You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							8775 lines
						
					
					
						
							276 KiB
						
					
					
				
			
		
		
	
	
							8775 lines
						
					
					
						
							276 KiB
						
					
					
				| /**
 | |
|  * Marlin 3D Printer Firmware
 | |
|  * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | |
|  *
 | |
|  * Based on Sprinter and grbl.
 | |
|  * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * About Marlin
 | |
|  *
 | |
|  * This firmware is a mashup between Sprinter and grbl.
 | |
|  *  - https://github.com/kliment/Sprinter
 | |
|  *  - https://github.com/simen/grbl/tree
 | |
|  *
 | |
|  * It has preliminary support for Matthew Roberts advance algorithm
 | |
|  *  - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|   #include "vector_3.h"
 | |
|   #if ENABLED(AUTO_BED_LEVELING_GRID)
 | |
|     #include "qr_solve.h"
 | |
|   #endif
 | |
| #endif // AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
|   #include "mesh_bed_leveling.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|   #include "planner_bezier.h"
 | |
| #endif
 | |
| 
 | |
| #include "ultralcd.h"
 | |
| #include "planner.h"
 | |
| #include "stepper.h"
 | |
| #include "endstops.h"
 | |
| #include "temperature.h"
 | |
| #include "cardreader.h"
 | |
| #include "configuration_store.h"
 | |
| #include "language.h"
 | |
| #include "pins_arduino.h"
 | |
| #include "math.h"
 | |
| #include "nozzle.h"
 | |
| #include "duration_t.h"
 | |
| 
 | |
| #if ENABLED(USE_WATCHDOG)
 | |
|   #include "watchdog.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BLINKM)
 | |
|   #include "blinkm.h"
 | |
|   #include "Wire.h"
 | |
| #endif
 | |
| 
 | |
| #if HAS_SERVOS
 | |
|   #include "servo.h"
 | |
| #endif
 | |
| 
 | |
| #if HAS_DIGIPOTSS
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|   #include "stepper_dac.h"
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
|   #include "twibus.h"
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Look here for descriptions of G-codes:
 | |
|  *  - http://linuxcnc.org/handbook/gcode/g-code.html
 | |
|  *  - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
 | |
|  *
 | |
|  * Help us document these G-codes online:
 | |
|  *  - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
 | |
|  *  - http://reprap.org/wiki/G-code
 | |
|  *
 | |
|  * -----------------
 | |
|  * Implemented Codes
 | |
|  * -----------------
 | |
|  *
 | |
|  * "G" Codes
 | |
|  *
 | |
|  * G0  -> G1
 | |
|  * G1  - Coordinated Movement X Y Z E
 | |
|  * G2  - CW ARC
 | |
|  * G3  - CCW ARC
 | |
|  * G4  - Dwell S<seconds> or P<milliseconds>
 | |
|  * G5  - Cubic B-spline with XYZE destination and IJPQ offsets
 | |
|  * G10 - Retract filament according to settings of M207
 | |
|  * G11 - Retract recover filament according to settings of M208
 | |
|  * G12 - Clean tool
 | |
|  * G20 - Set input units to inches
 | |
|  * G21 - Set input units to millimeters
 | |
|  * G28 - Home one or more axes
 | |
|  * G29 - Detailed Z probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 | |
|  * G30 - Single Z probe, probes bed at current XY location.
 | |
|  * G31 - Dock sled (Z_PROBE_SLED only)
 | |
|  * G32 - Undock sled (Z_PROBE_SLED only)
 | |
|  * G90 - Use Absolute Coordinates
 | |
|  * G91 - Use Relative Coordinates
 | |
|  * G92 - Set current position to coordinates given
 | |
|  *
 | |
|  * "M" Codes
 | |
|  *
 | |
|  * M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
 | |
|  * M1   - Same as M0
 | |
|  * M17  - Enable/Power all stepper motors
 | |
|  * M18  - Disable all stepper motors; same as M84
 | |
|  * M20  - List SD card
 | |
|  * M21  - Init SD card
 | |
|  * M22  - Release SD card
 | |
|  * M23  - Select SD file (M23 filename.g)
 | |
|  * M24  - Start/resume SD print
 | |
|  * M25  - Pause SD print
 | |
|  * M26  - Set SD position in bytes (M26 S12345)
 | |
|  * M27  - Report SD print status
 | |
|  * M28  - Start SD write (M28 filename.g)
 | |
|  * M29  - Stop SD write
 | |
|  * M30  - Delete file from SD (M30 filename.g)
 | |
|  * M31  - Output time since last M109 or SD card start to serial
 | |
|  * M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
 | |
|  *        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
 | |
|  *        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
 | |
|  *        The '#' is necessary when calling from within sd files, as it stops buffer prereading
 | |
|  * M33  - Get the longname version of a path
 | |
|  * M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
 | |
|  * M48  - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
 | |
|  * M75  - Start the print job timer
 | |
|  * M76  - Pause the print job timer
 | |
|  * M77  - Stop the print job timer
 | |
|  * M78  - Show statistical information about the print jobs
 | |
|  * M80  - Turn on Power Supply
 | |
|  * M81  - Turn off Power Supply
 | |
|  * M82  - Set E codes absolute (default)
 | |
|  * M83  - Set E codes relative while in Absolute Coordinates (G90) mode
 | |
|  * M84  - Disable steppers until next move,
 | |
|  *        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
 | |
|  * M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | |
|  * M92  - Set planner.axis_steps_per_mm - same syntax as G92
 | |
|  * M104 - Set extruder target temp
 | |
|  * M105 - Read current temp
 | |
|  * M106 - Fan on
 | |
|  * M107 - Fan off
 | |
|  * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
 | |
|  * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
 | |
|  *        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
 | |
|  *        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
 | |
|  * M110 - Set the current line number
 | |
|  * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
 | |
|  * M112 - Emergency stop
 | |
|  * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
 | |
|  * M114 - Output current position to serial port
 | |
|  * M115 - Capabilities string
 | |
|  * M117 - Display a message on the controller screen
 | |
|  * M119 - Output Endstop status to serial port
 | |
|  * M120 - Enable endstop detection
 | |
|  * M121 - Disable endstop detection
 | |
|  * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
 | |
|  * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
 | |
|  * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | |
|  * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | |
|  * M140 - Set bed target temp
 | |
|  * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
 | |
|  * M149 - Set temperature units
 | |
|  * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
 | |
|  * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
 | |
|  * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
 | |
|  * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
 | |
|  * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | |
|  *        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | |
|  * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
 | |
|  * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | |
|  * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
 | |
|  * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
 | |
|  * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
 | |
|  * M205 - Set advanced settings. Current units apply:
 | |
|             S<print> T<travel> minimum speeds
 | |
|             B<minimum segment time>
 | |
|             X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
 | |
|  * M206 - Set additional homing offset
 | |
|  * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
 | |
|  * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
 | |
|  * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
 | |
|           Every normal extrude-only move will be classified as retract depending on the direction.
 | |
|  * M218 - Set a tool offset: T<index> X<offset> Y<offset>
 | |
|  * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
 | |
|  * M221 - Set Flow Percentage: S<percent>
 | |
|  * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
 | |
|  * M240 - Trigger a camera to take a photograph
 | |
|  * M250 - Set LCD contrast C<contrast value> (value 0..63)
 | |
|  * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
 | |
|  * M300 - Play beep sound S<frequency Hz> P<duration ms>
 | |
|  * M301 - Set PID parameters P I and D
 | |
|  * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
 | |
|  * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
 | |
|  * M304 - Set bed PID parameters P I and D
 | |
|  * M380 - Activate solenoid on active extruder
 | |
|  * M381 - Disable all solenoids
 | |
|  * M400 - Finish all moves
 | |
|  * M401 - Lower Z probe if present
 | |
|  * M402 - Raise Z probe if present
 | |
|  * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
 | |
|  * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
 | |
|  * M406 - Disable Filament Sensor extrusion control
 | |
|  * M407 - Display measured filament diameter in millimeters
 | |
|  * M410 - Quickstop. Abort all the planned moves
 | |
|  * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
 | |
|  * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
 | |
|  * M428 - Set the home_offset logically based on the current_position
 | |
|  * M500 - Store parameters in EEPROM
 | |
|  * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
 | |
|  * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
 | |
|  * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
 | |
|  * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
|  * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | |
|  * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
 | |
|  * M666 - Set delta endstop adjustment
 | |
|  * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
 | |
|  * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
 | |
|  * M907 - Set digital trimpot motor current using axis codes.
