You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1697 lines
						
					
					
						
							49 KiB
						
					
					
				
			
		
		
	
	
							1697 lines
						
					
					
						
							49 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * stepper.cpp - A singleton object to execute motion plans using stepper motors
 | |
|  * Marlin Firmware
 | |
|  *
 | |
|  * Derived from Grbl
 | |
|  * Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
|  *
 | |
|  * Grbl is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * Grbl is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | |
|    and Philipp Tiefenbacher. */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "stepper.h"
 | |
| #include "endstops.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| #include "cardreader.h"
 | |
| #include "speed_lookuptable.h"
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| Stepper stepper; // Singleton
 | |
| 
 | |
| // public:
 | |
| 
 | |
| block_t* Stepper::current_block = NULL;  // A pointer to the block currently being traced
 | |
| 
 | |
| #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
|   bool Stepper::abort_on_endstop_hit = false;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|   bool Stepper::performing_homing = false;
 | |
| #endif
 | |
| 
 | |
| #if HAS_MOTOR_CURRENT_PWM
 | |
|   uint32_t Stepper::motor_current_setting[3] = PWM_MOTOR_CURRENT;
 | |
| #endif
 | |
| 
 | |
| // private:
 | |
| 
 | |
| uint8_t Stepper::last_direction_bits = 0;        // The next stepping-bits to be output
 | |
| uint16_t Stepper::cleaning_buffer_counter = 0;
 | |
| 
 | |
| #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|   bool Stepper::locked_z_motor = false;
 | |
|   bool Stepper::locked_z2_motor = false;
 | |
| #endif
 | |
| 
 | |
| long Stepper::counter_X = 0,
 | |
|      Stepper::counter_Y = 0,
 | |
|      Stepper::counter_Z = 0,
 | |
|      Stepper::counter_E = 0;
 | |
| 
 | |
| volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
 | |
| 
 | |
| #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|   constexpr uint16_t ADV_NEVER = 65535;
 | |
| 
 | |
|   uint16_t Stepper::nextMainISR = 0,
 | |
|            Stepper::nextAdvanceISR = ADV_NEVER,
 | |
|            Stepper::eISR_Rate = ADV_NEVER;
 | |
| 
 | |
|   #if ENABLED(LIN_ADVANCE)
 | |
|     volatile int Stepper::e_steps[E_STEPPERS];
 | |
|     int Stepper::final_estep_rate,
 | |
|         Stepper::current_estep_rate[E_STEPPERS],
 | |
|         Stepper::current_adv_steps[E_STEPPERS];
 | |
|   #else
 | |
|     long Stepper::e_steps[E_STEPPERS],
 | |
|          Stepper::final_advance = 0,
 | |
|          Stepper::old_advance = 0,
 | |
|          Stepper::advance_rate,
 | |
|          Stepper::advance;
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
 | |
|    *
 | |
|    * This fix isn't perfect and may lose steps - but better than locking up completely
 | |
|    * in future the planner should slow down if advance stepping rate would be too high
 | |
|    */
 | |
|   FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
 | |
|     if (steps) {
 | |
|       const uint16_t rate = (timer * loops) / abs(steps);
 | |
|       //return constrain(rate, 1, ADV_NEVER - 1)
 | |
|       return rate ? rate : 1;
 | |
|     }
 | |
|     return ADV_NEVER;
 | |
|   }
 | |
| 
 | |
| #endif // ADVANCE || LIN_ADVANCE
 | |
| 
 | |
| long Stepper::acceleration_time, Stepper::deceleration_time;
 | |
| 
 | |
| volatile long Stepper::count_position[NUM_AXIS] = { 0 };
 | |
| volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
|   long Stepper::counter_m[MIXING_STEPPERS];
 | |
| #endif
 | |
| 
 | |
| unsigned short Stepper::acc_step_rate; // needed for deceleration start point
 | |
| uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
 | |
| unsigned short Stepper::OCR1A_nominal;
 | |
| 
 | |
| volatile long Stepper::endstops_trigsteps[XYZ];
 | |
| 
 | |
| #if ENABLED(X_DUAL_STEPPER_DRIVERS)
 | |
|   #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
 | |
|   #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
 | |
| #elif ENABLED(DUAL_X_CARRIAGE)
 | |
|   #define X_APPLY_DIR(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_DIR_WRITE(v); \
 | |
|       X2_DIR_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
 | |
|     }
 | |
|   #define X_APPLY_STEP(v,ALWAYS) \
 | |
|     if (extruder_duplication_enabled || ALWAYS) { \
 | |
|       X_STEP_WRITE(v); \
 | |
|       X2_STEP_WRITE(v); \
 | |
|     } \
 | |
|     else { \
 | |
|       if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
 | |
|     }
 | |
| #else
 | |
|   #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
 | |
|   #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | |
|   #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
 | |
|   #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
 | |
| #else
 | |
|   #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
 | |
|   #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | |
|   #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     #define Z_APPLY_STEP(v,Q) \
 | |
|     if (performing_homing) { \
 | |
|       if (Z_HOME_DIR < 0) { \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } \
 | |
|       else { \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
 | |
|         if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
 | |
|       } \
 | |
|     } \
 | |
|     else { \
 | |
|       Z_STEP_WRITE(v); \
 | |
|       Z2_STEP_WRITE(v); \
 | |
|     }
 | |
|   #else
 | |
|     #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
 | |
|   #endif
 | |
| #else
 | |
|   #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
 | |
|   #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| #if DISABLED(MIXING_EXTRUDER)
 | |
|   #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
 | |
| #endif
 | |
| 
 | |
| // intRes = longIn1 * longIn2 >> 24
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
 | |
| // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
 | |
| // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
 | |
| // B0 A0 are bits 24-39 and are the returned value
 | |
| // C1 B1 A1 is longIn1
 | |
| // D2 C2 B2 A2 is longIn2
 | |
| //
 | |
| #define MultiU24X32toH16(intRes, longIn1, longIn2) \
 | |
|   asm volatile ( \
 | |
|                  "clr r26 \n\t" \
 | |
|                  "mul %A1, %B2 \n\t" \
 | |
|                  "mov r27, r1 \n\t" \
 | |
|                  "mul %B1, %C2 \n\t" \
 | |
|                  "movw %A0, r0 \n\t" \
 | |
|                  "mul %C1, %C2 \n\t" \
 | |
|                  "add %B0, r0 \n\t" \
 | |
|                  "mul %C1, %B2 \n\t" \
 | |
|                  "add %A0, r0 \n\t" \
 | |
|                  "adc %B0, r1 \n\t" \
 | |
|                  "mul %A1, %C2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %B1, %B2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %C1, %A2 \n\t" \
 | |
|                  "add r27, r0 \n\t" \
 | |
|                  "adc %A0, r1 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %B1, %A2 \n\t" \
 | |
|                  "add r27, r1 \n\t" \
 | |
