You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							6664 lines
						
					
					
						
							207 KiB
						
					
					
				
			
		
		
	
	
							6664 lines
						
					
					
						
							207 KiB
						
					
					
				/**
 | 
						|
 * Marlin Firmware
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 * About Marlin
 | 
						|
 *
 | 
						|
 * This firmware is a mashup between Sprinter and grbl.
 | 
						|
 *  - https://github.com/kliment/Sprinter
 | 
						|
 *  - https://github.com/simen/grbl/tree
 | 
						|
 *
 | 
						|
 * It has preliminary support for Matthew Roberts advance algorithm
 | 
						|
 *  - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | 
						|
 */
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
  #include "vector_3.h"
 | 
						|
  #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
    #include "qr_solve.h"
 | 
						|
  #endif
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
#define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && defined(DEACTIVATE_SERVOS_AFTER_MOVE))
 | 
						|
 | 
						|
#ifdef MESH_BED_LEVELING
 | 
						|
  #include "mesh_bed_leveling.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "stepper.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "cardreader.h"
 | 
						|
#include "watchdog.h"
 | 
						|
#include "configuration_store.h"
 | 
						|
#include "language.h"
 | 
						|
#include "pins_arduino.h"
 | 
						|
#include "math.h"
 | 
						|
#include "buzzer.h"
 | 
						|
 | 
						|
#ifdef BLINKM
 | 
						|
  #include "blinkm.h"
 | 
						|
  #include "Wire.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
  #include "servo.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAS_DIGIPOTSS
 | 
						|
  #include <SPI.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Look here for descriptions of G-codes:
 | 
						|
 *  - http://linuxcnc.org/handbook/gcode/g-code.html
 | 
						|
 *  - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
 | 
						|
 *
 | 
						|
 * Help us document these G-codes online:
 | 
						|
 *  - http://www.marlinfirmware.org/index.php/G-Code
 | 
						|
 *  - http://reprap.org/wiki/G-code
 | 
						|
 *
 | 
						|
 * -----------------
 | 
						|
 * Implemented Codes
 | 
						|
 * -----------------
 | 
						|
 *
 | 
						|
 * "G" Codes
 | 
						|
 *
 | 
						|
 * G0  -> G1
 | 
						|
 * G1  - Coordinated Movement X Y Z E
 | 
						|
 * G2  - CW ARC
 | 
						|
 * G3  - CCW ARC
 | 
						|
 * G4  - Dwell S<seconds> or P<milliseconds>
 | 
						|
 * G10 - retract filament according to settings of M207
 | 
						|
 * G11 - retract recover filament according to settings of M208
 | 
						|
 * G28 - Home one or more axes
 | 
						|
 * G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 | 
						|
 * G30 - Single Z Probe, probes bed at current XY location.
 | 
						|
 * G31 - Dock sled (Z_PROBE_SLED only)
 | 
						|
 * G32 - Undock sled (Z_PROBE_SLED only)
 | 
						|
 * G90 - Use Absolute Coordinates
 | 
						|
 * G91 - Use Relative Coordinates
 | 
						|
 * G92 - Set current position to coordinates given
 | 
						|
 *
 | 
						|
 * "M" Codes
 | 
						|
 *
 | 
						|
 * M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
 | 
						|
 * M1   - Same as M0
 | 
						|
 * M17  - Enable/Power all stepper motors
 | 
						|
 * M18  - Disable all stepper motors; same as M84
 | 
						|
 * M20  - List SD card
 | 
						|
 * M21  - Init SD card
 | 
						|
 * M22  - Release SD card
 | 
						|
 * M23  - Select SD file (M23 filename.g)
 | 
						|
 * M24  - Start/resume SD print
 | 
						|
 * M25  - Pause SD print
 | 
						|
 * M26  - Set SD position in bytes (M26 S12345)
 | 
						|
 * M27  - Report SD print status
 | 
						|
 * M28  - Start SD write (M28 filename.g)
 | 
						|
 * M29  - Stop SD write
 | 
						|
 * M30  - Delete file from SD (M30 filename.g)
 | 
						|
 * M31  - Output time since last M109 or SD card start to serial
 | 
						|
 * M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
 | 
						|
 *        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
 | 
						|
 *        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
 | 
						|
 *        The '#' is necessary when calling from within sd files, as it stops buffer prereading
 | 
						|
 * M33  - Get the longname version of a path
 | 
						|
 * M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
 | 
						|
 * M48  - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
 | 
						|
 * M80  - Turn on Power Supply
 | 
						|
 * M81  - Turn off Power Supply
 | 
						|
 * M82  - Set E codes absolute (default)
 | 
						|
 * M83  - Set E codes relative while in Absolute Coordinates (G90) mode
 | 
						|
 * M84  - Disable steppers until next move,
 | 
						|
 *        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
 | 
						|
 * M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | 
						|
 * M92  - Set axis_steps_per_unit - same syntax as G92
 | 
						|
 * M104 - Set extruder target temp
 | 
						|
 * M105 - Read current temp
 | 
						|
 * M106 - Fan on
 | 
						|
 * M107 - Fan off
 | 
						|
 * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
 | 
						|
 *        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
 | 
						|
 *        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
 | 
						|
 * M110 - Set the current line number
 | 
						|
 * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
 | 
						|
 * M112 - Emergency stop
 | 
						|
 * M114 - Output current position to serial port
 | 
						|
 * M115 - Capabilities string
 | 
						|
 * M117 - Display a message on the controller screen
 | 
						|
 * M119 - Output Endstop status to serial port
 | 
						|
 * M120 - Enable endstop detection
 | 
						|
 * M121 - Disable endstop detection
 | 
						|
 * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
 | 
						|
 * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
 | 
						|
 * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | 
						|
 * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | 
						|
 * M140 - Set bed target temp
 | 
						|
 * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
 | 
						|
 * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
 | 
						|
 * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | 
						|
 *        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | 
						|
 * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>- 
 | 
						|
 * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | 
						|
 * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
 | 
						|
 * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
 | 
						|
 * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
 | 
						|
 * M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
 | 
						|
 * M206 - Set additional homing offset
 | 
						|
 * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
 | 
						|
 * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
 | 
						|
 * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
 * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
 * M220 - Set speed factor override percentage: S<factor in percent>
 | 
						|
 * M221 - Set extrude factor override percentage: S<factor in percent>
 | 
						|
 * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
 | 
						|
 * M240 - Trigger a camera to take a photograph
 | 
						|
 * M250 - Set LCD contrast C<contrast value> (value 0..63)
 | 
						|
 * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
 | 
						|
 * M300 - Play beep sound S<frequency Hz> P<duration ms>
 | 
						|
 * M301 - Set PID parameters P I and D
 | 
						|
 * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
 | 
						|
 * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
 | 
						|
 * M304 - Set bed PID parameters P I and D
 | 
						|
 * M380 - Activate solenoid on active extruder
 | 
						|
 * M381 - Disable all solenoids
 | 
						|
 * M400 - Finish all moves
 | 
						|
 * M401 - Lower z-probe if present
 | 
						|
 * M402 - Raise z-probe if present
 | 
						|
 * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
 | 
						|
 * M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder
 | 
						|
 * M406 - Turn off Filament Sensor extrusion control
 | 
						|
 * M407 - Display measured filament diameter
 | 
						|
 * M410 - Quickstop. Abort all the planned moves
 | 
						|
 * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
 | 
						|
 * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
 | 
						|
 * M428 - Set the home_offset logically based on the current_position
 | 
						|
 * M500 - Store parameters in EEPROM
 | 
						|
 * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
 | 
						|
 * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
 | 
						|
 * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
 | 
						|
 * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | 
						|
 * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | 
						|
 * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
 | 
						|
 * M666 - Set delta endstop adjustment
 | 
						|
 * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
 | 
						|
 * M907 - Set digital trimpot motor current using axis codes.
 | 
						|
 * M908 - Control digital trimpot directly.
 | 
						|
 * M350 - Set microstepping mode.
 | 
						|
 * M351 - Toggle MS1 MS2 pins directly.
 | 
						|
 *
 | 
						|
 * ************ SCARA Specific - This can change to suit future G-code regulations
 | 
						|
 * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | 
						|
 * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | 
						|
 * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | 
						|
 * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | 
						|
 * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | 
						|
 * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
 | 
						|
 * ************* SCARA End ***************
 | 
						|
 *
 | 
						|
 * ************ Custom codes - This can change to suit future G-code regulations
 | 
						|
 * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
 | 
						|
 | 
						|
 | 
						|
 * M928 - Start SD logging (M928 filename.g) - ended by M29
 | 
						|
 * M999 - Restart after being stopped by error
 | 
						|
 *
 | 
						|
 * "T" Codes
 | 
						|
 *
 | 
						|
 * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
  CardReader card;
 | 
						|
#endif
 | 
						|
 | 
						|
bool Running = true;
 | 
						|
 | 
						|
uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
 | 
						|
 | 
						|
static float feedrate = 1500.0, saved_feedrate;
 | 
						|
float current_position[NUM_AXIS] = { 0.0 };
 | 
						|
static float destination[NUM_AXIS] = { 0.0 };
 | 
						|
bool axis_known_position[3] = { false };
 | 
						|
 | 
						|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
 | 
						|
 | 
						|
static char *current_command, *current_command_args;
 | 
						|
static int cmd_queue_index_r = 0;
 | 
						|
static int cmd_queue_index_w = 0;
 | 
						|
static int commands_in_queue = 0;
 | 
						|
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
 | 
						|
 | 
						|
float homing_feedrate[] = HOMING_FEEDRATE;
 | 
						|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
 | 
						|
int feedrate_multiplier = 100; //100->1 200->2
 | 
						|
int saved_feedrate_multiplier;
 | 
						|
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
 | 
						|
bool volumetric_enabled = false;
 | 
						|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
 | 
						|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
 | 
						|
float home_offset[3] = { 0 };
 | 
						|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
 | 
						|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
 | 
						|
 | 
						|
uint8_t active_extruder = 0;
 | 
						|
int fanSpeed = 0;
 | 
						|
bool cancel_heatup = false;
 | 
						|
 | 
						|
const char errormagic[] PROGMEM = "Error:";
 | 
						|
const char echomagic[] PROGMEM = "echo:";
 | 
						|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
 | 
						|
 | 
						|
static bool relative_mode = false;  //Determines Absolute or Relative Coordinates
 | 
						|
static char serial_char;
 | 
						|
static int serial_count = 0;
 | 
						|
static boolean comment_mode = false;
 | 
						|
static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
 | 
						|
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
 | 
						|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
 | 
						|
// Inactivity shutdown
 | 
						|
millis_t previous_cmd_ms = 0;
 | 
						|
static millis_t max_inactive_time = 0;
 | 
						|
static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
 | 
						|
millis_t print_job_start_ms = 0; ///< Print job start time
 | 
						|
millis_t print_job_stop_ms = 0;  ///< Print job stop time
 | 
						|
static uint8_t target_extruder;
 | 
						|
bool no_wait_for_cooling = true;
 | 
						|
bool target_direction;
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
  int xy_travel_speed = XY_TRAVEL_SPEED;
 | 
						|
  float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
 | 
						|
  float z_endstop_adj = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
// Extruder offsets
 | 
						|
#if EXTRUDERS > 1
 | 
						|
  #ifndef EXTRUDER_OFFSET_X
 | 
						|
    #define EXTRUDER_OFFSET_X { 0 }
 | 
						|
  #endif
 | 
						|
  #ifndef EXTRUDER_OFFSET_Y
 | 
						|
    #define EXTRUDER_OFFSET_Y { 0 }
 | 
						|
  #endif
 | 
						|
  float extruder_offset[][EXTRUDERS] = {
 | 
						|
    EXTRUDER_OFFSET_X,
 | 
						|
    EXTRUDER_OFFSET_Y
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      , { 0 } // supports offsets in XYZ plane
 | 
						|
    #endif
 | 
						|
  };
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SERVO_ENDSTOPS
 | 
						|
  int servo_endstops[] = SERVO_ENDSTOPS;
 | 
						|
  int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BARICUDA
 | 
						|
  int ValvePressure = 0;
 | 
						|
  int EtoPPressure = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  bool autoretract_enabled = false;
 | 
						|
  bool retracted[EXTRUDERS] = { false };
 | 
						|
  bool retracted_swap[EXTRUDERS] = { false };
 | 
						|
 | 
						|
  float retract_length = RETRACT_LENGTH;
 | 
						|
  float retract_length_swap = RETRACT_LENGTH_SWAP;
 | 
						|
  float retract_feedrate = RETRACT_FEEDRATE;
 | 
						|
  float retract_zlift = RETRACT_ZLIFT;
 | 
						|
  float retract_recover_length = RETRACT_RECOVER_LENGTH;
 | 
						|
  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | 
						|
  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
 | 
						|
 | 
						|
#endif // FWRETRACT
 | 
						|
 | 
						|
#if defined(ULTIPANEL) && HAS_POWER_SWITCH
 | 
						|
  bool powersupply = 
 | 
						|
    #ifdef PS_DEFAULT_OFF
 | 
						|
      false
 | 
						|
    #else
 | 
						|
      true
 | 
						|
    #endif
 | 
						|
  ;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
  float delta[3] = { 0 };
 | 
						|
  #define SIN_60 0.8660254037844386
 | 
						|
  #define COS_60 0.5
 | 
						|
  float endstop_adj[3] = { 0 };
 | 
						|
  // these are the default values, can be overriden with M665
 | 
						|
  float delta_radius = DELTA_RADIUS;
 | 
						|
  float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
 | 
						|
  float delta_tower1_y = -COS_60 * delta_radius;     
 | 
						|
  float delta_tower2_x =  SIN_60 * delta_radius; // front right tower
 | 
						|
  float delta_tower2_y = -COS_60 * delta_radius;     
 | 
						|
  float delta_tower3_x = 0;                      // back middle tower
 | 
						|
  float delta_tower3_y = delta_radius;
 | 
						|
  float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
 | 
						|
  float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
 | 
						|
  float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    int delta_grid_spacing[2] = { 0, 0 };
 | 
						|
    float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
 | 
						|
  #endif
 | 
						|
#else
 | 
						|
  static bool home_all_axis = true;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
  float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
 | 
						|
  static float delta[3] = { 0 };
 | 
						|
  float axis_scaling[3] = { 1, 1, 1 };    // Build size scaling, default to 1
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
  //Variables for Filament Sensor input
 | 
						|
  float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404
 | 
						|
  bool filament_sensor = false;  //M405 turns on filament_sensor control, M406 turns it off
 | 
						|
  float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
 | 
						|
  signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100
 | 
						|
  int delay_index1 = 0;  //index into ring buffer
 | 
						|
  int delay_index2 = -1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
 | 
						|
  float delay_dist = 0; //delay distance counter
 | 
						|
  int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
   static bool filrunoutEnqueued = false;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
  static bool fromsd[BUFSIZE];
 | 
						|
#endif
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
  Servo servo[NUM_SERVOS];
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CHDK
 | 
						|
  unsigned long chdkHigh = 0;
 | 
						|
  boolean chdkActive = false;
 | 
						|
#endif
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//================================ Functions ================================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
void process_next_command();
 | 
						|
 | 
						|
bool setTargetedHotend(int code);
 | 
						|
 | 
						|
void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
void serial_echopair_P(const char *s_P, double v)        { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
						|
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
  float extrude_min_temp = EXTRUDE_MINTEMP;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
  #include "SdFatUtil.h"
 | 
						|
  int freeMemory() { return SdFatUtil::FreeRam(); }
 | 
						|
#else
 | 
						|
  extern "C" {
 | 
						|
    extern unsigned int __bss_end;
 | 
						|
    extern unsigned int __heap_start;
 | 
						|
    extern void *__brkval;
 | 
						|
 | 
						|
    int freeMemory() {
 | 
						|
      int free_memory;
 | 
						|
 | 
						|
      if ((int)__brkval == 0)
 | 
						|
        free_memory = ((int)&free_memory) - ((int)&__bss_end);
 | 
						|
      else
 | 
						|
        free_memory = ((int)&free_memory) - ((int)__brkval);
 | 
						|
 | 
						|
      return free_memory;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif //!SDSUPPORT
 | 
						|
 | 
						|
/**
 | 
						|
 * Inject the next command from the command queue, when possible
 | 
						|
 * Return false only if no command was pending
 | 
						|
 */
 | 
						|
static bool drain_queued_commands_P() {
 | 
						|
  if (!queued_commands_P) return false;
 | 
						|
 | 
						|
  // Get the next 30 chars from the sequence of gcodes to run
 | 
						|
  char cmd[30];
 | 
						|
  strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
 | 
						|
  cmd[sizeof(cmd) - 1] = '\0';
 | 
						|
 | 
						|
  // Look for the end of line, or the end of sequence
 | 
						|
  size_t i = 0;
 | 
						|
  char c;
 | 
						|
  while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
 | 
						|
  cmd[i] = '\0';
 | 
						|
  if (enqueuecommand(cmd)) {      // buffer was not full (else we will retry later)
 | 
						|
    if (c)
 | 
						|
      queued_commands_P += i + 1; // move to next command
 | 
						|
    else
 | 
						|
      queued_commands_P = NULL;   // will have no more commands in the sequence
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Record one or many commands to run from program memory.
 | 
						|
 * Aborts the current queue, if any.
 | 
						|
 * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
 | 
						|
 */
 | 
						|
void enqueuecommands_P(const char* pgcode) {
 | 
						|
  queued_commands_P = pgcode;
 | 
						|
  drain_queued_commands_P(); // first command executed asap (when possible)
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Copy a command directly into the main command buffer, from RAM.
 | 
						|
 *
 | 
						|
 * This is done in a non-safe way and needs a rework someday.
 | 
						|
 * Returns false if it doesn't add any command
 | 
						|
 */
 | 
						|
bool enqueuecommand(const char *cmd) {
 | 
						|
 | 
						|
  if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
 | 
						|
 | 
						|
  // This is dangerous if a mixing of serial and this happens
 | 
						|
  char *command = command_queue[cmd_queue_index_w];
 | 
						|
  strcpy(command, cmd);
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPGM(MSG_Enqueueing);
 | 
						|
  SERIAL_ECHO(command);
 | 
						|
  SERIAL_ECHOLNPGM("\"");
 | 
						|
  cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
 | 
						|
  commands_in_queue++;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void setup_killpin() {
 | 
						|
  #if HAS_KILL
 | 
						|
    SET_INPUT(KILL_PIN);
 | 
						|
    WRITE(KILL_PIN, HIGH);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void setup_filrunoutpin() {
 | 
						|
  #if HAS_FILRUNOUT
 | 
						|
    pinMode(FILRUNOUT_PIN, INPUT);
 | 
						|
    #ifdef ENDSTOPPULLUP_FIL_RUNOUT
 | 
						|
      WRITE(FILRUNOUT_PIN, HIGH);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
// Set home pin
 | 
						|
void setup_homepin(void) {
 | 
						|
  #if HAS_HOME
 | 
						|
    SET_INPUT(HOME_PIN);
 | 
						|
    WRITE(HOME_PIN, HIGH);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void setup_photpin() {
 | 
						|
  #if HAS_PHOTOGRAPH
 | 
						|
    OUT_WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void setup_powerhold() {
 | 
						|
  #if HAS_SUICIDE
 | 
						|
    OUT_WRITE(SUICIDE_PIN, HIGH);
 | 
						|
  #endif
 | 
						|
  #if HAS_POWER_SWITCH
 | 
						|
    #ifdef PS_DEFAULT_OFF
 | 
						|
      OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | 
						|
    #else
 | 
						|
      OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void suicide() {
 | 
						|
  #if HAS_SUICIDE
 | 
						|
    OUT_WRITE(SUICIDE_PIN, LOW);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void servo_init() {
 | 
						|
  #if NUM_SERVOS >= 1 && HAS_SERVO_0
 | 
						|
    servo[0].attach(SERVO0_PIN);
 | 
						|
  #endif
 | 
						|
  #if NUM_SERVOS >= 2 && HAS_SERVO_1
 | 
						|
    servo[1].attach(SERVO1_PIN);
 | 
						|
  #endif
 | 
						|
  #if NUM_SERVOS >= 3 && HAS_SERVO_2
 | 
						|
    servo[2].attach(SERVO2_PIN);
 | 
						|
  #endif
 | 
						|
  #if NUM_SERVOS >= 4 && HAS_SERVO_3
 | 
						|
    servo[3].attach(SERVO3_PIN);
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Set position of Servo Endstops that are defined
 | 
						|
  #ifdef SERVO_ENDSTOPS
 | 
						|
    for (int i = 0; i < 3; i++)
 | 
						|
      if (servo_endstops[i] >= 0)
 | 
						|
        servo[servo_endstops[i]].move(0, servo_endstop_angles[i * 2 + 1]);
 | 
						|
  #endif
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Stepper Reset (RigidBoard, et.al.)
 | 
						|
 */
 | 
						|
#if HAS_STEPPER_RESET
 | 
						|
  void disableStepperDrivers() {
 | 
						|
    pinMode(STEPPER_RESET_PIN, OUTPUT);
 | 
						|
    digitalWrite(STEPPER_RESET_PIN, LOW);  // drive it down to hold in reset motor driver chips
 | 
						|
  }
 | 
						|
  void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); }  // set to input, which allows it to be pulled high by pullups
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Marlin entry-point: Set up before the program loop
 | 
						|
 *  - Set up the kill pin, filament runout, power hold
 | 
						|
 *  - Start the serial port
 | 
						|
 *  - Print startup messages and diagnostics
 | 
						|
 *  - Get EEPROM or default settings
 | 
						|
 *  - Initialize managers for:
 | 
						|
 *    • temperature
 | 
						|
 *    • planner
 | 
						|
 *    • watchdog
 | 
						|
 *    • stepper
 | 
						|
 *    • photo pin
 | 
						|
 *    • servos
 | 
						|
 *    • LCD controller
 | 
						|
 *    • Digipot I2C
 | 
						|
 *    • Z probe sled
 | 
						|
 *    • status LEDs
 | 
						|
 */
 | 
						|
void setup() {
 | 
						|
  setup_killpin();
 | 
						|
  setup_filrunoutpin();
 | 
						|
  setup_powerhold();
 | 
						|
 | 
						|
  #if HAS_STEPPER_RESET
 | 
						|
    disableStepperDrivers();
 | 
						|
  #endif
 | 
						|
 | 
						|
  MYSERIAL.begin(BAUDRATE);
 | 
						|
  SERIAL_PROTOCOLLNPGM("start");
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
 | 
						|
  // Check startup - does nothing if bootloader sets MCUSR to 0
 | 
						|
  byte mcu = MCUSR;
 | 
						|
  if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
 | 
						|
  if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
 | 
						|
  if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
 | 
						|
  if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
 | 
						|
  if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
 | 
						|
  MCUSR = 0;
 | 
						|
 | 
						|
  SERIAL_ECHOPGM(MSG_MARLIN);
 | 
						|
  SERIAL_ECHOLNPGM(" " BUILD_VERSION);
 | 
						|
 | 
						|
  #ifdef STRING_DISTRIBUTION_DATE
 | 
						|
    #ifdef STRING_CONFIG_H_AUTHOR
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
 | 
						|
      SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
 | 
						|
      SERIAL_ECHOPGM(MSG_AUTHOR);
 | 
						|
      SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
 | 
						|
      SERIAL_ECHOPGM("Compiled: ");
 | 
						|
      SERIAL_ECHOLNPGM(__DATE__);
 | 
						|
    #endif // STRING_CONFIG_H_AUTHOR
 | 
						|
  #endif // STRING_DISTRIBUTION_DATE
 | 
						|
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPGM(MSG_FREE_MEMORY);
 | 
						|
  SERIAL_ECHO(freeMemory());
 | 
						|
  SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
 | 
						|
  SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
 | 
						|
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
    for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
 | 
						|
  #endif
 | 
						|
 | 
						|
  // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
 | 
						|
  Config_RetrieveSettings();
 | 
						|
 | 
						|
  lcd_init();
 | 
						|
  _delay_ms(1000);  // wait 1sec to display the splash screen
 | 
						|
 | 
						|
  tp_init();    // Initialize temperature loop
 | 
						|
  plan_init();  // Initialize planner;
 | 
						|
  watchdog_init();
 | 
						|
  st_init();    // Initialize stepper, this enables interrupts!
 | 
						|
  setup_photpin();
 | 
						|
  servo_init();
 | 
						|
 | 
						|
  #if HAS_CONTROLLERFAN
 | 
						|
    SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if HAS_STEPPER_RESET
 | 
						|
    enableStepperDrivers();
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DIGIPOT_I2C
 | 
						|
    digipot_i2c_init();
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef Z_PROBE_SLED
 | 
						|
    pinMode(SLED_PIN, OUTPUT);
 | 
						|
    digitalWrite(SLED_PIN, LOW); // turn it off
 | 
						|
  #endif // Z_PROBE_SLED
 | 
						|
 | 
						|
  setup_homepin();
 | 
						|
  
 | 
						|
  #ifdef STAT_LED_RED
 | 
						|
    pinMode(STAT_LED_RED, OUTPUT);
 | 
						|
    digitalWrite(STAT_LED_RED, LOW); // turn it off
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef STAT_LED_BLUE
 | 
						|
    pinMode(STAT_LED_BLUE, OUTPUT);
 | 
						|
    digitalWrite(STAT_LED_BLUE, LOW); // turn it off
 | 
						|
  #endif  
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * The main Marlin program loop
 | 
						|
 *
 | 
						|
 *  - Save or log commands to SD
 | 
						|
 *  - Process available commands (if not saving)
 | 
						|
 *  - Call heater manager
 | 
						|
 *  - Call inactivity manager
 | 
						|
 *  - Call endstop manager
 | 
						|
 *  - Call LCD update
 | 
						|
 */
 | 
						|
void loop() {
 | 
						|
  if (commands_in_queue < BUFSIZE - 1) get_command();
 | 
						|
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
    card.checkautostart(false);
 | 
						|
  #endif
 | 
						|
 | 
						|
  if (commands_in_queue) {
 | 
						|
 | 
						|
    #ifdef SDSUPPORT
 | 
						|
 | 
						|
      if (card.saving) {
 | 
						|
        char *command = command_queue[cmd_queue_index_r];
 | 
						|
        if (strstr_P(command, PSTR("M29"))) {
 | 
						|
          // M29 closes the file
 | 
						|
          card.closefile();
 | 
						|
          SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // Write the string from the read buffer to SD
 | 
						|
          card.write_command(command);
 | 
						|
          if (card.logging)
 | 
						|
            process_next_command(); // The card is saving because it's logging
 | 
						|
          else
 | 
						|
            SERIAL_PROTOCOLLNPGM(MSG_OK);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else
 | 
						|
        process_next_command();
 | 
						|
 | 
						|
    #else
 | 
						|
 | 
						|
      process_next_command();
 | 
						|
 | 
						|
    #endif // SDSUPPORT
 | 
						|
 | 
						|
    commands_in_queue--;
 | 
						|
    cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
 | 
						|
  }
 | 
						|
  checkHitEndstops();
 | 
						|
  idle();
 | 
						|
}
 | 
						|
 | 
						|
void gcode_line_error(const char *err, bool doFlush=true) {
 | 
						|
  SERIAL_ERROR_START;
 | 
						|
  serialprintPGM(err);
 | 
						|
  SERIAL_ERRORLN(gcode_LastN);
 | 
						|
  //Serial.println(gcode_N);
 | 
						|
  if (doFlush) FlushSerialRequestResend();
 | 
						|
  serial_count = 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Add to the circular command queue the next command from:
 | 
						|
 *  - The command-injection queue (queued_commands_P)
 | 
						|
 *  - The active serial input (usually USB)
 | 
						|
 *  - The SD card file being actively printed
 | 
						|
 */
 | 
						|
void get_command() {
 | 
						|
 | 
						|
  if (drain_queued_commands_P()) return; // priority is given to non-serial commands
 | 
						|
  
 | 
						|
  #ifdef NO_TIMEOUTS
 | 
						|
    static millis_t last_command_time = 0;
 | 
						|
    millis_t ms = millis();
 | 
						|
  