 | |
|  * M908 - Control digital trimpot directly.
 | |
|  * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
 | |
|  * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
 | |
|  * M350 - Set microstepping mode.
 | |
|  * M351 - Toggle MS1 MS2 pins directly.
 | |
|  *
 | |
|  * ************ SCARA Specific - This can change to suit future G-code regulations
 | |
|  * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | |
|  * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | |
|  * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | |
|  * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | |
|  * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | |
|  * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
 | |
|  * ************* SCARA End ***************
 | |
|  *
 | |
|  * ************ Custom codes - This can change to suit future G-code regulations
 | |
|  * M100 - Watch Free Memory (For Debugging Only)
 | |
|  * M928 - Start SD logging (M928 filename.g) - ended by M29
 | |
|  * M999 - Restart after being stopped by error
 | |
|  *
 | |
|  * "T" Codes
 | |
|  *
 | |
|  * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|   void gcode_M100();
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
|   CardReader card;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
|   TWIBus i2c;
 | |
| #endif
 | |
| 
 | |
| bool Running = true;
 | |
| 
 | |
| uint8_t marlin_debug_flags = DEBUG_NONE;
 | |
| 
 | |
| float current_position[NUM_AXIS] = { 0.0 };
 | |
| static float destination[NUM_AXIS] = { 0.0 };
 | |
| bool axis_known_position[3] = { false };
 | |
| bool axis_homed[3] = { false };
 | |
| 
 | |
| static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
 | |
| 
 | |
| static char command_queue[BUFSIZE][MAX_CMD_SIZE];
 | |
| static char* current_command, *current_command_args;
 | |
| static uint8_t cmd_queue_index_r = 0,
 | |
|                cmd_queue_index_w = 0,
 | |
|                commands_in_queue = 0;
 | |
| 
 | |
| #if ENABLED(INCH_MODE_SUPPORT)
 | |
|   float linear_unit_factor = 1.0;
 | |
|   float volumetric_unit_factor = 1.0;
 | |
| #endif
 | |
| #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|   TempUnit input_temp_units = TEMPUNIT_C;
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Feed rates are often configured with mm/m
 | |
|  * but the planner and stepper like mm/s units.
 | |
|  */
 | |
| const float homing_feedrate_mm_m[] = {
 | |
|   #if ENABLED(DELTA)
 | |
|     HOMING_FEEDRATE_Z, HOMING_FEEDRATE_Z,
 | |
|   #else
 | |
|     HOMING_FEEDRATE_XY, HOMING_FEEDRATE_XY,
 | |
|   #endif
 | |
|   HOMING_FEEDRATE_Z, 0
 | |
| };
 | |
| static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
 | |
| int feedrate_percentage = 100, saved_feedrate_percentage;
 | |
| 
 | |
| bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
 | |
| int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
 | |
| bool volumetric_enabled = false;
 | |
| float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
 | |
| float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
 | |
| 
 | |
| // The distance that XYZ has been offset by G92. Reset by G28.
 | |
| float position_shift[3] = { 0 };
 | |
| 
 | |
| // This offset is added to the configured home position.
 | |
| // Set by M206, M428, or menu item. Saved to EEPROM.
 | |
| float home_offset[3] = { 0 };
 | |
| 
 | |
| // Software Endstops. Default to configured limits.
 | |
| float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
 | |
| float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
 | |
| 
 | |
| #if FAN_COUNT > 0
 | |
|   int fanSpeeds[FAN_COUNT] = { 0 };
 | |
| #endif
 | |
| 
 | |
| // The active extruder (tool). Set with T<extruder> command.
 | |
| uint8_t active_extruder = 0;
 | |
| 
 | |
| // Relative Mode. Enable with G91, disable with G90.
 | |
| static bool relative_mode = false;
 | |
| 
 | |
| volatile bool wait_for_heatup = true;
 | |
| 
 | |
| const char errormagic[] PROGMEM = "Error:";
 | |
| const char echomagic[] PROGMEM = "echo:";
 | |
| const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
 | |
| 
 | |
| static int serial_count = 0;
 | |
| 
 | |
| // GCode parameter pointer used by code_seen(), code_value_float(), etc.
 | |
| static char* seen_pointer;
 | |
| 
 | |
| // Next Immediate GCode Command pointer. NULL if none.
 | |
| const char* queued_commands_P = NULL;
 | |
| 
 | |
| const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
 | |
| 
 | |
| // Inactivity shutdown
 | |
| millis_t previous_cmd_ms = 0;
 | |
| static millis_t max_inactive_time = 0;
 | |
| static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
 | |
| 
 | |
| // Print Job Timer
 | |
| #if ENABLED(PRINTCOUNTER)
 | |
|   PrintCounter print_job_timer = PrintCounter();
 | |
| #else
 | |
|   Stopwatch print_job_timer = Stopwatch();
 | |
| #endif
 | |
| 
 | |
| // Buzzer
 | |
| #if HAS_BUZZER
 | |
|     Buzzer buzzer;
 | |
| #endif
 | |
| 
 | |
| static uint8_t target_extruder;
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
|   float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| #endif
 | |
| 
 | |
| #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|   int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
 | |
|   bool bed_leveling_in_progress = false;
 | |
|   #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
 | |
| #elif defined(XY_PROBE_SPEED)
 | |
|   #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
 | |
| #else
 | |
|   #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
 | |
|   float z_endstop_adj = 0;
 | |
| #endif
 | |
| 
 | |
| // Extruder offsets
 | |
| #if HOTENDS > 1
 | |
|   float hotend_offset[][HOTENDS] = {
 | |
|     HOTEND_OFFSET_X,
 | |
|     HOTEND_OFFSET_Y
 | |
|     #ifdef HOTEND_OFFSET_Z
 | |
|       , HOTEND_OFFSET_Z
 | |
|     #endif
 | |
|   };
 | |
| #endif
 | |
| 
 | |
| #if HAS_Z_SERVO_ENDSTOP
 | |
|   const int z_servo_angle[2] = Z_SERVO_ANGLES;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BARICUDA)
 | |
|   int baricuda_valve_pressure = 0;
 | |
|   int baricuda_e_to_p_pressure = 0;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   bool autoretract_enabled = false;
 | |
|   bool retracted[EXTRUDERS] = { false };
 | |
|   bool retracted_swap[EXTRUDERS] = { false };
 | |
| 
 | |
|   float retract_length = RETRACT_LENGTH;
 | |
|   float retract_length_swap = RETRACT_LENGTH_SWAP;
 | |
|   float retract_feedrate_mm_s = RETRACT_FEEDRATE;
 | |
|   float retract_zlift = RETRACT_ZLIFT;
 | |
|   float retract_recover_length = RETRACT_RECOVER_LENGTH;
 | |
|   float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | |
|   float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
 | |
|   bool powersupply =
 | |
|     #if ENABLED(PS_DEFAULT_OFF)
 | |
|       false
 | |
|     #else
 | |
|       true
 | |
|     #endif
 | |
|   ;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
| 
 | |
|   #define TOWER_1 X_AXIS
 | |
|   #define TOWER_2 Y_AXIS
 | |
|   #define TOWER_3 Z_AXIS
 | |
| 
 | |
|   float delta[3];
 | |
|   float cartesian_position[3] = { 0 };
 | |
|   #define SIN_60 0.8660254037844386
 | |
|   #define COS_60 0.5
 | |
|   float endstop_adj[3] = { 0 };
 | |
|   // these are the default values, can be overriden with M665
 | |
|   float delta_radius = DELTA_RADIUS;
 | |
|   float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
 | |
|   float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
 | |
|   float delta_tower2_x =  SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
 | |
|   float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
 | |
|   float delta_tower3_x = 0;                                                    // back middle tower
 | |
|   float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
 | |
|   float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
 | |
|   float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
 | |
|   float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
 | |
|   float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
 | |
|   float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
 | |
|   float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
 | |
|   float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
 | |
|   float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
 | |
|   float delta_clip_start_height = Z_MAX_POS;
 | |
|   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     int delta_grid_spacing[2] = { 0, 0 };
 | |
|     float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
 | |
|   #endif
 | |
|   float delta_safe_distance_from_top();
 | |
| #else
 | |
|   static bool home_all_axis = true;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(SCARA)
 | |
|   float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
 | |
|   float delta[3];
 | |
|   float axis_scaling[3] = { 1, 1, 1 };    // Build size scaling, default to 1
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
|   //Variables for Filament Sensor input
 | |
|   float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404
 | |
|   bool filament_sensor = false;  //M405 turns on filament_sensor control, M406 turns it off
 | |
|   float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
 | |
|   int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement  store extruder factor after subtracting 100
 | |
|   int filwidth_delay_index1 = 0;  //index into ring buffer
 | |
|   int filwidth_delay_index2 = -1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
 | |
|   int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|   static bool filament_ran_out = false;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(FILAMENT_CHANGE_FEATURE)