|                  "adc %A0, r26 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "lsr r27 \n\t" \
 | |
|                  "adc %A0, r26 \n\t" \
 | |
|                  "adc %B0, r26 \n\t" \
 | |
|                  "mul %D2, %A1 \n\t" \
 | |
|                  "add %A0, r0 \n\t" \
 | |
|                  "adc %B0, r1 \n\t" \
 | |
|                  "mul %D2, %B1 \n\t" \
 | |
|                  "add %B0, r0 \n\t" \
 | |
|                  "clr r1 \n\t" \
 | |
|                  : \
 | |
|                  "=&r" (intRes) \
 | |
|                  : \
 | |
|                  "d" (longIn1), \
 | |
|                  "d" (longIn2) \
 | |
|                  : \
 | |
|                  "r26" , "r27" \
 | |
|                )
 | |
| 
 | |
| // Some useful constants
 | |
| 
 | |
| #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
 | |
| #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
 | |
| 
 | |
| /**
 | |
|  *         __________________________
 | |
|  *        /|                        |\     _________________         ^
 | |
|  *       / |                        | \   /|               |\        |
 | |
|  *      /  |                        |  \ / |               | \       s
 | |
|  *     /   |                        |   |  |               |  \      p
 | |
|  *    /    |                        |   |  |               |   \     e
 | |
|  *   +-----+------------------------+---+--+---------------+----+    e
 | |
|  *   |               BLOCK 1            |      BLOCK 2          |    d
 | |
|  *
 | |
|  *                           time ----->
 | |
|  *
 | |
|  *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 | |
|  *  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 | |
|  *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | |
|  *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
 | |
|  */
 | |
| void Stepper::wake_up() {
 | |
|   // TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the stepper direction of each axis
 | |
|  *
 | |
|  *   COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
 | |
|  *   COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
 | |
|  *   COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
 | |
|  */
 | |
| void Stepper::set_directions() {
 | |
| 
 | |
|   #define SET_STEP_DIR(AXIS) \
 | |
|     if (motor_direction(AXIS ##_AXIS)) { \
 | |
|       AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
 | |
|       count_direction[AXIS ##_AXIS] = -1; \
 | |
|     } \
 | |
|     else { \
 | |
|       AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
 | |
|       count_direction[AXIS ##_AXIS] = 1; \
 | |
|     }
 | |
| 
 | |
|   #if HAS_X_DIR
 | |
|     SET_STEP_DIR(X); // A
 | |
|   #endif
 | |
|   #if HAS_Y_DIR
 | |
|     SET_STEP_DIR(Y); // B
 | |
|   #endif
 | |
|   #if HAS_Z_DIR
 | |
|     SET_STEP_DIR(Z); // C
 | |
|   #endif
 | |
| 
 | |
|   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|     if (motor_direction(E_AXIS)) {
 | |
|       REV_E_DIR();
 | |
|       count_direction[E_AXIS] = -1;
 | |
|     }
 | |
|     else {
 | |
|       NORM_E_DIR();
 | |
|       count_direction[E_AXIS] = 1;
 | |
|     }
 | |
|   #endif // !ADVANCE && !LIN_ADVANCE
 | |
| }
 | |
| 
 | |
| #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|   extern volatile uint8_t e_hit;
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Stepper Driver Interrupt
 | |
|  *
 | |
|  * Directly pulses the stepper motors at high frequency.
 | |
|  * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
 | |
|  *
 | |
|  * OCR1A   Frequency
 | |
|  *     1     2 MHz
 | |
|  *    50    40 KHz
 | |
|  *   100    20 KHz - capped max rate
 | |
|  *   200    10 KHz - nominal max rate
 | |
|  *  2000     1 KHz - sleep rate
 | |
|  *  4000   500  Hz - init rate
 | |
|  */
 | |
| ISR(TIMER1_COMPA_vect) {
 | |
|   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
|     Stepper::advance_isr_scheduler();
 | |
|   #else
 | |
|     Stepper::isr();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
 | |
| 
 | |
| void Stepper::isr() {
 | |
| 
 | |
|   uint16_t ocr_val;
 | |
| 
 | |
|   #define ENDSTOP_NOMINAL_OCR_VAL 3000    // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
 | |
|   #define OCR_VAL_TOLERANCE 1000          // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
 | |
| 
 | |
|   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|     // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
 | |
|     CBI(TIMSK0, OCIE0B); // Temperature ISR
 | |
|     DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|     sei();
 | |
|   #endif
 | |
| 
 | |
|   #define _SPLIT(L) (ocr_val = (uint16_t)L)
 | |
|   #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|     #define SPLIT(L) _SPLIT(L)
 | |
|   #else                 // sample endstops in between step pulses
 | |
|     static uint32_t step_remaining = 0;
 | |
|     #define SPLIT(L) do { \
 | |
|       _SPLIT(L); \
 | |
|       if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
 | |
|         const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
 | |
|         ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
 | |
|         step_remaining = (uint16_t)L - ocr_val; \
 | |
|       } \
 | |
|     }while(0)
 | |
| 
 | |
|     if (step_remaining && ENDSTOPS_ENABLED) {   // Just check endstops - not yet time for a step
 | |
|       endstops.update();
 | |
|       if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
 | |
|         step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
 | |
|         ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
 | |
|       }
 | |
|       else {
 | |
|         ocr_val = step_remaining;
 | |
|         step_remaining = 0;  //  last one before the ISR that does the step
 | |
|       }
 | |
| 
 | |
|       _NEXT_ISR(ocr_val);
 | |
| 
 | |
|       NOLESS(OCR1A, TCNT1 + 16);
 | |
| 
 | |
|       _ENABLE_ISRs(); // re-enable ISRs
 | |
|       return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   if (cleaning_buffer_counter) {
 | |
|     --cleaning_buffer_counter;
 | |
|     current_block = NULL;
 | |
|     planner.discard_current_block();
 | |
|     #ifdef SD_FINISHED_RELEASECOMMAND
 | |
|       if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
 | |
|     #endif
 | |
|     _NEXT_ISR(200); // Run at max speed - 10 KHz
 | |
|     _ENABLE_ISRs(); // re-enable ISRs
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there is no current block, attempt to pop one from the buffer
 | |
|   if (!current_block) {
 | |
|     // Anything in the buffer?
 | |
|     current_block = planner.get_current_block();
 | |
|     if (current_block) {
 | |
|       trapezoid_generator_reset();
 | |
| 
 | |
|       // Initialize Bresenham counters to 1/2 the ceiling
 | |
|       counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         MIXING_STEPPERS_LOOP(i)
 | |
|           counter_m[i] = -(current_block->mix_event_count[i] >> 1);
 | |
|       #endif
 | |
| 
 | |
|       step_events_completed = 0;
 | |
| 
 | |
|       #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|         e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
 | |
|                    // No 'change' can be detected.