 | 
						|
    if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
 | 
						|
      SERIAL_ECHOLNPGM(MSG_WAIT);
 | 
						|
      last_command_time = ms;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  //
 | 
						|
  // Loop while serial characters are incoming and the queue is not full
 | 
						|
  //
 | 
						|
  while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
 | 
						|
 | 
						|
    #ifdef NO_TIMEOUTS
 | 
						|
      last_command_time = ms;
 | 
						|
    #endif
 | 
						|
 | 
						|
    serial_char = MYSERIAL.read();
 | 
						|
 | 
						|
    //
 | 
						|
    // If the character ends the line, or the line is full...
 | 
						|
    //
 | 
						|
    if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
 | 
						|
 | 
						|
      // end of line == end of comment
 | 
						|
      comment_mode = false;
 | 
						|
 | 
						|
      if (!serial_count) return; // empty lines just exit
 | 
						|
 | 
						|
      char *command = command_queue[cmd_queue_index_w];
 | 
						|
      command[serial_count] = 0; // terminate string
 | 
						|
 | 
						|
      // this item in the queue is not from sd
 | 
						|
      #ifdef SDSUPPORT
 | 
						|
        fromsd[cmd_queue_index_w] = false;
 | 
						|
      #endif
 | 
						|
 | 
						|
      char *npos = strchr(command, 'N');
 | 
						|
      char *apos = strchr(command, '*');
 | 
						|
      if (npos) {
 | 
						|
 | 
						|
        boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
 | 
						|
 | 
						|
        if (M110) {
 | 
						|
          char *n2pos = strchr(command + 4, 'N');
 | 
						|
          if (n2pos) npos = n2pos;
 | 
						|
        }
 | 
						|
 | 
						|
        gcode_N = strtol(npos + 1, NULL, 10);
 | 
						|
 | 
						|
        if (gcode_N != gcode_LastN + 1 && !M110) {
 | 
						|
          gcode_line_error(PSTR(MSG_ERR_LINE_NO));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (apos) {
 | 
						|
          byte checksum = 0, count = 0;
 | 
						|
          while (command[count] != '*') checksum ^= command[count++];
 | 
						|
 | 
						|
          if (strtol(apos + 1, NULL, 10) != checksum) {
 | 
						|
            gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          // if no errors, continue parsing
 | 
						|
        }
 | 
						|
        else if (npos == command) {
 | 
						|
          gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        gcode_LastN = gcode_N;
 | 
						|
        // if no errors, continue parsing
 | 
						|
      }
 | 
						|
      else if (apos) { // No '*' without 'N'
 | 
						|
        gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Movement commands alert when stopped
 | 
						|
      if (IsStopped()) {
 | 
						|
        char *gpos = strchr(command, 'G');
 | 
						|
        if (gpos) {
 | 
						|
          int codenum = strtol(gpos + 1, NULL, 10);
 | 
						|
          switch (codenum) {
 | 
						|
            case 0:
 | 
						|
            case 1:
 | 
						|
            case 2:
 | 
						|
            case 3:
 | 
						|
              SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | 
						|
              LCD_MESSAGEPGM(MSG_STOPPED);
 | 
						|
              break;
 | 
						|
          }
 | 
						|
        }        
 | 
						|
      }
 | 
						|
 | 
						|
      // If command was e-stop process now
 | 
						|
      if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
 | 
						|
 | 
						|
      cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
 | 
						|
      commands_in_queue += 1;
 | 
						|
 | 
						|
      serial_count = 0; //clear buffer
 | 
						|
    }
 | 
						|
    else if (serial_char == '\\') {  // Handle escapes
 | 
						|
      if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
 | 
						|
        // if we have one more character, copy it over
 | 
						|
        serial_char = MYSERIAL.read();
 | 
						|
        command_queue[cmd_queue_index_w][serial_count++] = serial_char;
 | 
						|
      }
 | 
						|
      // otherwise do nothing
 | 
						|
    }
 | 
						|
    else { // its not a newline, carriage return or escape char
 | 
						|
      if (serial_char == ';') comment_mode = true;
 | 
						|
      if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
 | 
						|
    if (!card.sdprinting || serial_count) return;
 | 
						|
 | 
						|
    // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
 | 
						|
    // if it occurs, stop_buffering is triggered and the buffer is ran dry.
 | 
						|
    // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
 | 
						|
 | 
						|
    static bool stop_buffering = false;
 | 
						|
    if (commands_in_queue == 0) stop_buffering = false;
 | 
						|
 | 
						|
    while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
 | 
						|
      int16_t n = card.get();
 | 
						|
      serial_char = (char)n;
 | 
						|
      if (serial_char == '\n' || serial_char == '\r' ||
 | 
						|
          ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
 | 
						|
          serial_count >= (MAX_CMD_SIZE - 1) || n == -1
 | 
						|
      ) {
 | 
						|
        if (card.eof()) {
 | 
						|
          SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
 | 
						|
          print_job_stop_ms = millis();
 | 
						|
          char time[30];
 | 
						|
          millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
 | 
						|
          int hours = t / 60 / 60, minutes = (t / 60) % 60;
 | 
						|
          sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
 | 
						|
          SERIAL_ECHO_START;
 | 
						|
          SERIAL_ECHOLN(time);
 | 
						|
          lcd_setstatus(time, true);
 | 
						|
          card.printingHasFinished();
 | 
						|
          card.checkautostart(true);
 | 
						|
        }
 | 
						|
        if (serial_char == '#') stop_buffering = true;
 | 
						|
 | 
						|
        if (!serial_count) {
 | 
						|
          comment_mode = false; //for new command
 | 
						|
          return; //if empty line
 | 
						|
        }
 | 
						|
        command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
 | 
						|
        // if (!comment_mode) {
 | 
						|
        fromsd[cmd_queue_index_w] = true;
 | 
						|
        commands_in_queue += 1;
 | 
						|
        cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
 | 
						|
        // }
 | 
						|
        comment_mode = false; //for new command
 | 
						|
        serial_count = 0; //clear buffer
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        if (serial_char == ';') comment_mode = true;
 | 
						|
        if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  #endif // SDSUPPORT
 | 
						|
}
 | 
						|
 | 
						|
bool code_has_value() {
 | 
						|
  int i = 1;
 | 
						|
  char c = seen_pointer[i];
 | 
						|
  if (c == '-' || c == '+') c = seen_pointer[++i];
 | 
						|
  if (c == '.') c = seen_pointer[++i];
 | 
						|
  return (c >= '0' && c <= '9');
 | 
						|
}
 | 
						|
 | 
						|
float code_value() {
 | 
						|
  float ret;
 | 
						|
  char *e = strchr(seen_pointer, 'E');
 | 
						|
  if (e) {
 | 
						|
    *e = 0;
 | 
						|
    ret = strtod(seen_pointer+1, NULL);
 | 
						|
    *e = 'E';
 | 
						|
  }
 | 
						|
  else
 | 
						|
    ret = strtod(seen_pointer+1, NULL);
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
 | 
						|
 | 
						|
int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
 | 
						|
 | 
						|
bool code_seen(char code) {
 | 
						|
  seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
 | 
						|
  return (seen_pointer != NULL);  //Return True if a character was found
 | 
						|
}
 | 
						|
 | 
						|
#define DEFINE_PGM_READ_ANY(type, reader)       \
 | 
						|
    static inline type pgm_read_any(const type *p)  \
 | 
						|
    { return pgm_read_##reader##_near(p); }
 | 
						|
 | 
						|
DEFINE_PGM_READ_ANY(float,       float);
 | 
						|
DEFINE_PGM_READ_ANY(signed char, byte);
 | 
						|
 | 
						|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
 | 
						|
static const PROGMEM type array##_P[3] =        \
 | 
						|
    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
 | 
						|
static inline type array(int axis)          \
 | 
						|
    { return pgm_read_any(&array##_P[axis]); }
 | 
						|
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,   MIN_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,   MAX_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,  HOME_POS);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, max_length,     MAX_LENGTH);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm,   HOME_BUMP_MM);
 | 
						|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
 | 
						|
  #define DXC_FULL_CONTROL_MODE 0
 | 
						|
  #define DXC_AUTO_PARK_MODE    1
 | 
						|
  #define DXC_DUPLICATION_MODE  2
 | 
						|
 | 
						|
  static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | 
						|
 | 
						|
  static float x_home_pos(int extruder) {
 | 
						|
    if (extruder == 0)
 | 
						|
      return base_home_pos(X_AXIS) + home_offset[X_AXIS];
 | 
						|
    else
 | 
						|
      // In dual carriage mode the extruder offset provides an override of the
 | 
						|
      // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
 | 
						|
      // This allow soft recalibration of the second extruder offset position without firmware reflash
 | 
						|
      // (through the M218 command).
 | 
						|
      return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
 | 
						|
  }
 | 
						|
 | 
						|
  static int x_home_dir(int extruder) {
 | 
						|
    return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
 | 
						|
  }
 | 
						|
 | 
						|
  static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
 | 
						|
  static bool active_extruder_parked = false; // used in mode 1 & 2
 | 
						|
  static float raised_parked_position[NUM_AXIS]; // used in mode 1
 | 
						|
  static millis_t delayed_move_time = 0; // used in mode 1
 | 
						|
  static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
 | 
						|
  static float duplicate_extruder_temp_offset = 0; // used in mode 2
 | 
						|
  bool extruder_duplication_enabled = false; // used in mode 2
 | 
						|
 | 
						|
#endif //DUAL_X_CARRIAGE
 | 
						|
 | 
						|
static void axis_is_at_home(AxisEnum axis) {
 | 
						|
 | 
						|
  #ifdef DUAL_X_CARRIAGE
 | 
						|
    if (axis == X_AXIS) {
 | 
						|
      if (active_extruder != 0) {
 | 
						|
        current_position[X_AXIS] = x_home_pos(active_extruder);
 | 
						|
                 min_pos[X_AXIS] = X2_MIN_POS;
 | 
						|
                 max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
 | 
						|
        float xoff = home_offset[X_AXIS];
 | 
						|
        current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
 | 
						|
                 min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
 | 
						|
                 max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
   
 | 
						|
    if (axis == X_AXIS || axis == Y_AXIS) {
 | 
						|
 | 
						|
      float homeposition[3];
 | 
						|
      for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
 | 
						|
 | 
						|
      // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
 | 
						|
      // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
 | 
						|
      // Works out real Homeposition angles using inverse kinematics, 
 | 
						|
      // and calculates homing offset using forward kinematics
 | 
						|
      calculate_delta(homeposition);
 | 
						|
     
 | 
						|
      // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
      // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
     
 | 
						|
      for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
 | 
						|
     
 | 
						|
      // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
 | 
						|
      // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
 | 
						|
      // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
      // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
      
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
     
 | 
						|
      // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
      // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
     
 | 
						|
      current_position[axis] = delta[axis];
 | 
						|
    
 | 
						|
      // SCARA home positions are based on configuration since the actual limits are determined by the 
 | 
						|
      // inverse kinematic transform.
 | 
						|
      min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | 
						|
      max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | 
						|
    }
 | 
						|
    else
 | 
						|
  #endif
 | 
						|
  {
 | 
						|
    current_position[axis] = base_home_pos(axis) + home_offset[axis];
 | 
						|
    min_pos[axis] = base_min_pos(axis) + home_offset[axis];
 | 
						|
    max_pos[axis] = base_max_pos(axis) + home_offset[axis];
 | 
						|
 | 
						|
    #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
 | 
						|
      if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Some planner shorthand inline functions
 | 
						|
 */
 | 
						|
inline void set_homing_bump_feedrate(AxisEnum axis) {
 | 
						|
  const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
 | 
						|
  if (homing_bump_divisor[axis] >= 1)
 | 
						|
    feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
 | 
						|
  else {
 | 
						|
    feedrate = homing_feedrate[axis] / 10;
 | 
						|
    SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
 | 
						|
  }
 | 
						|
}
 | 
						|
inline void line_to_current_position() {
 | 
						|
  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
}
 | 
						|
inline void line_to_z(float zPosition) {
 | 
						|
  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | 
						|
}
 | 
						|
inline void line_to_destination(float mm_m) {
 | 
						|
  plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
 | 
						|
}
 | 
						|
inline void line_to_destination() {
 | 
						|
  line_to_destination(feedrate);
 | 
						|
}
 | 
						|
inline void sync_plan_position() {
 | 
						|
  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
}
 | 
						|
#if defined(DELTA) || defined(SCARA)
 | 
						|
  inline void sync_plan_position_delta() {
 | 
						|
    calculate_delta(current_position);
 | 
						|
    plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
 | 
						|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
 | 
						|
 | 
						|
static void setup_for_endstop_move() {
 | 
						|
  saved_feedrate = feedrate;
 | 
						|
  saved_feedrate_multiplier = feedrate_multiplier;
 | 
						|
  feedrate_multiplier = 100;
 | 
						|
  refresh_cmd_timeout();
 | 
						|
  enable_endstops(true);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    /**
 | 
						|
     * Calculate delta, start a line, and set current_position to destination
 | 
						|
     */
 | 
						|
    void prepare_move_raw() {
 | 
						|
      refresh_cmd_timeout();
 | 
						|
      calculate_delta(destination);
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
 | 
						|
      set_current_to_destination();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #ifndef DELTA
 | 
						|
 | 
						|
      static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
 | 
						|
        vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
 | 
						|
        planeNormal.debug("planeNormal");
 | 
						|
        plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | 
						|
        //bedLevel.debug("bedLevel");
 | 
						|
 | 
						|
        //plan_bed_level_matrix.debug("bed level before");
 | 
						|
        //vector_3 uncorrected_position = plan_get_position_mm();
 | 
						|
        //uncorrected_position.debug("position before");
 | 
						|
 | 
						|
        vector_3 corrected_position = plan_get_position();
 | 
						|
        //corrected_position.debug("position after");
 | 
						|
        current_position[X_AXIS] = corrected_position.x;
 | 
						|
        current_position[Y_AXIS] = corrected_position.y;
 | 
						|
        current_position[Z_AXIS] = corrected_position.z;
 | 
						|
 | 
						|
        sync_plan_position();
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // !DELTA
 | 
						|
 | 
						|
  #else // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
 | 
						|
 | 
						|
      plan_bed_level_matrix.set_to_identity();
 | 
						|
 | 
						|
      vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
 | 
						|
      vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
 | 
						|
      vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
 | 
						|
      vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
 | 
						|
 | 
						|
      if (planeNormal.z < 0) {
 | 
						|
        planeNormal.x = -planeNormal.x;
 | 
						|
        planeNormal.y = -planeNormal.y;
 | 
						|
        planeNormal.z = -planeNormal.z;
 | 
						|
      }
 | 
						|
 | 
						|
      plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | 
						|
 | 
						|
      vector_3 corrected_position = plan_get_position();
 | 
						|
      current_position[X_AXIS] = corrected_position.x;
 | 
						|
      current_position[Y_AXIS] = corrected_position.y;
 | 
						|
      current_position[Z_AXIS] = corrected_position.z;
 | 
						|
 | 
						|
      sync_plan_position();
 | 
						|
    }
 | 
						|
 | 
						|
  #endif // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
  static void run_z_probe() {
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
    
 | 
						|
      float start_z = current_position[Z_AXIS];
 | 
						|
      long start_steps = st_get_position(Z_AXIS);
 | 
						|
    
 | 
						|
      // move down slowly until you find the bed
 | 
						|
      feedrate = homing_feedrate[Z_AXIS] / 4;
 | 
						|
      destination[Z_AXIS] = -10;
 | 
						|
      prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
      st_synchronize();
 | 
						|
      endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
      
 | 
						|
      // we have to let the planner know where we are right now as it is not where we said to go.
 | 
						|
      long stop_steps = st_get_position(Z_AXIS);
 | 
						|
      float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
 | 
						|
      current_position[Z_AXIS] = mm;
 | 
						|
      sync_plan_position_delta();
 | 
						|
      
 | 
						|
    #else // !DELTA
 | 
						|
 | 
						|
      plan_bed_level_matrix.set_to_identity();
 | 
						|
      feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
      // Move down until the probe (or endstop?) is triggered
 | 
						|
      float zPosition = -10;
 | 
						|
      line_to_z(zPosition);
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      // Tell the planner where we ended up - Get this from the stepper handler
 | 
						|
      zPosition = st_get_position_mm(Z_AXIS);
 | 
						|
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
 | 
						|
 | 
						|
      // move up the retract distance
 | 
						|
      zPosition += home_bump_mm(Z_AXIS);
 | 
						|
      line_to_z(zPosition);
 | 
						|
      st_synchronize();
 | 
						|
      endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
 | 
						|
      // move back down slowly to find bed
 | 
						|
      set_homing_bump_feedrate(Z_AXIS);
 | 
						|
 | 
						|
      zPosition -= home_bump_mm(Z_AXIS) * 2;
 | 
						|
      line_to_z(zPosition);
 | 
						|
      st_synchronize();
 | 
						|
      endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
 | 
						|
      // Get the current stepper position after bumping an endstop
 | 
						|
      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 | 
						|
      sync_plan_position();
 | 
						|
      
 | 
						|
    #endif // !DELTA
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   *  Plan a move to (X, Y, Z) and set the current_position
 | 
						|
   *  The final current_position may not be the one that was requested
 | 
						|
   */
 | 
						|
  static void do_blocking_move_to(float x, float y, float z) {
 | 
						|
    float oldFeedRate = feedrate;
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
 | 
						|
      feedrate = XY_TRAVEL_SPEED;
 | 
						|
      
 | 
						|
      destination[X_AXIS] = x;
 | 
						|
      destination[Y_AXIS] = y;
 | 
						|
      destination[Z_AXIS] = z;
 | 
						|
      prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
    #else
 | 
						|
 | 
						|
      feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
      current_position[Z_AXIS] = z;
 | 
						|
      line_to_current_position();
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      feedrate = xy_travel_speed;
 | 
						|
 | 
						|
      current_position[X_AXIS] = x;
 | 
						|
      current_position[Y_AXIS] = y;
 | 
						|
      line_to_current_position();
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
    #endif
 | 
						|
 | 
						|
    feedrate = oldFeedRate;
 | 
						|
  }
 | 
						|
 | 
						|
  static void clean_up_after_endstop_move() {
 | 
						|
    #ifdef ENDSTOPS_ONLY_FOR_HOMING
 | 
						|
      enable_endstops(false);
 | 
						|
    #endif
 | 
						|
    feedrate = saved_feedrate;
 | 
						|
    feedrate_multiplier = saved_feedrate_multiplier;
 | 
						|
    refresh_cmd_timeout();
 | 
						|
  }
 | 
						|
 | 
						|
  static void deploy_z_probe() {
 | 
						|
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
 | 
						|
      // Engage Z Servo endstop if enabled
 | 
						|
      if (servo_endstops[Z_AXIS] >= 0) {
 | 
						|
        Servo *srv = &servo[servo_endstops[Z_AXIS]];
 | 
						|
        srv->move(0, servo_endstop_angles[Z_AXIS * 2]);
 | 
						|
      }
 | 
						|
 | 
						|
    #elif defined(Z_PROBE_ALLEN_KEY)
 | 
						|
      feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
 | 
						|
 | 
						|
      // If endstop is already false, the probe is deployed
 | 
						|
      #ifdef Z_PROBE_ENDSTOP
 | 
						|
        bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
						|
        if (z_probe_endstop)
 | 
						|
      #else
 | 
						|
        bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
						|
        if (z_min_endstop)
 | 
						|
      #endif
 | 
						|
        {
 | 
						|
 | 
						|
          // Move to the start position to initiate deployment
 | 
						|
          destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
 | 
						|
          destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
 | 
						|
          destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
 | 
						|
          prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
 | 
						|
          // Move to engage deployment
 | 
						|
          if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
 | 
						|
            feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
 | 
						|
          }
 | 
						|
          if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
 | 
						|
            destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
 | 
						|
          }
 | 
						|
          if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
 | 
						|
            destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
 | 
						|
          }
 | 
						|
          if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
 | 
						|
            destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
 | 
						|
          }
 | 
						|
          prepare_move_raw();
 | 
						|
 | 
						|
          #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
 | 
						|
            if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
 | 
						|
              feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
 | 
						|
            }
 | 
						|
 | 
						|
            // Move to trigger deployment
 | 
						|
            if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
 | 
						|
              feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
 | 
						|
            }
 | 
						|
            if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
 | 
						|
              destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
 | 
						|
            }
 | 
						|
            if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
 | 
						|
              destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
 | 
						|
            }
 | 
						|
            if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
 | 
						|
              destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
 | 
						|
            }
 | 
						|
            prepare_move_raw();
 | 
						|
          #endif
 | 
						|
      }
 | 
						|
 | 
						|
      // Partially Home X,Y for safety
 | 
						|
      destination[X_AXIS] = destination[X_AXIS]*0.75;
 | 
						|
      destination[Y_AXIS] = destination[Y_AXIS]*0.75;
 | 
						|
      prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      #ifdef Z_PROBE_ENDSTOP
 | 
						|
        z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
						|
        if (z_probe_endstop)
 | 
						|
      #else
 | 
						|
        z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
						|
        if (z_min_endstop)
 | 
						|
      #endif
 | 
						|
        {
 | 
						|
          if (IsRunning()) {
 | 
						|
            SERIAL_ERROR_START;
 | 
						|
            SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
 | 
						|
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
						|
          }
 | 
						|
          Stop();
 | 
						|
        }
 | 
						|
 | 
						|
    #endif // Z_PROBE_ALLEN_KEY
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  static void stow_z_probe(bool doRaise=true) {
 | 
						|
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
 | 
						|
      // Retract Z Servo endstop if enabled
 | 
						|
      if (servo_endstops[Z_AXIS] >= 0) {
 | 
						|
 | 
						|
        #if Z_RAISE_AFTER_PROBING > 0
 | 
						|
          if (doRaise) {
 | 
						|
            do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
 | 
						|
            st_synchronize();
 | 
						|
          }
 | 
						|
        #endif
 | 
						|
 | 
						|
        // Change the Z servo angle
 | 
						|
        Servo *srv = &servo[servo_endstops[Z_AXIS]];
 | 
						|
        srv->move(0, servo_endstop_angles[Z_AXIS * 2 + 1]);
 | 
						|
      }
 | 
						|
 | 
						|
    #elif defined(Z_PROBE_ALLEN_KEY)
 | 
						|
 | 
						|
      // Move up for safety
 | 
						|
      feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
 | 
						|
      destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
 | 
						|
      prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
 | 
						|
      // Move to the start position to initiate retraction
 | 
						|
      destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
 | 
						|
      destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
 | 
						|
      destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
 | 
						|
      prepare_move_raw();
 | 
						|
 | 
						|
      // Move the nozzle down to push the probe into retracted position
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
 | 
						|
        feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
 | 
						|
      }
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
 | 
						|
        destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
 | 
						|
      }
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
 | 
						|
        destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
 | 
						|
      }
 | 
						|
      destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
 | 
						|
      prepare_move_raw();
 | 
						|
      
 | 
						|
      // Move up for safety
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
 | 
						|
        feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
 | 
						|
      }
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
 | 
						|
        destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
 | 
						|
      }
 | 
						|
      if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
 | 
						|
        destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
 | 
						|
      }
 | 
						|
      destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
 | 
						|
      prepare_move_raw();
 | 
						|
      
 | 
						|
      // Home XY for safety
 | 
						|
      feedrate = homing_feedrate[X_AXIS]/2;
 | 
						|
      destination[X_AXIS] = 0;
 | 
						|
      destination[Y_AXIS] = 0;
 | 
						|
      prepare_move_raw(); // this will also set_current_to_destination
 | 
						|
      
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      #ifdef Z_PROBE_ENDSTOP
 | 
						|
        bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
						|
        if (!z_probe_endstop)
 | 
						|
      #else
 | 
						|
        bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
						|
        if (!z_min_endstop)
 | 
						|
      #endif
 | 
						|
        {
 | 
						|
          if (IsRunning()) {
 | 
						|
            SERIAL_ERROR_START;
 | 
						|
            SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
 | 
						|
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
						|
          }
 | 
						|
          Stop();
 | 
						|
        }
 | 
						|
 | 
						|
    #endif // Z_PROBE_ALLEN_KEY
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  enum ProbeAction {
 | 
						|
    ProbeStay          = 0,
 | 
						|
    ProbeDeploy        = BIT(0),
 | 
						|
    ProbeStow          = BIT(1),
 | 
						|
    ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
 | 
						|
  };
 | 
						|
 | 
						|
  // Probe bed height at position (x,y), returns the measured z value
 | 
						|
  static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
 | 
						|
    // Move Z up to the z_before height, then move the probe to the given XY
 | 
						|
    do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
 | 
						|
    do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
 | 
						|
 | 
						|
    #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
 | 
						|
      if (probe_action & ProbeDeploy) deploy_z_probe();
 | 
						|
    #endif
 | 
						|
 | 
						|
    run_z_probe();
 | 
						|
    float measured_z = current_position[Z_AXIS];
 | 
						|
 | 
						|
    #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
 | 
						|
      if (probe_action & ProbeStow) stow_z_probe();
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (verbose_level > 2) {
 | 
						|
      SERIAL_PROTOCOLPGM("Bed X: ");
 | 
						|
      SERIAL_PROTOCOL_F(x, 3);
 | 
						|
      SERIAL_PROTOCOLPGM(" Y: ");
 | 
						|
      SERIAL_PROTOCOL_F(y, 3);
 | 
						|
      SERIAL_PROTOCOLPGM(" Z: ");
 | 
						|
      SERIAL_PROTOCOL_F(measured_z, 3);
 | 
						|
      SERIAL_EOL;
 | 
						|
    }
 | 
						|
    return measured_z;
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
 | 
						|
    /**
 | 
						|
     * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
 | 
						|
     */
 | 
						|
 | 
						|
    static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
 | 
						|
      if (bed_level[x][y] != 0.0) {
 | 
						|
        return;  // Don't overwrite good values.
 | 
						|
      }
 | 
						|
      float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y];  // Left to right.
 | 
						|
      float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2];  // Front to back.
 | 
						|
      float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2];  // Diagonal.
 | 
						|
      float median = c;  // Median is robust (ignores outliers).
 | 
						|
      if (a < b) {
 | 
						|
        if (b < c) median = b;
 | 
						|
        if (c < a) median = a;
 | 
						|
      } else {  // b <= a
 | 
						|
        if (c < b) median = b;
 | 
						|
        if (a < c) median = a;
 | 
						|
      }
 | 
						|
      bed_level[x][y] = median;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fill in the unprobed points (corners of circular print surface)
 | 
						|
    // using linear extrapolation, away from the center.
 | 
						|
    static void extrapolate_unprobed_bed_level() {
 | 
						|
      int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
 | 
						|
      for (int y = 0; y <= half; y++) {
 | 
						|
        for (int x = 0; x <= half; x++) {
 | 
						|
          if (x + y < 3) continue;
 | 
						|
          extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
 | 
						|
          extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
 | 
						|
          extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
 | 
						|
          extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Print calibration results for plotting or manual frame adjustment.
 | 
						|
    static void print_bed_level() {
 | 
						|
      for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | 
						|
        for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | 
						|
          SERIAL_PROTOCOL_F(bed_level[x][y], 2);
 | 
						|
          SERIAL_PROTOCOLCHAR(' ');
 | 
						|
        }
 | 
						|
        SERIAL_EOL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Reset calibration results to zero.
 | 
						|
    void reset_bed_level() {
 | 
						|
      for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | 
						|
        for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | 
						|
          bed_level[x][y] = 0.0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  #endif // DELTA
 | 
						|
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
 | 
						|
#ifdef Z_PROBE_SLED
 | 
						|
 | 
						|
  #ifndef SLED_DOCKING_OFFSET
 | 
						|
    #define SLED_DOCKING_OFFSET 0
 | 
						|
  #endif
 | 
						|
 | 
						|
  /**
 | 
						|
   * Method to dock/undock a sled designed by Charles Bell.
 | 
						|
   *
 | 
						|
   * dock[in]     If true, move to MAX_X and engage the electromagnet
 | 
						|
   * offset[in]   The additional distance to move to adjust docking location
 | 
						|
   */
 | 
						|
  static void dock_sled(bool dock, int offset=0) {
 | 
						|
    if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
 | 
						|
      LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (dock) {
 | 
						|
      float oldXpos = current_position[X_AXIS]; // save x position
 | 
						|
      do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z   
 | 
						|
      do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]);  // Dock sled a bit closer to ensure proper capturing                                                                                                                           
 | 
						|
      digitalWrite(SLED_PIN, LOW); // turn off magnet
 | 
						|
      do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
 | 
						|
    } else {
 | 
						|
      float oldXpos = current_position[X_AXIS]; // save x position
 | 
						|
      float z_loc = current_position[Z_AXIS];
 | 
						|
      if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
 | 
						|
      do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
 | 
						|
      digitalWrite(SLED_PIN, HIGH); // turn on magnet
 | 
						|
      do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // Z_PROBE_SLED
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Home an individual axis
 | 
						|
 */
 | 
						|
 | 
						|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
 | 
						|
 | 
						|
static void homeaxis(AxisEnum axis) {
 | 
						|
  #define HOMEAXIS_DO(LETTER) \
 | 
						|
    ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
 | 
						|
 | 
						|
  if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
 | 
						|
 | 
						|
    int axis_home_dir =
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        (axis == X_AXIS) ? x_home_dir(active_extruder) :
 | 
						|
      #endif
 | 
						|
      home_dir(axis);
 | 
						|
 | 
						|
    // Set the axis position as setup for the move
 | 
						|
    current_position[axis] = 0;
 | 
						|
    sync_plan_position();
 | 
						|
 | 
						|
    #ifdef Z_PROBE_SLED
 | 
						|
      // Get Probe
 | 
						|
      if (axis == Z_AXIS) {
 | 
						|
        if (axis_home_dir < 0) dock_sled(false);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
    