 | |
|   FilamentChangeMenuResponse filament_change_menu_response;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
|   float mixing_factor[MIXING_STEPPERS];
 | |
|   #if MIXING_VIRTUAL_TOOLS > 1
 | |
|     float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| static bool send_ok[BUFSIZE];
 | |
| 
 | |
| #if HAS_SERVOS
 | |
|   Servo servo[NUM_SERVOS];
 | |
|   #define MOVE_SERVO(I, P) servo[I].move(P)
 | |
|   #if HAS_Z_SERVO_ENDSTOP
 | |
|     #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
 | |
|     #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CHDK
 | |
|   millis_t chdkHigh = 0;
 | |
|   boolean chdkActive = false;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(PID_ADD_EXTRUSION_RATE)
 | |
|   int lpq_len = 20;
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
|   static MarlinBusyState busy_state = NOT_BUSY;
 | |
|   static millis_t next_busy_signal_ms = 0;
 | |
|   uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
 | |
|   #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
 | |
| #else
 | |
|   #define host_keepalive() ;
 | |
|   #define KEEPALIVE_STATE(n) ;
 | |
| #endif // HOST_KEEPALIVE_FEATURE
 | |
| 
 | |
| /**
 | |
|  * ***************************************************************************
 | |
|  * ******************************** FUNCTIONS ********************************
 | |
|  * ***************************************************************************
 | |
|  */
 | |
| 
 | |
| void stop();
 | |
| 
 | |
| void get_available_commands();
 | |
| void process_next_command();
 | |
| void prepare_move_to_destination();
 | |
| void set_current_from_steppers_for_axis(AxisEnum axis);
 | |
| 
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
|   void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|   void plan_cubic_move(const float offset[4]);
 | |
| #endif
 | |
| 
 | |
| void serial_echopair_P(const char* s_P, char v)          { serialprintPGM(s_P); SERIAL_CHAR(v); }
 | |
| void serial_echopair_P(const char* s_P, int v)           { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char* s_P, long v)          { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char* s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char* s_P, double v)        { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| 
 | |
| void tool_change(const uint8_t tmp_extruder, const float fr_mm_m=0.0, bool no_move=false);
 | |
| static void report_current_position();
 | |
| 
 | |
| #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|   void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
 | |
|     serialprintPGM(prefix);
 | |
|     SERIAL_ECHOPAIR("(", x);
 | |
|     SERIAL_ECHOPAIR(", ", y);
 | |
|     SERIAL_ECHOPAIR(", ", z);
 | |
|     SERIAL_ECHOPGM(")");
 | |
| 
 | |
|     if (suffix) serialprintPGM(suffix);
 | |
|     else SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
|   void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
 | |
|     print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
 | |
|       print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #define DEBUG_POS(SUFFIX,VAR) do { \
 | |
|     print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * sync_plan_position
 | |
|  * Set planner / stepper positions to the cartesian current_position.
 | |
|  * The stepper code translates these coordinates into step units.
 | |
|  * Allows translation between steps and millimeters for cartesian & core robots
 | |
|  */
 | |
| inline void sync_plan_position() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
 | |
|   #endif
 | |
|   planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| }
 | |
| inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
 | |
| 
 | |
| #if ENABLED(DELTA) || ENABLED(SCARA)
 | |
|   inline void sync_plan_position_delta() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
 | |
|     #endif
 | |
|     inverse_kinematics(current_position);
 | |
|     planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | |
|   }
 | |
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
 | |
| #else
 | |
|   #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
|   #include "SdFatUtil.h"
 | |
|   int freeMemory() { return SdFatUtil::FreeRam(); }
 | |
| #else
 | |
| extern "C" {
 | |
|   extern unsigned int __bss_end;
 | |
|   extern unsigned int __heap_start;
 | |
|   extern void* __brkval;
 | |
| 
 | |
|   int freeMemory() {
 | |
|     int free_memory;
 | |
|     if ((int)__brkval == 0)
 | |
|       free_memory = ((int)&free_memory) - ((int)&__bss_end);
 | |
|     else
 | |
|       free_memory = ((int)&free_memory) - ((int)__brkval);
 | |
|     return free_memory;
 | |
|   }
 | |
| }
 | |
| #endif //!SDSUPPORT
 | |
| 
 | |
| #if ENABLED(DIGIPOT_I2C)
 | |
|   extern void digipot_i2c_set_current(int channel, float current);
 | |
|   extern void digipot_i2c_init();
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Inject the next "immediate" command, when possible.
 | |
|  * Return true if any immediate commands remain to inject.
 | |
|  */
 | |
| static bool drain_queued_commands_P() {
 | |
|   if (queued_commands_P != NULL) {
 | |
|     size_t i = 0;
 | |
|     char c, cmd[30];
 | |
|     strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
 | |
|     cmd[sizeof(cmd) - 1] = '\0';
 | |
|     while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
 | |
|     cmd[i] = '\0';
 | |
|     if (enqueue_and_echo_command(cmd)) {   // success?
 | |
|       if (c)                               // newline char?
 | |
|         queued_commands_P += i + 1;        // advance to the next command
 | |
|       else
 | |
|         queued_commands_P = NULL;          // nul char? no more commands
 | |
|     }
 | |
|   }
 | |
|   return (queued_commands_P != NULL);      // return whether any more remain
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Record one or many commands to run from program memory.
 | |
|  * Aborts the current queue, if any.
 | |
|  * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
 | |
|  */
 | |
| void enqueue_and_echo_commands_P(const char* pgcode) {
 | |
|   queued_commands_P = pgcode;
 | |
|   drain_queued_commands_P(); // first command executed asap (when possible)
 | |
| }
 | |
| 
 | |
| void clear_command_queue() {
 | |
|   cmd_queue_index_r = cmd_queue_index_w;
 | |
|   commands_in_queue = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Once a new command is in the ring buffer, call this to commit it
 | |
|  */
 | |
| inline void _commit_command(bool say_ok) {
 | |
|   send_ok[cmd_queue_index_w] = say_ok;
 | |
|   cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
 | |
|   commands_in_queue++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Copy a command directly into the main command buffer, from RAM.
 | |
|  * Returns true if successfully adds the command
 | |
|  */
 | |
| inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
 | |
|   if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
 | |
|   strcpy(command_queue[cmd_queue_index_w], cmd);
 | |
|   _commit_command(say_ok);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void enqueue_and_echo_command_now(const char* cmd) {
 | |
|   while (!enqueue_and_echo_command(cmd)) idle();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Enqueue with Serial Echo
 | |
|  */
 | |
| bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
 | |
|   if (_enqueuecommand(cmd, say_ok)) {
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_Enqueueing);
 | |
|     SERIAL_ECHO(cmd);
 | |
|     SERIAL_ECHOLNPGM("\"");
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void setup_killpin() {
 | |
|   #if HAS_KILL
 | |
|     SET_INPUT(KILL_PIN);
 | |
|     WRITE(KILL_PIN, HIGH);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
| 
 | |
|   void setup_filrunoutpin() {
 | |
|     pinMode(FIL_RUNOUT_PIN, INPUT);
 | |
|     #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
 | |
|       WRITE(FIL_RUNOUT_PIN, HIGH);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Set home pin
 | |
| void setup_homepin(void) {
 | |
|   #if HAS_HOME
 | |
|     SET_INPUT(HOME_PIN);
 | |
|     WRITE(HOME_PIN, HIGH);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void setup_photpin() {
 | |
|   #if HAS_PHOTOGRAPH
 | |
|     OUT_WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void setup_powerhold() {
 | |
|   #if HAS_SUICIDE
 | |
|     OUT_WRITE(SUICIDE_PIN, HIGH);
 | |
|   #endif
 | |
|   #if HAS_POWER_SWITCH
 | |
|     #if ENABLED(PS_DEFAULT_OFF)
 | |
|       OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|     #else
 | |
|       OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | |
|     #endif
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void suicide() {
 | |
|   #if HAS_SUICIDE
 | |
|     OUT_WRITE(SUICIDE_PIN, LOW);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void servo_init() {
 | |
|   #if NUM_SERVOS >= 1 && HAS_SERVO_0
 | |
|     servo[0].attach(SERVO0_PIN);
 | |
|     servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 2 && HAS_SERVO_1
 | |
|     servo[1].attach(SERVO1_PIN);
 | |
|     servo[1].detach();
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 3 && HAS_SERVO_2
 | |
|     servo[2].attach(SERVO2_PIN);
 | |
|     servo[2].detach();
 | |
|   #endif
 | |
|   #if NUM_SERVOS >= 4 && HAS_SERVO_3
 | |
|     servo[3].attach(SERVO3_PIN);
 | |
|     servo[3].detach();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_Z_SERVO_ENDSTOP
 | |
|     /**
 | |
|      * Set position of Z Servo Endstop
 | |
|      *
 | |
|      * The servo might be deployed and positioned too low to stow
 | |
|      * when starting up the machine or rebooting the board.