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(Z_LATE_ENABLE)
 | |
|         if (current_block->steps[Z_AXIS] > 0) {
 | |
|           enable_Z();
 | |
|           _NEXT_ISR(2000); // Run at slow speed - 1 KHz
 | |
|           _ENABLE_ISRs(); // re-enable ISRs
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       // #if ENABLED(ADVANCE)
 | |
|       //   e_steps[TOOL_E_INDEX] = 0;
 | |
|       // #endif
 | |
|     }
 | |
|     else {
 | |
|       _NEXT_ISR(2000); // Run at slow speed - 1 KHz
 | |
|       _ENABLE_ISRs(); // re-enable ISRs
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update endstops state, if enabled
 | |
|   #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
 | |
|     if (e_hit && ENDSTOPS_ENABLED) {
 | |
|       endstops.update();
 | |
|       e_hit--;
 | |
|     }
 | |
|   #else
 | |
|     if (ENDSTOPS_ENABLED) endstops.update();
 | |
|   #endif
 | |
| 
 | |
|   // Take multiple steps per interrupt (For high speed moves)
 | |
|   bool all_steps_done = false;
 | |
|   for (uint8_t i = step_loops; i--;) {
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|       counter_E += current_block->steps[E_AXIS];
 | |
|       if (counter_E > 0) {
 | |
|         counter_E -= current_block->step_event_count;
 | |
|         #if DISABLED(MIXING_EXTRUDER)
 | |
|           // Don't step E here for mixing extruder
 | |
|           count_position[E_AXIS] += count_direction[E_AXIS];
 | |
|           motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         // Step mixing steppers proportionally
 | |
|         const bool dir = motor_direction(E_AXIS);
 | |
|         MIXING_STEPPERS_LOOP(j) {
 | |
|           counter_m[j] += current_block->steps[E_AXIS];
 | |
|           if (counter_m[j] > 0) {
 | |
|             counter_m[j] -= current_block->mix_event_count[j];
 | |
|             dir ? --e_steps[j] : ++e_steps[j];
 | |
|           }
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|     #elif ENABLED(ADVANCE)
 | |
| 
 | |
|       // Always count the unified E axis
 | |
|       counter_E += current_block->steps[E_AXIS];
 | |
|       if (counter_E > 0) {
 | |
|         counter_E -= current_block->step_event_count;
 | |
|         #if DISABLED(MIXING_EXTRUDER)
 | |
|           // Don't step E here for mixing extruder
 | |
|           motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
| 
 | |
|         // Step mixing steppers proportionally
 | |
|         const bool dir = motor_direction(E_AXIS);
 | |
|         MIXING_STEPPERS_LOOP(j) {
 | |
|           counter_m[j] += current_block->steps[E_AXIS];
 | |
|           if (counter_m[j] > 0) {
 | |
|             counter_m[j] -= current_block->mix_event_count[j];
 | |
|             dir ? --e_steps[j] : ++e_steps[j];
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       #endif // MIXING_EXTRUDER
 | |
| 
 | |
|     #endif // ADVANCE or LIN_ADVANCE
 | |
| 
 | |
|     #define _COUNTER(AXIS) counter_## AXIS
 | |
|     #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
 | |
|     #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
 | |
| 
 | |
|     // Advance the Bresenham counter; start a pulse if the axis needs a step
 | |
|     #define PULSE_START(AXIS) \
 | |
|       _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
 | |
|       if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
 | |
| 
 | |
|     // Stop an active pulse, reset the Bresenham counter, update the position
 | |
|     #define PULSE_STOP(AXIS) \
 | |
|       if (_COUNTER(AXIS) > 0) { \
 | |
|         _COUNTER(AXIS) -= current_block->step_event_count; \
 | |
|         count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
 | |
|         _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
 | |
|       }
 | |
| 
 | |
|     /**
 | |
|      * Estimate the number of cycles that the stepper logic already takes
 | |
|      * up between the start and stop of the X stepper pulse.
 | |
|      *
 | |
|      * Currently this uses very modest estimates of around 5 cycles.
 | |
|      * True values may be derived by careful testing.
 | |
|      *
 | |
|      * Once any delay is added, the cost of the delay code itself
 | |
|      * may be subtracted from this value to get a more accurate delay.
 | |
|      * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
 | |
|      * Longer delays use a loop. The resolution is 8 cycles.
 | |
|      */
 | |
|     #if HAS_X_STEP
 | |
|       #define _CYCLE_APPROX_1 5
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_1 0
 | |
|     #endif
 | |
|     #if ENABLED(X_DUAL_STEPPER_DRIVERS)
 | |
|       #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
 | |
|     #endif
 | |
|     #if HAS_Y_STEP
 | |
|       #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
 | |
|     #endif
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | |
|       #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
 | |
|     #endif
 | |
|     #if HAS_Z_STEP
 | |
|       #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
 | |
|     #endif
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | |
|       #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
 | |
|     #endif
 | |
|     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
 | |
|       #else
 | |
|         #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
 | |
|       #endif
 | |
|     #else
 | |
|       #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
 | |
|     #endif
 | |
| 
 | |
|     #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
 | |
|     #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
 | |
| 
 | |
|     /**
 | |
|      * If a minimum pulse time was specified get the timer 0 value.
 | |
|      *
 | |
|      * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
 | |
|      * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
 | |
|      * 20 counts of TCNT0 -by itself- is a good pulse delay.
 | |
|      * 10µs = 160 or 200 cycles.