 | 
						|
    #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
 | 
						|
 | 
						|
      // Deploy a probe if there is one, and homing towards the bed
 | 
						|
      if (axis == Z_AXIS) {
 | 
						|
        if (axis_home_dir < 0) deploy_z_probe();
 | 
						|
      }
 | 
						|
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      if (axis != Z_AXIS) {
 | 
						|
        // Engage Servo endstop if enabled
 | 
						|
        if (servo_endstops[axis] > -1)
 | 
						|
          servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2]);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Set a flag for Z motor locking
 | 
						|
    #ifdef Z_DUAL_ENDSTOPS
 | 
						|
      if (axis == Z_AXIS) In_Homing_Process(true);
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Move towards the endstop until an endstop is triggered
 | 
						|
    destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
 | 
						|
    feedrate = homing_feedrate[axis];
 | 
						|
    line_to_destination();
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    // Set the axis position as setup for the move
 | 
						|
    current_position[axis] = 0;
 | 
						|
    sync_plan_position();
 | 
						|
 | 
						|
    enable_endstops(false); // Disable endstops while moving away
 | 
						|
 | 
						|
    // Move away from the endstop by the axis HOME_BUMP_MM
 | 
						|
    destination[axis] = -home_bump_mm(axis) * axis_home_dir;
 | 
						|
    line_to_destination();
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    enable_endstops(true); // Enable endstops for next homing move
 | 
						|
 | 
						|
    // Slow down the feedrate for the next move
 | 
						|
    set_homing_bump_feedrate(axis);
 | 
						|
 | 
						|
    // Move slowly towards the endstop until triggered
 | 
						|
    destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
 | 
						|
    line_to_destination();
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    #ifdef Z_DUAL_ENDSTOPS
 | 
						|
      if (axis == Z_AXIS) {
 | 
						|
        float adj = fabs(z_endstop_adj);
 | 
						|
        bool lockZ1;
 | 
						|
        if (axis_home_dir > 0) {
 | 
						|
          adj = -adj;
 | 
						|
          lockZ1 = (z_endstop_adj > 0);
 | 
						|
        }
 | 
						|
        else
 | 
						|
          lockZ1 = (z_endstop_adj < 0);
 | 
						|
 | 
						|
        if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
 | 
						|
        sync_plan_position();
 | 
						|
 | 
						|
        // Move to the adjusted endstop height
 | 
						|
        feedrate = homing_feedrate[axis];
 | 
						|
        destination[Z_AXIS] = adj;
 | 
						|
        line_to_destination();
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
        if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
 | 
						|
        In_Homing_Process(false);
 | 
						|
      } // Z_AXIS
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
      // retrace by the amount specified in endstop_adj
 | 
						|
      if (endstop_adj[axis] * axis_home_dir < 0) {
 | 
						|
        enable_endstops(false); // Disable endstops while moving away
 | 
						|
        sync_plan_position();
 | 
						|
        destination[axis] = endstop_adj[axis];
 | 
						|
        line_to_destination();
 | 
						|
        st_synchronize();
 | 
						|
        enable_endstops(true); // Enable endstops for next homing move
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Set the axis position to its home position (plus home offsets)
 | 
						|
    axis_is_at_home(axis);
 | 
						|
    sync_plan_position();
 | 
						|
 | 
						|
    destination[axis] = current_position[axis];
 | 
						|
    feedrate = 0.0;
 | 
						|
    endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
    axis_known_position[axis] = true;
 | 
						|
 | 
						|
    #ifdef Z_PROBE_SLED
 | 
						|
    // bring probe back
 | 
						|
      if (axis == Z_AXIS) {
 | 
						|
        if (axis_home_dir < 0) dock_sled(true);
 | 
						|
      } 
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
 | 
						|
 | 
						|
      // Deploy a probe if there is one, and homing towards the bed
 | 
						|
      if (axis == Z_AXIS) {
 | 
						|
        if (axis_home_dir < 0) stow_z_probe();
 | 
						|
      }
 | 
						|
      else
 | 
						|
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      {
 | 
						|
        // Retract Servo endstop if enabled
 | 
						|
        if (servo_endstops[axis] > -1)
 | 
						|
          servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2 + 1]);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  void retract(bool retracting, bool swapping=false) {
 | 
						|
 | 
						|
    if (retracting == retracted[active_extruder]) return;
 | 
						|
 | 
						|
    float oldFeedrate = feedrate;
 | 
						|
 | 
						|
    set_destination_to_current();
 | 
						|
 | 
						|
    if (retracting) {
 | 
						|
 | 
						|
      feedrate = retract_feedrate * 60;
 | 
						|
      current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
 | 
						|
      plan_set_e_position(current_position[E_AXIS]);
 | 
						|
      prepare_move();
 | 
						|
 | 
						|
      if (retract_zlift > 0.01) {
 | 
						|
        current_position[Z_AXIS] -= retract_zlift;
 | 
						|
        #ifdef DELTA
 | 
						|
          sync_plan_position_delta();
 | 
						|
        #else
 | 
						|
          sync_plan_position();
 | 
						|
        #endif
 | 
						|
        prepare_move();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
 | 
						|
      if (retract_zlift > 0.01) {
 | 
						|
        current_position[Z_AXIS] += retract_zlift;
 | 
						|
        #ifdef DELTA
 | 
						|
          sync_plan_position_delta();
 | 
						|
        #else
 | 
						|
          sync_plan_position();
 | 
						|
        #endif
 | 
						|
        //prepare_move();
 | 
						|
      }
 | 
						|
 | 
						|
      feedrate = retract_recover_feedrate * 60;
 | 
						|
      float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
 | 
						|
      current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
 | 
						|
      plan_set_e_position(current_position[E_AXIS]);
 | 
						|
      prepare_move();
 | 
						|
    }
 | 
						|
 | 
						|
    feedrate = oldFeedrate;
 | 
						|
    retracted[active_extruder] = retracting;
 | 
						|
 | 
						|
  } // retract()
 | 
						|
 | 
						|
#endif // FWRETRACT
 | 
						|
 | 
						|
/**
 | 
						|
 *
 | 
						|
 * G-Code Handler functions
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Set XYZE destination and feedrate from the current GCode command
 | 
						|
 *
 | 
						|
 *  - Set destination from included axis codes
 | 
						|
 *  - Set to current for missing axis codes
 | 
						|
 *  - Set the feedrate, if included
 | 
						|
 */
 | 
						|
void gcode_get_destination() {
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i]))
 | 
						|
      destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
 | 
						|
    else
 | 
						|
      destination[i] = current_position[i];
 | 
						|
  }
 | 
						|
  if (code_seen('F')) {
 | 
						|
    float next_feedrate = code_value();
 | 
						|
    if (next_feedrate > 0.0) feedrate = next_feedrate;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void unknown_command_error() {
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | 
						|
  SERIAL_ECHO(current_command);
 | 
						|
  SERIAL_ECHOPGM("\"\n");
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * G0, G1: Coordinated movement of X Y Z E axes
 | 
						|
 */
 | 
						|
inline void gcode_G0_G1() {
 | 
						|
  if (IsRunning()) {
 | 
						|
    gcode_get_destination(); // For X Y Z E F
 | 
						|
 | 
						|
    #ifdef FWRETRACT
 | 
						|
 | 
						|
      if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
 | 
						|
        float echange = destination[E_AXIS] - current_position[E_AXIS];
 | 
						|
        // Is this move an attempt to retract or recover?
 | 
						|
        if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
 | 
						|
          current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
 | 
						|
          plan_set_e_position(current_position[E_AXIS]);  // AND from the planner
 | 
						|
          retract(!retracted[active_extruder]);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    #endif //FWRETRACT
 | 
						|
 | 
						|
    prepare_move();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Plan an arc in 2 dimensions
 | 
						|
 *
 | 
						|
 * The arc is approximated by generating many small linear segments.
 | 
						|
 * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
 | 
						|
 * Arcs should only be made relatively large (over 5mm), as larger arcs with
 | 
						|
 * larger segments will tend to be more efficient. Your slicer should have
 | 
						|
 * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | 
						|
 */
 | 
						|
void plan_arc(
 | 
						|
  float *target,    // Destination position
 | 
						|
  float *offset,    // Center of rotation relative to current_position
 | 
						|
  uint8_t clockwise // Clockwise?
 | 
						|
) {
 | 
						|
 | 
						|
  float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
 | 
						|
        center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
 | 
						|
        center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
 | 
						|
        linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
 | 
						|
        extruder_travel = target[E_AXIS] - current_position[E_AXIS],
 | 
						|
        r_axis0 = -offset[X_AXIS],  // Radius vector from center to current location
 | 
						|
        r_axis1 = -offset[Y_AXIS],
 | 
						|
        rt_axis0 = target[X_AXIS] - center_axis0,
 | 
						|
        rt_axis1 = target[Y_AXIS] - center_axis1;
 | 
						|
  
 | 
						|
  // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
						|
  float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
 | 
						|
  if (angular_travel < 0) { angular_travel += RADIANS(360); }
 | 
						|
  if (clockwise) { angular_travel -= RADIANS(360); }
 | 
						|
  
 | 
						|
  // Make a circle if the angular rotation is 0
 | 
						|
  if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
 | 
						|
    angular_travel += RADIANS(360);
 | 
						|
  
 | 
						|
  float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
 | 
						|
  if (mm_of_travel < 0.001) { return; }
 | 
						|
  uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
 | 
						|
  if (segments == 0) segments = 1;
 | 
						|
  
 | 
						|
  float theta_per_segment = angular_travel/segments;
 | 
						|
  float linear_per_segment = linear_travel/segments;
 | 
						|
  float extruder_per_segment = extruder_travel/segments;
 | 
						|
  
 | 
						|
  /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | 
						|
     and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 | 
						|
         r_T = [cos(phi) -sin(phi);
 | 
						|
                sin(phi)  cos(phi] * r ;
 | 
						|
     
 | 
						|
     For arc generation, the center of the circle is the axis of rotation and the radius vector is 
 | 
						|
     defined from the circle center to the initial position. Each line segment is formed by successive
 | 
						|
     vector rotations. This requires only two cos() and sin() computations to form the rotation
 | 
						|
     matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 | 
						|
     all double numbers are single precision on the Arduino. (True double precision will not have
 | 
						|
     round off issues for CNC applications.) Single precision error can accumulate to be greater than
 | 
						|
     tool precision in some cases. Therefore, arc path correction is implemented. 
 | 
						|
 | 
						|
     Small angle approximation may be used to reduce computation overhead further. This approximation
 | 
						|
     holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
 | 
						|
     theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 | 
						|
     to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for 
 | 
						|
     numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 | 
						|
     issue for CNC machines with the single precision Arduino calculations.
 | 
						|
     
 | 
						|
     This approximation also allows plan_arc to immediately insert a line segment into the planner 
 | 
						|
     without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 | 
						|
     a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. 
 | 
						|
     This is important when there are successive arc motions. 
 | 
						|
  */
 | 
						|
  // Vector rotation matrix values
 | 
						|
  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 | 
						|
  float sin_T = theta_per_segment;
 | 
						|
  
 | 
						|
  float arc_target[4];
 | 
						|
  float sin_Ti;
 | 
						|
  float cos_Ti;
 | 
						|
  float r_axisi;
 | 
						|
  uint16_t i;
 | 
						|
  int8_t count = 0;
 | 
						|
 | 
						|
  // Initialize the linear axis
 | 
						|
  arc_target[Z_AXIS] = current_position[Z_AXIS];
 | 
						|
  
