOTENDS > 1
 | |
|     constexpr float tmp4[XYZ][HOTENDS] = {
 | |
|       HOTEND_OFFSET_X,
 | |
|       HOTEND_OFFSET_Y
 | |
|       #ifdef HOTEND_OFFSET_Z
 | |
|         , HOTEND_OFFSET_Z
 | |
|       #else
 | |
|         , { 0 }
 | |
|       #endif
 | |
|     };
 | |
|     static_assert(
 | |
|       tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
 | |
|       "Offsets for the first hotend must be 0.0."
 | |
|     );
 | |
|     LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
 | |
|   #endif
 | |
| 
 | |
|   // Applies to all MBL and ABL
 | |
|   #if HAS_LEVELING
 | |
|     reset_bed_level();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BED_PROBE
 | |
|     zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     const float adj[ABC] = DELTA_ENDSTOP_ADJ,
 | |
|                 dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
 | |
|     COPY(endstop_adj, adj);
 | |
|     delta_radius = DELTA_RADIUS;
 | |
|     delta_diagonal_rod = DELTA_DIAGONAL_ROD;
 | |
|     delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
 | |
|     delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
 | |
|     delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
 | |
|     delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
 | |
|     home_offset[Z_AXIS] = 0;
 | |
| 
 | |
|   #elif ENABLED(Z_DUAL_ENDSTOPS)
 | |
| 
 | |
|     z_endstop_adj =
 | |
|       #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
 | |
|         Z_DUAL_ENDSTOPS_ADJUSTMENT
 | |
|       #else
 | |
|         0
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(ULTIPANEL)
 | |
|     lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
 | |
|     lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
 | |
|     lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
 | |
|     lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
 | |
|     lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
 | |
|     lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_LCD_CONTRAST
 | |
|     lcd_contrast = DEFAULT_LCD_CONTRAST;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(PIDTEMP)
 | |
|     #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
 | |
|       HOTEND_LOOP()
 | |
|     #endif
 | |
|     {
 | |
|       PID_PARAM(Kp, e) = DEFAULT_Kp;
 | |
|       PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
 | |
|       PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
 | |
|       #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|         PID_PARAM(Kc, e) = DEFAULT_Kc;
 | |
|       #endif
 | |
|     }
 | |
|     #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|       lpq_len = 20; // default last-position-queue size
 | |
|     #endif
 | |
|   #endif // PIDTEMP
 | |
| 
 | |
|   #if ENABLED(PIDTEMPBED)
 | |
|     thermalManager.bedKp = DEFAULT_bedKp;
 | |
|     thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
 | |
|     thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(FWRETRACT)
 | |
|     autoretract_enabled = false;
 | |
|     retract_length = RETRACT_LENGTH;
 | |
|     #if EXTRUDERS > 1
 | |
|       retract_length_swap = RETRACT_LENGTH_SWAP;
 | |
|     #endif
 | |
|     retract_feedrate_mm_s = RETRACT_FEEDRATE;
 | |
|     retract_zlift = RETRACT_ZLIFT;
 | |
|     retract_recover_length = RETRACT_RECOVER_LENGTH;
 | |
|     #if EXTRUDERS > 1
 | |
|       retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | |
|     #endif
 | |
|     retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
 | |
|   #endif
 | |
| 
 | |
|   volumetric_enabled =
 | |
|     #if ENABLED(VOLUMETRIC_DEFAULT_ON)
 | |
|       true
 | |
|     #else
 | |
|       false
 | |
|     #endif
 | |
|   ;
 | |
|   for (uint8_t q = 0; q < COUNT(filament_size); q++)
 | |
|     filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
| 
 | |
|   endstops.enable_globally(
 | |
|     #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
 | |
|       true
 | |
|     #else
 | |
|       false
 | |
|     #endif
 | |
|   );
 | |
| 
 | |
|   #if ENABLED(HAVE_TMC2130)
 | |
|     #if ENABLED(X_IS_TMC2130)
 | |
|       stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(Y_IS_TMC2130)
 | |
|       stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(Z_IS_TMC2130)
 | |
|       stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(X2_IS_TMC2130)
 | |
|       stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(Y2_IS_TMC2130)
 | |
|       stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(Z2_IS_TMC2130)
 | |
|       stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(E0_IS_TMC2130)
 | |
|       stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(E1_IS_TMC2130)
 | |
|       stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(E2_IS_TMC2130)
 | |
|       stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|     #if ENABLED(E3_IS_TMC2130)
 | |
|       stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(LIN_ADVANCE)
 | |
|     planner.extruder_advance_k = LIN_ADVANCE_K;