 | |
|      */
 | |
|     #if EXTRA_CYCLES_XYZE > 20
 | |
|       uint32_t pulse_start = TCNT0;
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_X_STEP
 | |
|       PULSE_START(X);
 | |
|     #endif
 | |
|     #if HAS_Y_STEP
 | |
|       PULSE_START(Y);
 | |
|     #endif
 | |
|     #if HAS_Z_STEP
 | |
|       PULSE_START(Z);
 | |
|     #endif
 | |
| 
 | |
|     // For non-advance use linear interpolation for E also
 | |
|     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         // Keep updating the single E axis
 | |
|         counter_E += current_block->steps[E_AXIS];
 | |
|         // Tick the counters used for this mix
 | |
|         MIXING_STEPPERS_LOOP(j) {
 | |
|           // Step mixing steppers (proportionally)
 | |
|           counter_m[j] += current_block->steps[E_AXIS];
 | |
|           // Step when the counter goes over zero
 | |
|           if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       #else // !MIXING_EXTRUDER
 | |
|         PULSE_START(E);
 | |
|       #endif
 | |
|     #endif // !ADVANCE && !LIN_ADVANCE
 | |
| 
 | |
|     // For minimum pulse time wait before stopping pulses
 | |
|     #if EXTRA_CYCLES_XYZE > 20
 | |
|       while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | |
|       pulse_start = TCNT0;
 | |
|     #elif EXTRA_CYCLES_XYZE > 0
 | |
|       DELAY_NOPS(EXTRA_CYCLES_XYZE);
 | |
|     #endif
 | |
| 
 | |
|     #if HAS_X_STEP
 | |
|       PULSE_STOP(X);
 | |
|     #endif
 | |
|     #if HAS_Y_STEP
 | |
|       PULSE_STOP(Y);
 | |
|     #endif
 | |
|     #if HAS_Z_STEP
 | |
|       PULSE_STOP(Z);
 | |
|     #endif
 | |
| 
 | |
|     #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         // Always step the single E axis
 | |
|         if (counter_E > 0) {
 | |
|           counter_E -= current_block->step_event_count;
 | |
|           count_position[E_AXIS] += count_direction[E_AXIS];
 | |
|         }
 | |
|         MIXING_STEPPERS_LOOP(j) {
 | |
|           if (counter_m[j] > 0) {
 | |
|             counter_m[j] -= current_block->mix_event_count[j];
 | |
|             En_STEP_WRITE(j, INVERT_E_STEP_PIN);
 | |
|           }
 | |
|         }
 | |
|       #else // !MIXING_EXTRUDER
 | |
|         PULSE_STOP(E);
 | |
|       #endif
 | |
|     #endif // !ADVANCE && !LIN_ADVANCE
 | |
| 
 | |
|     if (++step_events_completed >= current_block->step_event_count) {
 | |
|       all_steps_done = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // For minimum pulse time wait after stopping pulses also
 | |
|     #if EXTRA_CYCLES_XYZE > 20
 | |
|       if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | |
|     #elif EXTRA_CYCLES_XYZE > 0
 | |
|       if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
 | |
|     #endif
 | |
| 
 | |
|   } // steps_loop
 | |
| 
 | |
|   #if ENABLED(LIN_ADVANCE)
 | |
|     if (current_block->use_advance_lead) {
 | |
|       const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
 | |
|       current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         // Mixing extruders apply advance lead proportionally
 | |
|         MIXING_STEPPERS_LOOP(j)
 | |
|           e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
 | |
|       #else
 | |
|         // For most extruders, advance the single E stepper
 | |
|         e_steps[TOOL_E_INDEX] += delta_adv_steps;
 | |
|       #endif
 | |
|    }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
|     // If we have esteps to execute, fire the next advance_isr "now"
 | |
|     if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
 | |
|   #endif
 | |
| 
 | |
|   // Calculate new timer value
 | |
|   if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
 | |
| 
 | |
|     MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | |
|     acc_step_rate += current_block->initial_rate;
 | |
| 
 | |
|     // upper limit
 | |
|     NOMORE(acc_step_rate, current_block->nominal_rate);
 | |
| 
 | |
|     // step_rate to timer interval
 | |
|     const uint16_t timer = calc_timer(acc_step_rate);
 | |
| 
 | |
|     SPLIT(timer);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | |
|     _NEXT_ISR(ocr_val);
 | |
| 
 | |
|     acceleration_time += timer;
 | |
| 
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|       if (current_block->use_advance_lead) {
 | |
|         #if ENABLED(MIXING_EXTRUDER)
 | |
|           MIXING_STEPPERS_LOOP(j)
 | |
|             current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
 | |
|         #else
 | |
|           current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #elif ENABLED(ADVANCE)
 | |
| 
 | |
|       advance += advance_rate * step_loops;
 | |
|       //NOLESS(advance, current_block->advance);
 | |
| 
 | |
|       const long advance_whole = advance >> 8,
 | |
|                  advance_factor = advance_whole - old_advance;
 | |
| 
 | |
|       // Do E steps + advance steps
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         // ...for mixing steppers proportionally
 | |
|         MIXING_STEPPERS_LOOP(j)
 | |
|           e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
 | |
|       #else
 | |
|         // ...for the active extruder
 | |
|         e_steps[TOOL_E_INDEX] += advance_factor;
 | |
|       #endif
 | |
| 
 | |
|       old_advance = advance_whole;
 | |
| 
 | |
|     #endif // ADVANCE or LIN_ADVANCE
 | |
| 
 | |
|     #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
|       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
 | |
|     #endif
 | |
|   }
 | |
|   else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
 | |
|     uint16_t step_rate;
 | |
|     MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | |
| 
 | |
|     if (step_rate < acc_step_rate) { // Still decelerating?
 | |
|       step_rate = acc_step_rate - step_rate;
 | |
|       NOLESS(step_rate, current_block->final_rate);
 | |
|     }
 | |
|     else
 | |
|       step_rate = current_block->final_rate;
 | |
| 
 | |
|     // step_rate to timer interval
 | |
|     const uint16_t timer = calc_timer(step_rate);
 | |
| 
 | |
|     SPLIT(timer);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | |
|     _NEXT_ISR(ocr_val);
 | |
| 
 | |
|     deceleration_time += timer;
 | |
| 
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|       if (current_block->use_advance_lead) {
 | |
|         #if ENABLED(MIXING_EXTRUDER)
 | |
|           MIXING_STEPPERS_LOOP(j)
 | |
|             current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
 | |
|         #else
 | |
|           current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #elif ENABLED(ADVANCE)
 | |
| 
 | |
|       advance -= advance_rate * step_loops;
 | |
|       NOLESS(advance, final_advance);
 | |
| 
 | |
|       // Do E steps + advance steps
 | |
|       const long advance_whole = advance >> 8,
 | |
|                  advance_factor = advance_whole - old_advance;
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         MIXING_STEPPERS_LOOP(j)
 | |
|           e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
 | |
|       #else
 | |
|         e_steps[TOOL_E_INDEX] += advance_factor;
 | |
|       #endif
 | |
| 
 | |