 | 
						|
  // Initialize the extruder axis
 | 
						|
  arc_target[E_AXIS] = current_position[E_AXIS];
 | 
						|
 | 
						|
  float feed_rate = feedrate*feedrate_multiplier/60/100.0;
 | 
						|
 | 
						|
  for (i = 1; i < segments; i++) { // Increment (segments-1)
 | 
						|
 | 
						|
    if (count < N_ARC_CORRECTION) {
 | 
						|
      // Apply vector rotation matrix to previous r_axis0 / 1
 | 
						|
      r_axisi = r_axis0*sin_T + r_axis1*cos_T;
 | 
						|
      r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
 | 
						|
      r_axis1 = r_axisi;
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | 
						|
      // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | 
						|
      cos_Ti = cos(i*theta_per_segment);
 | 
						|
      sin_Ti = sin(i*theta_per_segment);
 | 
						|
      r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
 | 
						|
      r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
 | 
						|
      count = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Update arc_target location
 | 
						|
    arc_target[X_AXIS] = center_axis0 + r_axis0;
 | 
						|
    arc_target[Y_AXIS] = center_axis1 + r_axis1;
 | 
						|
    arc_target[Z_AXIS] += linear_per_segment;
 | 
						|
    arc_target[E_AXIS] += extruder_per_segment;
 | 
						|
 | 
						|
    clamp_to_software_endstops(arc_target);
 | 
						|
    plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
						|
  }
 | 
						|
  // Ensure last segment arrives at target location.
 | 
						|
  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
						|
 | 
						|
  // As far as the parser is concerned, the position is now == target. In reality the
 | 
						|
  // motion control system might still be processing the action and the real tool position
 | 
						|
  // in any intermediate location.
 | 
						|
  set_current_to_destination();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * G2: Clockwise Arc
 | 
						|
 * G3: Counterclockwise Arc
 | 
						|
 */
 | 
						|
inline void gcode_G2_G3(bool clockwise) {
 | 
						|
  if (IsRunning()) {
 | 
						|
 | 
						|
    #ifdef SF_ARC_FIX
 | 
						|
      bool relative_mode_backup = relative_mode;
 | 
						|
      relative_mode = true;
 | 
						|
    #endif
 | 
						|
 | 
						|
    gcode_get_destination();
 | 
						|
 | 
						|
    #ifdef SF_ARC_FIX
 | 
						|
      relative_mode = relative_mode_backup;
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Center of arc as offset from current_position
 | 
						|
    float arc_offset[2] = {
 | 
						|
      code_seen('I') ? code_value() : 0,
 | 
						|
      code_seen('J') ? code_value() : 0
 | 
						|
    };
 | 
						|
 | 
						|
    // Send an arc to the planner
 | 
						|
    plan_arc(destination, arc_offset, clockwise);
 | 
						|
 | 
						|
    refresh_cmd_timeout();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * G4: Dwell S<seconds> or P<milliseconds>
 | 
						|
 */
 | 
						|
inline void gcode_G4() {
 | 
						|
  millis_t codenum = 0;
 | 
						|
 | 
						|
  if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
 | 
						|
  if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
 | 
						|
 | 
						|
  st_synchronize();
 | 
						|
  refresh_cmd_timeout();
 | 
						|
  codenum += previous_cmd_ms;  // keep track of when we started waiting
 | 
						|
 | 
						|
  if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
 | 
						|
 | 
						|
  while (millis() < codenum) idle();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  /**
 | 
						|
   * G10 - Retract filament according to settings of M207
 | 
						|
   * G11 - Recover filament according to settings of M208
 | 
						|
   */
 | 
						|
  inline void gcode_G10_G11(bool doRetract=false) {
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (doRetract) {
 | 
						|
        retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
    retract(doRetract
 | 
						|
     #if EXTRUDERS > 1
 | 
						|
      , retracted_swap[active_extruder]
 | 
						|
     #endif
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
#endif //FWRETRACT
 | 
						|
 | 
						|
/**
 | 
						|
 * G28: Home all axes according to settings
 | 
						|
 *
 | 
						|
 * Parameters
 | 
						|
 *
 | 
						|
 *  None  Home to all axes with no parameters.
 | 
						|
 *        With QUICK_HOME enabled XY will home together, then Z.
 | 
						|
 *
 | 
						|
 * Cartesian parameters
 | 
						|
 *
 | 
						|
 *  X   Home to the X endstop
 | 
						|
 *  Y   Home to the Y endstop
 | 
						|
 *  Z   Home to the Z endstop
 | 
						|
 *
 | 
						|
 */
 | 
						|
inline void gcode_G28() {
 | 
						|
 | 
						|
  // Wait for planner moves to finish!
 | 
						|
  st_synchronize();
 | 
						|
 | 
						|
  // For auto bed leveling, clear the level matrix
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
    #ifdef DELTA
 | 
						|
      reset_bed_level();
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  // For manual bed leveling deactivate the matrix temporarily
 | 
						|
  #ifdef MESH_BED_LEVELING
 | 
						|
    uint8_t mbl_was_active = mbl.active;
 | 
						|
    mbl.active = 0;
 | 
						|
  #endif
 | 
						|
 | 
						|
  setup_for_endstop_move();
 | 
						|
 | 
						|
  set_destination_to_current();
 | 
						|
 | 
						|
  feedrate = 0.0;
 | 
						|
 | 
						|
  #ifdef DELTA
 | 
						|
    // A delta can only safely home all axis at the same time
 | 
						|
    // all axis have to home at the same time
 | 
						|
 | 
						|
    // Pretend the current position is 0,0,0
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
 | 
						|
    sync_plan_position();
 | 
						|
 | 
						|
    // Move all carriages up together until the first endstop is hit.
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
 | 
						|
    feedrate = 1.732 * homing_feedrate[X_AXIS];
 | 
						|
    line_to_destination();
 | 
						|
    st_synchronize();
 | 
						|
    endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
 | 
						|
    // Destination reached
 | 
						|
    for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
 | 
						|
 | 
						|
    // take care of back off and rehome now we are all at the top
 | 
						|
    HOMEAXIS(X);
 | 
						|
    HOMEAXIS(Y);
 | 
						|
    HOMEAXIS(Z);
 | 
						|
 | 
						|
    sync_plan_position_delta();
 | 
						|
 | 
						|
  #else // NOT DELTA
 | 
						|
 | 
						|
    bool  homeX = code_seen(axis_codes[X_AXIS]),
 | 
						|
          homeY = code_seen(axis_codes[Y_AXIS]),
 | 
						|
          homeZ = code_seen(axis_codes[Z_AXIS]);
 | 
						|
 | 
						|
    home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
 | 
						|
 | 
						|
    if (home_all_axis || homeZ) {
 | 
						|
 | 
						|
      #if Z_HOME_DIR > 0  // If homing away from BED do Z first
 | 
						|
 | 
						|
        HOMEAXIS(Z);
 | 
						|
 | 
						|
      #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
 | 
						|
 | 
						|
        // Raise Z before homing any other axes
 | 
						|
        // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
 | 
						|
        destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
 | 
						|
        feedrate = max_feedrate[Z_AXIS] * 60;
 | 
						|
        line_to_destination();
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
      #endif
 | 
						|
 | 
						|
    } // home_all_axis || homeZ
 | 
						|
 | 
						|
    #ifdef QUICK_HOME
 | 
						|
 | 
						|
      if (home_all_axis || (homeX && homeY)) {  // First diagonal move
 | 
						|
 | 
						|
        current_position[X_AXIS] = current_position[Y_AXIS] = 0;
 | 
						|
 | 
						|
        #ifdef DUAL_X_CARRIAGE
 | 
						|
          int x_axis_home_dir = x_home_dir(active_extruder);
 | 
						|
          extruder_duplication_enabled = false;
 | 
						|
        #else
 | 
						|
          int x_axis_home_dir = home_dir(X_AXIS);
 | 
						|
        #endif
 | 
						|
 | 
						|
        sync_plan_position();
 | 
						|
 | 
						|
        float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
 | 
						|
              mlratio = mlx>mly ? mly/mlx : mlx/mly;
 | 
						|
 | 
						|
        destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
 | 
						|
        destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
 | 
						|
        feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
 | 
						|
        line_to_destination();
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
        axis_is_at_home(X_AXIS);
 | 
						|
        axis_is_at_home(Y_AXIS);
 | 
						|
        sync_plan_position();
 | 
						|
 | 
						|
        destination[X_AXIS] = current_position[X_AXIS];
 | 
						|
        destination[Y_AXIS] = current_position[Y_AXIS];
 | 
						|
        line_to_destination();
 | 
						|
        feedrate = 0.0;
 | 
						|
        st_synchronize();
 | 
						|
        endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
 | 
						|
        current_position[X_AXIS] = destination[X_AXIS];
 | 
						|
        current_position[Y_AXIS] = destination[Y_AXIS];
 | 
						|
        #ifndef SCARA
 | 
						|
          current_position[Z_AXIS] = destination[Z_AXIS];
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // QUICK_HOME
 | 
						|
 | 
						|
    #ifdef HOME_Y_BEFORE_X
 | 
						|
      // Home Y
 | 
						|
      if (home_all_axis || homeY) HOMEAXIS(Y);
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Home X
 | 
						|
    if (home_all_axis || homeX) {
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        int tmp_extruder = active_extruder;
 | 
						|
        extruder_duplication_enabled = false;
 | 
						|
        active_extruder = !active_extruder;
 | 
						|
        HOMEAXIS(X);
 | 
						|
        inactive_extruder_x_pos = current_position[X_AXIS];
 | 
						|
        active_extruder = tmp_extruder;
 | 
						|
        HOMEAXIS(X);
 | 
						|
        // reset state used by the different modes
 | 
						|
        memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | 
						|
        delayed_move_time = 0;
 | 
						|
        active_extruder_parked = true;
 | 
						|
      #else
 | 
						|
        HOMEAXIS(X);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    #ifndef HOME_Y_BEFORE_X
 | 
						|
      // Home Y
 | 
						|
      if (home_all_axis || homeY) HOMEAXIS(Y);
 | 
						|
    #endif
 | 
						|
 | 
						|
    // Home Z last if homing towards the bed
 | 
						|
    #if Z_HOME_DIR < 0
 | 
						|
 | 
						|
      if (home_all_axis || homeZ) {
 | 
						|
 | 
						|
        #ifdef Z_SAFE_HOMING
 | 
						|
 | 
						|
          if (home_all_axis) {
 | 
						|
 | 
						|
            current_position[Z_AXIS] = 0;
 | 
						|
            sync_plan_position();
 | 
						|
 | 
						|
            //
 | 
						|
            // Set the probe (or just the nozzle) destination to the safe homing point
 | 
						|
            //
 | 
						|
            // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
 | 
						|
            // then this may not work as expected.
 | 
						|
            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
 | 
						|
            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
 | 
						|
            destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
 | 
						|
            feedrate = XY_TRAVEL_SPEED;
 | 
						|
            // This could potentially move X, Y, Z all together
 | 
						|
            line_to_destination();
 | 
						|
            st_synchronize();
 | 
						|
 | 
						|
            // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
            current_position[X_AXIS] = destination[X_AXIS];
 | 
						|
            current_position[Y_AXIS] = destination[Y_AXIS];
 | 
						|
 | 
						|
            // Home the Z axis
 | 
						|
            HOMEAXIS(Z);
 | 
						|
          }
 | 
						|
 | 
						|
          else if (homeZ) { // Don't need to Home Z twice
 | 
						|
 | 
						|
            // Let's see if X and Y are homed
 | 
						|
            if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
 | 
						|
 | 
						|
              // Make sure the probe is within the physical limits
 | 
						|
              // NOTE: This doesn't necessarily ensure the probe is also within the bed!
 | 
						|
              float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
 | 
						|
              if (   cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                  && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                  && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
 | 
						|
                  && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
 | 
						|
                // Set the plan current position to X, Y, 0
 | 
						|
                current_position[Z_AXIS] = 0;
 | 
						|
                plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
 | 
						|
 | 
						|
                // Set Z destination away from bed and raise the axis
 | 
						|
                // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
 | 
						|
                destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
 | 
						|
                feedrate = max_feedrate[Z_AXIS] * 60;  // feedrate (mm/m) = max_feedrate (mm/s)
 | 
						|
                line_to_destination();
 | 
						|
                st_synchronize();
 | 
						|
 | 
						|
                // Home the Z axis
 | 
						|
                HOMEAXIS(Z);
 | 
						|
              }
 | 
						|
              else {
 | 
						|
                LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
 | 
						|
                SERIAL_ECHO_START;
 | 
						|
                SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
 | 
						|
              }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
              SERIAL_ECHO_START;
 | 
						|
              SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
            }
 | 
						|
 | 
						|
          } // !home_all_axes && homeZ
 | 
						|
 | 
						|
        #else // !Z_SAFE_HOMING
 | 
						|
 | 
						|
          HOMEAXIS(Z);
 | 
						|
 | 
						|
        #endif // !Z_SAFE_HOMING
 | 
						|
 | 
						|
      } // home_all_axis || homeZ
 | 
						|
 | 
						|
    #endif // Z_HOME_DIR < 0
 | 
						|
 | 
						|
    sync_plan_position();
 | 
						|
 | 
						|
  #endif // else DELTA
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    sync_plan_position_delta();
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef ENDSTOPS_ONLY_FOR_HOMING
 | 
						|
    enable_endstops(false);
 | 
						|
  #endif
 | 
						|
 | 
						|
  // For manual leveling move back to 0,0
 | 
						|
  #ifdef MESH_BED_LEVELING
 | 
						|
    if (mbl_was_active) {
 | 
						|
      current_position[X_AXIS] = mbl.get_x(0);
 | 
						|
      current_position[Y_AXIS] = mbl.get_y(0);
 | 
						|
      set_destination_to_current();
 | 
						|
      feedrate = homing_feedrate[X_AXIS];
 | 
						|
      line_to_destination();
 | 
						|
      st_synchronize();
 | 
						|
      current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
 | 
						|
      sync_plan_position();
 | 
						|
      mbl.active = 1;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  feedrate = saved_feedrate;
 | 
						|
  feedrate_multiplier = saved_feedrate_multiplier;
 | 
						|
  refresh_cmd_timeout();
 | 
						|
  endstops_hit_on_purpose(); // clear endstop hit flags
 | 
						|
}
 | 
						|
 | 
						|
#ifdef MESH_BED_LEVELING
 | 
						|
 | 
						|
  enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
 | 
						|
 | 
						|
  /**
 | 
						|
   * G29: Mesh-based Z-Probe, probes a grid and produces a
 | 
						|
   *      mesh to compensate for variable bed height
 | 
						|
   *
 | 
						|
   * Parameters With MESH_BED_LEVELING:
 | 
						|
   *
 | 
						|
   *  S0              Produce a mesh report
 | 
						|
   *  S1              Start probing mesh points
 | 
						|
   *  S2              Probe the next mesh point
 | 
						|
   *  S3 Xn Yn Zn.nn  Manually modify a single point
 | 
						|
   *
 | 
						|
   * The S0 report the points as below
 | 
						|
   *
 | 
						|
   *  +----> X-axis
 | 
						|
   *  |
 | 
						|
   *  |
 | 
						|
   *  v Y-axis
 | 
						|
   *  
 | 
						|
   */
 | 
						|
  inline void gcode_G29() {
 | 
						|
 | 
						|
    static int probe_point = -1;
 | 
						|
    MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
 | 
						|
    if (state < 0 || state > 3) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    int ix, iy;
 | 
						|
    float z;
 | 
						|
 | 
						|
    switch(state) {
 | 
						|
      case MeshReport:
 | 
						|
        if (mbl.active) {
 | 
						|
          SERIAL_PROTOCOLPGM("Num X,Y: ");
 | 
						|
          SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
 | 
						|
          SERIAL_PROTOCOLCHAR(',');
 | 
						|
          SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
 | 
						|
          SERIAL_PROTOCOLPGM("\nZ search height: ");
 | 
						|
          SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
 | 
						|
          SERIAL_PROTOCOLLNPGM("\nMeasured points:");
 | 
						|
          for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
 | 
						|
            for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
 | 
						|
              SERIAL_PROTOCOLPGM("  ");
 | 
						|
              SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
 | 
						|
            }
 | 
						|
            SERIAL_EOL;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else
 | 
						|
          SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
 | 
						|
        break;
 | 
						|
 | 
						|
      case MeshStart:
 | 
						|
        mbl.reset();
 | 
						|
        probe_point = 0;
 | 
						|
        enqueuecommands_P(PSTR("G28\nG29 S2"));
 | 
						|
        break;
 | 
						|
 | 
						|
      case MeshNext:
 | 
						|
        if (probe_point < 0) {
 | 
						|
          SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        if (probe_point == 0) {
 | 
						|
          // Set Z to a positive value before recording the first Z.
 | 
						|
          current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
 | 
						|
          sync_plan_position();
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // For others, save the Z of the previous point, then raise Z again.
 | 
						|
          ix = (probe_point - 1) % MESH_NUM_X_POINTS;
 | 
						|
          iy = (probe_point - 1) / MESH_NUM_X_POINTS;
 | 
						|
          if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
 | 
						|
          mbl.set_z(ix, iy, current_position[Z_AXIS]);
 | 
						|
          current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
 | 
						|
          plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
 | 
						|
          st_synchronize();
 | 
						|
        }
 | 
						|
        // Is there another point to sample? Move there.
 | 
						|
        if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
 | 
						|
          ix = probe_point % MESH_NUM_X_POINTS;
 | 
						|
          iy = probe_point / MESH_NUM_X_POINTS;
 | 
						|
          if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
 | 
						|
          current_position[X_AXIS] = mbl.get_x(ix);
 | 
						|
          current_position[Y_AXIS] = mbl.get_y(iy);
 | 
						|
          plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
 | 
						|
          st_synchronize();
 | 
						|
          probe_point++;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // After recording the last point, activate the mbl and home
 | 
						|
          SERIAL_PROTOCOLLNPGM("Mesh probing done.");
 | 
						|
          probe_point = -1;
 | 
						|
          mbl.active = 1;
 | 
						|
          enqueuecommands_P(PSTR("G28"));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case MeshSet:
 | 
						|
        if (code_seen('X') || code_seen('x')) {
 | 
						|
          ix = code_value_long()-1;
 | 
						|
          if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
 | 
						|
            SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
            SERIAL_PROTOCOLPGM("X not entered.\n");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (code_seen('Y') || code_seen('y')) {
 | 
						|
          iy = code_value_long()-1;
 | 
						|
          if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
 | 
						|
            SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
            SERIAL_PROTOCOLPGM("Y not entered.\n");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (code_seen('Z') || code_seen('z')) {
 | 
						|
          z = code_value();
 | 
						|
        } else {
 | 
						|
          SERIAL_PROTOCOLPGM("Z not entered.\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        mbl.z_values[iy][ix] = z;
 | 
						|
 | 
						|
    } // switch(state)
 | 
						|
  }
 | 
						|
 | 
						|
#elif defined(ENABLE_AUTO_BED_LEVELING)
 | 
						|
 | 
						|
  void out_of_range_error(const char *p_edge) {
 | 
						|
    SERIAL_PROTOCOLPGM("?Probe ");
 | 
						|
    serialprintPGM(p_edge);
 | 
						|
    SERIAL_PROTOCOLLNPGM(" position out of range.");
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * G29: Detailed Z-Probe, probes the bed at 3 or more points.
 | 
						|
   *      Will fail if the printer has not been homed with G28.
 | 
						|
   *
 | 
						|
   * Enhanced G29 Auto Bed Leveling Probe Routine
 | 
						|
   * 
 | 
						|
   * Parameters With AUTO_BED_LEVELING_GRID:
 | 
						|
   *
 | 
						|
   *  P  Set the size of the grid that will be probed (P x P points).
 | 
						|
   *     Not supported by non-linear delta printer bed leveling.
 | 
						|
   *     Example: "G29 P4"
 | 
						|
   *
 | 
						|
   *  S  Set the XY travel speed between probe points (in mm/min)
 | 
						|
   *
 | 
						|
   *  D  Dry-Run mode. Just evaluate the bed Topology - Don't apply
 | 
						|
   *     or clean the rotation Matrix. Useful to check the topology
 | 
						|
   *     after a first run of G29.
 | 
						|
   *
 | 
						|
   *  V  Set the verbose level (0-4). Example: "G29 V3"
 | 
						|
   *
 | 
						|
   *  T  Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
 | 
						|
   *     This is useful for manual bed leveling and finding flaws in the bed (to
 | 
						|
   *     assist with part placement).
 | 
						|
   *     Not supported by non-linear delta printer bed leveling.
 | 
						|
   *
 | 
						|
   *  F  Set the Front limit of the probing grid
 | 
						|
   *  B  Set the Back limit of the probing grid
 | 
						|
   *  L  Set the Left limit of the probing grid
 | 
						|
   *  R  Set the Right limit of the probing grid
 | 
						|
   *
 | 
						|
   * Global Parameters:
 | 
						|
   *
 | 
						|
   * E/e By default G29 will engage the probe, test the bed, then disengage.
 | 
						|
   *     Include "E" to engage/disengage the probe for each sample.
 | 
						|
   *     There's no extra effect if you have a fixed probe.
 | 
						|
   *     Usage: "G29 E" or "G29 e"
 | 
						|
   *
 | 
						|
   */
 | 
						|
  inline void gcode_G29() {
 | 
						|
 | 
						|
    // Don't allow auto-leveling without homing first
 | 
						|
    if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
 | 
						|
      LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
 | 
						|
    if (verbose_level < 0 || verbose_level > 4) {
 | 
						|
      SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    bool dryrun = code_seen('D') || code_seen('d'),
 | 
						|
         deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
 | 
						|
 | 
						|
    #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
      #ifndef DELTA
 | 
						|
        bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
 | 
						|
      #endif
 | 
						|
 | 
						|
      if (verbose_level > 0) {
 | 
						|
        SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
 | 
						|
        if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
 | 
						|
      }
 | 
						|
 | 
						|
      int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
 | 
						|
      #ifndef DELTA
 | 
						|
        if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
 | 
						|
        if (auto_bed_leveling_grid_points < 2) {
 | 
						|
          SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
 | 
						|
      xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
 | 
						|
 | 
						|
      int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
 | 
						|
          right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
 | 
						|
          front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
 | 
						|
          back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
 | 
						|
 | 
						|
      bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
 | 
						|
           left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
 | 
						|
           right_out_r = right_probe_bed_position > MAX_PROBE_X,
 | 
						|
           right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
 | 
						|
           front_out_f = front_probe_bed_position < MIN_PROBE_Y,
 | 
						|
           front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
 | 
						|
           back_out_b = back_probe_bed_position > MAX_PROBE_Y,
 | 
						|
           back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
 | 
						|
      if (left_out || right_out || front_out || back_out) {
 | 
						|
        if (left_out) {
 | 
						|
          out_of_range_error(PSTR("(L)eft"));
 | 
						|
          left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (right_out) {
 | 
						|
          out_of_range_error(PSTR("(R)ight"));
 | 
						|
          right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (front_out) {
 | 
						|
          out_of_range_error(PSTR("(F)ront"));
 | 
						|
          front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        if (back_out) {
 | 
						|
          out_of_range_error(PSTR("(B)ack"));
 | 
						|
          back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #ifdef Z_PROBE_SLED
 | 
						|
      dock_sled(false); // engage (un-dock) the probe
 | 
						|
    #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
 | 
						|
      deploy_z_probe();
 | 
						|
    #endif
 | 
						|
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    if (!dryrun) {
 | 
						|
      // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
 | 
						|
      plan_bed_level_matrix.set_to_identity();
 | 
						|
 | 
						|
      #ifdef DELTA
 | 
						|
        reset_bed_level();
 | 
						|
      #else //!DELTA
 | 
						|
        //vector_3 corrected_position = plan_get_position_mm();
 | 
						|
        //corrected_position.debug("position before G29");
 | 
						|
        vector_3 uncorrected_position = plan_get_position();
 | 
						|
        //uncorrected_position.debug("position during G29");
 | 
						|
        current_position[X_AXIS] = uncorrected_position.x;
 | 
						|
        current_position[Y_AXIS] = uncorrected_position.y;
 | 
						|
        current_position[Z_AXIS] = uncorrected_position.z;
 | 
						|
        sync_plan_position();
 | 
						|
      #endif // !DELTA
 | 
						|
    }
 | 
						|
 | 
						|
    setup_for_endstop_move();
 | 
						|
 | 
						|
    feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
    #ifdef AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
      // probe at the points of a lattice grid
 | 
						|
      const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
 | 
						|
                yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
 | 
						|
 | 
						|
      #ifdef DELTA
 | 
						|
        delta_grid_spacing[0] = xGridSpacing;
 | 
						|
        delta_grid_spacing[1] = yGridSpacing;
 | 
						|
        float z_offset = zprobe_zoffset;
 | 
						|
        if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
 | 
						|
      #else // !DELTA
 | 
						|
        // solve the plane equation ax + by + d = z
 | 
						|
        // A is the matrix with rows [x y 1] for all the probed points
 | 
						|
        // B is the vector of the Z positions
 | 
						|
        // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | 
						|
        // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | 
						|
 | 
						|
        int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
 | 
						|
 | 
						|
        double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
 | 
						|
               eqnBVector[abl2],     // "B" vector of Z points
 | 
						|
               mean = 0.0;
 | 
						|
      #endif // !DELTA
 | 
						|
 | 
						|
      int probePointCounter = 0;
 | 
						|
      bool zig = true;
 | 
						|
 | 
						|
      for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
 | 
						|
        double yProbe = front_probe_bed_position + yGridSpacing * yCount;
 | 
						|
        int xStart, xStop, xInc;
 | 
						|
 | 
						|
        if (zig) {
 | 
						|
          xStart = 0;
 | 
						|
          xStop = auto_bed_leveling_grid_points;
 | 
						|
          xInc = 1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          xStart = auto_bed_leveling_grid_points - 1;
 | 
						|
          xStop = -1;
 | 
						|
          xInc = -1;
 | 
						|
        }
 | 
						|
 | 
						|
        #ifndef DELTA
 | 
						|
          // If do_topography_map is set then don't zig-zag. Just scan in one direction.
 | 
						|
          // This gets the probe points in more readable order.
 | 
						|
          if (!do_topography_map) zig = !zig;
 | 
						|
        #else
 | 
						|
          zig = !zig;
 | 
						|
        #endif
 | 
						|
 | 
						|
        for (int xCount = xStart; xCount != xStop; xCount += xInc) {
 | 
						|
          double xProbe = left_probe_bed_position + xGridSpacing * xCount;
 | 
						|
 | 
						|
          // raise extruder
 | 
						|
          float measured_z,
 | 
						|
                z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
 | 
						|
 | 
						|
          #ifdef DELTA
 | 
						|
            // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
 | 
						|
            float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
 | 
						|
            if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
 | 
						|
          #endif //DELTA
 | 
						|
 | 
						|
          ProbeAction act;
 | 
						|
          if (deploy_probe_for_each_reading) // G29 E - Stow between probes
 | 
						|
            act = ProbeDeployAndStow;
 | 
						|
          else if (yCount == 0 && xCount == xStart)
 | 
						|
            act = ProbeDeploy;
 | 
						|
          else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
 | 
						|
            act = ProbeStow;
 | 
						|
          else
 | 
						|
            act = ProbeStay;
 | 
						|
 | 
						|
          measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
 | 
						|
 | 
						|
          #ifndef DELTA
 | 
						|
            mean += measured_z;
 | 
						|
 | 
						|
            eqnBVector[probePointCounter] = measured_z;
 | 
						|
            eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
 | 
						|
            eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
 | 
						|
            eqnAMatrix[probePointCounter + 2 * abl2] = 1;
 | 
						|
          #else
 | 
						|
            bed_level[xCount][yCount] = measured_z + z_offset;
 | 
						|
          #endif
 | 
						|
 | 
						|
          probePointCounter++;
 | 
						|
 | 
						|
          idle();
 | 
						|
 | 
						|
        } //xProbe
 | 
						|
      } //yProbe
 | 
						|
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
 | 
						|
      #ifdef DELTA
 | 
						|
 | 
						|
        if (!dryrun) extrapolate_unprobed_bed_level();
 | 
						|
        print_bed_level();
 | 
						|
 | 
						|
      #else // !DELTA
 | 
						|
 | 
						|
        // solve lsq problem
 | 
						|
        double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
 | 
						|
 | 
						|
        mean /= abl2;
 | 
						|
 | 
						|
        if (verbose_level) {
 | 
						|
          SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | 
						|
          SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
 | 
						|
          SERIAL_PROTOCOLPGM(" b: ");
 | 
						|
          SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
 | 
						|
          SERIAL_PROTOCOLPGM(" d: ");
 | 
						|
          SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
 | 
						|
          SERIAL_EOL;
 | 
						|
          if (verbose_level > 2) {
 | 
						|
            SERIAL_PROTOCOLPGM("Mean of sampled points: ");
 | 
						|
            SERIAL_PROTOCOL_F(mean, 8);
 | 
						|
            SERIAL_EOL;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Show the Topography map if enabled
 | 
						|
        if (do_topography_map) {
 | 
						|
 | 
						|
          SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
 | 
						|
          SERIAL_PROTOCOLPGM("+-----------+\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|...Back....|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|Left..Right|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("|...Front...|\n");
 | 
						|
          SERIAL_PROTOCOLPGM("+-----------+\n");
 | 
						|
 | 
						|
          for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
 | 
						|
            for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
 | 
						|
              int ind = yy * auto_bed_leveling_grid_points + xx;
 | 
						|
              float diff = eqnBVector[ind] - mean;
 | 
						|
              if (diff >= 0.0)
 | 
						|
                SERIAL_PROTOCOLPGM(" +");   // Include + for column alignment
 | 
						|
              else
 | 
						|
                SERIAL_PROTOCOLCHAR(' ');
 | 
						|
              SERIAL_PROTOCOL_F(diff, 5);
 | 
						|
            } // xx
 | 
						|
            SERIAL_EOL;
 | 
						|
          } // yy
 | 
						|
          SERIAL_EOL;
 | 
						|
 | 
						|
        } //do_topography_map
 | 
						|
 | 
						|
 | 
						|
        if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
 | 
						|
        free(plane_equation_coefficients);
 | 
						|
 | 
						|
      #endif //!DELTA
 | 
						|
 | 
						|
    #else // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
      // Actions for each probe
 | 
						|
      ProbeAction p1, p2, p3;
 | 
						|
      if (deploy_probe_for_each_reading)
 | 
						|
        p1 = p2 = p3 = ProbeDeployAndStow;
 | 
						|
      else
 | 
						|
        p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
 | 
						|
 | 
						|
      // Probe at 3 arbitrary points
 | 
						|
      float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
 | 
						|
            z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
 | 
						|
            z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
      if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
 | 
						|
 | 
						|
    #endif // !AUTO_BED_LEVELING_GRID
 | 
						|
 | 
						|
    #ifndef DELTA
 | 
						|
      if (verbose_level > 0)
 | 
						|
        plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
 | 
						|
 | 
						|
      if (!dryrun) {
 | 
						|
        // Correct the Z height difference from z-probe position and hotend tip position.
 | 
						|
        // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
 | 
						|
        // When the bed is uneven, this height must be corrected.
 | 
						|
        float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
 | 
						|
              y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
 | 
						|
              z_tmp = current_position[Z_AXIS],
 | 
						|
              real_z = st_get_position_mm(Z_AXIS);  //get the real Z (since the auto bed leveling is already correcting the plane)
 | 
						|
 | 
						|
        apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
 | 
						|
        //line below controls z probe offset, zprobe_zoffset is the actual offset that can be modified via m851 or is read from EEPROM
 | 
						|
        current_position[Z_AXIS] = z_tmp - real_z - zprobe_zoffset; // The difference is added to current position and sent to planner.
 | 
						|
        sync_plan_position();
 | 
						|
      }
 | 
						|
    #endif // !DELTA
 | 
						|
 | 
						|
    #ifdef Z_PROBE_SLED
 | 
						|
      dock_sled(true); // dock the probe
 | 
						|
    #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
 | 
						|
      stow_z_probe();
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef Z_PROBE_END_SCRIPT
 | 
						|
      enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
 | 
						|
      st_synchronize();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  #ifndef Z_PROBE_SLED
 | 
						|
 | 
						|
    inline void gcode_G30() {
 | 
						|
      deploy_z_probe(); // Engage Z Servo endstop if available
 | 
						|
      st_synchronize();
 | 
						|
      // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
 | 
						|
      setup_for_endstop_move();
 | 
						|
 | 
						|
      feedrate = homing_feedrate[Z_AXIS];
 | 
						|
 | 
						|
      run_z_probe();
 | 
						|
      SERIAL_PROTOCOLPGM("Bed X: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
 | 
						|
      SERIAL_PROTOCOLPGM(" Y: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
 | 
						|
      SERIAL_PROTOCOLPGM(" Z: ");
 | 
						|
      SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
 | 
						|
      SERIAL_EOL;
 | 
						|
 | 
						|
      clean_up_after_endstop_move();
 | 
						|
      stow_z_probe(); // Retract Z Servo endstop if available
 | 
						|
    }
 | 
						|
 | 
						|
  #endif //!Z_PROBE_SLED
 | 
						|
 | 
						|
#endif //ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
/**
 | 
						|
 * G92: Set current position to given X Y Z E
 | 
						|
 */
 | 
						|
inline void gcode_G92() {
 | 
						|
  if (!code_seen(axis_codes[E_AXIS]))
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
  bool didXYZ = false;
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      float v = current_position[i] = code_value();
 | 
						|
      if (i == E_AXIS)
 | 
						|
        plan_set_e_position(v);
 | 
						|
      else
 | 
						|
        didXYZ = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (didXYZ) {
 | 
						|
    #if defined(DELTA) || defined(SCARA)
 | 
						|
      sync_plan_position_delta();
 | 
						|
    #else
 | 
						|
      sync_plan_position();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ULTIPANEL
 | 
						|
 | 
						|
  /**
 | 
						|
   * M0: // M0 - Unconditional stop - Wait for user button press on LCD
 | 
						|
   * M1: // M1 - Conditional stop - Wait for user button press on LCD
 | 
						|
   */
 | 
						|
  inline void gcode_M0_M1() {
 | 
						|
    char *args = current_command_args;
 | 
						|
 | 
						|
    millis_t codenum = 0;
 | 
						|
    bool hasP = false, hasS = false;
 | 
						|
    if (code_seen('P')) {
 | 
						|
      codenum = code_value_short(); // milliseconds to wait
 | 
						|
      hasP = codenum > 0;
 | 
						|
    }
 | 
						|
    if (code_seen('S')) {
 | 
						|
      codenum = code_value() * 1000; // seconds to wait
 | 
						|
      hasS = codenum > 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!hasP && !hasS && *args != '\0')
 | 
						|
      lcd_setstatus(args, true);
 | 
						|
    else {
 | 
						|
      LCD_MESSAGEPGM(MSG_USERWAIT);
 | 
						|
      #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
 | 
						|
        dontExpireStatus();
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
 | 
						|
    lcd_ignore_click();
 | 
						|
    st_synchronize();
 | 
						|
    refresh_cmd_timeout();
 | 
						|
    if (codenum > 0) {
 | 
						|
      codenum += previous_cmd_ms;  // wait until this time for a click
 | 
						|
      while (millis() < codenum && !lcd_clicked()) idle();
 | 
						|
      lcd_ignore_click(false);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (!lcd_detected()) return;
 | 
						|
      while (!lcd_clicked()) idle();
 | 
						|
    }
 | 
						|
    if (IS_SD_PRINTING)
 | 
						|
      LCD_MESSAGEPGM(MSG_RESUMING);
 | 
						|
    else
 | 
						|
      LCD_MESSAGEPGM(WELCOME_MSG);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ULTIPANEL
 | 
						|
 | 
						|
/**
 | 
						|
 * M17: Enable power on all stepper motors
 | 
						|
 */
 | 
						|
inline void gcode_M17() {
 | 
						|
  LCD_MESSAGEPGM(MSG_NO_MOVE);
 | 
						|
  enable_all_steppers();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M20: List SD card to serial output
 | 
						|
   */
 | 
						|
  inline void gcode_M20() {
 | 
						|
    SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
 | 
						|
    card.ls();
 | 
						|
    SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M21: Init SD Card
 | 
						|
   */
 | 
						|
  inline void gcode_M21() {
 | 
						|
    card.initsd();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M22: Release SD Card
 | 
						|
   */
 | 
						|
  inline void gcode_M22() {
 | 
						|
    card.release();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M23: Select a file
 | 
						|
   */
 | 
						|
  inline void gcode_M23() {
 | 
						|
    card.openFile(current_command_args, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M24: Start SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M24() {
 | 
						|
    card.startFileprint();
 | 
						|
    print_job_start_ms = millis();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M25: Pause SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M25() {
 | 
						|
    card.pauseSDPrint();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M26: Set SD Card file index
 | 
						|
   */
 | 
						|
  inline void gcode_M26() {
 | 
						|
    if (card.cardOK && code_seen('S'))
 | 
						|
      card.setIndex(code_value_short());
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M27: Get SD Card status
 | 
						|
   */
 | 
						|
  inline void gcode_M27() {
 | 
						|
    card.getStatus();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M28: Start SD Write
 | 
						|
   */
 | 
						|
  inline void gcode_M28() {
 | 
						|
    card.openFile(current_command_args, false);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M29: Stop SD Write
 | 
						|
   * Processed in write to file routine above
 | 
						|
   */
 | 
						|
  inline void gcode_M29() {
 | 
						|
    // card.saving = false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M30 <filename>: Delete SD Card file
 | 
						|
   */
 | 
						|
  inline void gcode_M30() {
 | 
						|
    if (card.cardOK) {
 | 
						|
      card.closefile();
 | 
						|
      card.removeFile(current_command_args);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * M31: Get the time since the start of SD Print (or last M109)
 | 
						|
 */
 | 
						|
inline void gcode_M31() {
 | 
						|
  print_job_stop_ms = millis();
 | 
						|
  millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
 | 
						|
  int min = t / 60, sec = t % 60;
 | 
						|
  char time[30];
 | 
						|
  sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
 | 
						|
  SERIAL_ECHO_START;
 | 
						|
  SERIAL_ECHOLN(time);
 | 
						|
  lcd_setstatus(time);
 | 
						|
  autotempShutdown();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SDSUPPORT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M32: Select file and start SD Print
 | 
						|
   */
 | 
						|
  inline void gcode_M32() {
 | 
						|
    if (card.sdprinting)
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
    char* namestartpos = strchr(current_command_args, '!');  // Find ! to indicate filename string start.
 | 
						|
    if (!namestartpos)
 | 
						|
      namestartpos = current_command_args; // Default name position, 4 letters after the M
 | 
						|
    else
 | 
						|
      namestartpos++; //to skip the '!'
 | 
						|
 | 
						|
    bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
 | 
						|
 | 
						|
    if (card.cardOK) {
 | 
						|
      card.openFile(namestartpos, true, !call_procedure);
 | 
						|
 | 
						|
      if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
 | 
						|
        card.setIndex(code_value_short());
 | 
						|
 | 
						|
      card.startFileprint();
 | 
						|
      if (!call_procedure)
 | 
						|
        print_job_start_ms = millis(); //procedure calls count as normal print time.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef LONG_FILENAME_HOST_SUPPORT
 | 
						|
 | 
						|
    /**
 | 
						|
     * M33: Get the long full path of a file or folder
 | 
						|
     *
 | 
						|
     * Parameters:
 | 
						|
     *   <dospath> Case-insensitive DOS-style path to a file or folder
 | 
						|
     *
 | 
						|
     * Example:
 | 
						|
     *   M33 miscel~1/armchair/armcha~1.gco
 | 
						|
     *
 | 
						|
     * Output:
 | 
						|
     *   /Miscellaneous/Armchair/Armchair.gcode
 | 
						|
     */
 | 
						|
    inline void gcode_M33() {
 | 
						|
      card.printLongPath(current_command_args);
 | 
						|
    }
 | 
						|
 | 
						|
  #endif
 | 
						|
 | 
						|
  /**
 | 
						|
   * M928: Start SD Write
 | 
						|
   */
 | 
						|
  inline void gcode_M928() {
 | 
						|
    card.openLogFile(current_command_args);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // SDSUPPORT
 | 
						|
 | 
						|
/**
 | 
						|
 * M42: Change pin status via GCode
 | 
						|
 */
 | 
						|
inline void gcode_M42() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    int pin_status = code_value_short(),
 | 
						|
        pin_number = LED_PIN;
 | 
						|
 | 
						|
    if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
 | 
						|
      pin_number = code_value_short();
 | 
						|
 | 
						|
    for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
 | 
						|
      if (sensitive_pins[i] == pin_number) {
 | 
						|
        pin_number = -1;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    #if HAS_FAN
 | 
						|
      if (pin_number == FAN_PIN) fanSpeed = pin_status;
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (pin_number > -1) {
 | 
						|
      pinMode(pin_number, OUTPUT);
 | 
						|
      digitalWrite(pin_number, pin_status);
 | 
						|
      analogWrite(pin_number, pin_status);
 | 
						|
    }
 | 
						|
  } // code_seen('S')
 | 
						|
}
 | 
						|
 | 
						|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
 | 
						|
 | 
						|
  // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
 | 
						|
  #ifdef Z_PROBE_ENDSTOP
 | 
						|
    #if !HAS_Z_PROBE
 | 
						|
      #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
 | 
						|
    #endif
 | 
						|
  #elif !HAS_Z_MIN
 | 
						|
    #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
 | 
						|
  #endif
 | 
						|
 | 
						|
  /**
 | 
						|
   * M48: Z-Probe repeatability measurement function.
 | 
						|
   *
 | 
						|
   * Usage:
 | 
						|
   *   M48 <P#> <X#> <Y#> <V#> <E> <L#>
 | 
						|
   *     P = Number of sampled points (4-50, default 10)
 | 
						|
   *     X = Sample X position
 | 
						|
   *     Y = Sample Y position
 | 
						|
   *     V = Verbose level (0-4, default=1)
 | 
						|
   *     E = Engage probe for each reading
 | 
						|
   *     L = Number of legs of movement before probe
 | 
						|
   *  
 | 
						|
   * This function assumes the bed has been homed.  Specifically, that a G28 command
 | 
						|
   * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
 | 
						|
   * Any information generated by a prior G29 Bed leveling command will be lost and need to be
 | 
						|
   * regenerated.
 | 
						|
   */
 | 
						|
  inline void gcode_M48() {
 | 
						|
 | 
						|
    double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
 | 
						|
    uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
 | 
						|
 | 
						|
    if (code_seen('V') || code_seen('v')) {
 | 
						|
      verbose_level = code_value_short();
 | 
						|
      if (verbose_level < 0 || verbose_level > 4 ) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose_level > 0)
 | 
						|
      SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
 | 
						|
 | 
						|
    if (code_seen('P') || code_seen('p')) {
 | 
						|
      n_samples = code_value_short();
 | 
						|
      if (n_samples < 4 || n_samples > 50) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    double X_current = st_get_position_mm(X_AXIS),
 | 
						|
           Y_current = st_get_position_mm(Y_AXIS),
 | 
						|
           Z_current = st_get_position_mm(Z_AXIS),
 | 
						|
           E_current = st_get_position_mm(E_AXIS),
 | 
						|
           X_probe_location = X_current, Y_probe_location = Y_current,
 | 
						|
           Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
 | 
						|
 | 
						|
    bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
 | 
						|
 | 
						|
    if (code_seen('X') || code_seen('x')) {
 | 
						|
      X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
 | 
						|
        out_of_range_error(PSTR("X"));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (code_seen('Y') || code_seen('y')) {
 | 
						|
      Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
 | 
						|
      if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
 | 
						|
        out_of_range_error(PSTR("Y"));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (code_seen('L') || code_seen('l')) {
 | 
						|
      n_legs = code_value_short();
 | 
						|
      if (n_legs == 1) n_legs = 2;
 | 
						|
      if (n_legs < 0 || n_legs > 15) {
 | 
						|
        SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Do all the preliminary setup work.   First raise the probe.
 | 
						|
    //
 | 
						|
 | 
						|
    st_synchronize();
 | 
						|
    plan_bed_level_matrix.set_to_identity();
 | 
						|
    plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    //
 | 
						|
    // Now get everything to the specified probe point So we can safely do a probe to
 | 
						|
    // get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
 | 
						|
    // use that as a starting point for each probe.
 | 
						|
    //
 | 
						|
    if (verbose_level > 2)
 | 
						|
      SERIAL_PROTOCOLPGM("Positioning the probe...\n");
 | 
						|
 | 
						|
    plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | 
						|
        E_current,
 | 
						|
        homing_feedrate[X_AXIS]/60,
 | 
						|
        active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
 | 
						|
    current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
 | 
						|
    current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
    current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
 | 
						|
 | 
						|
    // 
 | 
						|
    // OK, do the initial probe to get us close to the bed.
 | 
						|
    // Then retrace the right amount and use that in subsequent probes
 | 
						|
    //
 | 
						|
 | 
						|
    deploy_z_probe();
 | 
						|
 | 
						|
    setup_for_endstop_move();
 | 
						|
    run_z_probe();
 | 
						|
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
    Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
 | 
						|
 | 
						|
    plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | 
						|
        E_current,
 | 
						|
        homing_feedrate[X_AXIS]/60,
 | 
						|
        active_extruder);
 | 
						|
    st_synchronize();
 | 
						|
    current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | 
						|
 | 
						|
    if (deploy_probe_for_each_reading) stow_z_probe();
 | 
						|
 | 
						|
    for (uint8_t n=0; n < n_samples; n++) {
 | 
						|
      // Make sure we are at the probe location
 | 
						|
      do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
 | 
						|
 | 
						|
      if (n_legs) {
 | 
						|
        millis_t ms = millis();
 | 
						|
        double radius = ms % (X_MAX_LENGTH / 4),       // limit how far out to go
 | 
						|
               theta = RADIANS(ms % 360L);
 | 
						|
        float dir = (ms & 0x0001) ? 1 : -1;            // clockwise or counter clockwise
 | 
						|
 | 
						|
        //SERIAL_ECHOPAIR("starting radius: ",radius);
 | 
						|
        //SERIAL_ECHOPAIR("   theta: ",theta);
 | 
						|
        //SERIAL_ECHOPAIR("   direction: ",dir);
 | 
						|
        //SERIAL_EOL;
 | 
						|
 | 
						|
        for (uint8_t l = 0; l < n_legs - 1; l++) {
 | 
						|
          ms = millis();
 | 
						|
          theta += RADIANS(dir * (ms % 20L));
 | 
						|
          radius += (ms % 10L) - 5L;
 | 
						|
          if (radius < 0.0) radius = -radius;
 | 
						|
 | 
						|
          X_current = X_probe_location + cos(theta) * radius;
 | 
						|
          X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
 | 
						|
          Y_current = Y_probe_location + sin(theta) * radius;
 | 
						|
          Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
 | 
						|
 | 
						|
          if (verbose_level > 3) {
 | 
						|
            SERIAL_ECHOPAIR("x: ", X_current);
 | 
						|
            SERIAL_ECHOPAIR("y: ", Y_current);
 | 
						|
            SERIAL_EOL;
 | 
						|
          }
 | 
						|
 | 
						|
          do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
 | 
						|
 | 
						|
        } // n_legs loop
 | 
						|
 | 
						|
        // Go back to the probe location
 | 
						|
        do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
 | 
						|
 | 
						|
      } // n_legs
 | 
						|
 | 
						|
      if (deploy_probe_for_each_reading)  {
 | 
						|
        deploy_z_probe(); 
 | 
						|
        delay(1000);
 | 
						|
      }
 | 
						|
 | 
						|
      setup_for_endstop_move();
 | 
						|
      run_z_probe();
 | 
						|
 | 
						|
      sample_set[n] = current_position[Z_AXIS];
 | 
						|
 | 
						|
      //
 | 
						|
      // Get the current mean for the data points we have so far
 | 
						|
      //
 | 
						|
      sum = 0.0;
 | 
						|
      for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
 | 
						|
      mean = sum / (n + 1);
 | 
						|
 | 
						|
      //
 | 
						|
      // Now, use that mean to calculate the standard deviation for the
 | 
						|
      // data points we have so far
 | 
						|
      //
 | 
						|
      sum = 0.0;
 | 
						|
      for (uint8_t j = 0; j <= n; j++) {
 | 
						|
        float ss = sample_set[j] - mean;
 | 
						|
        sum += ss * ss;
 | 
						|
      }
 | 
						|
      sigma = sqrt(sum / (n + 1));
 | 
						|
 | 
						|
      if (verbose_level > 1) {
 | 
						|
        SERIAL_PROTOCOL(n+1);
 | 
						|
        SERIAL_PROTOCOLPGM(" of ");
 | 
						|
        SERIAL_PROTOCOL((int)n_samples);
 | 
						|
        SERIAL_PROTOCOLPGM("   z: ");
 | 
						|
        SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
 | 
						|
        if (verbose_level > 2) {
 | 
						|
          SERIAL_PROTOCOLPGM(" mean: ");
 | 
						|
          SERIAL_PROTOCOL_F(mean,6);
 | 
						|
          SERIAL_PROTOCOLPGM("   sigma: ");
 | 
						|
          SERIAL_PROTOCOL_F(sigma,6);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (verbose_level > 0) SERIAL_EOL;
 | 
						|
 | 
						|
      plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
 | 
						|
      st_synchronize();
 | 
						|
 | 
						|
      // Stow between
 | 
						|
      if (deploy_probe_for_each_reading) {
 | 
						|
        stow_z_probe();
 | 
						|
        delay(1000);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Stow after
 | 
						|
    if (!deploy_probe_for_each_reading) {
 | 
						|
      stow_z_probe();
 | 
						|
      delay(1000);
 | 
						|
    }
 | 
						|
 | 
						|
    clean_up_after_endstop_move();
 | 
						|
 | 
						|
    if (verbose_level > 0) {
 | 
						|
      SERIAL_PROTOCOLPGM("Mean: ");
 | 
						|
      SERIAL_PROTOCOL_F(mean, 6);
 | 
						|
      SERIAL_EOL;
 | 
						|
    }
 | 
						|
 | 
						|
    SERIAL_PROTOCOLPGM("Standard Deviation: ");
 | 
						|
    SERIAL_PROTOCOL_F(sigma, 6);
 | 
						|
    SERIAL_EOL; SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
 | 
						|
 | 
						|
/**
 | 
						|
 * M104: Set hot end temperature
 | 
						|
 */
 | 
						|
inline void gcode_M104() {
 | 
						|
  if (setTargetedHotend(104)) return;
 | 
						|
  if (marlin_debug_flags & DEBUG_DRYRUN) return;
 | 
						|
 | 
						|
  if (code_seen('S')) {
 | 
						|
    float temp = code_value();
 | 
						|
    setTargetHotend(temp, target_extruder);
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | 
						|
        setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M105: Read hot end and bed temperature
 | 
						|
 */
 | 
						|
inline void gcode_M105() {
 | 
						|
  if (setTargetedHotend(105)) return;
 | 
						|
 | 
						|
  #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_OK);
 | 
						|
    #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
 | 
						|
      SERIAL_PROTOCOLPGM(" T:");
 | 
						|
      SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
 | 
						|
      SERIAL_PROTOCOLPGM(" /");
 | 
						|
      SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
 | 
						|
    #endif
 | 
						|
    #if HAS_TEMP_BED
 | 
						|
      SERIAL_PROTOCOLPGM(" B:");
 | 
						|
      SERIAL_PROTOCOL_F(degBed(), 1);
 | 
						|
      SERIAL_PROTOCOLPGM(" /");
 | 
						|
      SERIAL_PROTOCOL_F(degTargetBed(), 1);
 | 
						|
    #endif
 | 
						|
    for (int8_t e = 0; e < EXTRUDERS; ++e) {
 | 
						|
      SERIAL_PROTOCOLPGM(" T");
 | 
						|
      SERIAL_PROTOCOL(e);
 | 
						|
      SERIAL_PROTOCOLCHAR(':');
 | 
						|
      SERIAL_PROTOCOL_F(degHotend(e), 1);
 | 
						|
      SERIAL_PROTOCOLPGM(" /");
 | 
						|
      SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
 | 
						|
    }
 | 
						|
  #else // !HAS_TEMP_0 && !HAS_TEMP_BED
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(" @:");
 | 
						|
  #ifdef EXTRUDER_WATTS
 | 
						|
    SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
 | 
						|
    SERIAL_PROTOCOLCHAR('W');
 | 
						|
  #else
 | 
						|
    SERIAL_PROTOCOL(getHeaterPower(target_extruder));
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(" B@:");
 | 
						|
  #ifdef BED_WATTS
 | 
						|
    SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
 | 
						|
    SERIAL_PROTOCOLCHAR('W');
 | 
						|
  #else
 | 
						|
    SERIAL_PROTOCOL(getHeaterPower(-1));
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef SHOW_TEMP_ADC_VALUES
 | 
						|
    #if HAS_TEMP_BED
 | 
						|
      SERIAL_PROTOCOLPGM("    ADC B:");
 | 
						|
      SERIAL_PROTOCOL_F(degBed(),1);
 | 
						|
      SERIAL_PROTOCOLPGM("C->");
 | 
						|
      SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
 | 
						|
    #endif
 | 
						|
    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | 
						|
      SERIAL_PROTOCOLPGM("  T");
 | 
						|
      SERIAL_PROTOCOL(cur_extruder);
 | 
						|
      SERIAL_PROTOCOLCHAR(':');
 | 
						|
      SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
 | 
						|
      SERIAL_PROTOCOLPGM("C->");
 | 
						|
      SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_EOL;
 | 
						|
}
 | 
						|
 | 
						|
#if HAS_FAN
 | 
						|
 | 
						|
  /**
 | 
						|
   * M106: Set Fan Speed
 | 
						|
   */
 | 
						|
  inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M107: Fan Off
 | 
						|
   */
 | 
						|
  inline void gcode_M107() { fanSpeed = 0; }
 | 
						|
 | 
						|
#endif // HAS_FAN
 | 
						|
 | 
						|
/**
 | 
						|
 * M109: Wait for extruder(s) to reach temperature
 | 
						|
 */
 | 
						|
inline void gcode_M109() {
 | 
						|
  if (setTargetedHotend(109)) return;
 | 
						|
  if (marlin_debug_flags & DEBUG_DRYRUN) return;
 | 
						|
 | 
						|
  LCD_MESSAGEPGM(MSG_HEATING);
 | 
						|
 | 
						|
  no_wait_for_cooling = code_seen('S');
 | 
						|
  if (no_wait_for_cooling || code_seen('R')) {
 | 
						|
    float temp = code_value();
 | 
						|
    setTargetHotend(temp, target_extruder);
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | 
						|
        setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef AUTOTEMP
 | 
						|
    autotemp_enabled = code_seen('F');
 | 
						|
    if (autotemp_enabled) autotemp_factor = code_value();
 | 
						|
    if (code_seen('S')) autotemp_min = code_value();
 | 
						|
    if (code_seen('B')) autotemp_max = code_value();
 | 
						|
  #endif
 | 
						|
 | 
						|
  millis_t temp_ms = millis();
 | 
						|
 | 
						|
  /* See if we are heating up or cooling down */
 | 
						|
  target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
 | 
						|
 | 
						|
  cancel_heatup = false;
 | 
						|
 | 
						|
  #ifdef TEMP_RESIDENCY_TIME
 | 
						|
    long residency_start_ms = -1;
 | 
						|
    /* continue to loop until we have reached the target temp
 | 
						|
      _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
 | 
						|
    while((!cancel_heatup)&&((residency_start_ms == -1) ||
 | 
						|
          (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
 | 
						|
  #else
 | 
						|
    while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
 | 
						|
  #endif //TEMP_RESIDENCY_TIME
 | 
						|
 | 
						|
    { // while loop
 | 
						|
      if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
 | 
						|
        SERIAL_PROTOCOLPGM("T:");
 | 
						|
        SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
 | 
						|
        SERIAL_PROTOCOLPGM(" E:");
 | 
						|
        SERIAL_PROTOCOL((int)target_extruder);
 | 
						|
        #ifdef TEMP_RESIDENCY_TIME
 | 
						|
          SERIAL_PROTOCOLPGM(" W:");
 | 
						|
          if (residency_start_ms > -1) {
 | 
						|
            temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
 | 
						|
            SERIAL_PROTOCOLLN(temp_ms);
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            SERIAL_PROTOCOLLNPGM("?");
 | 
						|
          }
 | 
						|
        #else
 | 
						|
          SERIAL_EOL;
 | 
						|
        #endif
 | 
						|
        temp_ms = millis();
 | 
						|
      }
 | 
						|
 | 
						|
      idle();
 | 
						|
 | 
						|
      #ifdef TEMP_RESIDENCY_TIME
 | 
						|
        // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
 | 
						|
        // or when current temp falls outside the hysteresis after target temp was reached
 | 
						|
        if ((residency_start_ms == -1 &&  target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
 | 
						|
            (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
 | 
						|
            (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
 | 
						|
        {
 | 
						|
          residency_start_ms = millis();
 | 
						|
        }
 | 
						|
      #endif //TEMP_RESIDENCY_TIME
 | 
						|
    }
 | 
						|
 | 
						|
  LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
 | 
						|
  refresh_cmd_timeout();
 | 
						|
  print_job_start_ms = previous_cmd_ms;
 | 
						|
}
 | 
						|
 | 
						|
#if HAS_TEMP_BED
 | 
						|
 | 
						|
  /**
 | 
						|
   * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | 
						|
   *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | 
						|
   */
 | 
						|
  inline void gcode_M190() {
 | 
						|
    if (marlin_debug_flags & DEBUG_DRYRUN) return;
 | 
						|
 | 
						|
    LCD_MESSAGEPGM(MSG_BED_HEATING);
 | 
						|
    no_wait_for_cooling = code_seen('S');
 | 
						|
    if (no_wait_for_cooling || code_seen('R'))
 | 
						|
      setTargetBed(code_value());
 | 
						|
 | 
						|
    millis_t temp_ms = millis();
 | 
						|
    