 | |
|      * There's no way to know where the nozzle is positioned until
 | |
|      * homing has been done - no homing with z-probe without init!
 | |
|      *
 | |
|      */
 | |
|     STOW_Z_SERVO();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BED_PROBE
 | |
|     endstops.enable_z_probe(false);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Stepper Reset (RigidBoard, et.al.)
 | |
|  */
 | |
| #if HAS_STEPPER_RESET
 | |
|   void disableStepperDrivers() {
 | |
|     pinMode(STEPPER_RESET_PIN, OUTPUT);
 | |
|     digitalWrite(STEPPER_RESET_PIN, LOW);  // drive it down to hold in reset motor driver chips
 | |
|   }
 | |
|   void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); }  // set to input, which allows it to be pulled high by pullups
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Marlin entry-point: Set up before the program loop
 | |
|  *  - Set up the kill pin, filament runout, power hold
 | |
|  *  - Start the serial port
 | |
|  *  - Print startup messages and diagnostics
 | |
|  *  - Get EEPROM or default settings
 | |
|  *  - Initialize managers for:
 | |
|  *    • temperature
 | |
|  *    • planner
 | |
|  *    • watchdog
 | |
|  *    • stepper
 | |
|  *    • photo pin
 | |
|  *    • servos
 | |
|  *    • LCD controller
 | |
|  *    • Digipot I2C
 | |
|  *    • Z probe sled
 | |
|  *    • status LEDs
 | |
|  */
 | |
| void setup() {
 | |
| 
 | |
|   #ifdef DISABLE_JTAG
 | |
|     // Disable JTAG on AT90USB chips to free up pins for IO
 | |
|     MCUCR = 0x80;
 | |
|     MCUCR = 0x80;
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|     setup_filrunoutpin();
 | |
|   #endif
 | |
| 
 | |
|   setup_killpin();
 | |
| 
 | |
|   setup_powerhold();
 | |
| 
 | |
|   #if HAS_STEPPER_RESET
 | |
|     disableStepperDrivers();
 | |
|   #endif
 | |
| 
 | |
|   MYSERIAL.begin(BAUDRATE);
 | |
|   SERIAL_PROTOCOLLNPGM("start");
 | |
|   SERIAL_ECHO_START;
 | |
| 
 | |
|   // Check startup - does nothing if bootloader sets MCUSR to 0
 | |
|   byte mcu = MCUSR;
 | |
|   if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
 | |
|   if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
 | |
|   if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
 | |
|   if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
 | |
|   if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
 | |
|   MCUSR = 0;
 | |
| 
 | |
|   SERIAL_ECHOPGM(MSG_MARLIN);
 | |
|   SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
 | |
| 
 | |
|   #ifdef STRING_DISTRIBUTION_DATE
 | |
|     #ifdef STRING_CONFIG_H_AUTHOR
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
 | |
|       SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
 | |
|       SERIAL_ECHOPGM(MSG_AUTHOR);
 | |
|       SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
 | |
|       SERIAL_ECHOPGM("Compiled: ");
 | |
|       SERIAL_ECHOLNPGM(__DATE__);
 | |
|     #endif // STRING_CONFIG_H_AUTHOR
 | |
|   #endif // STRING_DISTRIBUTION_DATE
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPGM(MSG_FREE_MEMORY);
 | |
|   SERIAL_ECHO(freeMemory());
 | |
|   SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
 | |
|   SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
 | |
| 
 | |
|   // Send "ok" after commands by default
 | |
|   for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
 | |
| 
 | |
|   // Load data from EEPROM if available (or use defaults)
 | |
|   // This also updates variables in the planner, elsewhere
 | |
|   Config_RetrieveSettings();
 | |
| 
 | |
|   // Initialize current position based on home_offset
 | |
|   memcpy(current_position, home_offset, sizeof(home_offset));
 | |
| 
 | |
|   // Vital to init stepper/planner equivalent for current_position
 | |
|   SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   thermalManager.init();    // Initialize temperature loop
 | |
| 
 | |
|   #if ENABLED(USE_WATCHDOG)
 | |
|     watchdog_init();
 | |
|   #endif
 | |
| 
 | |
|   stepper.init();    // Initialize stepper, this enables interrupts!
 | |
|   setup_photpin();
 | |
|   servo_init();
 | |
| 
 | |
|   #if HAS_CONTROLLERFAN
 | |
|     SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_STEPPER_RESET
 | |
|     enableStepperDrivers();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DIGIPOT_I2C)
 | |
|     digipot_i2c_init();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|     dac_init();
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(Z_PROBE_SLED)
 | |
|     pinMode(SLED_PIN, OUTPUT);
 | |
|     digitalWrite(SLED_PIN, LOW); // turn it off
 | |
|   #endif // Z_PROBE_SLED
 | |
| 
 | |
|   setup_homepin();
 | |
| 
 | |
|   #ifdef STAT_LED_RED
 | |
|     pinMode(STAT_LED_RED, OUTPUT);
 | |
|     digitalWrite(STAT_LED_RED, LOW); // turn it off
 | |
|   #endif
 | |
| 
 | |
|   #ifdef STAT_LED_BLUE
 | |
|     pinMode(STAT_LED_BLUE, OUTPUT);
 | |
|     digitalWrite(STAT_LED_BLUE, LOW); // turn it off
 | |
|   #endif
 | |
| 
 | |
|   lcd_init();
 | |
|   #if ENABLED(SHOW_BOOTSCREEN)
 | |
|     #if ENABLED(DOGLCD)
 | |
|       safe_delay(BOOTSCREEN_TIMEOUT);
 | |
|     #elif ENABLED(ULTRA_LCD)
 | |
|       bootscreen();
 | |
|       lcd_init();
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
 | |
|     // Initialize mixing to 100% color 1
 | |
|     for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|       mixing_factor[i] = (i == 0) ? 1 : 0;
 | |
|     for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
 | |
|       for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|         mixing_virtual_tool_mix[t][i] = mixing_factor[i];
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The main Marlin program loop
 | |
|  *
 | |
|  *  - Save or log commands to SD
 | |
|  *  - Process available commands (if not saving)
 | |
|  *  - Call heater manager
 | |
|  *  - Call inactivity manager
 | |
|  *  - Call endstop manager
 | |
|  *  - Call LCD update
 | |
|  */
 | |
| void loop() {
 | |
|   if (commands_in_queue < BUFSIZE) get_available_commands();
 | |
| 
 | |
|   #if ENABLED(SDSUPPORT)
 | |
|     card.checkautostart(false);
 | |
|   #endif
 | |
| 
 | |
|   if (commands_in_queue) {
 | |
| 
 | |
|     #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|       if (card.saving) {
 | |
|         char* command = command_queue[cmd_queue_index_r];
 | |
|         if (strstr_P(command, PSTR("M29"))) {
 | |
|           // M29 closes the file
 | |
|           card.closefile();
 | |
|           SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
 | |
|           ok_to_send();
 | |
|         }
 | |
|         else {
 | |
|           // Write the string from the read buffer to SD
 | |
|           card.write_command(command);
 | |
|           if (card.logging)
 | |
|             process_next_command(); // The card is saving because it's logging
 | |
|           else
 | |
|             ok_to_send();
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|         process_next_command();
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       process_next_command();
 | |
| 
 | |
|     #endif // SDSUPPORT
 | |
| 
 | |
|     // The queue may be reset by a command handler or by code invoked by idle() within a handler
 | |
|     if (commands_in_queue) {
 | |
|       --commands_in_queue;
 | |
|       cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
 | |
|     }
 | |
|   }
 | |
|   endstops.report_state();
 | |
|   idle();
 | |
| }
 | |
| 
 | |
| void gcode_line_error(const char* err, bool doFlush = true) {
 | |
|   SERIAL_ERROR_START;
 | |
|   serialprintPGM(err);
 | |
|   SERIAL_ERRORLN(gcode_LastN);
 | |
|   //Serial.println(gcode_N);
 | |
|   if (doFlush) FlushSerialRequestResend();
 | |
|   serial_count = 0;
 | |
| }
 | |
| 
 | |
| inline void get_serial_commands() {
 | |
|   static char serial_line_buffer[MAX_CMD_SIZE];
 | |
|   static boolean serial_comment_mode = false;
 | |
| 
 | |
|   // If the command buffer is empty for too long,
 | |
|   // send "wait" to indicate Marlin is still waiting.