|       old_advance = advance_whole;
 | |
| 
 | |
|     #endif // ADVANCE or LIN_ADVANCE
 | |
| 
 | |
|     #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
|       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
 | |
|     #endif
 | |
|   }
 | |
|   else {
 | |
| 
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|       if (current_block->use_advance_lead)
 | |
|         current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
 | |
| 
 | |
|       eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     SPLIT(OCR1A_nominal);  // split step into multiple ISRs if larger than  ENDSTOP_NOMINAL_OCR_VAL
 | |
|     _NEXT_ISR(ocr_val);
 | |
| 
 | |
|     // ensure we're running at the correct step rate, even if we just came off an acceleration
 | |
|     step_loops = step_loops_nominal;
 | |
|   }
 | |
| 
 | |
|   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|     NOLESS(OCR1A, TCNT1 + 16);
 | |
|   #endif
 | |
| 
 | |
|   // If current block is finished, reset pointer
 | |
|   if (all_steps_done) {
 | |
|     current_block = NULL;
 | |
|     planner.discard_current_block();
 | |
|   }
 | |
|   #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
 | |
|     _ENABLE_ISRs(); // re-enable ISRs
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
| 
 | |
|   #define CYCLES_EATEN_E (E_STEPPERS * 5)
 | |
|   #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
 | |
| 
 | |
|   // Timer interrupt for E. e_steps is set in the main routine;
 | |
| 
 | |
|   void Stepper::advance_isr() {
 | |
| 
 | |
|     nextAdvanceISR = eISR_Rate;
 | |
| 
 | |
|     #define SET_E_STEP_DIR(INDEX) \
 | |
|       if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
 | |
| 
 | |
|     #define START_E_PULSE(INDEX) \
 | |
|       if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
 | |
| 
 | |
|     #define STOP_E_PULSE(INDEX) \
 | |
|       if (e_steps[INDEX]) { \
 | |
|         e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
 | |
|         E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
 | |
|       }
 | |
| 
 | |
|     SET_E_STEP_DIR(0);
 | |
|     #if E_STEPPERS > 1
 | |
|       SET_E_STEP_DIR(1);
 | |
|       #if E_STEPPERS > 2
 | |
|         SET_E_STEP_DIR(2);
 | |
|         #if E_STEPPERS > 3
 | |
|           SET_E_STEP_DIR(3);
 | |
|           #if E_STEPPERS > 4
 | |
|             SET_E_STEP_DIR(4);
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|     // Step all E steppers that have steps
 | |
|     for (uint8_t i = step_loops; i--;) {
 | |
| 
 | |
|       #if EXTRA_CYCLES_E > 20
 | |
|         uint32_t pulse_start = TCNT0;
 | |
|       #endif
 | |
| 
 | |
|       START_E_PULSE(0);
 | |
|       #if E_STEPPERS > 1
 | |
|         START_E_PULSE(1);
 | |
|         #if E_STEPPERS > 2
 | |
|           START_E_PULSE(2);
 | |
|           #if E_STEPPERS > 3
 | |
|             START_E_PULSE(3);
 | |
|             #if E_STEPPERS > 4
 | |
|               START_E_PULSE(4);
 | |
|             #endif
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       // For minimum pulse time wait before stopping pulses
 | |
|       #if EXTRA_CYCLES_E > 20
 | |
|         while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | |
|         pulse_start = TCNT0;
 | |
|       #elif EXTRA_CYCLES_E > 0
 | |
|         DELAY_NOPS(EXTRA_CYCLES_E);
 | |
|       #endif
 | |
| 
 | |
|       STOP_E_PULSE(0);
 | |
|       #if E_STEPPERS > 1
 | |
|         STOP_E_PULSE(1);
 | |
|         #if E_STEPPERS > 2
 | |
|           STOP_E_PULSE(2);
 | |
|           #if E_STEPPERS > 3
 | |
|             STOP_E_PULSE(3);
 | |
|             #if E_STEPPERS > 4
 | |
|               STOP_E_PULSE(4);
 | |
|             #endif
 | |
|           #endif
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       // For minimum pulse time wait before looping
 | |
|       #if EXTRA_CYCLES_E > 20
 | |
|         if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | |
|       #elif EXTRA_CYCLES_E > 0
 | |
|         if (i) DELAY_NOPS(EXTRA_CYCLES_E);
 | |
|       #endif
 | |
| 
 | |
|     } // steps_loop
 | |
|   }
 | |
| 
 | |
|   void Stepper::advance_isr_scheduler() {
 | |
|     // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
 | |
|     CBI(TIMSK0, OCIE0B); // Temperature ISR
 | |
|     DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|     sei();
 | |
| 
 | |
|     // Run main stepping ISR if flagged
 | |
|     if (!nextMainISR) isr();
 | |
| 
 | |
|     // Run Advance stepping ISR if flagged
 | |
|     if (!nextAdvanceISR) advance_isr();
 | |
| 
 | |
|     // Is the next advance ISR scheduled before the next main ISR?
 | |
|     if (nextAdvanceISR <= nextMainISR) {
 | |
|       // Set up the next interrupt
 | |
|       OCR1A = nextAdvanceISR;
 | |
|       // New interval for the next main ISR
 | |
|       if (nextMainISR) nextMainISR -= nextAdvanceISR;
 | |
|       // Will call Stepper::advance_isr on the next interrupt
 | |
|       nextAdvanceISR = 0;
 | |
|     }
 | |
|     else {
 | |
|       // The next main ISR comes first
 | |
|       OCR1A = nextMainISR;
 | |
|       // New interval for the next advance ISR, if any
 | |
|       if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
 | |
|         nextAdvanceISR -= nextMainISR;
 | |
|       // Will call Stepper::isr on the next interrupt
 | |
|       nextMainISR = 0;
 | |
|     }
 | |
| 
 | |
|     // Don't run the ISR faster than possible
 | |
|     NOLESS(OCR1A, TCNT1 + 16);
 | |
| 
 | |
|     // Restore original ISR settings
 | |
|     _ENABLE_ISRs();
 | |
|   }
 | |
| 
 | |
| #endif // ADVANCE or LIN_ADVANCE
 | |
| 
 | |
| void Stepper::init() {
 | |
| 
 | |
|   // Init Digipot Motor Current
 | |
|   #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
 | |
|     digipot_init();
 | |
|   #endif
 | |
| 
 | |
|   // Init Microstepping Pins
 | |
|   #if HAS_MICROSTEPS
 | |
|     microstep_init();
 | |
|   #endif
 | |
| 
 | |
|   // Init TMC Steppers
 | |
|   #if ENABLED(HAVE_TMCDRIVER)
 | |
|     tmc_init();
 | |
|   #endif
 | |
| 
 | |
|   // Init TMC2130 Steppers
 | |
|   #if ENABLED(HAVE_TMC2130)
 | |
|     tmc2130_init();
 | |
|   #endif
 | |
| 
 | |
|   // Init L6470 Steppers
 | |
|   #if ENABLED(HAVE_L6470DRIVER)
 | |
|     L6470_init();
 | |
|   #endif
 | |
| 
 | |
|   // Init Dir Pins
 | |
|   #if HAS_X_DIR
 | |
|     X_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_X2_DIR
 | |
|     X2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_Y_DIR
 | |
|     Y_DIR_INIT;
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
 | |
|       Y2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_Z_DIR
 | |
|     Z_DIR_INIT;
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
 | |
|       Z2_DIR_INIT;
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_DIR
 | |
|     E0_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E1_DIR
 | |
|     E1_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E2_DIR
 | |
|     E2_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E3_DIR
 | |
|     E3_DIR_INIT;
 | |
|   #endif
 | |
|   #if HAS_E4_DIR
 | |
|     E4_DIR_INIT;
 | |
|   #endif
 | |
| 
 | |
|   // Init Enable Pins - steppers default to disabled.