 | 
						|
    cancel_heatup = false;
 | 
						|
    target_direction = isHeatingBed(); // true if heating, false if cooling
 | 
						|
 | 
						|
    while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
 | 
						|
      millis_t ms = millis();
 | 
						|
      if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
 | 
						|
        temp_ms = ms;
 | 
						|
        float tt = degHotend(active_extruder);
 | 
						|
        SERIAL_PROTOCOLPGM("T:");
 | 
						|
        SERIAL_PROTOCOL(tt);
 | 
						|
        SERIAL_PROTOCOLPGM(" E:");
 | 
						|
        SERIAL_PROTOCOL((int)active_extruder);
 | 
						|
        SERIAL_PROTOCOLPGM(" B:");
 | 
						|
        SERIAL_PROTOCOL_F(degBed(), 1);
 | 
						|
        SERIAL_EOL;
 | 
						|
      }
 | 
						|
      idle();
 | 
						|
    }
 | 
						|
    LCD_MESSAGEPGM(MSG_BED_DONE);
 | 
						|
    refresh_cmd_timeout();
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_TEMP_BED
 | 
						|
 | 
						|
/**
 | 
						|
 * M111: Set the debug level
 | 
						|
 */
 | 
						|
inline void gcode_M111() {
 | 
						|
  marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
 | 
						|
  
 | 
						|
  if (marlin_debug_flags & DEBUG_ECHO) {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
 | 
						|
  }
 | 
						|
  // FOR MOMENT NOT ACTIVE
 | 
						|
  //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
 | 
						|
  //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
 | 
						|
  if (marlin_debug_flags & DEBUG_DRYRUN) {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
 | 
						|
    disable_all_heaters();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M112: Emergency Stop
 | 
						|
 */
 | 
						|
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
 | 
						|
 | 
						|
#ifdef BARICUDA
 | 
						|
 | 
						|
  #if HAS_HEATER_1
 | 
						|
    /**
 | 
						|
     * M126: Heater 1 valve open
 | 
						|
     */
 | 
						|
    inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
 | 
						|
    /**
 | 
						|
     * M127: Heater 1 valve close
 | 
						|
     */
 | 
						|
    inline void gcode_M127() { ValvePressure = 0; }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if HAS_HEATER_2
 | 
						|
    /**
 | 
						|
     * M128: Heater 2 valve open
 | 
						|
     */
 | 
						|
    inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
 | 
						|
    /**
 | 
						|
     * M129: Heater 2 valve close
 | 
						|
     */
 | 
						|
    inline void gcode_M129() { EtoPPressure = 0; }
 | 
						|
  #endif
 | 
						|
 | 
						|
#endif //BARICUDA
 | 
						|
 | 
						|
/**
 | 
						|
 * M140: Set bed temperature
 | 
						|
 */
 | 
						|
inline void gcode_M140() {
 | 
						|
  if (marlin_debug_flags & DEBUG_DRYRUN) return;
 | 
						|
  if (code_seen('S')) setTargetBed(code_value());
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ULTIPANEL
 | 
						|
 | 
						|
  /**
 | 
						|
   * M145: Set the heatup state for a material in the LCD menu
 | 
						|
   *   S<material> (0=PLA, 1=ABS)
 | 
						|
   *   H<hotend temp>
 | 
						|
   *   B<bed temp>
 | 
						|
   *   F<fan speed>
 | 
						|
   */
 | 
						|
  inline void gcode_M145() {
 | 
						|
    uint8_t material = code_seen('S') ? code_value_short() : 0;
 | 
						|
    if (material < 0 || material > 1) {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      int v;
 | 
						|
      switch (material) {
 | 
						|
        case 0:
 | 
						|
          if (code_seen('H')) {
 | 
						|
            v = code_value_short();
 | 
						|
            plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
 | 
						|
          }
 | 
						|
          if (code_seen('F')) {
 | 
						|
            v = code_value_short();
 | 
						|
            plaPreheatFanSpeed = constrain(v, 0, 255);
 | 
						|
          }
 | 
						|
          #if TEMP_SENSOR_BED != 0
 | 
						|
            if (code_seen('B')) {
 | 
						|
              v = code_value_short();
 | 
						|
              plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
 | 
						|
            }
 | 
						|
          #endif
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          if (code_seen('H')) {
 | 
						|
            v = code_value_short();
 | 
						|
            absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
 | 
						|
          }
 | 
						|
          if (code_seen('F')) {
 | 
						|
            v = code_value_short();
 | 
						|
            absPreheatFanSpeed = constrain(v, 0, 255);
 | 
						|
          }
 | 
						|
          #if TEMP_SENSOR_BED != 0
 | 
						|
            if (code_seen('B')) {
 | 
						|
              v = code_value_short();
 | 
						|
              absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
 | 
						|
            }
 | 
						|
          #endif
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAS_POWER_SWITCH
 | 
						|
 | 
						|
  /**
 | 
						|
   * M80: Turn on Power Supply
 | 
						|
   */
 | 
						|
  inline void gcode_M80() {
 | 
						|
    OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
 | 
						|
 | 
						|
    // If you have a switch on suicide pin, this is useful
 | 
						|
    // if you want to start another print with suicide feature after
 | 
						|
    // a print without suicide...
 | 
						|
    #if HAS_SUICIDE
 | 
						|
      OUT_WRITE(SUICIDE_PIN, HIGH);
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef ULTIPANEL
 | 
						|
      powersupply = true;
 | 
						|
      LCD_MESSAGEPGM(WELCOME_MSG);
 | 
						|
      lcd_update();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_POWER_SWITCH
 | 
						|
 | 
						|
/**
 | 
						|
 * M81: Turn off Power, including Power Supply, if there is one.
 | 
						|
 *
 | 
						|
 *      This code should ALWAYS be available for EMERGENCY SHUTDOWN!
 | 
						|
 */
 | 
						|
inline void gcode_M81() {
 | 
						|
  disable_all_heaters();
 | 
						|
  st_synchronize();
 | 
						|
  disable_e0();
 | 
						|
  disable_e1();
 | 
						|
  disable_e2();
 | 
						|
  disable_e3();
 | 
						|
  finishAndDisableSteppers();
 | 
						|
  fanSpeed = 0;
 | 
						|
  delay(1000); // Wait 1 second before switching off
 | 
						|
  #if HAS_SUICIDE
 | 
						|
    st_synchronize();
 | 
						|
    suicide();
 | 
						|
  #elif HAS_POWER_SWITCH
 | 
						|
    OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | 
						|
  #endif
 | 
						|
  #ifdef ULTIPANEL
 | 
						|
    #if HAS_POWER_SWITCH
 | 
						|
      powersupply = false;
 | 
						|
    #endif
 | 
						|
    LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
 | 
						|
    lcd_update();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * M82: Set E codes absolute (default)
 | 
						|
 */
 | 
						|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
 | 
						|
 | 
						|
/**
 | 
						|
 * M83: Set E codes relative while in Absolute Coordinates (G90) mode
 | 
						|
 */
 | 
						|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
 | 
						|
 | 
						|
/**
 | 
						|
 * M18, M84: Disable all stepper motors
 | 
						|
 */
 | 
						|
inline void gcode_M18_M84() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    stepper_inactive_time = code_value() * 1000;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
 | 
						|
    if (all_axis) {
 | 
						|
      st_synchronize();
 | 
						|
      disable_e0();
 | 
						|
      disable_e1();
 | 
						|
      disable_e2();
 | 
						|
      disable_e3();
 | 
						|
      finishAndDisableSteppers();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      st_synchronize();
 | 
						|
      if (code_seen('X')) disable_x();
 | 
						|
      if (code_seen('Y')) disable_y();
 | 
						|
      if (code_seen('Z')) disable_z();
 | 
						|
      #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
 | 
						|
        if (code_seen('E')) {
 | 
						|
          disable_e0();
 | 
						|
          disable_e1();
 | 
						|
          disable_e2();
 | 
						|
          disable_e3();
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | 
						|
 */
 | 
						|
inline void gcode_M85() {
 | 
						|
  if (code_seen('S')) max_inactive_time = code_value() * 1000;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
 | 
						|
 *      (Follows the same syntax as G92)
 | 
						|
 */
 | 
						|
inline void gcode_M92() {
 | 
						|
  for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      if (i == E_AXIS) {
 | 
						|
        float value = code_value();
 | 
						|
        if (value < 20.0) {
 | 
						|
          float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
 | 
						|
          max_e_jerk *= factor;
 | 
						|
          max_feedrate[i] *= factor;
 | 
						|
          axis_steps_per_sqr_second[i] *= factor;
 | 
						|
        }
 | 
						|
        axis_steps_per_unit[i] = value;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        axis_steps_per_unit[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M114: Output current position to serial port
 | 
						|
 */
 | 
						|
inline void gcode_M114() {
 | 
						|
  SERIAL_PROTOCOLPGM("X:");
 | 
						|
  SERIAL_PROTOCOL(current_position[X_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Y:");
 | 
						|
  SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" Z:");
 | 
						|
  SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | 
						|
  SERIAL_PROTOCOLPGM(" E:");
 | 
						|
  SERIAL_PROTOCOL(current_position[E_AXIS]);
 | 
						|
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_COUNT_X);
 | 
						|
  SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
 | 
						|
  SERIAL_PROTOCOLPGM(" Y:");
 | 
						|
  SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
 | 
						|
  SERIAL_PROTOCOLPGM(" Z:");
 | 
						|
  SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
 | 
						|
 | 
						|
  SERIAL_EOL;
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[Y_AXIS]);
 | 
						|
    SERIAL_EOL;
 | 
						|
    
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
 | 
						|
    SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
 | 
						|
    SERIAL_EOL;
 | 
						|
    
 | 
						|
    SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
 | 
						|
    SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
 | 
						|
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | 
						|
    SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
 | 
						|
    SERIAL_EOL; SERIAL_EOL;
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M115: Capabilities string
 | 
						|
 */
 | 
						|
inline void gcode_M115() {
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M117: Set LCD Status Message
 | 
						|
 */
 | 
						|
inline void gcode_M117() {
 | 
						|
  lcd_setstatus(current_command_args);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M119: Output endstop states to serial output
 | 
						|
 */
 | 
						|
inline void gcode_M119() {
 | 
						|
  SERIAL_PROTOCOLLN(MSG_M119_REPORT);
 | 
						|
  #if HAS_X_MIN
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_X_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_X_MAX
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_X_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Y_MIN
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Y_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Y_MAX
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Y_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Z_MIN
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z_MIN);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Z_MAX
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Z2_MAX
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
  #if HAS_Z_PROBE
 | 
						|
    SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
 | 
						|
    SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M120: Enable endstops
 | 
						|
 */
 | 
						|
inline void gcode_M120() { enable_endstops(true); }
 | 
						|
 | 
						|
/**
 | 
						|
 * M121: Disable endstops
 | 
						|
 */
 | 
						|
inline void gcode_M121() { enable_endstops(false); }
 | 
						|
 | 
						|
#ifdef BLINKM
 | 
						|
 | 
						|
  /**
 | 
						|
   * M150: Set Status LED Color - Use R-U-B for R-G-B
 | 
						|
   */
 | 
						|
  inline void gcode_M150() {
 | 
						|
    SendColors(
 | 
						|
      code_seen('R') ? (byte)code_value_short() : 0,
 | 
						|
      code_seen('U') ? (byte)code_value_short() : 0,
 | 
						|
      code_seen('B') ? (byte)code_value_short() : 0
 | 
						|
    );
 | 
						|
  }
 | 
						|
 | 
						|
#endif // BLINKM
 | 
						|
 | 
						|
/**
 | 
						|
 * M200: Set filament diameter and set E axis units to cubic millimeters
 | 
						|
 *
 | 
						|
 *    T<extruder> - Optional extruder number. Current extruder if omitted.
 | 
						|
 *    D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
 | 
						|
 */
 | 
						|
inline void gcode_M200() {
 | 
						|
 | 
						|
  if (setTargetedHotend(200)) return;
 | 
						|
 | 
						|
  if (code_seen('D')) {
 | 
						|
    float diameter = code_value();
 | 
						|
    // setting any extruder filament size disables volumetric on the assumption that
 | 
						|
    // slicers either generate in extruder values as cubic mm or as as filament feeds
 | 
						|
    // for all extruders
 | 
						|
    volumetric_enabled = (diameter != 0.0);
 | 
						|
    if (volumetric_enabled) {
 | 
						|
      filament_size[target_extruder] = diameter;
 | 
						|
      // make sure all extruders have some sane value for the filament size
 | 
						|
      for (int i=0; i<EXTRUDERS; i++)
 | 
						|
        if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    //reserved for setting filament diameter via UFID or filament measuring device
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  calculate_volumetric_multipliers();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | 
						|
 */
 | 
						|
inline void gcode_M201() {
 | 
						|
  for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      max_acceleration_units_per_sq_second[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | 
						|
  reset_acceleration_rates();
 | 
						|
}
 | 
						|
 | 
						|
#if 0 // Not used for Sprinter/grbl gen6
 | 
						|
  inline void gcode_M202() {
 | 
						|
    for(int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
      if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
 | 
						|
 */
 | 
						|
inline void gcode_M203() {
 | 
						|
  for (int8_t i=0; i < NUM_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      max_feedrate[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
 | 
						|
 *
 | 
						|
 *    P = Printing moves
 | 
						|
 *    R = Retract only (no X, Y, Z) moves
 | 
						|
 *    T = Travel (non printing) moves
 | 
						|
 *
 | 
						|
 *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 | 
						|
 */
 | 
						|
inline void gcode_M204() {
 | 
						|
  if (code_seen('S')) {  // Kept for legacy compatibility. Should NOT BE USED for new developments.
 | 
						|
    acceleration = code_value();
 | 
						|
    travel_acceleration = acceleration;
 | 
						|
    SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('P')) {
 | 
						|
    acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('R')) {
 | 
						|
    retract_acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  if (code_seen('T')) {
 | 
						|
    travel_acceleration = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M205: Set Advanced Settings
 | 
						|
 *
 | 
						|
 *    S = Min Feed Rate (mm/s)
 | 
						|
 *    T = Min Travel Feed Rate (mm/s)
 | 
						|
 *    B = Min Segment Time (µs)
 | 
						|
 *    X = Max XY Jerk (mm/s/s)
 | 
						|
 *    Z = Max Z Jerk (mm/s/s)
 | 
						|
 *    E = Max E Jerk (mm/s/s)
 | 
						|
 */
 | 
						|
inline void gcode_M205() {
 | 
						|
  if (code_seen('S')) minimumfeedrate = code_value();
 | 
						|
  if (code_seen('T')) mintravelfeedrate = code_value();
 | 
						|
  if (code_seen('B')) minsegmenttime = code_value();
 | 
						|
  if (code_seen('X')) max_xy_jerk = code_value();
 | 
						|
  if (code_seen('Z')) max_z_jerk = code_value();
 | 
						|
  if (code_seen('E')) max_e_jerk = code_value();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
 | 
						|
 */
 | 
						|
inline void gcode_M206() {
 | 
						|
  for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
    if (code_seen(axis_codes[i])) {
 | 
						|
      home_offset[i] = code_value();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  #ifdef SCARA
 | 
						|
    if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
 | 
						|
    if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
  /**
 | 
						|
   * M665: Set delta configurations
 | 
						|
   *
 | 
						|
   *    L = diagonal rod
 | 
						|
   *    R = delta radius
 | 
						|
   *    S = segments per second
 | 
						|
   */
 | 
						|
  inline void gcode_M665() {
 | 
						|
    if (code_seen('L')) delta_diagonal_rod = code_value();
 | 
						|
    if (code_seen('R')) delta_radius = code_value();
 | 
						|
    if (code_seen('S')) delta_segments_per_second = code_value();
 | 
						|
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | 
						|
  }
 | 
						|
  /**
 | 
						|
   * M666: Set delta endstop adjustment
 | 
						|
   */
 | 
						|
  inline void gcode_M666() {
 | 
						|
    for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
      if (code_seen(axis_codes[i])) {
 | 
						|
        endstop_adj[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
#elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
 | 
						|
  /**
 | 
						|
   * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
 | 
						|
   */
 | 
						|
  inline void gcode_M666() {
 | 
						|
    if (code_seen('Z')) z_endstop_adj = code_value();
 | 
						|
    SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
  