 | |
|   #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
 | |
|     static millis_t last_command_time = 0;
 | |
|     millis_t ms = millis();
 | |
|     if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
 | |
|       SERIAL_ECHOLNPGM(MSG_WAIT);
 | |
|       last_command_time = ms;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Loop while serial characters are incoming and the queue is not full
 | |
|    */
 | |
|   while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
 | |
| 
 | |
|     char serial_char = MYSERIAL.read();
 | |
| 
 | |
|     /**
 | |
|      * If the character ends the line
 | |
|      */
 | |
|     if (serial_char == '\n' || serial_char == '\r') {
 | |
| 
 | |
|       serial_comment_mode = false; // end of line == end of comment
 | |
| 
 | |
|       if (!serial_count) continue; // skip empty lines
 | |
| 
 | |
|       serial_line_buffer[serial_count] = 0; // terminate string
 | |
|       serial_count = 0; //reset buffer
 | |
| 
 | |
|       char* command = serial_line_buffer;
 | |
| 
 | |
|       while (*command == ' ') command++; // skip any leading spaces
 | |
|       char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
 | |
|       char* apos = strchr(command, '*');
 | |
| 
 | |
|       if (npos) {
 | |
| 
 | |
|         boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
 | |
| 
 | |
|         if (M110) {
 | |
|           char* n2pos = strchr(command + 4, 'N');
 | |
|           if (n2pos) npos = n2pos;
 | |
|         }
 | |
| 
 | |
|         gcode_N = strtol(npos + 1, NULL, 10);
 | |
| 
 | |
|         if (gcode_N != gcode_LastN + 1 && !M110) {
 | |
|           gcode_line_error(PSTR(MSG_ERR_LINE_NO));
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (apos) {
 | |
|           byte checksum = 0, count = 0;
 | |
|           while (command[count] != '*') checksum ^= command[count++];
 | |
| 
 | |
|           if (strtol(apos + 1, NULL, 10) != checksum) {
 | |
|             gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
 | |
|             return;
 | |
|           }
 | |
|           // if no errors, continue parsing
 | |
|         }
 | |
|         else {
 | |
|           gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         gcode_LastN = gcode_N;
 | |
|         // if no errors, continue parsing
 | |
|       }
 | |
|       else if (apos) { // No '*' without 'N'
 | |
|         gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Movement commands alert when stopped
 | |
|       if (IsStopped()) {
 | |
|         char* gpos = strchr(command, 'G');
 | |
|         if (gpos) {
 | |
|           int codenum = strtol(gpos + 1, NULL, 10);
 | |
|           switch (codenum) {
 | |
|             case 0:
 | |
|             case 1:
 | |
|             case 2:
 | |
|             case 3:
 | |
|               SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|               LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|               break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       #if DISABLED(EMERGENCY_PARSER)
 | |
|         // If command was e-stop process now
 | |
|         if (strcmp(command, "M108") == 0) wait_for_heatup = false;
 | |
|         if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
 | |
|         if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
 | |
|       #endif
 | |
| 
 | |
|       #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
 | |
|         last_command_time = ms;
 | |
|       #endif
 | |
| 
 | |
|       // Add the command to the queue
 | |
|       _enqueuecommand(serial_line_buffer, true);
 | |
|     }
 | |
|     else if (serial_count >= MAX_CMD_SIZE - 1) {
 | |
|       // Keep fetching, but ignore normal characters beyond the max length
 | |
|       // The command will be injected when EOL is reached
 | |
|     }
 | |
|     else if (serial_char == '\\') {  // Handle escapes
 | |
|       if (MYSERIAL.available() > 0) {
 | |
|         // if we have one more character, copy it over
 | |
|         serial_char = MYSERIAL.read();
 | |
|         if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
 | |
|       }
 | |
|       // otherwise do nothing
 | |
|     }
 | |
|     else { // it's not a newline, carriage return or escape char
 | |
|       if (serial_char == ';') serial_comment_mode = true;
 | |
|       if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
 | |
|     }
 | |
| 
 | |
|   } // queue has space, serial has data
 | |
| }
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   inline void get_sdcard_commands() {
 | |
|     static bool stop_buffering = false,
 | |
|                 sd_comment_mode = false;
 | |
| 
 | |
|     if (!card.sdprinting) return;
 | |
| 
 | |
|     /**
 | |
|      * '#' stops reading from SD to the buffer prematurely, so procedural
 | |
|      * macro calls are possible. If it occurs, stop_buffering is triggered
 | |
|      * and the buffer is run dry; this character _can_ occur in serial com
 | |
|      * due to checksums, however, no checksums are used in SD printing.
 | |
|      */
 | |
| 
 | |
|     if (commands_in_queue == 0) stop_buffering = false;
 | |
| 
 | |
|     uint16_t sd_count = 0;
 | |
|     bool card_eof = card.eof();
 | |
|     while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
 | |
|       int16_t n = card.get();
 | |
|       char sd_char = (char)n;
 | |
|       card_eof = card.eof();
 | |
|       if (card_eof || n == -1
 | |
|           || sd_char == '\n' || sd_char == '\r'
 | |
|           || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
 | |
|       ) {
 | |
|         if (card_eof) {
 | |
|           SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
 | |
|           card.printingHasFinished();
 | |
|           card.checkautostart(true);
 | |
|         }
 | |
|         else if (n == -1) {
 | |
|           SERIAL_ERROR_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
 | |
|         }
 | |
|         if (sd_char == '#') stop_buffering = true;
 | |
| 
 | |
|         sd_comment_mode = false; //for new command
 | |
| 
 | |
|         if (!sd_count) continue; //skip empty lines
 | |
| 
 | |
|         command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
 | |
|         sd_count = 0; //clear buffer
 | |
| 
 | |
|         _commit_command(false);
 | |
|       }
 | |
|       else if (sd_count >= MAX_CMD_SIZE - 1) {
 | |
|         /**
 | |
|          * Keep fetching, but ignore normal characters beyond the max length
 | |
|          * The command will be injected when EOL is reached
 | |
|          */
 | |
|       }
 | |
|       else {
 | |
|         if (sd_char == ';') sd_comment_mode = true;
 | |
|         if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * Add to the circular command queue the next command from:
 | |
|  *  - The command-injection queue (queued_commands_P)
 | |
|  *  - The active serial input (usually USB)
 | |
|  *  - The SD card file being actively printed
 | |
|  */
 | |
| void get_available_commands() {
 | |
| 
 | |
|   // if any immediate commands remain, don't get other commands yet
 | |
|   if (drain_queued_commands_P()) return;
 | |
| 
 | |
|   get_serial_commands();
 | |
| 
 | |
|   #if ENABLED(SDSUPPORT)
 | |
|     get_sdcard_commands();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| inline bool code_has_value() {
 | |
|   int i = 1;
 | |
|   char c = seen_pointer[i];
 | |
|   while (c == ' ') c = seen_pointer[++i];
 | |
|   if (c == '-' || c == '+') c = seen_pointer[++i];
 | |
|   if (c == '.') c = seen_pointer[++i];
 | |
|   return NUMERIC(c);
 | |
| }
 | |
| 
 | |
| inline float code_value_float() {
 | |
|   float ret;
 | |
|   char* e = strchr(seen_pointer, 'E');
 | |
|   if (e) {
 | |
|     *e = 0;
 | |
|     ret = strtod(seen_pointer + 1, NULL);
 | |
|     *e = 'E';
 | |
|   }
 | |
|   else
 | |
|     ret = strtod(seen_pointer + 1, NULL);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
 | |
| 
 | |
| inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
 | |
| 
 | |
| inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
 | |
| 
 | |
| inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
 | |
| 
 | |
| inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
 | |
| 
 | |
| inline bool code_value_bool() { return code_value_byte() > 0; }
 | |
| 
 | |
| #if ENABLED(INCH_MODE_SUPPORT)
 | |
|   inline void set_input_linear_units(LinearUnit units) {
 | |
|     switch (units) {
 | |
|       case LINEARUNIT_INCH:
 | |
|         linear_unit_factor = 25.4;
 | |
|         break;
 | |
|       case LINEARUNIT_MM:
 | |
|       default:
 | |
|         linear_unit_factor = 1.0;
 | |
|         break;
 | |
|     }
 | |
|     volumetric_unit_factor = pow(linear_unit_factor, 3.0);
 | |
|   }
 | |
| 
 | |
|   inline float axis_unit_factor(int axis) {
 | |
|     return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
 | |
|   }
 | |