 | |
|   #if HAS_X_ENABLE
 | |
|     X_ENABLE_INIT;
 | |
|     if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
 | |
|     #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
 | |
|       X2_ENABLE_INIT;
 | |
|       if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_Y_ENABLE
 | |
|     Y_ENABLE_INIT;
 | |
|     if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
 | |
|       Y2_ENABLE_INIT;
 | |
|       if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_Z_ENABLE
 | |
|     Z_ENABLE_INIT;
 | |
|     if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
 | |
|       Z2_ENABLE_INIT;
 | |
|       if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if HAS_E0_ENABLE
 | |
|     E0_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E1_ENABLE
 | |
|     E1_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E2_ENABLE
 | |
|     E2_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E3_ENABLE
 | |
|     E3_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
|   #if HAS_E4_ENABLE
 | |
|     E4_ENABLE_INIT;
 | |
|     if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
 | |
|   #endif
 | |
| 
 | |
|   // Init endstops and pullups
 | |
|   endstops.init();
 | |
| 
 | |
|   #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
 | |
|   #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
 | |
|   #define _DISABLE(AXIS) disable_## AXIS()
 | |
| 
 | |
|   #define AXIS_INIT(AXIS, PIN) \
 | |
|     _STEP_INIT(AXIS); \
 | |
|     _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
 | |
|     _DISABLE(AXIS)
 | |
| 
 | |
|   #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
 | |
| 
 | |
|   // Init Step Pins
 | |
|   #if HAS_X_STEP
 | |
|     #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
 | |
|       X2_STEP_INIT;
 | |
|       X2_STEP_WRITE(INVERT_X_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(X, X);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Y_STEP
 | |
|     #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
 | |
|       Y2_STEP_INIT;
 | |
|       Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(Y, Y);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z_STEP
 | |
|     #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
 | |
|       Z2_STEP_INIT;
 | |
|       Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
|     AXIS_INIT(Z, Z);
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_E0_STEP
 | |
|     E_AXIS_INIT(0);
 | |
|   #endif
 | |
|   #if HAS_E1_STEP
 | |
|     E_AXIS_INIT(1);
 | |
|   #endif
 | |
|   #if HAS_E2_STEP
 | |
|     E_AXIS_INIT(2);
 | |
|   #endif
 | |
|   #if HAS_E3_STEP
 | |
|     E_AXIS_INIT(3);
 | |
|   #endif
 | |
|   #if HAS_E4_STEP
 | |
|     E_AXIS_INIT(4);
 | |
|   #endif
 | |
| 
 | |
|   // waveform generation = 0100 = CTC
 | |
|   SET_WGM(1, CTC_OCRnA);
 | |
| 
 | |
|   // output mode = 00 (disconnected)
 | |
|   SET_COMA(1, NORMAL);
 | |
| 
 | |
|   // Set the timer pre-scaler
 | |
|   // Generally we use a divider of 8, resulting in a 2MHz timer
 | |
|   // frequency on a 16MHz MCU. If you are going to change this, be
 | |
|   // sure to regenerate speed_lookuptable.h with
 | |
|   // create_speed_lookuptable.py
 | |
|   SET_CS(1, PRESCALER_8);  //  CS 2 = 1/8 prescaler
 | |
| 
 | |
|   // Init Stepper ISR to 122 Hz for quick starting
 | |
|   OCR1A = 0x4000;
 | |
|   TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| 
 | |
|   #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
 | |
|     for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
 | |
|     #if ENABLED(LIN_ADVANCE)
 | |
|       ZERO(current_adv_steps);
 | |
|     #endif
 | |
|   #endif // ADVANCE || LIN_ADVANCE
 | |
| 
 | |
|   endstops.enable(true); // Start with endstops active. After homing they can be disabled
 | |
|   sei();
 | |
| 
 | |
|   set_directions(); // Init directions to last_direction_bits = 0
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Block until all buffered steps are executed
 | |
|  */
 | |
| void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
 | |
| 
 | |
| /**
 | |
|  * Set the stepper positions directly in steps
 | |
|  *
 | |
|  * The input is based on the typical per-axis XYZ steps.
 | |
|  * For CORE machines XYZ needs to be translated to ABC.
 | |
|  *
 | |
|  * This allows get_axis_position_mm to correctly
 | |
|  * derive the current XYZ position later on.
 | |
|  */
 | |
| void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
 | |
| 
 | |
|   synchronize(); // Bad to set stepper counts in the middle of a move
 | |
| 
 | |
|   CRITICAL_SECTION_START;
 | |
| 
 | |
|   #if CORE_IS_XY
 | |
|     // corexy positioning
 | |
|     // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | |
|     count_position[A_AXIS] = a + b;
 | |
|     count_position[B_AXIS] = CORESIGN(a - b);
 | |
|     count_position[Z_AXIS] = c;
 | |
|   #elif CORE_IS_XZ
 | |
|     // corexz planning
 | |
|     count_position[A_AXIS] = a + c;
 | |
|     count_position[Y_AXIS] = b;
 | |
|     count_position[C_AXIS] = CORESIGN(a - c);
 | |
|   #elif CORE_IS_YZ
 | |
|     // coreyz planning
 | |
|     count_position[X_AXIS] = a;
 | |
|     count_position[B_AXIS] = b + c;
 | |
|     count_position[C_AXIS] = CORESIGN(b - c);
 | |
|   #else
 | |
|     // default non-h-bot planning
 | |
|     count_position[X_AXIS] = a;
 | |
|     count_position[Y_AXIS] = b;
 | |
|     count_position[Z_AXIS] = c;
 | |
|   #endif
 | |
| 
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| void Stepper::set_position(const AxisEnum &axis, const long &v) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[axis] = v;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| void Stepper::set_e_position(const long &e) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get a stepper's position in steps.
 | |
|  */
 | |
| long Stepper::position(AxisEnum axis) {
 | |
|   CRITICAL_SECTION_START;
 | |
|   const long count_pos = count_position[axis];
 | |
|   CRITICAL_SECTION_END;
 | |
|   return count_pos;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get an axis position according to stepper position(s)
 | |
|  * For CORE machines apply translation from ABC to XYZ.
 | |
|  */
 | |
| float Stepper::get_axis_position_mm(AxisEnum axis) {
 | |
|   float axis_steps;
 | |
|   #if IS_CORE
 | |
|     // Requesting one of the "core" axes?