 | 
						|
#endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
 | 
						|
 | 
						|
#ifdef FWRETRACT
 | 
						|
 | 
						|
  /**
 | 
						|
   * M207: Set firmware retraction values
 | 
						|
   *
 | 
						|
   *   S[+mm]    retract_length
 | 
						|
   *   W[+mm]    retract_length_swap (multi-extruder)
 | 
						|
   *   F[mm/min] retract_feedrate
 | 
						|
   *   Z[mm]     retract_zlift
 | 
						|
   */
 | 
						|
  inline void gcode_M207() {
 | 
						|
    if (code_seen('S')) retract_length = code_value();
 | 
						|
    if (code_seen('F')) retract_feedrate = code_value() / 60;
 | 
						|
    if (code_seen('Z')) retract_zlift = code_value();
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (code_seen('W')) retract_length_swap = code_value();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M208: Set firmware un-retraction values
 | 
						|
   *
 | 
						|
   *   S[+mm]    retract_recover_length (in addition to M207 S*)
 | 
						|
   *   W[+mm]    retract_recover_length_swap (multi-extruder)
 | 
						|
   *   F[mm/min] retract_recover_feedrate
 | 
						|
   */
 | 
						|
  inline void gcode_M208() {
 | 
						|
    if (code_seen('S')) retract_recover_length = code_value();
 | 
						|
    if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (code_seen('W')) retract_recover_length_swap = code_value();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M209: Enable automatic retract (M209 S1)
 | 
						|
   *       detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
   */
 | 
						|
  inline void gcode_M209() {
 | 
						|
    if (code_seen('S')) {
 | 
						|
      int t = code_value_short();
 | 
						|
      switch(t) {
 | 
						|
        case 0:
 | 
						|
          autoretract_enabled = false;
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          autoretract_enabled = true;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          unknown_command_error();
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FWRETRACT
 | 
						|
 | 
						|
#if EXTRUDERS > 1
 | 
						|
 | 
						|
  /**
 | 
						|
   * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
   */
 | 
						|
  inline void gcode_M218() {
 | 
						|
    if (setTargetedHotend(218)) return;
 | 
						|
 | 
						|
    if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
 | 
						|
    if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
 | 
						|
 | 
						|
    #ifdef DUAL_X_CARRIAGE
 | 
						|
      if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
 | 
						|
    #endif
 | 
						|
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | 
						|
    for (int e = 0; e < EXTRUDERS; e++) {
 | 
						|
      SERIAL_CHAR(' ');
 | 
						|
      SERIAL_ECHO(extruder_offset[X_AXIS][e]);
 | 
						|
      SERIAL_CHAR(',');
 | 
						|
      SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        SERIAL_CHAR(',');
 | 
						|
        SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // EXTRUDERS > 1
 | 
						|
 | 
						|
/**
 | 
						|
 * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 | 
						|
 */
 | 
						|
inline void gcode_M220() {
 | 
						|
  if (code_seen('S')) feedrate_multiplier = code_value();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M221: Set extrusion percentage (M221 T0 S95)
 | 
						|
 */
 | 
						|
inline void gcode_M221() {
 | 
						|
  if (code_seen('S')) {
 | 
						|
    int sval = code_value();
 | 
						|
    if (code_seen('T')) {
 | 
						|
      if (setTargetedHotend(221)) return;
 | 
						|
      extruder_multiplier[target_extruder] = sval;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      extruder_multiplier[active_extruder] = sval;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
 | 
						|
 */
 | 
						|
inline void gcode_M226() {
 | 
						|
  if (code_seen('P')) {
 | 
						|
    int pin_number = code_value();
 | 
						|
 | 
						|
    int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
 | 
						|
 | 
						|
    if (pin_state >= -1 && pin_state <= 1) {
 | 
						|
 | 
						|
      for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
 | 
						|
        if (sensitive_pins[i] == pin_number) {
 | 
						|
          pin_number = -1;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (pin_number > -1) {
 | 
						|
        int target = LOW;
 | 
						|
 | 
						|
        st_synchronize();
 | 
						|
 | 
						|
        pinMode(pin_number, INPUT);
 | 
						|
 | 
						|
        switch(pin_state){
 | 
						|
          case 1:
 | 
						|
            target = HIGH;
 | 
						|
            break;
 | 
						|
 | 
						|
          case 0:
 | 
						|
            target = LOW;
 | 
						|
            break;
 | 
						|
 | 
						|
          case -1:
 | 
						|
            target = !digitalRead(pin_number);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        while (digitalRead(pin_number) != target) idle();
 | 
						|
 | 
						|
      } // pin_number > -1
 | 
						|
    } // pin_state -1 0 1
 | 
						|
  } // code_seen('P')
 | 
						|
}
 | 
						|
 | 
						|
#if NUM_SERVOS > 0
 | 
						|
 | 
						|
  /**
 | 
						|
   * M280: Get or set servo position. P<index> S<angle>
 | 
						|
   */
 | 
						|
  inline void gcode_M280() {
 | 
						|
    int servo_index = code_seen('P') ? code_value_short() : -1;
 | 
						|
    int servo_position = 0;
 | 
						|
    if (code_seen('S')) {
 | 
						|
      servo_position = code_value_short();
 | 
						|
      if (servo_index >= 0 && servo_index < NUM_SERVOS) {
 | 
						|
        Servo *srv = &servo[servo_index];
 | 
						|
        srv->move(0, servo_position);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHO("Servo ");
 | 
						|
        SERIAL_ECHO(servo_index);
 | 
						|
        SERIAL_ECHOLN(" out of range");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (servo_index >= 0) {
 | 
						|
      SERIAL_PROTOCOL(MSG_OK);
 | 
						|
      SERIAL_PROTOCOL(" Servo ");
 | 
						|
      SERIAL_PROTOCOL(servo_index);
 | 
						|
      SERIAL_PROTOCOL(": ");
 | 
						|
      SERIAL_PROTOCOL(servo[servo_index].read());
 | 
						|
      SERIAL_EOL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // NUM_SERVOS > 0
 | 
						|
 | 
						|
#if HAS_BUZZER
 | 
						|
 | 
						|
  /**
 | 
						|
   * M300: Play beep sound S<frequency Hz> P<duration ms>
 | 
						|
   */
 | 
						|
  inline void gcode_M300() {
 | 
						|
    uint16_t beepS = code_seen('S') ? code_value_short() : 110;
 | 
						|
    uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
 | 
						|
    if (beepP > 5000) beepP = 5000; // limit to 5 seconds
 | 
						|
    buzz(beepP, beepS);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_BUZZER
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
 | 
						|
  /**
 | 
						|
   * M301: Set PID parameters P I D (and optionally C)
 | 
						|
   */
 | 
						|
  inline void gcode_M301() {
 | 
						|
 | 
						|
    // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
 | 
						|
    // default behaviour (omitting E parameter) is to update for extruder 0 only
 | 
						|
    int e = code_seen('E') ? code_value() : 0; // extruder being updated
 | 
						|
 | 
						|
    if (e < EXTRUDERS) { // catch bad input value
 | 
						|
      if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
 | 
						|
      if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
 | 
						|
      if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
 | 
						|
      #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
        if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
 | 
						|
      #endif      
 | 
						|
 | 
						|
      updatePID();
 | 
						|
      SERIAL_PROTOCOL(MSG_OK);
 | 
						|
      #ifdef PID_PARAMS_PER_EXTRUDER
 | 
						|
        SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
 | 
						|
        SERIAL_PROTOCOL(e);
 | 
						|
      #endif // PID_PARAMS_PER_EXTRUDER
 | 
						|
      SERIAL_PROTOCOL(" p:");
 | 
						|
      SERIAL_PROTOCOL(PID_PARAM(Kp, e));
 | 
						|
      SERIAL_PROTOCOL(" i:");
 | 
						|
      SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
 | 
						|
      SERIAL_PROTOCOL(" d:");
 | 
						|
      SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
 | 
						|
      #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
        SERIAL_PROTOCOL(" c:");
 | 
						|
        //Kc does not have scaling applied above, or in resetting defaults
 | 
						|
        SERIAL_PROTOCOL(PID_PARAM(Kc, e));
 | 
						|
      #endif
 | 
						|
      SERIAL_EOL;    
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PIDTEMP
 | 
						|
 | 
						|
#ifdef PIDTEMPBED
 | 
						|
 | 
						|
  inline void gcode_M304() {
 | 
						|
    if (code_seen('P')) bedKp = code_value();
 | 
						|
    if (code_seen('I')) bedKi = scalePID_i(code_value());
 | 
						|
    if (code_seen('D')) bedKd = scalePID_d(code_value());
 | 
						|
 | 
						|
    updatePID();
 | 
						|
    SERIAL_PROTOCOL(MSG_OK);
 | 
						|
    SERIAL_PROTOCOL(" p:");
 | 
						|
    SERIAL_PROTOCOL(bedKp);
 | 
						|
    SERIAL_PROTOCOL(" i:");
 | 
						|
    SERIAL_PROTOCOL(unscalePID_i(bedKi));
 | 
						|
    SERIAL_PROTOCOL(" d:");
 | 
						|
    SERIAL_PROTOCOL(unscalePID_d(bedKd));
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PIDTEMPBED
 | 
						|
 | 
						|
#if defined(CHDK) || HAS_PHOTOGRAPH
 | 
						|
 | 
						|
  /**
 | 
						|
   * M240: Trigger a camera by emulating a Canon RC-1
 | 
						|
   *       See http://www.doc-diy.net/photo/rc-1_hacked/
 | 
						|
   */
 | 
						|
  inline void gcode_M240() {
 | 
						|
    #ifdef CHDK
 | 
						|
     
 | 
						|
       OUT_WRITE(CHDK, HIGH);
 | 
						|
       chdkHigh = millis();
 | 
						|
       chdkActive = true;
 | 
						|
     
 | 
						|
    #elif HAS_PHOTOGRAPH
 | 
						|
 | 
						|
      const uint8_t NUM_PULSES = 16;
 | 
						|
      const float PULSE_LENGTH = 0.01524;
 | 
						|
      for (int i = 0; i < NUM_PULSES; i++) {
 | 
						|
        WRITE(PHOTOGRAPH_PIN, HIGH);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
        WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
      }
 | 
						|
      delay(7.33);
 | 
						|
      for (int i = 0; i < NUM_PULSES; i++) {
 | 
						|
        WRITE(PHOTOGRAPH_PIN, HIGH);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
        WRITE(PHOTOGRAPH_PIN, LOW);
 | 
						|
        _delay_ms(PULSE_LENGTH);
 | 
						|
      }
 | 
						|
 | 
						|
    #endif // !CHDK && HAS_PHOTOGRAPH
 | 
						|
  }
 | 
						|
 | 
						|
#endif // CHDK || PHOTOGRAPH_PIN
 | 
						|
 | 
						|
#ifdef HAS_LCD_CONTRAST
 | 
						|
 | 
						|
  /**
 | 
						|
   * M250: Read and optionally set the LCD contrast
 | 
						|
   */
 | 
						|
  inline void gcode_M250() {
 | 
						|
    if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
 | 
						|
    SERIAL_PROTOCOLPGM("lcd contrast value: ");
 | 
						|
    SERIAL_PROTOCOL(lcd_contrast);
 | 
						|
    SERIAL_EOL;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_LCD_CONTRAST
 | 
						|
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
  void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
 | 
						|
   */
 | 
						|
  inline void gcode_M302() {
 | 
						|
    set_extrude_min_temp(code_seen('S') ? code_value() : 0);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
/**
 | 
						|
 * M303: PID relay autotune
 | 
						|
 *       S<temperature> sets the target temperature. (default target temperature = 150C)
 | 
						|
 *       E<extruder> (-1 for the bed)
 | 
						|
 *       C<cycles>
 | 
						|
 */
 | 
						|
inline void gcode_M303() {
 | 
						|
  int e = code_seen('E') ? code_value_short() : 0;
 | 
						|
  int c = code_seen('C') ? code_value_short() : 5;
 | 
						|
  float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
 | 
						|
  PID_autotune(temp, e, c);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
  bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
 | 
						|
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | 
						|
    //SERIAL_ECHOLN(" Soft endstops disabled ");
 | 
						|
    if (IsRunning()) {
 | 
						|
      //gcode_get_destination(); // For X Y Z E F
 | 
						|
      delta[X_AXIS] = delta_x;
 | 
						|
      delta[Y_AXIS] = delta_y;
 | 
						|
      calculate_SCARA_forward_Transform(delta);
 | 
						|
      destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | 
						|
      destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | 
						|
      prepare_move();
 | 
						|
      //ok_to_send();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | 
						|
   */
 | 
						|
  inline bool gcode_M360() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta 0 ");
 | 
						|
    return SCARA_move_to_cal(0, 120);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | 
						|
   */
 | 
						|
  inline bool gcode_M361() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta 90 ");
 | 
						|
    return SCARA_move_to_cal(90, 130);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | 
						|
   */
 | 
						|
  inline bool gcode_M362() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Psi 0 ");
 | 
						|
    return SCARA_move_to_cal(60, 180);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | 
						|
   */
 | 
						|
  inline bool gcode_M363() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Psi 90 ");
 | 
						|
    return SCARA_move_to_cal(50, 90);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | 
						|
   */
 | 
						|
  inline bool gcode_M364() {
 | 
						|
    SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
 | 
						|
    return SCARA_move_to_cal(45, 135);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M365: SCARA calibration: Scaling factor, X, Y, Z axis
 | 
						|
   */
 | 
						|
  inline void gcode_M365() {
 | 
						|
    for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
      if (code_seen(axis_codes[i])) {
 | 
						|
        axis_scaling[i] = code_value();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // SCARA
 | 
						|
 | 
						|
#ifdef EXT_SOLENOID
 | 
						|
 | 
						|
  void enable_solenoid(uint8_t num) {
 | 
						|
    switch(num) {
 | 
						|
      case 0:
 | 
						|
        OUT_WRITE(SOL0_PIN, HIGH);
 | 
						|
        break;
 | 
						|
        #if HAS_SOLENOID_1
 | 
						|
          case 1:
 | 
						|
            OUT_WRITE(SOL1_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
        #if HAS_SOLENOID_2
 | 
						|
          case 2:
 | 
						|
            OUT_WRITE(SOL2_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
        #if HAS_SOLENOID_3
 | 
						|
          case 3:
 | 
						|
            OUT_WRITE(SOL3_PIN, HIGH);
 | 
						|
            break;
 | 
						|
        #endif
 | 
						|
      default:
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
 | 
						|
 | 
						|
  void disable_all_solenoids() {
 | 
						|
    OUT_WRITE(SOL0_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL1_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL2_PIN, LOW);
 | 
						|
    OUT_WRITE(SOL3_PIN, LOW);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M380: Enable solenoid on the active extruder
 | 
						|
   */
 | 
						|
  inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M381: Disable all solenoids
 | 
						|
   */
 | 
						|
  inline void gcode_M381() { disable_all_solenoids(); }
 | 
						|
 | 
						|
#endif // EXT_SOLENOID
 | 
						|
 | 
						|
/**
 | 
						|
 * M400: Finish all moves
 | 
						|
 */
 | 
						|
inline void gcode_M400() { st_synchronize(); }
 | 
						|
 | 
						|
#if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
 | 
						|
 | 
						|
  #ifdef SERVO_ENDSTOPS
 | 
						|
    void raise_z_for_servo() {
 | 
						|
      float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
 | 
						|
      z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
 | 
						|
      if (zpos < z_dest)
 | 
						|
        do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  /**
 | 
						|
   * M401: Engage Z Servo endstop if available
 | 
						|
   */
 | 
						|
  inline void gcode_M401() {
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      raise_z_for_servo();
 | 
						|
    #endif
 | 
						|
    deploy_z_probe();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M402: Retract Z Servo endstop if enabled
 | 
						|
   */
 | 
						|
  inline void gcode_M402() {
 | 
						|
    #ifdef SERVO_ENDSTOPS
 | 
						|
      raise_z_for_servo();
 | 
						|
    #endif
 | 
						|
    stow_z_probe(false);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
 | 
						|
 | 
						|
#ifdef FILAMENT_SENSOR
 | 
						|
 | 
						|
  /**
 | 
						|
   * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
 | 
						|
   */
 | 
						|
  inline void gcode_M404() {
 | 
						|
    #if HAS_FILWIDTH
 | 
						|
      if (code_seen('W')) {
 | 
						|
        filament_width_nominal = code_value();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
 | 
						|
        SERIAL_PROTOCOLLN(filament_width_nominal);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
    
 | 
						|
  /**
 | 
						|
   * M405: Turn on filament sensor for control
 | 
						|
   */
 | 
						|
  inline void gcode_M405() {
 | 
						|
    if (code_seen('D')) meas_delay_cm = code_value();
 | 
						|
    if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
 | 
						|
 | 
						|
    if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
 | 
						|
      int temp_ratio = widthFil_to_size_ratio();
 | 
						|
 | 
						|
      for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
 | 
						|
        measurement_delay[delay_index1] = temp_ratio - 100;  //subtract 100 to scale within a signed byte
 | 
						|
 | 
						|
      delay_index1 = delay_index2 = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    filament_sensor = true;
 | 
						|
 | 
						|
    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | 
						|
    //SERIAL_PROTOCOL(filament_width_meas);
 | 
						|
    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
 | 
						|
    //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M406: Turn off filament sensor for control
 | 
						|
   */
 | 
						|
  inline void gcode_M406() { filament_sensor = false; }
 | 
						|
  
 | 
						|
  /**
 | 
						|
   * M407: Get measured filament diameter on serial output
 | 
						|
   */
 | 
						|
  inline void gcode_M407() {
 | 
						|
    SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
 | 
						|
    SERIAL_PROTOCOLLN(filament_width_meas);   
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FILAMENT_SENSOR
 | 
						|
 | 
						|
/**
 | 
						|
 * M410: Quickstop - Abort all planned moves
 | 
						|
 *
 | 
						|
 * This will stop the carriages mid-move, so most likely they
 | 
						|
 * will be out of sync with the stepper position after this.
 | 
						|
 */
 | 
						|
inline void gcode_M410() { quickStop(); }
 | 
						|
 | 
						|
 | 
						|
#ifdef MESH_BED_LEVELING
 | 
						|
 | 
						|
  /**
 | 
						|
   * M420: Enable/Disable Mesh Bed Leveling
 | 
						|
   */
 | 
						|
  inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M421: Set a single Mesh Bed Leveling Z coordinate
 | 
						|
   */
 | 
						|
  inline void gcode_M421() {
 | 
						|
    float x, y, z;
 | 
						|
    bool err = false, hasX, hasY, hasZ;
 | 
						|
    if ((hasX = code_seen('X'))) x = code_value();
 | 
						|
    if ((hasY = code_seen('Y'))) y = code_value();
 | 
						|
    if ((hasZ = code_seen('Z'))) z = code_value();
 | 
						|
 | 
						|
    if (!hasX || !hasY || !hasZ) {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
 | 
						|
      err = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
 | 
						|
      err = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * M428: Set home_offset based on the distance between the
 | 
						|
 *       current_position and the nearest "reference point."
 | 
						|
 *       If an axis is past center its endstop position
 | 
						|
 *       is the reference-point. Otherwise it uses 0. This allows
 | 
						|
 *       the Z offset to be set near the bed when using a max endstop.
 | 
						|
 *
 | 
						|
 *       M428 can't be used more than 2cm away from 0 or an endstop.
 | 
						|
 *
 | 
						|
 *       Use M206 to set these values directly.
 | 
						|
 */
 | 
						|
inline void gcode_M428() {
 | 
						|
  bool err = false;
 | 
						|
  float new_offs[3], new_pos[3];
 | 
						|
  memcpy(new_pos, current_position, sizeof(new_pos));
 | 
						|
  memcpy(new_offs, home_offset, sizeof(new_offs));
 | 
						|
  for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
 | 
						|
    if (axis_known_position[i]) {
 | 
						|
      float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
 | 
						|
            diff = new_pos[i] - base;
 | 
						|
      if (diff > -20 && diff < 20) {
 | 
						|
        new_offs[i] -= diff;
 | 
						|
        new_pos[i] = base;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_ERROR_START;
 | 
						|
        SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
 | 
						|
        LCD_ALERTMESSAGEPGM("Err: Too far!");
 | 
						|
        #if HAS_BUZZER
 | 
						|
          enqueuecommands_P(PSTR("M300 S40 P200"));
 | 
						|
        #endif
 | 
						|
        err = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!err) {
 | 
						|
    memcpy(current_position, new_pos, sizeof(new_pos));
 | 
						|
    memcpy(home_offset, new_offs, sizeof(new_offs));
 | 
						|
    sync_plan_position();
 | 
						|
    LCD_ALERTMESSAGEPGM("Offset applied.");
 | 
						|
    #if HAS_BUZZER
 | 
						|
      enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M500: Store settings in EEPROM
 | 
						|
 */
 | 
						|
inline void gcode_M500() {
 | 
						|
  Config_StoreSettings();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M501: Read settings from EEPROM
 | 
						|
 */
 | 
						|
inline void gcode_M501() {
 | 
						|
  Config_RetrieveSettings();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M502: Revert to default settings
 | 
						|
 */
 | 
						|
inline void gcode_M502() {
 | 
						|
  Config_ResetDefault();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * M503: print settings currently in memory
 | 
						|
 */
 | 
						|
inline void gcode_M503() {
 | 
						|
  Config_PrintSettings(code_seen('S') && code_value() == 0);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
 | 
						|
  /**
 | 
						|
   * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
 | 
						|
   */
 | 
						|
  inline void gcode_M540() {
 | 
						|
    if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
 | 
						|
  }
 | 
						|
 | 
						|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
 | 
						|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
  inline void gcode_SET_Z_PROBE_OFFSET() {
 | 
						|
    float value;
 | 
						|
    if (code_seen('Z')) {
 | 
						|
      value = code_value();
 | 
						|
      if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
 | 
						|
        zprobe_zoffset = value;
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
 | 
						|
        SERIAL_EOL;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
 | 
						|
        SERIAL_ECHOPGM(MSG_Z_MIN);
 | 
						|
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
 | 
						|
        SERIAL_ECHOPGM(MSG_Z_MAX);
 | 
						|
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
 | 
						|
        SERIAL_EOL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
 | 
						|
      SERIAL_ECHO(zprobe_zoffset);
 | 
						|
      SERIAL_EOL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
#ifdef FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
  /**
 | 
						|
   * M600: Pause for filament change
 | 
						|
   *
 | 
						|
   *  E[distance] - Retract the filament this far (negative value)
 | 
						|
   *  Z[distance] - Move the Z axis by this distance
 | 
						|
   *  X[position] - Move to this X position, with Y
 | 
						|
   *  Y[position] - Move to this Y position, with X
 | 
						|
   *  L[distance] - Retract distance for removal (manual reload)
 | 
						|
   *
 | 
						|
   *  Default values are used for omitted arguments.
 | 
						|
   *
 | 
						|
   */
 | 
						|
  inline void gcode_M600() {
 | 
						|
 | 
						|
    if (degHotend(active_extruder) < extrude_min_temp) {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    float lastpos[NUM_AXIS], fr60 = feedrate / 60;
 | 
						|
 | 
						|
    for (int i=0; i<NUM_AXIS; i++)
 | 
						|
      lastpos[i] = destination[i] = current_position[i];
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
      #define RUNPLAN calculate_delta(destination); \
 | 
						|
                      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
 | 
						|
    #else
 | 
						|
      #define RUNPLAN line_to_destination();
 | 
						|
    #endif
 | 
						|
 | 
						|
    //retract by E
 | 
						|
    if (code_seen('E')) destination[E_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FIRSTRETRACT
 | 
						|
      else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //lift Z
 | 
						|
    if (code_seen('Z')) destination[Z_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_ZADD
 | 
						|
      else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //move xy
 | 
						|
    if (code_seen('X')) destination[X_AXIS] = code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_XPOS
 | 
						|
      else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (code_seen('Y')) destination[Y_AXIS] = code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_YPOS
 | 
						|
      else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    if (code_seen('L')) destination[E_AXIS] += code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FINALRETRACT
 | 
						|
      else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    RUNPLAN;
 | 
						|
 | 
						|
    //finish moves
 | 
						|
    st_synchronize();
 | 
						|
    //disable extruder steppers so filament can be removed
 | 
						|
    disable_e0();
 | 
						|
    disable_e1();
 | 
						|
    disable_e2();
 | 
						|
    disable_e3();
 | 
						|
    delay(100);
 | 
						|
    LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
 | 
						|
    millis_t next_tick = 0;
 | 
						|
    while (!lcd_clicked()) {
 | 
						|
      #ifndef AUTO_FILAMENT_CHANGE
 | 
						|
        millis_t ms = millis();
 | 
						|
        if (ms >= next_tick) {
 | 
						|
          lcd_quick_feedback();
 | 
						|
          next_tick = ms + 2500; // feedback every 2.5s while waiting
 | 
						|
        }
 | 
						|
        manage_heater();
 | 
						|
        manage_inactivity(true);
 | 
						|
        lcd_update();
 | 
						|
      #else
 | 
						|
        current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
 | 
						|
        destination[E_AXIS] = current_position[E_AXIS];
 | 
						|
        line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
 | 
						|
        st_synchronize();
 | 
						|
      #endif
 | 
						|
    } // while(!lcd_clicked)
 | 
						|
    lcd_quick_feedback(); // click sound feedback
 | 
						|
 | 
						|
    #ifdef AUTO_FILAMENT_CHANGE
 | 
						|
      current_position[E_AXIS] = 0;
 | 
						|
      st_synchronize();
 | 
						|
    #endif
 | 
						|
          