 | |
|     planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_MOTOR_CURRENT_PWM
 | |
|     uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
 | |
|     for (uint8_t q = 3; q--;)
 | |
|       stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_UBL)
 | |
|     ubl.reset();
 | |
|   #endif
 | |
| 
 | |
|   postprocess();
 | |
| 
 | |
|   SERIAL_ECHO_START();
 | |
|   SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
 | |
| }
 | |
| 
 | |
| #if DISABLED(DISABLE_M503)
 | |
| 
 | |
|   #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
 | |
| 
 | |
|   /**
 | |
|    * M503 - Report current settings in RAM
 | |
|    *
 | |
|    * Unless specifically disabled, M503 is available even without EEPROM
 | |
|    */
 | |
|   void MarlinSettings::report(bool forReplay) {
 | |
| 
 | |
|     /**
 | |
|      * Announce current units, in case inches are being displayed
 | |
|      */
 | |
|     CONFIG_ECHO_START;
 | |
|     #if ENABLED(INCH_MODE_SUPPORT)
 | |
|       #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
 | |
|       #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
 | |
|       SERIAL_ECHOPGM("  G2");
 | |
|       SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
 | |
|       SERIAL_ECHOPGM(" ; Units in ");
 | |
|       serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
 | |
|     #else
 | |
|       #define LINEAR_UNIT(N) N
 | |
|       #define VOLUMETRIC_UNIT(N) N
 | |
|       SERIAL_ECHOLNPGM("  G21    ; Units in mm");
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|       // Temperature units - for Ultipanel temperature options
 | |
| 
 | |
|       CONFIG_ECHO_START;
 | |
|       #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|         #define TEMP_UNIT(N) parser.to_temp_units(N)
 | |
|         SERIAL_ECHOPGM("  M149 ");
 | |
|         SERIAL_CHAR(parser.temp_units_code());
 | |
|         SERIAL_ECHOPGM(" ; Units in ");
 | |
|         serialprintPGM(parser.temp_units_name());
 | |
|       #else
 | |
|         #define TEMP_UNIT(N) N
 | |
|         SERIAL_ECHOLNPGM("  M149 C ; Units in Celsius");
 | |
|       #endif
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_EOL();
 | |
| 
 | |
|     /**
 | |
|      * Volumetric extrusion M200
 | |
|      */
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPGM("Filament settings:");
 | |
|       if (volumetric_enabled)
 | |
|         SERIAL_EOL();
 | |
|       else
 | |
|         SERIAL_ECHOLNPGM(" Disabled");
 | |
|     }
 | |
| 
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M200 D", filament_size[0]);
 | |
|     SERIAL_EOL();
 | |
|     #if EXTRUDERS > 1
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M200 T1 D", filament_size[1]);
 | |
|       SERIAL_EOL();
 | |
|       #if EXTRUDERS > 2
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOPAIR("  M200 T2 D", filament_size[2]);
 | |
|         SERIAL_EOL();
 | |
|         #if EXTRUDERS > 3
 | |
|           CONFIG_ECHO_START;
 | |
|           SERIAL_ECHOPAIR("  M200 T3 D", filament_size[3]);
 | |
|           SERIAL_EOL();
 | |
|           #if EXTRUDERS > 4
 | |
|             CONFIG_ECHO_START;
 | |
|             SERIAL_ECHOPAIR("  M200 T4 D", filament_size[4]);
 | |
|             SERIAL_EOL();
 | |
|           #endif // EXTRUDERS > 4
 | |
|         #endif // EXTRUDERS > 3
 | |
|       #endif // EXTRUDERS > 2
 | |
|     #endif // EXTRUDERS > 1
 | |
| 
 | |
|     if (!volumetric_enabled) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("  M200 D0");
 | |
|     }
 | |
| 
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("Steps per unit:");
 | |
|     }
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
 | |
|     #if DISABLED(DISTINCT_E_FACTORS)
 | |
|       SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
 | |
|     #endif
 | |
|     SERIAL_EOL();
 | |
|     #if ENABLED(DISTINCT_E_FACTORS)
 | |
|       CONFIG_ECHO_START;
 | |
|       for (uint8_t i = 0; i < E_STEPPERS; i++) {
 | |
|         SERIAL_ECHOPAIR("  M92 T", (int)i);
 | |
|         SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
 | |
|     }
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
 | |
|     #if DISABLED(DISTINCT_E_FACTORS)
 | |
|       SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
 | |
|     #endif
 | |
|     SERIAL_EOL();
 | |
|     #if ENABLED(DISTINCT_E_FACTORS)
 | |
|       CONFIG_ECHO_START;
 | |
|       for (uint8_t i = 0; i < E_STEPPERS; i++) {
 | |
|         SERIAL_ECHOPAIR("  M203 T", (int)i);
 | |
|         SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
 | |
|     }
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
 | |
|     #if DISABLED(DISTINCT_E_FACTORS)
 | |
|       SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
 | |
|     #endif
 | |
|     SERIAL_EOL();
 | |
|     #if ENABLED(DISTINCT_E_FACTORS)
 | |
|       CONFIG_ECHO_START;
 | |
|       for (uint8_t i = 0; i < E_STEPPERS; i++) {
 | |
|         SERIAL_ECHOPAIR("  M201 T", (int)i);
 | |