 | |
|     if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
 | |
|       CRITICAL_SECTION_START;
 | |
|       // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
 | |
|       // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
 | |
|       axis_steps = 0.5f * (
 | |
|         axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
 | |
|                             : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
 | |
|       );
 | |
|       CRITICAL_SECTION_END;
 | |
|     }
 | |
|     else
 | |
|       axis_steps = position(axis);
 | |
|   #else
 | |
|     axis_steps = position(axis);
 | |
|   #endif
 | |
|   return axis_steps * planner.steps_to_mm[axis];
 | |
| }
 | |
| 
 | |
| void Stepper::finish_and_disable() {
 | |
|   synchronize();
 | |
|   disable_all_steppers();
 | |
| }
 | |
| 
 | |
| void Stepper::quick_stop() {
 | |
|   cleaning_buffer_counter = 5000;
 | |
|   DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|   while (planner.blocks_queued()) planner.discard_current_block();
 | |
|   current_block = NULL;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|   #if ENABLED(ULTRA_LCD)
 | |
|     planner.clear_block_buffer_runtime();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void Stepper::endstop_triggered(AxisEnum axis) {
 | |
| 
 | |
|   #if IS_CORE
 | |
| 
 | |
|     endstops_trigsteps[axis] = 0.5f * (
 | |
|       axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
 | |
|                           : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
 | |
|     );
 | |
| 
 | |
|   #else // !COREXY && !COREXZ && !COREYZ
 | |
| 
 | |
|     endstops_trigsteps[axis] = count_position[axis];
 | |
| 
 | |
|   #endif // !COREXY && !COREXZ && !COREYZ
 | |
| 
 | |
|   kill_current_block();
 | |
| }
 | |
| 
 | |
| void Stepper::report_positions() {
 | |
|   CRITICAL_SECTION_START;
 | |
|   const long xpos = count_position[X_AXIS],
 | |
|              ypos = count_position[Y_AXIS],
 | |
|              zpos = count_position[Z_AXIS];
 | |
|   CRITICAL_SECTION_END;
 | |
| 
 | |
|   #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
 | |
|     SERIAL_PROTOCOLPGM(MSG_COUNT_A);
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(MSG_COUNT_X);
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(xpos);
 | |
| 
 | |
|   #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
 | |
|     SERIAL_PROTOCOLPGM(" B:");
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(" Y:");
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(ypos);
 | |
| 
 | |
|   #if CORE_IS_XZ || CORE_IS_YZ
 | |
|     SERIAL_PROTOCOLPGM(" C:");
 | |
|   #else
 | |
|     SERIAL_PROTOCOLPGM(" Z:");
 | |
|   #endif
 | |
|   SERIAL_PROTOCOL(zpos);
 | |
| 
 | |
|   SERIAL_EOL();
 | |
| }
 | |
| 
 | |
| #if ENABLED(BABYSTEPPING)
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     #define CYCLES_EATEN_BABYSTEP (2 * 15)
 | |
|   #else
 | |
|     #define CYCLES_EATEN_BABYSTEP 0
 | |
|   #endif
 | |
|   #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
 | |
| 
 | |
|   #define _ENABLE(AXIS) enable_## AXIS()
 | |
|   #define _READ_DIR(AXIS) AXIS ##_DIR_READ
 | |
|   #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
 | |
|   #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
 | |
| 
 | |
|   #if EXTRA_CYCLES_BABYSTEP > 20
 | |
|     #define _SAVE_START const uint32_t pulse_start = TCNT0
 | |
|     #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
 | |
|   #else
 | |
|     #define _SAVE_START NOOP
 | |
|     #if EXTRA_CYCLES_BABYSTEP > 0
 | |
|       #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
 | |
|     #elif STEP_PULSE_CYCLES > 0
 | |
|       #define _PULSE_WAIT NOOP
 | |
|     #elif ENABLED(DELTA)
 | |
|       #define _PULSE_WAIT delayMicroseconds(2);
 | |
|     #else
 | |
|       #define _PULSE_WAIT delayMicroseconds(4);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #define BABYSTEP_AXIS(AXIS, INVERT) {                     \
 | |
|       const uint8_t old_dir = _READ_DIR(AXIS);              \
 | |
|       _ENABLE(AXIS);                                        \
 | |
|       _SAVE_START;                                          \
 | |
|       _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
 | |
|       _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true);     \
 | |
|       _PULSE_WAIT;                                          \
 | |
|       _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true);      \
 | |
|       _APPLY_DIR(AXIS, old_dir);                            \
 | |
|     }
 | |
| 
 | |
|   // MUST ONLY BE CALLED BY AN ISR,
 | |
|   // No other ISR should ever interrupt this!
 | |
|   void Stepper::babystep(const AxisEnum axis, const bool direction) {
 | |
|     cli();
 | |
| 
 | |
|     switch (axis) {
 | |
| 
 | |
|       #if ENABLED(BABYSTEP_XY)
 | |
| 
 | |
|         case X_AXIS:
 | |
|           BABYSTEP_AXIS(X, false);
 | |
|           break;
 | |
| 
 | |
|         case Y_AXIS:
 | |
|           BABYSTEP_AXIS(Y, false);
 | |
|           break;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       case Z_AXIS: {
 | |
| 
 | |
|         #if DISABLED(DELTA)
 | |
| 
 | |
|           BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
 | |
| 
 | |
|         #else // DELTA
 | |
| 
 | |
|           const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
 | |
| 
 | |
|           enable_X();
 | |
|           enable_Y();
 | |
|           enable_Z();
 | |
| 
 | |
|           const uint8_t old_x_dir_pin = X_DIR_READ,
 | |
|                         old_y_dir_pin = Y_DIR_READ,
 | |
|                         old_z_dir_pin = Z_DIR_READ;
 | |
| 
 | |
|           X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
 | |
|           Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
 | |
|           Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
 | |
| 
 | |
|           _SAVE_START;
 | |
| 
 | |
|           X_STEP_WRITE(!INVERT_X_STEP_PIN);
 | |
|           Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
 | |
|           Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
 | |
| 
 | |
|           _PULSE_WAIT;
 | |
| 
 | |
|           X_STEP_WRITE(INVERT_X_STEP_PIN);
 | |
|           Y_STEP_WRITE(INVERT_Y_STEP_PIN);
 | |
|           Z_STEP_WRITE(INVERT_Z_STEP_PIN);
 | |
| 
 | |
|           // Restore direction bits
 | |
|           X_DIR_WRITE(old_x_dir_pin);
 | |
|           Y_DIR_WRITE(old_y_dir_pin);
 | |
|           Z_DIR_WRITE(old_z_dir_pin);
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|       } break;
 | |
| 
 | |
|       default: break;
 | |
|     }
 | |
|     sei();
 | |
|   }
 | |
| 
 | |
| #endif // BABYSTEPPING
 | |
| 
 | |
| /**
 | |
|  * Software-controlled Stepper Motor Current
 | |
|  */
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
| 
 | |
|   // From Arduino DigitalPotControl example
 | |
|   void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
 | |
|     WRITE(DIGIPOTSS_PIN, LOW);  // Take the SS pin low to select the chip
 | |
|     SPI.transfer(address);      // Send the address and value via SPI
 | |
|     SPI.transfer(value);
 | |
|     WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
 | |
|     //delay(10);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_DIGIPOTSS
 | |
| 
 | |
| #if HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
|   void Stepper::refresh_motor_power() {
 | |
|     for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
 | |
|       switch (i) {