 | 
						|
    //return to normal
 | 
						|
    if (code_seen('L')) destination[E_AXIS] -= code_value();
 | 
						|
    #ifdef FILAMENTCHANGE_FINALRETRACT
 | 
						|
      else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
 | 
						|
    #endif
 | 
						|
 | 
						|
    current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
 | 
						|
    plan_set_e_position(current_position[E_AXIS]);
 | 
						|
 | 
						|
    RUNPLAN; //should do nothing
 | 
						|
 | 
						|
    lcd_reset_alert_level();
 | 
						|
 | 
						|
    #ifdef DELTA
 | 
						|
      // Move XYZ to starting position, then E
 | 
						|
      calculate_delta(lastpos);
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
 | 
						|
    #else
 | 
						|
      // Move XY to starting position, then Z, then E
 | 
						|
      destination[X_AXIS] = lastpos[X_AXIS];
 | 
						|
      destination[Y_AXIS] = lastpos[Y_AXIS];
 | 
						|
      line_to_destination();
 | 
						|
      destination[Z_AXIS] = lastpos[Z_AXIS];
 | 
						|
      line_to_destination();
 | 
						|
      destination[E_AXIS] = lastpos[E_AXIS];
 | 
						|
      line_to_destination();
 | 
						|
    #endif        
 | 
						|
 | 
						|
    #ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
      filrunoutEnqueued = false;
 | 
						|
    #endif
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
 | 
						|
  /**
 | 
						|
   * M605: Set dual x-carriage movement mode
 | 
						|
   *
 | 
						|
   *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
 | 
						|
   *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
 | 
						|
   *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
 | 
						|
   *                         millimeters x-offset and an optional differential hotend temperature of
 | 
						|
   *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
 | 
						|
   *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
 | 
						|
   *
 | 
						|
   *    Note: the X axis should be homed after changing dual x-carriage mode.
 | 
						|
   */
 | 
						|
  inline void gcode_M605() {
 | 
						|
    st_synchronize();
 | 
						|
    if (code_seen('S')) dual_x_carriage_mode = code_value();
 | 
						|
    switch(dual_x_carriage_mode) {
 | 
						|
      case DXC_DUPLICATION_MODE:
 | 
						|
        if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
 | 
						|
        if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | 
						|
        SERIAL_CHAR(' ');
 | 
						|
        SERIAL_ECHO(extruder_offset[X_AXIS][0]);
 | 
						|
        SERIAL_CHAR(',');
 | 
						|
        SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
 | 
						|
        SERIAL_CHAR(' ');
 | 
						|
        SERIAL_ECHO(duplicate_extruder_x_offset);
 | 
						|
        SERIAL_CHAR(',');
 | 
						|
        SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
 | 
						|
        break;
 | 
						|
      case DXC_FULL_CONTROL_MODE:
 | 
						|
      case DXC_AUTO_PARK_MODE:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    active_extruder_parked = false;
 | 
						|
    extruder_duplication_enabled = false;
 | 
						|
    delayed_move_time = 0;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // DUAL_X_CARRIAGE
 | 
						|
 | 
						|
/**
 | 
						|
 * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 | 
						|
 */
 | 
						|
inline void gcode_M907() {
 | 
						|
  #if HAS_DIGIPOTSS
 | 
						|
    for (int i=0;i<NUM_AXIS;i++)
 | 
						|
      if (code_seen(axis_codes[i])) digipot_current(i, code_value());
 | 
						|
    if (code_seen('B')) digipot_current(4, code_value());
 | 
						|
    if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | 
						|
    if (code_seen('X')) digipot_current(0, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_Z_PIN
 | 
						|
    if (code_seen('Z')) digipot_current(1, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef MOTOR_CURRENT_PWM_E_PIN
 | 
						|
    if (code_seen('E')) digipot_current(2, code_value());
 | 
						|
  #endif
 | 
						|
  #ifdef DIGIPOT_I2C
 | 
						|
    // this one uses actual amps in floating point
 | 
						|
    for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
 | 
						|
    // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
 | 
						|
    for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#if HAS_DIGIPOTSS
 | 
						|
 | 
						|
  /**
 | 
						|
   * M908: Control digital trimpot directly (M908 P<pin> S<current>)
 | 
						|
   */
 | 
						|
  inline void gcode_M908() {
 | 
						|
      digitalPotWrite(
 | 
						|
        code_seen('P') ? code_value() : 0,
 | 
						|
        code_seen('S') ? code_value() : 0
 | 
						|
      );
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_DIGIPOTSS
 | 
						|
 | 
						|
#if HAS_MICROSTEPS
 | 
						|
 | 
						|
  // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | 
						|
  inline void gcode_M350() {
 | 
						|
    if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
 | 
						|
    for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
 | 
						|
    if(code_seen('B')) microstep_mode(4,code_value());
 | 
						|
    microstep_readings();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
 | 
						|
   *       S# determines MS1 or MS2, X# sets the pin high/low.
 | 
						|
   */
 | 
						|
  inline void gcode_M351() {
 | 
						|
    if (code_seen('S')) switch(code_value_short()) {
 | 
						|
      case 1:
 | 
						|
        for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
 | 
						|
        if (code_seen('B')) microstep_ms(4, code_value(), -1);
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
 | 
						|
        if (code_seen('B')) microstep_ms(4, -1, code_value());
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    microstep_readings();
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_MICROSTEPS
 | 
						|
 | 
						|
/**
 | 
						|
 * M999: Restart after being stopped
 | 
						|
 */
 | 
						|
inline void gcode_M999() {
 | 
						|
  Running = true;
 | 
						|
  lcd_reset_alert_level();
 | 
						|
  gcode_LastN = Stopped_gcode_LastN;
 | 
						|
  FlushSerialRequestResend();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * T0-T3: Switch tool, usually switching extruders
 | 
						|
 *
 | 
						|
 *   F[mm/min] Set the movement feedrate
 | 
						|
 */
 | 
						|
inline void gcode_T(uint8_t tmp_extruder) {
 | 
						|
  if (tmp_extruder >= EXTRUDERS) {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_CHAR('T');
 | 
						|
    SERIAL_ECHO(tmp_extruder);
 | 
						|
    SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    target_extruder = tmp_extruder;
 | 
						|
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      bool make_move = false;
 | 
						|
    #endif
 | 
						|
 | 
						|
    if (code_seen('F')) {
 | 
						|
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        make_move = true;
 | 
						|
      #endif
 | 
						|
 | 
						|
      float next_feedrate = code_value();
 | 
						|
      if (next_feedrate > 0.0) feedrate = next_feedrate;
 | 
						|
    }
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
      if (tmp_extruder != active_extruder) {
 | 
						|
        // Save current position to return to after applying extruder offset
 | 
						|
        set_destination_to_current();
 | 
						|
        #ifdef DUAL_X_CARRIAGE
 | 
						|
          if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
 | 
						|
                (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
 | 
						|
            // Park old head: 1) raise 2) move to park position 3) lower
 | 
						|
            plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | 
						|
                  current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
            plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | 
						|
                  current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
 | 
						|
            plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
 | 
						|
                  current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
            st_synchronize();
 | 
						|
          }
 | 
						|
 | 
						|
          // apply Y & Z extruder offset (x offset is already used in determining home pos)
 | 
						|
          current_position[Y_AXIS] = current_position[Y_AXIS] -
 | 
						|
                       extruder_offset[Y_AXIS][active_extruder] +
 | 
						|
                       extruder_offset[Y_AXIS][tmp_extruder];
 | 
						|
          current_position[Z_AXIS] = current_position[Z_AXIS] -
 | 
						|
                       extruder_offset[Z_AXIS][active_extruder] +
 | 
						|
                       extruder_offset[Z_AXIS][tmp_extruder];
 | 
						|
 | 
						|
          active_extruder = tmp_extruder;
 | 
						|
 | 
						|
          // This function resets the max/min values - the current position may be overwritten below.
 | 
						|
          axis_is_at_home(X_AXIS);
 | 
						|
 | 
						|
          if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
 | 
						|
            current_position[X_AXIS] = inactive_extruder_x_pos;
 | 
						|
            inactive_extruder_x_pos = destination[X_AXIS];
 | 
						|
          }
 | 
						|
          else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
 | 
						|
            active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
 | 
						|
            if (active_extruder == 0 || active_extruder_parked)
 | 
						|
              current_position[X_AXIS] = inactive_extruder_x_pos;
 | 
						|
            else
 | 
						|
              current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
 | 
						|
            inactive_extruder_x_pos = destination[X_AXIS];
 | 
						|
            extruder_duplication_enabled = false;
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            // record raised toolhead position for use by unpark
 | 
						|
            memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | 
						|
            raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
 | 
						|
            active_extruder_parked = true;
 | 
						|
            delayed_move_time = 0;
 | 
						|
          }
 | 
						|
        #else // !DUAL_X_CARRIAGE
 | 
						|
          // Offset extruder (only by XY)
 | 
						|
          for (int i=X_AXIS; i<=Y_AXIS; i++)
 | 
						|
            current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
 | 
						|
          // Set the new active extruder and position
 | 
						|
          active_extruder = tmp_extruder;
 | 
						|
        #endif // !DUAL_X_CARRIAGE
 | 
						|
        #ifdef DELTA
 | 
						|
          sync_plan_position_delta();
 | 
						|
        #else
 | 
						|
          sync_plan_position();
 | 
						|
        #endif
 | 
						|
        // Move to the old position if 'F' was in the parameters
 | 
						|
        if (make_move && IsRunning()) prepare_move();
 | 
						|
      }
 | 
						|
 | 
						|
      #ifdef EXT_SOLENOID
 | 
						|
        st_synchronize();
 | 
						|
        disable_all_solenoids();
 | 
						|
        enable_solenoid_on_active_extruder();
 | 
						|
      #endif // EXT_SOLENOID
 | 
						|
 | 
						|
    #endif // EXTRUDERS > 1
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
 | 
						|
    SERIAL_PROTOCOLLN((int)active_extruder);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Process a single command and dispatch it to its handler
 | 
						|
 * This is called from the main loop()
 | 
						|
 */
 | 
						|
void process_next_command() {
 | 
						|
  current_command = command_queue[cmd_queue_index_r];
 | 
						|
 | 
						|
  if ((marlin_debug_flags & DEBUG_ECHO)) {
 | 
						|
    SERIAL_ECHO_START;
 | 
						|
    SERIAL_ECHOLN(current_command);
 | 
						|
  }
 | 
						|
 | 
						|
  // Sanitize the current command:
 | 
						|
  //  - Skip leading spaces
 | 
						|
  //  - Bypass N[0-9][0-9]*[ ]*
 | 
						|
  //  - Overwrite * with nul to mark the end
 | 
						|
  while (*current_command == ' ') ++current_command;
 | 
						|
  if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
 | 
						|
    current_command += 2; // skip N[-0-9]
 | 
						|
    while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
 | 
						|
    while (*current_command == ' ') ++current_command; // skip [ ]*
 | 
						|
  }
 | 
						|
  char *starpos = strchr(current_command, '*');  // * should always be the last parameter
 | 
						|
  if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
 | 
						|
 | 
						|
  // Get the command code, which must be G, M, or T
 | 
						|
  char command_code = *current_command;
 | 
						|
 | 
						|
  // The code must have a numeric value
 | 
						|
  bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
 | 
						|
 | 
						|
  int codenum; // define ahead of goto
 | 
						|
 | 
						|
  // Bail early if there's no code
 | 
						|
  if (!code_is_good) goto ExitUnknownCommand;
 | 
						|
 | 
						|
  // Args pointer optimizes code_seen, especially those taking XYZEF
 | 
						|
  // This wastes a little cpu on commands that expect no arguments.
 | 
						|
  current_command_args = current_command;
 | 
						|
  while (*current_command_args && *current_command_args != ' ') ++current_command_args;
 | 
						|
  while (*current_command_args == ' ') ++current_command_args;
 | 
						|
 | 
						|
  // Interpret the code int
 | 
						|
  seen_pointer = current_command;
 | 
						|
  codenum = code_value_short();
 | 
						|
 | 
						|
  // Handle a known G, M, or T
 | 
						|
  switch(command_code) {
 | 
						|
    case 'G': switch (codenum) {
 | 
						|
 | 
						|
      // G0, G1
 | 
						|
      case 0:
 | 
						|
      case 1:
 | 
						|
        gcode_G0_G1();
 | 
						|
        break;
 | 
						|
 | 
						|
      // G2, G3
 | 
						|
      #ifndef SCARA
 | 
						|
        case 2: // G2  - CW ARC
 | 
						|
        case 3: // G3  - CCW ARC
 | 
						|
          gcode_G2_G3(codenum == 2);
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      // G4 Dwell
 | 
						|
      case 4:
 | 
						|
        gcode_G4();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef FWRETRACT
 | 
						|
 | 
						|
        case 10: // G10: retract
 | 
						|
        case 11: // G11: retract_recover
 | 
						|
          gcode_G10_G11(codenum == 10);
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif //FWRETRACT
 | 
						|
 | 
						|
      case 28: // G28: Home all axes, one at a time
 | 
						|
        gcode_G28();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
 | 
						|
        case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
 | 
						|
          gcode_G29();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
        #ifndef Z_PROBE_SLED
 | 
						|
 | 
						|
          case 30: // G30 Single Z Probe
 | 
						|
            gcode_G30();
 | 
						|
            break;
 | 
						|
 | 
						|
        #else // Z_PROBE_SLED
 | 
						|
 | 
						|
            case 31: // G31: dock the sled
 | 
						|
            case 32: // G32: undock the sled
 | 
						|
              dock_sled(codenum == 31);
 | 
						|
              break;
 | 
						|
 | 
						|
        #endif // Z_PROBE_SLED
 | 
						|
 | 
						|
      #endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
      case 90: // G90
 | 
						|
        relative_mode = false;
 | 
						|
        break;
 | 
						|
      case 91: // G91
 | 
						|
        relative_mode = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case 92: // G92
 | 
						|
        gcode_G92();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
    case 'M': switch (codenum) {
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        case 0: // M0 - Unconditional stop - Wait for user button press on LCD
 | 
						|
        case 1: // M1 - Conditional stop - Wait for user button press on LCD
 | 
						|
          gcode_M0_M1();
 | 
						|
          break;
 | 
						|
      #endif // ULTIPANEL
 | 
						|
 | 
						|
      case 17:
 | 
						|
        gcode_M17();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef SDSUPPORT
 | 
						|
 | 
						|
        case 20: // M20 - list SD card
 | 
						|
          gcode_M20(); break;
 | 
						|
        case 21: // M21 - init SD card
 | 
						|
          gcode_M21(); break;
 | 
						|
        case 22: //M22 - release SD card
 | 
						|
          gcode_M22(); break;
 | 
						|
        case 23: //M23 - Select file
 | 
						|
          gcode_M23(); break;
 | 
						|
        case 24: //M24 - Start SD print
 | 
						|
          gcode_M24(); break;
 | 
						|
        case 25: //M25 - Pause SD print
 | 
						|
          gcode_M25(); break;
 | 
						|
        case 26: //M26 - Set SD index
 | 
						|
          gcode_M26(); break;
 | 
						|
        case 27: //M27 - Get SD status
 | 
						|
          gcode_M27(); break;
 | 
						|
        case 28: //M28 - Start SD write
 | 
						|
          gcode_M28(); break;
 | 
						|
        case 29: //M29 - Stop SD write
 | 
						|
          gcode_M29(); break;
 | 
						|
        case 30: //M30 <filename> Delete File
 | 
						|
          gcode_M30(); break;
 | 
						|
        case 32: //M32 - Select file and start SD print
 | 
						|
          gcode_M32(); break;
 | 
						|
 | 
						|
        #ifdef LONG_FILENAME_HOST_SUPPORT
 | 
						|
          case 33: //M33 - Get the long full path to a file or folder
 | 
						|
            gcode_M33(); break;
 | 
						|
        #endif // LONG_FILENAME_HOST_SUPPORT
 | 
						|
 | 
						|
        case 928: //M928 - Start SD write
 | 
						|
          gcode_M928(); break;
 | 
						|
 | 
						|
      #endif //SDSUPPORT
 | 
						|
 | 
						|
      case 31: //M31 take time since the start of the SD print or an M109 command
 | 
						|
        gcode_M31();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 42: //M42 -Change pin status via gcode
 | 
						|
        gcode_M42();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
 | 
						|
        case 48: // M48 Z-Probe repeatability
 | 
						|
          gcode_M48();
 | 
						|
          break;
 | 
						|
      #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
 | 
						|
 | 
						|
      case 104: // M104
 | 
						|
        gcode_M104();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 111: // M111: Set debug level
 | 
						|
        gcode_M111();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 112: // M112: Emergency Stop
 | 
						|
        gcode_M112();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 140: // M140: Set bed temp
 | 
						|
        gcode_M140();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 105: // M105: Read current temperature
 | 
						|
        gcode_M105();
 | 
						|
        return; // "ok" already printed
 | 
						|
 | 
						|
      case 109: // M109: Wait for temperature
 | 
						|
        gcode_M109();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if HAS_TEMP_BED
 | 
						|
        case 190: // M190: Wait for bed heater to reach target
 | 
						|
          gcode_M190();
 | 
						|
          break;
 | 
						|
      #endif // HAS_TEMP_BED
 | 
						|
 | 
						|
      #if HAS_FAN
 | 
						|
        case 106: // M106: Fan On
 | 
						|
          gcode_M106();
 | 
						|
          break;
 | 
						|
        case 107: // M107: Fan Off
 | 
						|
          gcode_M107();
 | 
						|
          break;
 | 
						|
      #endif // HAS_FAN
 | 
						|
 | 
						|
      #ifdef BARICUDA
 | 
						|
        // PWM for HEATER_1_PIN
 | 
						|
        #if HAS_HEATER_1
 | 
						|
          case 126: // M126: valve open
 | 
						|
            gcode_M126();
 | 
						|
            break;
 | 
						|
          case 127: // M127: valve closed
 | 
						|
            gcode_M127();
 | 
						|
            break;
 | 
						|
        #endif // HAS_HEATER_1
 | 
						|
 | 
						|
        // PWM for HEATER_2_PIN
 | 
						|
        #if HAS_HEATER_2
 | 
						|
          case 128: // M128: valve open
 | 
						|
            gcode_M128();
 | 
						|
            break;
 | 
						|
          case 129: // M129: valve closed
 | 
						|
            gcode_M129();
 | 
						|
            break;
 | 
						|
        #endif // HAS_HEATER_2
 | 
						|
      #endif // BARICUDA
 | 
						|
 | 
						|
      #if HAS_POWER_SWITCH
 | 
						|
 | 
						|
        case 80: // M80: Turn on Power Supply
 | 
						|
          gcode_M80();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif // HAS_POWER_SWITCH
 | 
						|
 | 
						|
      case 81: // M81: Turn off Power, including Power Supply, if possible
 | 
						|
        gcode_M81();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 82:
 | 
						|
        gcode_M82();
 | 
						|
        break;
 | 
						|
      case 83:
 | 
						|
        gcode_M83();
 | 
						|
        break;
 | 
						|
      case 18: // (for compatibility)
 | 
						|
      case 84: // M84
 | 
						|
        gcode_M18_M84();
 | 
						|
        break;
 | 
						|
      case 85: // M85
 | 
						|
        gcode_M85();
 | 
						|
        break;
 | 
						|
      case 92: // M92: Set the steps-per-unit for one or more axes
 | 
						|
        gcode_M92();
 | 
						|
        break;
 | 
						|
      case 115: // M115: Report capabilities
 | 
						|
        gcode_M115();
 | 
						|
        break;
 | 
						|
      case 117: // M117: Set LCD message text, if possible
 | 
						|
        gcode_M117();
 | 
						|
        break;
 | 
						|
      case 114: // M114: Report current position
 | 
						|
        gcode_M114();
 | 
						|
        break;
 | 
						|
      case 120: // M120: Enable endstops
 | 
						|
        gcode_M120();
 | 
						|
        break;
 | 
						|
      case 121: // M121: Disable endstops
 | 
						|
        gcode_M121();
 | 
						|
        break;
 | 
						|
      case 119: // M119: Report endstop states
 | 
						|
        gcode_M119();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
 | 
						|
        case 145: // M145: Set material heatup parameters
 | 
						|
          gcode_M145();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef BLINKM
 | 
						|
 | 
						|
        case 150: // M150
 | 
						|
          gcode_M150();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif //BLINKM
 | 
						|
 | 
						|
      case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | 
						|
        gcode_M200();
 | 
						|
        break;
 | 
						|
      case 201: // M201
 | 
						|
        gcode_M201();
 | 
						|
        break;
 | 
						|
      #if 0 // Not used for Sprinter/grbl gen6
 | 
						|
      case 202: // M202
 | 
						|
        gcode_M202();
 | 
						|
        break;
 | 
						|
      #endif
 | 
						|
      case 203: // M203 max feedrate mm/sec
 | 
						|
        gcode_M203();
 | 
						|
        break;
 | 
						|
      case 204: // M204 acclereration S normal moves T filmanent only moves
 | 
						|
        gcode_M204();
 | 
						|
        break;
 | 
						|
      case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
 | 
						|
        gcode_M205();
 | 
						|
        break;
 | 
						|
      case 206: // M206 additional homing offset
 | 
						|
        gcode_M206();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef DELTA
 | 
						|
        case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
 | 
						|
          gcode_M665();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
 | 
						|
        case 666: // M666 set delta / dual endstop adjustment
 | 
						|
          gcode_M666();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef FWRETRACT
 | 
						|
        case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
 | 
						|
          gcode_M207();
 | 
						|
          break;
 | 
						|
        case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
 | 
						|
          gcode_M208();
 | 
						|
          break;
 | 
						|
        case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | 
						|
          gcode_M209();
 | 
						|
          break;
 | 
						|
      #endif // FWRETRACT
 | 
						|
 | 
						|
      #if EXTRUDERS > 1
 | 
						|
        case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | 
						|
          gcode_M218();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      case 220: // M220 S<factor in percent>- set speed factor override percentage
 | 
						|
        gcode_M220();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 221: // M221 S<factor in percent>- set extrude factor override percentage
 | 
						|
        gcode_M221();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | 
						|
        gcode_M226();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if NUM_SERVOS > 0
 | 
						|
        case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
 | 
						|
          gcode_M280();
 | 
						|
          break;
 | 
						|
      #endif // NUM_SERVOS > 0
 | 
						|
 | 
						|
      #if HAS_BUZZER
 | 
						|
        case 300: // M300 - Play beep tone
 | 
						|
          gcode_M300();
 | 
						|
          break;
 | 
						|
      #endif // HAS_BUZZER
 | 
						|
 | 
						|
      #ifdef PIDTEMP
 | 
						|
        case 301: // M301
 | 
						|
          gcode_M301();
 | 
						|
          break;
 | 
						|
      #endif // PIDTEMP
 | 
						|
 | 
						|
      #ifdef PIDTEMPBED
 | 
						|
        case 304: // M304
 | 
						|
          gcode_M304();
 | 
						|
          break;
 | 
						|
      #endif // PIDTEMPBED
 | 
						|
 | 
						|
      #if defined(CHDK) || HAS_PHOTOGRAPH
 | 
						|
        case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
 | 
						|
          gcode_M240();
 | 
						|
          break;
 | 
						|
      #endif // CHDK || PHOTOGRAPH_PIN
 | 
						|
 | 
						|
      #ifdef HAS_LCD_CONTRAST
 | 
						|
        case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
 | 
						|
          gcode_M250();
 | 
						|
          break;
 | 
						|
      #endif // HAS_LCD_CONTRAST
 | 
						|
 | 
						|
      #ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
        case 302: // allow cold extrudes, or set the minimum extrude temperature
 | 
						|
          gcode_M302();
 | 
						|
          break;
 | 
						|
      #endif // PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
      case 303: // M303 PID autotune
 | 
						|
        gcode_M303();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef SCARA
 | 
						|
        case 360:  // M360 SCARA Theta pos1
 | 
						|
          if (gcode_M360()) return;
 | 
						|
          break;
 | 
						|
        case 361:  // M361 SCARA Theta pos2
 | 
						|
          if (gcode_M361()) return;
 | 
						|
          break;
 | 
						|
        case 362:  // M362 SCARA Psi pos1
 | 
						|
          if (gcode_M362()) return;
 | 
						|
          break;
 | 
						|
        case 363:  // M363 SCARA Psi pos2
 | 
						|
          if (gcode_M363()) return;
 | 
						|
          break;
 | 
						|
        case 364:  // M364 SCARA Psi pos3 (90 deg to Theta)
 | 
						|
          if (gcode_M364()) return;
 | 
						|
          break;
 | 
						|
        case 365: // M365 Set SCARA scaling for X Y Z
 | 
						|
          gcode_M365();
 | 
						|
          break;
 | 
						|
      #endif // SCARA
 | 
						|
 | 
						|
      case 400: // M400 finish all moves
 | 
						|
        gcode_M400();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
 | 
						|
        case 401:
 | 
						|
          gcode_M401();
 | 
						|
          break;
 | 
						|
        case 402:
 | 
						|
          gcode_M402();
 | 
						|
          break;
 | 
						|
      #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
 | 
						|
 | 
						|
      #ifdef FILAMENT_SENSOR
 | 
						|
        case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
 | 
						|
          gcode_M404();
 | 
						|
          break;
 | 
						|
        case 405:  //M405 Turn on filament sensor for control
 | 
						|
          gcode_M405();
 | 
						|
          break;
 | 
						|
        case 406:  //M406 Turn off filament sensor for control
 | 
						|
          gcode_M406();
 | 
						|
          break;
 | 
						|
        case 407:   //M407 Display measured filament diameter
 | 
						|
          gcode_M407();
 | 
						|
          break;
 | 
						|
      #endif // FILAMENT_SENSOR
 | 
						|
 | 
						|
      case 410: // M410 quickstop - Abort all the planned moves.
 | 
						|
        gcode_M410();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef MESH_BED_LEVELING
 | 
						|
        case 420: // M420 Enable/Disable Mesh Bed Leveling
 | 
						|
          gcode_M420();
 | 
						|
          break;
 | 
						|
        case 421: // M421 Set a Mesh Bed Leveling Z coordinate
 | 
						|
          gcode_M421();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      case 428: // M428 Apply current_position to home_offset
 | 
						|
        gcode_M428();
 | 
						|
        break;
 | 
						|
 | 
						|
      case 500: // M500 Store settings in EEPROM
 | 
						|
        gcode_M500();
 | 
						|
        break;
 | 
						|
      case 501: // M501 Read settings from EEPROM
 | 
						|
        gcode_M501();
 | 
						|
        break;
 | 
						|
      case 502: // M502 Revert to default settings
 | 
						|
        gcode_M502();
 | 
						|
        break;
 | 
						|
      case 503: // M503 print settings currently in memory
 | 
						|
        gcode_M503();
 | 
						|
        break;
 | 
						|
 | 
						|
      #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | 
						|
        case 540:
 | 
						|
          gcode_M540();
 | 
						|
          break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
        case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
 | 
						|
          gcode_SET_Z_PROBE_OFFSET();
 | 
						|
          break;
 | 
						|
      #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | 
						|
 | 
						|
      #ifdef FILAMENTCHANGEENABLE
 | 
						|
        case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | 
						|
          gcode_M600();
 | 
						|
          break;
 | 
						|
      #endif // FILAMENTCHANGEENABLE
 | 
						|
 | 
						|
      #ifdef DUAL_X_CARRIAGE
 | 
						|
        case 605:
 | 
						|
          gcode_M605();
 | 
						|
          break;
 | 
						|
      #endif // DUAL_X_CARRIAGE
 | 
						|
 | 
						|
      case 907: // M907 Set digital trimpot motor current using axis codes.
 | 
						|
        gcode_M907();
 | 
						|
        break;
 | 
						|
 | 
						|
      #if HAS_DIGIPOTSS
 | 
						|
        case 908: // M908 Control digital trimpot directly.
 | 
						|
          gcode_M908();
 | 
						|
          break;
 | 
						|
      #endif // HAS_DIGIPOTSS
 | 
						|
 | 
						|
      #if HAS_MICROSTEPS
 | 
						|
 | 
						|
        case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | 
						|
          gcode_M350();
 | 
						|
          break;
 | 
						|
 | 
						|
        case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
 | 
						|
          gcode_M351();
 | 
						|
          break;
 | 
						|
 | 
						|
      #endif // HAS_MICROSTEPS
 | 
						|
 | 
						|
      case 999: // M999: Restart after being Stopped
 | 
						|
        gcode_M999();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
    case 'T':
 | 
						|
      gcode_T(codenum);
 | 
						|
    break;
 | 
						|
 | 
						|
    default: code_is_good = false;
 | 
						|
  }
 | 
						|
 | 
						|
ExitUnknownCommand:
 | 
						|
 | 
						|
  // Still unknown command? Throw an error
 | 
						|
  if (!code_is_good) unknown_command_error();
 | 
						|
 | 
						|
  ok_to_send();
 | 
						|
}
 | 
						|
 | 
						|
void FlushSerialRequestResend() {
 | 
						|
  //char command_queue[cmd_queue_index_r][100]="Resend:";
 | 
						|
  MYSERIAL.flush();
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_RESEND);
 | 
						|
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
 | 
						|
  ok_to_send();
 | 
						|
}
 | 
						|
 | 
						|
void ok_to_send() {
 | 
						|
  refresh_cmd_timeout();
 | 
						|
  #ifdef SDSUPPORT
 | 
						|
    if (fromsd[cmd_queue_index_r]) return;
 | 
						|
  #endif
 | 
						|
  SERIAL_PROTOCOLPGM(MSG_OK);
 | 
						|
  #ifdef ADVANCED_OK
 | 
						|
    SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
 | 
						|
    SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
 | 
						|
    SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
 | 
						|
  #endif
 | 
						|
  SERIAL_EOL;  
 | 
						|
}
 | 
						|
 | 
						|
void clamp_to_software_endstops(float target[3]) {
 | 
						|
  if (min_software_endstops) {
 | 
						|
    NOLESS(target[X_AXIS], min_pos[X_AXIS]);
 | 
						|
    NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
 | 
						|
    