|         SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
 | |
|     }
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M204 P", LINEAR_UNIT(planner.acceleration));
 | |
|     SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
 | |
|     SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
 | |
| 
 | |
|     if (!forReplay) {
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
 | |
|     }
 | |
|     CONFIG_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
 | |
|     SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
 | |
|     SERIAL_ECHOPAIR(" B", planner.min_segment_time);
 | |
|     SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
 | |
|     SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
 | |
|     SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
 | |
| 
 | |
|     #if HAS_M206_COMMAND
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Home offset:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
 | |
|       SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
 | |
|       SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
 | |
|     #endif
 | |
| 
 | |
|     #if HOTENDS > 1
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Hotend offsets:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       for (uint8_t e = 1; e < HOTENDS; e++) {
 | |
|         SERIAL_ECHOPAIR("  M218 T", (int)e);
 | |
|         SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
 | |
|         SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
 | |
|         #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
 | |
|           SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
 | |
|         #endif
 | |
|         SERIAL_EOL();
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M420 S", leveling_is_valid() ? 1 : 0);
 | |
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|         SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
|       for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
 | |
|         for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
 | |
|           CONFIG_ECHO_START;
 | |
|           SERIAL_ECHOPAIR("  G29 S3 X", (int)px + 1);
 | |
|           SERIAL_ECHOPAIR(" Y", (int)py + 1);
 | |
|           SERIAL_ECHOPGM(" Z");
 | |
|           SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_UBL)
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         ubl.echo_name();
 | |
|         SERIAL_ECHOLNPGM(":");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M420 S", leveling_is_active() ? 1 : 0);
 | |
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|         SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         SERIAL_EOL();
 | |
|         ubl.report_state();
 | |
| 
 | |
|         SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot);
 | |
| 
 | |
|         SERIAL_ECHOPGM("z_offset: ");
 | |
|         SERIAL_ECHO_F(ubl.state.z_offset, 6);
 | |
|         SERIAL_EOL();
 | |
| 
 | |
|         SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
 | |
|         SERIAL_ECHOLNPGM(" meshes.\n");
 | |
|       }
 | |
| 
 | |
|     #elif HAS_ABL
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Auto Bed Leveling:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M420 S", leveling_is_active() ? 1 : 0);
 | |
|       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
 | |
|         SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DELTA)
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Endstop adjustment:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
 | |
|       SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
 | |
|       SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M665 L", LINEAR_UNIT(delta_diagonal_rod));
 | |
|       SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
 | |
|       SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
 | |
|       SERIAL_ECHOPAIR(" S", delta_segments_per_second);
 | |
|       SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
 | |
|       SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
 | |
|       SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
 | |
|       SERIAL_ECHOPAIR(" Z", 0.00);
 | |
|       SERIAL_EOL();
 | |
|     #elif ENABLED(Z_DUAL_ENDSTOPS)
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPAIR("  M666 Z", LINEAR_UNIT(z_endstop_adj));
 | |
|     #endif // DELTA
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Material heatup parameters:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
 | |
|         SERIAL_ECHOPAIR("  M145 S", (int)i);
 | |
|         SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
 | |
|         SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
 | |
|         SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
 | |
|       }
 | |
|     #endif // ULTIPANEL
 | |
| 
 | |
|     #if HAS_PID_HEATING
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("PID settings:");
 | |
|       }
 | |
|       #if ENABLED(PIDTEMP)
 | |