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|           case 0:
 | |
|         #endif
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|           case 1:
 | |
|         #endif
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|           case 2:
 | |
|         #endif
 | |
|             digipot_current(i, motor_current_setting[i]);
 | |
|         default: break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
| #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
|   void Stepper::digipot_current(const uint8_t driver, const int current) {
 | |
| 
 | |
|     #if HAS_DIGIPOTSS
 | |
| 
 | |
|       const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 | |
|       digitalPotWrite(digipot_ch[driver], current);
 | |
| 
 | |
|     #elif HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
|       if (WITHIN(driver, 0, 2))
 | |
|         motor_current_setting[driver] = current; // update motor_current_setting
 | |
| 
 | |
|       #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
 | |
|       switch (driver) {
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|           case 0: _WRITE_CURRENT_PWM(XY); break;
 | |
|         #endif
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|           case 1: _WRITE_CURRENT_PWM(Z); break;
 | |
|         #endif
 | |
|         #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|           case 2: _WRITE_CURRENT_PWM(E); break;
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   void Stepper::digipot_init() {
 | |
| 
 | |
|     #if HAS_DIGIPOTSS
 | |
| 
 | |
|       static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 | |
| 
 | |
|       SPI.begin();
 | |
|       SET_OUTPUT(DIGIPOTSS_PIN);
 | |
| 
 | |
|       for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
 | |
|         //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | |
|         digipot_current(i, digipot_motor_current[i]);
 | |
|       }
 | |
| 
 | |
|     #elif HAS_MOTOR_CURRENT_PWM
 | |
| 
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|         SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
 | |
|       #endif
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|         SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
 | |
|       #endif
 | |
|       #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|         SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
 | |
|       #endif
 | |
| 
 | |
|       refresh_motor_power();
 | |
| 
 | |
|       // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | |
|       SET_CS5(PRESCALER_1);
 | |
| 
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if HAS_MICROSTEPS
 | |
| 
 | |
|   /**
 | |
|    * Software-controlled Microstepping
 | |
|    */
 | |
| 
 | |
|   void Stepper::microstep_init() {
 | |
|     SET_OUTPUT(X_MS1_PIN);
 | |
|     SET_OUTPUT(X_MS2_PIN);
 | |
|     #if HAS_Y_MICROSTEPS
 | |
|       SET_OUTPUT(Y_MS1_PIN);
 | |
|       SET_OUTPUT(Y_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_Z_MICROSTEPS
 | |
|       SET_OUTPUT(Z_MS1_PIN);
 | |
|       SET_OUTPUT(Z_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_E0_MICROSTEPS
 | |
|       SET_OUTPUT(E0_MS1_PIN);
 | |
|       SET_OUTPUT(E0_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_E1_MICROSTEPS
 | |
|       SET_OUTPUT(E1_MS1_PIN);
 | |
|       SET_OUTPUT(E1_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_E2_MICROSTEPS
 | |
|       SET_OUTPUT(E2_MS1_PIN);
 | |
|       SET_OUTPUT(E2_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_E3_MICROSTEPS
 | |
|       SET_OUTPUT(E3_MS1_PIN);
 | |
|       SET_OUTPUT(E3_MS2_PIN);
 | |
|     #endif
 | |
|     #if HAS_E4_MICROSTEPS
 | |
|       SET_OUTPUT(E4_MS1_PIN);
 | |
|       SET_OUTPUT(E4_MS2_PIN);
 | |
|     #endif
 | |
|     static const uint8_t microstep_modes[] = MICROSTEP_MODES;
 | |
|     for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
 | |
|       microstep_mode(i, microstep_modes[i]);
 | |
|   }
 | |
| 
 | |
|   void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
 | |
|     if (ms1 >= 0) switch (driver) {
 | |
|       case 0: WRITE(X_MS1_PIN, ms1); break;
 | |
|       #if HAS_Y_MICROSTEPS
 | |
|         case 1: WRITE(Y_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_Z_MICROSTEPS
 | |
|         case 2: WRITE(Z_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_E0_MICROSTEPS
 | |
|         case 3: WRITE(E0_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_E1_MICROSTEPS
 | |
|         case 4: WRITE(E1_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_E2_MICROSTEPS
 | |
|         case 5: WRITE(E2_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_E3_MICROSTEPS
 | |
|         case 6: WRITE(E3_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|       #if HAS_E4_MICROSTEPS
 | |
|         case 7: WRITE(E4_MS1_PIN, ms1); break;
 | |
|       #endif
 | |
|     }
 | |
|     if (ms2 >= 0) switch (driver) {
 | |
|       case 0: WRITE(X_MS2_PIN, ms2); break;
 | |
|       #if HAS_Y_MICROSTEPS
 | |
|         case 1: WRITE(Y_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_Z_MICROSTEPS
 | |
|         case 2: WRITE(Z_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_E0_MICROSTEPS
 | |
|         case 3: WRITE(E0_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_E1_MICROSTEPS
 | |
|         case 4: WRITE(E1_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_E2_MICROSTEPS
 | |
|         case 5: WRITE(E2_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_E3_MICROSTEPS
 | |
|         case 6: WRITE(E3_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|       #if HAS_E4_MICROSTEPS
 | |
|         case 7: WRITE(E4_MS2_PIN, ms2); break;
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
 | |
|     switch (stepping_mode) {
 | |
|       case 1: microstep_ms(driver, MICROSTEP1); break;
 | |
|       case 2: microstep_ms(driver, MICROSTEP2); break;
 | |
|       case 4: microstep_ms(driver, MICROSTEP4); break;
 | |
|       case 8: microstep_ms(driver, MICROSTEP8); break;
 | |
|       case 16: microstep_ms(driver, MICROSTEP16); break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Stepper::microstep_readings() {
 | |
|     SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
 | |
|     SERIAL_PROTOCOLPGM("X: ");
 | |
|     SERIAL_PROTOCOL(READ(X_MS1_PIN));
 | |
|     SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
 | |
|     #if HAS_Y_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("Y: ");
 | |
|       SERIAL_PROTOCOL(READ(Y_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_Z_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("Z: ");
 | |
|       SERIAL_PROTOCOL(READ(Z_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_E0_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("E0: ");
 | |
|       SERIAL_PROTOCOL(READ(E0_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_E1_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("E1: ");
 | |
|       SERIAL_PROTOCOL(READ(E1_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_E2_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("E2: ");
 | |
|       SERIAL_PROTOCOL(READ(E2_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_E3_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("E3: ");
 | |
|       SERIAL_PROTOCOL(READ(E3_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
 | |
|     #endif
 | |
|     #if HAS_E4_MICROSTEPS
 | |
|       SERIAL_PROTOCOLPGM("E4: ");
 | |
|       SERIAL_PROTOCOL(READ(E4_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_MICROSTEPS
 |