| 
 | |
|   inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
 | |
|   inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
 | |
|   inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
 | |
| 
 | |
| #else
 | |
| 
 | |
|   inline float code_value_linear_units() { return code_value_float(); }
 | |
|   inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
 | |
|   inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|   inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
 | |
| 
 | |
|   float code_value_temp_abs() {
 | |
|     switch (input_temp_units) {
 | |
|       case TEMPUNIT_C:
 | |
|         return code_value_float();
 | |
|       case TEMPUNIT_F:
 | |
|         return (code_value_float() - 32) * 0.5555555556;
 | |
|       case TEMPUNIT_K:
 | |
|         return code_value_float() - 272.15;
 | |
|       default:
 | |
|         return code_value_float();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   float code_value_temp_diff() {
 | |
|     switch (input_temp_units) {
 | |
|       case TEMPUNIT_C:
 | |
|       case TEMPUNIT_K:
 | |
|         return code_value_float();
 | |
|       case TEMPUNIT_F:
 | |
|         return code_value_float() * 0.5555555556;
 | |
|       default:
 | |
|         return code_value_float();
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   float code_value_temp_abs() { return code_value_float(); }
 | |
|   float code_value_temp_diff() { return code_value_float(); }
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
 | |
| inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
 | |
| 
 | |
| bool code_seen(char code) {
 | |
|   seen_pointer = strchr(current_command_args, code);
 | |
|   return (seen_pointer != NULL); // Return TRUE if the code-letter was found
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set target_extruder from the T parameter or the active_extruder
 | |
|  *
 | |
|  * Returns TRUE if the target is invalid
 | |
|  */
 | |
| bool get_target_extruder_from_command(int code) {
 | |
|   if (code_seen('T')) {
 | |
|     if (code_value_byte() >= EXTRUDERS) {
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_CHAR('M');
 | |
|       SERIAL_ECHO(code);
 | |
|       SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
 | |
|       SERIAL_EOL;
 | |
|       return true;
 | |
|     }
 | |
|     target_extruder = code_value_byte();
 | |
|   }
 | |
|   else
 | |
|     target_extruder = active_extruder;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #define DEFINE_PGM_READ_ANY(type, reader)       \
 | |
|   static inline type pgm_read_any(const type *p)  \
 | |
|   { return pgm_read_##reader##_near(p); }
 | |
| 
 | |
| DEFINE_PGM_READ_ANY(float,       float);
 | |
| DEFINE_PGM_READ_ANY(signed char, byte);
 | |
| 
 | |
| #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
 | |
|   static const PROGMEM type array##_P[3] =        \
 | |
|       { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
 | |
|   static inline type array(int axis)          \
 | |
|   { return pgm_read_any(&array##_P[axis]); }
 | |
| 
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,   MIN_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,   MAX_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,  HOME_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, max_length,     MAX_LENGTH);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm,   HOME_BUMP_MM);
 | |
| XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
|   bool extruder_duplication_enabled = false; // Used in Dual X mode 2
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   #define DXC_FULL_CONTROL_MODE 0
 | |
|   #define DXC_AUTO_PARK_MODE    1
 | |
|   #define DXC_DUPLICATION_MODE  2
 | |
| 
 | |
|   static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
| 
 | |
|   static float x_home_pos(int extruder) {
 | |
|     if (extruder == 0)
 | |
|       return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
 | |
|     else
 | |
|       /**
 | |
|        * In dual carriage mode the extruder offset provides an override of the
 | |
|        * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
 | |
|        * This allow soft recalibration of the second extruder offset position
 | |
|        * without firmware reflash (through the M218 command).
 | |
|        */
 | |
|       return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
 | |
|   }
 | |
| 
 | |
|   static int x_home_dir(int extruder) {
 | |
|     return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
 | |
|   }
 | |
| 
 | |
|   static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
 | |
|   static bool active_extruder_parked = false;        // used in mode 1 & 2
 | |
|   static float raised_parked_position[NUM_AXIS];     // used in mode 1
 | |
|   static millis_t delayed_move_time = 0;             // used in mode 1
 | |
|   static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
 | |
|   static float duplicate_extruder_temp_offset = 0;   // used in mode 2
 | |
| 
 | |
| #endif //DUAL_X_CARRIAGE
 | |
| 
 | |
| /**
 | |
|  * Software endstops can be used to monitor the open end of
 | |
|  * an axis that has a hardware endstop on the other end. Or
 | |
|  * they can prevent axes from moving past endstops and grinding.
 | |
|  *
 | |
|  * To keep doing their job as the coordinate system changes,
 | |
|  * the software endstop positions must be refreshed to remain
 | |
|  * at the same positions relative to the machine.
 | |
|  */
 | |
| static void update_software_endstops(AxisEnum axis) {
 | |
|   float offs = LOGICAL_POSITION(0, axis);
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE)
 | |
|     if (axis == X_AXIS) {
 | |
|       float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
 | |
|       if (active_extruder != 0) {
 | |
|         sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
 | |
|         sw_endstop_max[X_AXIS] = dual_max_x + offs;
 | |
|         return;
 | |
|       }
 | |
|       else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
 | |
|         sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
 | |
|         sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|   #endif
 | |
|   {
 | |
|     sw_endstop_min[axis] = base_min_pos(axis) + offs;
 | |
|     sw_endstop_max[axis] = base_max_pos(axis) + offs;
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR("For ", axis_codes[axis]);
 | |
|       SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
 | |
|       SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
 | |
|       SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
 | |
|       SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     if (axis == Z_AXIS) {
 | |
|       delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Change the home offset for an axis, update the current
 | |
|  * position and the software endstops to retain the same
 | |
|  * relative distance to the new home.
 | |
|  *
 | |
|  * Since this changes the current_position, code should
 | |
|  * call sync_plan_position soon after this.
 | |
|  */
 | |
| static void set_home_offset(AxisEnum axis, float v) {
 | |
|   current_position[axis] += v - home_offset[axis];
 | |
|   home_offset[axis] = v;
 | |
|   update_software_endstops(axis);
 | |
| }
 | |
| 
 | |
| static void set_axis_is_at_home(AxisEnum axis) {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   position_shift[axis] = 0;
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE)
 | |
|     if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
 | |
|       if (active_extruder != 0)
 | |
|         current_position[X_AXIS] = x_home_pos(active_extruder);
 | |
|       else
 | |
|         current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
 | |
|       update_software_endstops(X_AXIS);
 | |
|       return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(SCARA)
 | |
| 
 | |
|     if (axis == X_AXIS || axis == Y_AXIS) {
 | |
| 
 | |
|       float homeposition[3];
 | |
|       LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
 | |
| 
 | |
|       // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
 | |
|       // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
 | |
| 
 | |
|       /**
 | |
|        * Works out real Homeposition angles using inverse kinematics,
 | |
|        * and calculates homing offset using forward kinematics
 | |
|        */
 | |
|       inverse_kinematics(homeposition);
 | |
|       forward_kinematics_SCARA(delta);
 | |
| 
 | |
|       // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
 | |
|       // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
| 
 | |
|       current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
 | |
| 
 | |
|       /**
 | |
|        * SCARA home positions are based on configuration since the actual
 | |
|        * limits are determined by the inverse kinematic transform.