|         #if HOTENDS > 1
 | |
|           if (forReplay) {
 | |
|             HOTEND_LOOP() {
 | |
|               CONFIG_ECHO_START;
 | |
|               SERIAL_ECHOPAIR("  M301 E", e);
 | |
|               SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
 | |
|               SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
 | |
|               SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
 | |
|               #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|                 SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
 | |
|                 if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
 | |
|               #endif
 | |
|               SERIAL_EOL();
 | |
|             }
 | |
|           }
 | |
|           else
 | |
|         #endif // HOTENDS > 1
 | |
|         // !forReplay || HOTENDS == 1
 | |
|         {
 | |
|           CONFIG_ECHO_START;
 | |
|           SERIAL_ECHOPAIR("  M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
 | |
|           SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
 | |
|           SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
 | |
|           #if ENABLED(PID_EXTRUSION_SCALING)
 | |
|             SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
 | |
|             SERIAL_ECHOPAIR(" L", lpq_len);
 | |
|           #endif
 | |
|           SERIAL_EOL();
 | |
|         }
 | |
|       #endif // PIDTEMP
 | |
| 
 | |
|       #if ENABLED(PIDTEMPBED)
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOPAIR("  M304 P", thermalManager.bedKp);
 | |
|         SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
 | |
|         SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
 | |
|         SERIAL_EOL();
 | |
|       #endif
 | |
| 
 | |
|     #endif // PIDTEMP || PIDTEMPBED
 | |
| 
 | |
|     #if HAS_LCD_CONTRAST
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("LCD Contrast:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPAIR("  M250 C", lcd_contrast);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(FWRETRACT)
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M207 S", LINEAR_UNIT(retract_length));
 | |
|       #if EXTRUDERS > 1
 | |
|         SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_length_swap));
 | |
|       #endif
 | |
|       SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
 | |
|       SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M208 S", LINEAR_UNIT(retract_recover_length));
 | |
|       #if EXTRUDERS > 1
 | |
|         SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_recover_length_swap));
 | |
|       #endif
 | |
|       SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
 | |
| 
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPAIR("  M209 S", autoretract_enabled ? 1 : 0);
 | |
| 
 | |
|     #endif // FWRETRACT
 | |
| 
 | |
|     /**
 | |
|      * Auto Bed Leveling
 | |
|      */
 | |
|     #if HAS_BED_PROBE
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOLNPAIR("  M851 Z", LINEAR_UNIT(zprobe_zoffset));
 | |
|     #endif
 | |
| 
 | |
|     /**
 | |
|      * TMC2130 stepper driver current
 | |
|      */
 | |
|     #if ENABLED(HAVE_TMC2130)
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Stepper driver current:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHO("  M906");
 | |
|       #if ENABLED(X_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(Y_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(Z_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(X2_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(Y2_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(Z2_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(E0_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(E1_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(E2_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
 | |
|       #endif
 | |
|       #if ENABLED(E3_IS_TMC2130)
 | |
|         SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
 | |
|       #endif
 | |
|       SERIAL_EOL();
 | |
|     #endif
 | |
| 
 | |
|     /**
 | |
|      * Linear Advance
 | |
|      */
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
|       if (!forReplay) {
 | |
|         CONFIG_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Linear Advance:");
 | |
|       }
 | |
|       CONFIG_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("  M900 K", planner.extruder_advance_k);
 | |
|       SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_MOTOR_CURRENT_PWM
 | |
|       CONFIG_ECHO_START;
 | |
|       if (!forReplay) {
 | |
|         SERIAL_ECHOLNPGM("Stepper motor currents:");
 | |
|         CONFIG_ECHO_START;
 | |
|       }
 | |
|       SERIAL_ECHOPAIR("  M907 X", stepper.motor_current_setting[0]);
 | |
|       SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
 | |
|       SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
 | |
|       SERIAL_EOL();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // !DISABLE_M503
 |