 | 
						|
    float negative_z_offset = 0;
 | 
						|
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
      if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
 | 
						|
      if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
 | 
						|
    #endif
 | 
						|
    NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
 | 
						|
  }
 | 
						|
 | 
						|
  if (max_software_endstops) {
 | 
						|
    NOMORE(target[X_AXIS], max_pos[X_AXIS]);
 | 
						|
    NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
 | 
						|
    NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DELTA
 | 
						|
 | 
						|
  void recalc_delta_settings(float radius, float diagonal_rod) {
 | 
						|
    delta_tower1_x = -SIN_60 * radius;  // front left tower
 | 
						|
    delta_tower1_y = -COS_60 * radius;
 | 
						|
    delta_tower2_x =  SIN_60 * radius;  // front right tower
 | 
						|
    delta_tower2_y = -COS_60 * radius;
 | 
						|
    delta_tower3_x = 0.0;               // back middle tower
 | 
						|
    delta_tower3_y = radius;
 | 
						|
    delta_diagonal_rod_2 = sq(diagonal_rod);
 | 
						|
  }
 | 
						|
 | 
						|
  void calculate_delta(float cartesian[3]) {
 | 
						|
    delta[X_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                         - sq(delta_tower1_x-cartesian[X_AXIS])
 | 
						|
                         - sq(delta_tower1_y-cartesian[Y_AXIS])
 | 
						|
                         ) + cartesian[Z_AXIS];
 | 
						|
    delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                         - sq(delta_tower2_x-cartesian[X_AXIS])
 | 
						|
                         - sq(delta_tower2_y-cartesian[Y_AXIS])
 | 
						|
                         ) + cartesian[Z_AXIS];
 | 
						|
    delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
 | 
						|
                         - sq(delta_tower3_x-cartesian[X_AXIS])
 | 
						|
                         - sq(delta_tower3_y-cartesian[Y_AXIS])
 | 
						|
                         ) + cartesian[Z_AXIS];
 | 
						|
    /*
 | 
						|
    SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
						|
 | 
						|
    SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
    */
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
    // Adjust print surface height by linear interpolation over the bed_level array.
 | 
						|
    void adjust_delta(float cartesian[3]) {
 | 
						|
      if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
 | 
						|
 | 
						|
      int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
 | 
						|
      float h1 = 0.001 - half, h2 = half - 0.001,
 | 
						|
            grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
 | 
						|
            grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
 | 
						|
      int floor_x = floor(grid_x), floor_y = floor(grid_y);
 | 
						|
      float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
 | 
						|
            z1 = bed_level[floor_x + half][floor_y + half],
 | 
						|
            z2 = bed_level[floor_x + half][floor_y + half + 1],
 | 
						|
            z3 = bed_level[floor_x + half + 1][floor_y + half],
 | 
						|
            z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
 | 
						|
            left = (1 - ratio_y) * z1 + ratio_y * z2,
 | 
						|
            right = (1 - ratio_y) * z3 + ratio_y * z4,
 | 
						|
            offset = (1 - ratio_x) * left + ratio_x * right;
 | 
						|
 | 
						|
      delta[X_AXIS] += offset;
 | 
						|
      delta[Y_AXIS] += offset;
 | 
						|
      delta[Z_AXIS] += offset;
 | 
						|
 | 
						|
      /*
 | 
						|
      SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
 | 
						|
      SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
 | 
						|
      SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
 | 
						|
      SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
 | 
						|
      SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
 | 
						|
      SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
 | 
						|
      SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
 | 
						|
      SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
 | 
						|
      SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
 | 
						|
      SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
 | 
						|
      SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
 | 
						|
      SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
 | 
						|
      SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
 | 
						|
      */
 | 
						|
    }
 | 
						|
  #endif // ENABLE_AUTO_BED_LEVELING
 | 
						|
 | 
						|
#endif // DELTA
 | 
						|
 | 
						|
#ifdef MESH_BED_LEVELING
 | 
						|
 | 
						|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
 | 
						|
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
 | 
						|
{
 | 
						|
  if (!mbl.active) {
 | 
						|
    plan_buffer_line(x, y, z, e, feed_rate, extruder);
 | 
						|
    set_current_to_destination();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  int pix = mbl.select_x_index(current_position[X_AXIS]);
 | 
						|
  int piy = mbl.select_y_index(current_position[Y_AXIS]);
 | 
						|
  int ix = mbl.select_x_index(x);
 | 
						|
  int iy = mbl.select_y_index(y);
 | 
						|
  pix = min(pix, MESH_NUM_X_POINTS - 2);
 | 
						|
  piy = min(piy, MESH_NUM_Y_POINTS - 2);
 | 
						|
  ix = min(ix, MESH_NUM_X_POINTS - 2);
 | 
						|
  iy = min(iy, MESH_NUM_Y_POINTS - 2);
 | 
						|
  if (pix == ix && piy == iy) {
 | 
						|
    // Start and end on same mesh square
 | 
						|
    plan_buffer_line(x, y, z, e, feed_rate, extruder);
 | 
						|
    set_current_to_destination();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  float nx, ny, ne, normalized_dist;
 | 
						|
  if (ix > pix && (x_splits) & BIT(ix)) {
 | 
						|
    nx = mbl.get_x(ix);
 | 
						|
    normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
 | 
						|
    ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
 | 
						|
    ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
 | 
						|
    x_splits ^= BIT(ix);
 | 
						|
  } else if (ix < pix && (x_splits) & BIT(pix)) {
 | 
						|
    nx = mbl.get_x(pix);
 | 
						|
    normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
 | 
						|
    ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
 | 
						|
    ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
 | 
						|
    x_splits ^= BIT(pix);
 | 
						|
  } else if (iy > piy && (y_splits) & BIT(iy)) {
 | 
						|
    ny = mbl.get_y(iy);
 | 
						|
    normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
 | 
						|
    nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
 | 
						|
    ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
 | 
						|
    y_splits ^= BIT(iy);
 | 
						|
  } else if (iy < piy && (y_splits) & BIT(piy)) {
 | 
						|
    ny = mbl.get_y(piy);
 | 
						|
    normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
 | 
						|
    nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
 | 
						|
    ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
 | 
						|
    y_splits ^= BIT(piy);
 | 
						|
  } else {
 | 
						|
    // Already split on a border
 | 
						|
    plan_buffer_line(x, y, z, e, feed_rate, extruder);
 | 
						|
    set_current_to_destination();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Do the split and look for more borders
 | 
						|
  destination[X_AXIS] = nx;
 | 
						|
  destination[Y_AXIS] = ny;
 | 
						|
  destination[E_AXIS] = ne;
 | 
						|
  mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
 | 
						|
  destination[X_AXIS] = x;
 | 
						|
  destination[Y_AXIS] = y;
 | 
						|
  destination[E_AXIS] = e;
 | 
						|
  mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
 | 
						|
}
 | 
						|
#endif  // MESH_BED_LEVELING
 | 
						|
 | 
						|
#ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
  inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
 | 
						|
    if (marlin_debug_flags & DEBUG_DRYRUN) return;
 | 
						|
    float de = dest_e - curr_e;
 | 
						|
    if (de) {
 | 
						|
      if (degHotend(active_extruder) < extrude_min_temp) {
 | 
						|
        curr_e = dest_e; // Behave as if the move really took place, but ignore E part
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | 
						|
      }
 | 
						|
      #ifdef PREVENT_LENGTHY_EXTRUDE
 | 
						|
        if (labs(de) > EXTRUDE_MAXLENGTH) {
 | 
						|
          curr_e = dest_e; // Behave as if the move really took place, but ignore E part
 | 
						|
          SERIAL_ECHO_START;
 | 
						|
          SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // PREVENT_DANGEROUS_EXTRUDE
 | 
						|
 | 
						|
#if defined(DELTA) || defined(SCARA)
 | 
						|
 | 
						|
  inline bool prepare_move_delta() {
 | 
						|
    float difference[NUM_AXIS];
 | 
						|
    for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
 | 
						|
 | 
						|
    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | 
						|
    if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
 | 
						|
    if (cartesian_mm < 0.000001) return false;
 | 
						|
    float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
 | 
						|
    int steps = max(1, int(delta_segments_per_second * seconds));
 | 
						|
 | 
						|
    // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | 
						|
    // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | 
						|
    // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | 
						|
 | 
						|
    for (int s = 1; s <= steps; s++) {
 | 
						|
 | 
						|
      float fraction = float(s) / float(steps);
 | 
						|
 | 
						|
      for (int8_t i = 0; i < NUM_AXIS; i++)
 | 
						|
        destination[i] = current_position[i] + difference[i] * fraction;
 | 
						|
 | 
						|
      calculate_delta(destination);
 | 
						|
 | 
						|
      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
						|
        adjust_delta(destination);
 | 
						|
      #endif
 | 
						|
 | 
						|
      //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
 | 
						|
      //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
 | 
						|
      //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
 | 
						|
      //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
 | 
						|
      //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
      //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
 | 
						|
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // DELTA || SCARA
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
  inline bool prepare_move_scara() { return prepare_move_delta(); }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DUAL_X_CARRIAGE
 | 
						|
 | 
						|
  inline bool prepare_move_dual_x_carriage() {
 | 
						|
    if (active_extruder_parked) {
 | 
						|
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
 | 
						|
        // move duplicate extruder into correct duplication position.
 | 
						|
        plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
						|
        plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
 | 
						|
          current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
 | 
						|
        sync_plan_position();
 | 
						|
        st_synchronize();
 | 
						|
        extruder_duplication_enabled = true;
 | 
						|
        active_extruder_parked = false;
 | 
						|
      }
 | 
						|
      else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
 | 
						|
        if (current_position[E_AXIS] == destination[E_AXIS]) {
 | 
						|
          // This is a travel move (with no extrusion)
 | 
						|
          // Skip it, but keep track of the current position
 | 
						|
          // (so it can be used as the start of the next non-travel move)
 | 
						|
          if (delayed_move_time != 0xFFFFFFFFUL) {
 | 
						|
            set_current_to_destination();
 | 
						|
            NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
 | 
						|
            delayed_move_time = millis();
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        delayed_move_time = 0;
 | 
						|
        // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
 | 
						|
        plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
 | 
						|
        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | 
						|
        active_extruder_parked = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // DUAL_X_CARRIAGE
 | 
						|
 | 
						|
#if !defined(DELTA) && !defined(SCARA)
 | 
						|
 | 
						|
  inline bool prepare_move_cartesian() {
 | 
						|
    // Do not use feedrate_multiplier for E or Z only moves
 | 
						|
    if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
 | 
						|
      line_to_destination();
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      #ifdef MESH_BED_LEVELING
 | 
						|
        mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
 | 
						|
        return false;
 | 
						|
      #else
 | 
						|
        line_to_destination(feedrate * feedrate_multiplier / 100.0);
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // !DELTA && !SCARA
 | 
						|
 | 
						|
/**
 | 
						|
 * Prepare a single move and get ready for the next one
 | 
						|
 *
 | 
						|
 * (This may call plan_buffer_line several times to put
 | 
						|
 *  smaller moves into the planner for DELTA or SCARA.)
 | 
						|
 */
 | 
						|
void prepare_move() {
 | 
						|
  clamp_to_software_endstops(destination);
 | 
						|
  refresh_cmd_timeout();
 | 
						|
 | 
						|
  #ifdef PREVENT_DANGEROUS_EXTRUDE
 | 
						|
    prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef SCARA
 | 
						|
    if (!prepare_move_scara()) return;
 | 
						|
  #elif defined(DELTA)
 | 
						|
    if (!prepare_move_delta()) return;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DUAL_X_CARRIAGE
 | 
						|
    if (!prepare_move_dual_x_carriage()) return;
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if !defined(DELTA) && !defined(SCARA)
 | 
						|
    if (!prepare_move_cartesian()) return;
 | 
						|
  #endif
 | 
						|
 | 
						|
  set_current_to_destination();
 | 
						|
}
 | 
						|
 | 
						|
#if HAS_CONTROLLERFAN
 | 
						|
 | 
						|
  void controllerFan() {
 | 
						|
    static millis_t lastMotor = 0;      // Last time a motor was turned on
 | 
						|
    static millis_t lastMotorCheck = 0; // Last time the state was checked
 | 
						|
    millis_t ms = millis();
 | 
						|
    if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
 | 
						|
      lastMotorCheck = ms;
 | 
						|
      if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
 | 
						|
        || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
 | 
						|
        #if EXTRUDERS > 1
 | 
						|
          || E1_ENABLE_READ == E_ENABLE_ON
 | 
						|
          #if HAS_X2_ENABLE
 | 
						|
            || X2_ENABLE_READ == X_ENABLE_ON
 | 
						|
          #endif
 | 
						|
          #if EXTRUDERS > 2
 | 
						|
            || E2_ENABLE_READ == E_ENABLE_ON
 | 
						|
            #if EXTRUDERS > 3
 | 
						|
              || E3_ENABLE_READ == E_ENABLE_ON
 | 
						|
            #endif
 | 
						|
          #endif
 | 
						|
        #endif
 | 
						|
      ) {
 | 
						|
        lastMotor = ms; //... set time to NOW so the fan will turn on
 | 
						|
      }
 | 
						|
      uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
 | 
						|
      // allows digital or PWM fan output to be used (see M42 handling)
 | 
						|
      digitalWrite(CONTROLLERFAN_PIN, speed);
 | 
						|
      analogWrite(CONTROLLERFAN_PIN, speed);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // HAS_CONTROLLERFAN
 | 
						|
 | 
						|
#ifdef SCARA
 | 
						|
 | 
						|
  void calculate_SCARA_forward_Transform(float f_scara[3]) {
 | 
						|
    // Perform forward kinematics, and place results in delta[3]
 | 
						|
    // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
						|
 | 
						|
    float x_sin, x_cos, y_sin, y_cos;
 | 
						|
 | 
						|
    //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
 | 
						|
    //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
 | 
						|
 | 
						|
    x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
						|
    x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
						|
    y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
						|
    y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
						|
 | 
						|
    //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | 
						|
    //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | 
						|
    //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | 
						|
    //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | 
						|
 | 
						|
    delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
 | 
						|
    delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
 | 
						|
 | 
						|
    //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
						|
  }  
 | 
						|
 | 
						|
  void calculate_delta(float cartesian[3]){
 | 
						|
    //reverse kinematics.
 | 
						|
    // Perform reversed kinematics, and place results in delta[3]
 | 
						|
    // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
						|
    
 | 
						|
    float SCARA_pos[2];
 | 
						|
    static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
 | 
						|
    
 | 
						|
    SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | 
						|
    SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | 
						|
    
 | 
						|
    #if (Linkage_1 == Linkage_2)
 | 
						|
      SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
 | 
						|
    #else
 | 
						|
      SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
 | 
						|
    #endif
 | 
						|
    
 | 
						|
    SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
 | 
						|
    
 | 
						|
    SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | 
						|
    SCARA_K2 = Linkage_2 * SCARA_S2;
 | 
						|
    
 | 
						|
    SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
 | 
						|
    SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
 | 
						|
    
 | 
						|
    delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | 
						|
    delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | 
						|
    delta[Z_AXIS] = cartesian[Z_AXIS];
 | 
						|
    
 | 
						|
    /*
 | 
						|
    SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
						|
    
 | 
						|
    SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | 
						|
    
 | 
						|
    SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
						|
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
						|
    
 | 
						|
    SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | 
						|
    SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | 
						|
    SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | 
						|
    SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | 
						|
    SERIAL_EOL;
 | 
						|
    */
 | 
						|
  }
 | 
						|
 | 
						|
#endif // SCARA
 | 
						|
 | 
						|
#ifdef TEMP_STAT_LEDS
 | 
						|
 | 
						|
  static bool red_led = false;
 | 
						|
  static millis_t next_status_led_update_ms = 0;
 | 
						|
 | 
						|
  void handle_status_leds(void) {
 | 
						|
    float max_temp = 0.0;
 | 
						|
    if (millis() > next_status_led_update_ms) {
 | 
						|
      next_status_led_update_ms += 500; // Update every 0.5s
 | 
						|
      for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
 | 
						|
         max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
 | 
						|
      #if HAS_TEMP_BED
 | 
						|
        max_temp = max(max(max_temp, degTargetBed()), degBed());
 | 
						|
      #endif
 | 
						|
      bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
 | 
						|
      if (new_led != red_led) {
 | 
						|
        red_led = new_led;
 | 
						|
        digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
 | 
						|
        digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
void enable_all_steppers() {
 | 
						|
  enable_x();
 | 
						|
  enable_y();
 | 
						|
  enable_z();
 | 
						|
  enable_e0();
 | 
						|
  enable_e1();
 | 
						|
  enable_e2();
 | 
						|
  enable_e3();
 | 
						|
}
 | 
						|
 | 
						|
void disable_all_steppers() {
 | 
						|
  disable_x();
 | 
						|
  disable_y();
 | 
						|
  disable_z();
 | 
						|
  disable_e0();
 | 
						|
  disable_e1();
 | 
						|
  disable_e2();
 | 
						|
  disable_e3();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Standard idle routine keeps the machine alive
 | 
						|
 */
 | 
						|
void idle() {
 | 
						|
  manage_heater();
 | 
						|
  manage_inactivity();
 | 
						|
  lcd_update();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Manage several activities:
 | 
						|
 *  - Check for Filament Runout
 | 
						|
 *  - Keep the command buffer full
 | 
						|
 *  - Check for maximum inactive time between commands
 | 
						|
 *  - Check for maximum inactive time between stepper commands
 | 
						|
 *  - Check if pin CHDK needs to go LOW
 | 
						|
 *  - Check for KILL button held down
 | 
						|
 *  - Check for HOME button held down
 | 
						|
 *  - Check if cooling fan needs to be switched on
 | 
						|
 *  - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
 | 
						|
 */
 | 
						|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
 | 
						|
  
 | 
						|
  #if HAS_FILRUNOUT
 | 
						|
    if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
 | 
						|
      filrunout();
 | 
						|
  #endif
 | 
						|
 | 
						|
  if (commands_in_queue < BUFSIZE - 1) get_command();
 | 
						|
 | 
						|
  millis_t ms = millis();
 | 
						|
 | 
						|
  if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
 | 
						|
 | 
						|
  if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
 | 
						|
      && !ignore_stepper_queue && !blocks_queued()) {
 | 
						|
    #if DISABLE_X == true
 | 
						|
      disable_x();
 | 
						|
    #endif
 | 
						|
    #if DISABLE_Y == true
 | 
						|
      disable_y();
 | 
						|
    #endif
 | 
						|
    #if DISABLE_Z == true
 | 
						|
      disable_z();
 | 
						|
    #endif
 | 
						|
    #if DISABLE_E == true
 | 
						|
      disable_e0();
 | 
						|
      disable_e1();
 | 
						|
      disable_e2();
 | 
						|
      disable_e3();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
 | 
						|
    if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
 | 
						|
      chdkActive = false;
 | 
						|
      WRITE(CHDK, LOW);
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if HAS_KILL
 | 
						|
    
 | 
						|
    // Check if the kill button was pressed and wait just in case it was an accidental
 | 
						|
    // key kill key press
 | 
						|
    // -------------------------------------------------------------------------------
 | 
						|
    static int killCount = 0;   // make the inactivity button a bit less responsive
 | 
						|
    const int KILL_DELAY = 750;
 | 
						|
    if (!READ(KILL_PIN))
 | 
						|
       killCount++;
 | 
						|
    else if (killCount > 0)
 | 
						|
       killCount--;
 | 
						|
 | 
						|
    // Exceeded threshold and we can confirm that it was not accidental
 | 
						|
    // KILL the machine
 | 
						|
    // ----------------------------------------------------------------
 | 
						|
    if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if HAS_HOME
 | 
						|
    // Check to see if we have to home, use poor man's debouncer
 | 
						|
    // ---------------------------------------------------------
 | 
						|
    static int homeDebounceCount = 0;   // poor man's debouncing count
 | 
						|
    const int HOME_DEBOUNCE_DELAY = 750;
 | 
						|
    if (!READ(HOME_PIN)) {
 | 
						|
      if (!homeDebounceCount) {
 | 
						|
        enqueuecommands_P(PSTR("G28"));
 | 
						|
        LCD_MESSAGEPGM(MSG_AUTO_HOME);
 | 
						|
      }
 | 
						|
      if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
 | 
						|
        homeDebounceCount++;
 | 
						|
      else
 | 
						|
        homeDebounceCount = 0;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
    
 | 
						|
  #if HAS_CONTROLLERFAN
 | 
						|
    controllerFan(); // Check if fan should be turned on to cool stepper drivers down
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef EXTRUDER_RUNOUT_PREVENT
 | 
						|
    if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
 | 
						|
    if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
 | 
						|
      bool oldstatus;
 | 
						|
      switch(active_extruder) {
 | 
						|
        case 0:
 | 
						|
          oldstatus = E0_ENABLE_READ;
 | 
						|
          enable_e0();
 | 
						|
          break;
 | 
						|
        #if EXTRUDERS > 1
 | 
						|
          case 1:
 | 
						|
            oldstatus = E1_ENABLE_READ;
 | 
						|
            enable_e1();
 | 
						|
            break;
 | 
						|
          #if EXTRUDERS > 2
 | 
						|
            case 2:
 | 
						|
              oldstatus = E2_ENABLE_READ;
 | 
						|
              enable_e2();
 | 
						|
              break;
 | 
						|
            #if EXTRUDERS > 3
 | 
						|
              case 3:
 | 
						|
                oldstatus = E3_ENABLE_READ;
 | 
						|
                enable_e3();
 | 
						|
                break;
 | 
						|
            #endif
 | 
						|
          #endif
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
      float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
 | 
						|
      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
 | 
						|
                      destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
 | 
						|
                      EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
 | 
						|
      current_position[E_AXIS] = oldepos;
 | 
						|
      destination[E_AXIS] = oldedes;
 | 
						|
      plan_set_e_position(oldepos);
 | 
						|
      previous_cmd_ms = ms; // refresh_cmd_timeout()
 | 
						|
      st_synchronize();
 | 
						|
      switch(active_extruder) {
 | 
						|
        case 0:
 | 
						|
          E0_ENABLE_WRITE(oldstatus);
 | 
						|
          break;
 | 
						|
        #if EXTRUDERS > 1
 | 
						|
          case 1:
 | 
						|
            E1_ENABLE_WRITE(oldstatus);
 | 
						|
            break;
 | 
						|
          #if EXTRUDERS > 2
 | 
						|
            case 2:
 | 
						|
              E2_ENABLE_WRITE(oldstatus);
 | 
						|
              break;
 | 
						|
            #if EXTRUDERS > 3
 | 
						|
              case 3:
 | 
						|
                E3_ENABLE_WRITE(oldstatus);
 | 
						|
                break;
 | 
						|
            #endif
 | 
						|
          #endif
 | 
						|
        #endif
 | 
						|
      }
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef DUAL_X_CARRIAGE
 | 
						|
    // handle delayed move timeout
 | 
						|
    if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
 | 
						|
      // travel moves have been received so enact them
 | 
						|
      delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
 | 
						|
      set_destination_to_current();
 | 
						|
      prepare_move();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #ifdef TEMP_STAT_LEDS
 | 
						|
    handle_status_leds();
 | 
						|
  #endif
 | 
						|
 | 
						|
  check_axes_activity();
 | 
						|
}
 | 
						|
 | 
						|
void kill(const char *lcd_msg) {
 | 
						|
  #ifdef ULTRA_LCD
 | 
						|
    lcd_setalertstatuspgm(lcd_msg);
 | 
						|
  #endif
 | 
						|
 | 
						|
  cli(); // Stop interrupts
 | 
						|
  disable_all_heaters();
 | 
						|
  disable_all_steppers();
 | 
						|
 | 
						|
  #if HAS_POWER_SWITCH
 | 
						|
    pinMode(PS_ON_PIN, INPUT);
 | 
						|
  #endif
 | 
						|
 | 
						|
  SERIAL_ERROR_START;
 | 
						|
  SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
 | 
						|
  
 | 
						|
  // FMC small patch to update the LCD before ending
 | 
						|
  sei();   // enable interrupts
 | 
						|
  for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
 | 
						|
  cli();   // disable interrupts
 | 
						|
  suicide();
 | 
						|
  while(1) { /* Intentionally left empty */ } // Wait for reset
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FILAMENT_RUNOUT_SENSOR
 | 
						|
 | 
						|
  void filrunout() {
 | 
						|
    if (!filrunoutEnqueued) {
 | 
						|
      filrunoutEnqueued = true;
 | 
						|
      enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
 | 
						|
      st_synchronize();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FILAMENT_RUNOUT_SENSOR
 | 
						|
 | 
						|
#ifdef FAST_PWM_FAN
 | 
						|
 | 
						|
  void setPwmFrequency(uint8_t pin, int val) {
 | 
						|
    val &= 0x07;
 | 
						|
    switch (digitalPinToTimer(pin)) {
 | 
						|
 | 
						|
      #if defined(TCCR0A)
 | 
						|
        case TIMER0A:
 | 
						|
        case TIMER0B:
 | 
						|
             // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | 
						|
             // TCCR0B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR1A)
 | 
						|
        case TIMER1A:
 | 
						|
        case TIMER1B:
 | 
						|
             // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
						|
             // TCCR1B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR2)
 | 
						|
        case TIMER2:
 | 
						|
        case TIMER2:
 | 
						|
             TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
						|
             TCCR2 |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR2A)
 | 
						|
        case TIMER2A:
 | 
						|
        case TIMER2B:
 | 
						|
             TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | 
						|
             TCCR2B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR3A)
 | 
						|
        case TIMER3A:
 | 
						|
        case TIMER3B:
 | 
						|
        case TIMER3C:
 | 
						|
             TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | 
						|
             TCCR3B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR4A)
 | 
						|
        case TIMER4A:
 | 
						|
        case TIMER4B:
 | 
						|
        case TIMER4C:
 | 
						|
             TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | 
						|
             TCCR4B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
      #if defined(TCCR5A)
 | 
						|
        case TIMER5A:
 | 
						|
        case TIMER5B:
 | 
						|
        case TIMER5C:
 | 
						|
             TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | 
						|
             TCCR5B |= val;
 | 
						|
             break;
 | 
						|
      #endif
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#endif // FAST_PWM_FAN
 | 
						|
 | 
						|
void Stop() {
 | 
						|
  disable_all_heaters();
 | 
						|
  if (IsRunning()) {
 | 
						|
    Running = false;
 | 
						|
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | 
						|
    LCD_MESSAGEPGM(MSG_STOPPED);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Set target_extruder from the T parameter or the active_extruder
 | 
						|
 *
 | 
						|
 * Returns TRUE if the target is invalid
 | 
						|
 */
 | 
						|
bool setTargetedHotend(int code) {
 | 
						|
  target_extruder = active_extruder;
 | 
						|
  if (code_seen('T')) {
 | 
						|
    target_extruder = code_value_short();
 | 
						|
    if (target_extruder >= EXTRUDERS) {
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
      SERIAL_CHAR('M');
 | 
						|
      SERIAL_ECHO(code);
 | 
						|
      SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
 | 
						|
      SERIAL_ECHOLN(target_extruder);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
float calculate_volumetric_multiplier(float diameter) {
 | 
						|
  if (!volumetric_enabled || diameter == 0) return 1.0;
 | 
						|
  float d2 = diameter * 0.5;
 | 
						|
  return 1.0 / (M_PI * d2 * d2);
 | 
						|
}
 | 
						|
 | 
						|
void calculate_volumetric_multipliers() {
 | 
						|
  for (int i=0; i<EXTRUDERS; i++)
 | 
						|
    volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
 | 
						|
}
 |