 | |
|        */
 | |
|       sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | |
|       sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | |
|     }
 | |
|     else
 | |
|   #endif
 | |
|   {
 | |
|     current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
 | |
|     update_software_endstops(axis);
 | |
| 
 | |
|     #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
 | |
|       if (axis == Z_AXIS) {
 | |
|         current_position[Z_AXIS] -= zprobe_zoffset;
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
 | |
|         SERIAL_ECHOPAIR("] = ", home_offset[axis]);
 | |
|         SERIAL_EOL;
 | |
|         DEBUG_POS("", current_position);
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Some planner shorthand inline functions
 | |
|  */
 | |
| inline float get_homing_bump_feedrate(AxisEnum axis) {
 | |
|   const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
 | |
|   int hbd = homing_bump_divisor[axis];
 | |
|   if (hbd < 1) {
 | |
|     hbd = 10;
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
 | |
|   }
 | |
|   return homing_feedrate_mm_m[axis] / hbd;
 | |
| }
 | |
| //
 | |
| // line_to_current_position
 | |
| // Move the planner to the current position from wherever it last moved
 | |
| // (or from wherever it has been told it is located).
 | |
| //
 | |
| inline void line_to_current_position() {
 | |
|   planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
 | |
| }
 | |
| 
 | |
| inline void line_to_z(float zPosition) {
 | |
|   planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
 | |
| }
 | |
| 
 | |
| inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
 | |
|   float old_feedrate_mm_m = feedrate_mm_m;
 | |
|   current_position[axis] = where;
 | |
|   feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
 | |
|   planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
 | |
|   stepper.synchronize();
 | |
|   feedrate_mm_m = old_feedrate_mm_m;
 | |
| }
 | |
| 
 | |
| //
 | |
| // line_to_destination
 | |
| // Move the planner, not necessarily synced with current_position
 | |
| //
 | |
| inline void line_to_destination(float fr_mm_m) {
 | |
|   planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
 | |
| }
 | |
| inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
 | |
| 
 | |
| inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
 | |
| inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
|   /**
 | |
|    * Calculate delta, start a line, and set current_position to destination
 | |
|    */
 | |
|   void prepare_move_to_destination_raw() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
 | |
|     #endif
 | |
|     refresh_cmd_timeout();
 | |
|     inverse_kinematics(destination);
 | |
|     planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *  Plan a move to (X, Y, Z) and set the current_position
 | |
|  *  The final current_position may not be the one that was requested
 | |
|  */
 | |
| void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
 | |
|   float old_feedrate_mm_m = feedrate_mm_m;
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
| 
 | |
|     feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
 | |
| 
 | |
|     set_destination_to_current();          // sync destination at the start
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
 | |
|     #endif
 | |
| 
 | |
|     // when in the danger zone
 | |
|     if (current_position[Z_AXIS] > delta_clip_start_height) {
 | |
|       if (z > delta_clip_start_height) {   // staying in the danger zone
 | |
|         destination[X_AXIS] = x;           // move directly (uninterpolated)
 | |
|         destination[Y_AXIS] = y;
 | |
|         destination[Z_AXIS] = z;
 | |
|         prepare_move_to_destination_raw(); // set_current_to_destination
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
 | |
|         #endif
 | |
|         return;
 | |
|       }
 | |
|       else {
 | |
|         destination[Z_AXIS] = delta_clip_start_height;
 | |
|         prepare_move_to_destination_raw(); // set_current_to_destination
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (z > current_position[Z_AXIS]) {    // raising?
 | |
|       destination[Z_AXIS] = z;
 | |
|       prepare_move_to_destination_raw();   // set_current_to_destination
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     destination[X_AXIS] = x;
 | |
|     destination[Y_AXIS] = y;
 | |
|     prepare_move_to_destination();         // set_current_to_destination
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
 | |
|     #endif
 | |
| 
 | |
|     if (z < current_position[Z_AXIS]) {    // lowering?
 | |
|       destination[Z_AXIS] = z;
 | |
|       prepare_move_to_destination_raw();   // set_current_to_destination
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
 | |
|     #endif
 | |
| 
 | |
|   #else
 | |
| 
 | |
|     // If Z needs to raise, do it before moving XY
 | |
|     if (current_position[Z_AXIS] < z) {
 | |
|       feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
 | |
|       current_position[Z_AXIS] = z;
 | |
|       line_to_current_position();
 | |
|     }
 | |
| 
 | |
|     feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
 | |
|     current_position[X_AXIS] = x;
 | |
|     current_position[Y_AXIS] = y;
 | |
|     line_to_current_position();
 | |
| 
 | |
|     // If Z needs to lower, do it after moving XY
 | |
|     if (current_position[Z_AXIS] > z) {
 | |
|       feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
 | |
|       current_position[Z_AXIS] = z;
 | |
|       line_to_current_position();
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   stepper.synchronize();
 | |
| 
 | |
|   feedrate_mm_m = old_feedrate_mm_m;
 | |
| }
 | |
| void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) {
 | |
|   do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
 | |
| }
 | |
| void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) {
 | |
|   do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m);
 | |
| }
 | |
| void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) {
 | |
|   do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Prepare to do endstop or probe moves
 | |
| // with custom feedrates.
 | |
| //
 | |
| //  - Save current feedrates
 | |
| //  - Reset the rate multiplier
 | |
| //  - Reset the command timeout
 | |
| //  - Enable the endstops (for endstop moves)
 | |
| //
 | |
| static void setup_for_endstop_or_probe_move() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
 | |
|   #endif
 | |
|   saved_feedrate_mm_m = feedrate_mm_m;
 | |
|   saved_feedrate_percentage = feedrate_percentage;
 | |
|   feedrate_percentage = 100;
 | |
|   refresh_cmd_timeout();
 | |
| }
 | |
| 
 | |
| static void clean_up_after_endstop_or_probe_move() {
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
 | |
|   #endif
 | |
|   feedrate_mm_m = saved_feedrate_mm_m;
 | |
|   feedrate_percentage = saved_feedrate_percentage;
 | |
|   refresh_cmd_timeout();
 | |
| }
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
|   /**
 | |
|    * Raise Z to a minimum height to make room for a probe to move
 | |
|    */
 | |
|   inline void do_probe_raise(float z_raise) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
 | |
|         SERIAL_ECHOLNPGM(")");
 | |
|       }
 | |
|     #endif
 | |
|     float z_dest = LOGICAL_Z_POSITION(z_raise);
 | |
| 
 | |
|     if (zprobe_zoffset < 0)
 | |
|       z_dest -= zprobe_zoffset;
 | |
| 
 | |
|     if (z_dest > current_position[Z_AXIS])
 | |
|       do_blocking_move_to_z(z_dest);
 | |
|   }
 | |
| 
 | |
| #endif //HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
 | |
|   static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
 | |
|     const bool xx = x && !axis_homed[X_AXIS],
 | |
|                yy = y && !axis_homed[Y_AXIS],
 | |
|                zz = z && !axis_homed[Z_AXIS];
 | |
|     if (xx || yy || zz) {
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPGM(MSG_HOME " ");
 | |
|       if (xx) SERIAL_ECHOPGM(MSG_X);
 | |
|       if (yy) SERIAL_ECHOPGM(MSG_Y);
 | |
|       if (zz) SERIAL_ECHOPGM(MSG_Z);
 | |
|       SERIAL_ECHOLNPGM(" " MSG_FIRST);
 | |
| 
 | |
|       #if ENABLED(ULTRA_LCD)
 | |
|         char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
 | |
|         strcat_P(message, PSTR(MSG_HOME " "));
 | |
|         if (xx) strcat_P(message, PSTR(MSG_X));
 | |
|         if (yy) strcat_P(message, PSTR(MSG_Y));
 | |
|         if (zz) strcat_P(message, PSTR(MSG_Z));
 | |
|         strcat_P(message, PSTR(" " MSG_FIRST));
 | |
|         lcd_setstatus(message);
 | |
|       #endif
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|   #ifndef SLED_DOCKING_OFFSET
 | |
|     #define SLED_DOCKING_OFFSET 0
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * Method to dock/undock a sled designed by Charles Bell.
 | |
|    *
 | |
|    * stow[in]     If false, move to MAX_X and engage the solenoid
 | |
|    *              If true, move to MAX_X and release the solenoid
 | |
|    */
 | |
|   static void dock_sled(bool stow) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("dock_sled(", stow);
 | |
|         SERIAL_ECHOLNPGM(")");
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     // Dock sled a bit closer to ensure proper capturing
 | |
|     do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
 | |
|     digitalWrite(SLED_PIN, !stow); // switch solenoid
 | |
| 
 | |
|   }
 | |
| 
 | |
| #endif // Z_PROBE_SLED
 | |
| #if ENABLED(Z_PROBE_ALLEN_KEY)
 | |
|   void run_deploy_moves_script() {
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
 | |
|     #endif
 | |
|   }
 | |
|   void run_stow_moves_script() {
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
 | |
|     #endif
 | |
|     #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
 | |
|       #endif
 | |
|       #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
 | |
|         #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
 | |
|       #endif
 | |
|       do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
 | |
|     #endif
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|  // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
 | |
|   #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
 | |
|     #if ENABLED(Z_MIN_PROBE_ENDSTOP)
 | |
|       #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
 | |
|     #else
 | |
|       #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #define DEPLOY_PROBE() set_probe_deployed( true )
 | |
|   #define STOW_PROBE() set_probe_deployed( false )
 | |
| 
 | |
|   // returns false for ok and true for failure
 | |
|   static bool set_probe_deployed(bool deploy) {
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         DEBUG_POS("set_probe_deployed", current_position);
 | |
|         SERIAL_ECHOPAIR("deploy: ", deploy);
 | |
|         SERIAL_EOL;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (endstops.z_probe_enabled == deploy) return false;
 | |
| 
 | |
|     // Make room for probe
 | |
|     do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
 | |
| 
 | |
|     #if ENABLED(Z_PROBE_SLED)
 | |
|       if (axis_unhomed_error(true, false, false)) { stop(); return true; }
 | |
|     #elif ENABLED(Z_PROBE_ALLEN_KEY)
 | |
|       if (axis_unhomed_error(true, true,  true )) { stop(); return true; }
 | |
|     #endif
 | |
| 
 | |
|     float oldXpos = current_position[X_AXIS]; // save x position
 | |
|     float oldYpos = current_position[Y_AXIS]; // save y position
 | |
| 
 | |
|     #ifdef _TRIGGERED_WHEN_STOWED_TEST
 | |
|       // If endstop is already false, the Z probe is deployed
 | |
|       if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
 | |
|                                                    // Would a goto be less ugly?
 | |
|       //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
 | |
|       // for a triggered when stowed manual probe.
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(Z_PROBE_SLED)
 | |
|       dock_sled(!deploy);
 | |
|     #elif HAS_Z_SERVO_ENDSTOP
 | |
|       servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
 | |
|     #elif ENABLED(Z_PROBE_ALLEN_KEY)
 | |
|       if (!deploy) run_stow_moves_script();
 | |
|       else run_deploy_moves_script();
 | |
|      #else
 | |
|       // Nothing to be done. Just enable_z_probe below...
 | |
|     #endif
 | |
| 
 | |
|     #ifdef _TRIGGERED_WHEN_STOWED_TEST
 | |
|       }; // opened before the probe specific actions
 | |
| 
 | |
|       if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
 | |
|         if (IsRunning()) {
 | |
|           SERIAL_ERROR_START;
 | |
|           SERIAL_ERRORLNPGM("Z-Probe failed");
 | |
|           LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | |
|         }
 | |
|         stop();
 | |
|         return true;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
 | |
|     endstops.enable_z_probe( deploy );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do a single Z probe and return with current_position[Z_AXIS]
 | |
|   // at the height where the probe triggered.
 | |
|   static float run_z_probe() {
 | |
| 
 | |
|     // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
 | |
|     refresh_cmd_timeout();
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|       planner.bed_level_matrix.set_to_identity();
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PROBE_DOUBLE_TOUCH)
 | |
|       do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST);
 | |
|       endstops.hit_on_purpose();
 | |
|       set_current_from_steppers_for_axis(Z_AXIS);
 | |
|       SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|       // move up the retract distance
 | |
|       do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
 | |
|     #else
 | |
|       // move fast, close to the bed
 | |
|       do_blocking_move_to_z(home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
 | |
|     #endif
 | |
| 
 | |
|     // move down slowly to find bed
 | |
|     do_blocking_move_to_z(current_position[Z_AXIS] -2.0*home_bump_mm(Z_AXIS), Z_PROBE_SPEED_SLOW);
 | |
|     endstops.hit_on_purpose();
 | |
|     set_current_from_steppers_for_axis(Z_AXIS);
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
 | |
|     #endif
 | |
| 
 | |
|     return current_position[Z_AXIS];
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // - Move to the given XY
 | |
|   // - Deploy the probe, if not already deployed
 | |
|   // - Probe the bed, get the Z position
 | |
|   // - Depending on the 'stow' flag
 | |
|   //   - Stow the probe, or
 | |
|   //   - Raise to the BETWEEN height
 | |
|   // - Return the probed Z position
 | |
|   //
 | |
|   static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR(">>> probe_pt(", x);
 | |
|         SERIAL_ECHOPAIR(", ", y);
 | |
|         SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
 | |
|         SERIAL_ECHOLNPGM(")");
 | |
|         DEBUG_POS("", current_position);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     float old_feedrate_mm_m = feedrate_mm_m;
 | |
| 
 | |
|     // Ensure a minimum height before moving the probe
 | |
|     do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
 | |
| 
 | |
|     // Move to the XY where we shall probe
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
 | |
|         SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
 | |
|         SERIAL_ECHOLNPGM(")");
 | |
|       }
 | |
|     #endif
 | |
|     feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
 | |
|     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
 | |
|     #endif
 | |
|     if (DEPLOY_PROBE()) return NAN;
 | |
| 
 | |
|     float measured_z = run_z_probe();
 | |
| 
 | |
|     if (stow) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
 | |
|       #endif
 | |
|       if (STOW_PROBE()) return NAN;
 | |
|     }
 | |
|     else {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
 | |
|       #endif
 | |
|       do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
 | |
|     }
 | |
| 
 | |
|     if (verbose_level > 2) {
 | |
|       SERIAL_PROTOCOLPGM("Bed X: ");
 | |
|       SERIAL_PROTOCOL_F(x, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Y: ");
 | |
|       SERIAL_PROTOCOL_F(y, 3);
 | |
|       SERIAL_PROTOCOLPGM(" Z: ");
 | |
|       SERIAL_PROTOCOL_F(measured_z, 3);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
 | |
|     #endif
 | |
| 
 | |
|     feedrate_mm_m = old_feedrate_mm_m;
 | |
| 
 | |
|     return measured_z;
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_GRID)
 | |
| 
 | |
|     #if DISABLED(DELTA)
 | |
| 
 | |
|       static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
 | |
| 
 | |
|         //planner.bed_level_matrix.debug("bed level before");
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           planner.bed_level_matrix.set_to_identity();
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             vector_3 uncorrected_position = planner.adjusted_position();
 | |
|             DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
 | |
|             DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
 | |
|         planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
| 
 | |
|         vector_3 corrected_position = planner.adjusted_position();
 | |
|         current_position[X_AXIS] = corrected_position.x;
 | |
|         current_position[Y_AXIS] = corrected_position.y;
 | |
|         current_position[Z_AXIS] = corrected_position.z;
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
 | |
|         #endif
 | |
| 
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|       }
 | |
| 
 | |
|     #endif // !DELTA
 | |
| 
 | |
|   #else // !AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|     static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
 | |
| 
 | |
|       planner.bed_level_matrix.set_to_identity();
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) {
 | |
|           vector_3 uncorrected_position = planner.adjusted_position();
 | |
|           DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
 | |
|       vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
 | |
|       vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
 | |
|       vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
 | |
| 
 | |
|       if (planeNormal.z < 0) {
 | |
|         planeNormal.x = -planeNormal.x;
 | |
|         planeNormal.y = -planeNormal.y;
 | |
|         planeNormal.z = -planeNormal.z;
 | |
|       }
 | |
| 
 | |
|       planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
|       vector_3 corrected_position = planner.adjusted_position();
 | |
| 
 | |
|       current_position[X_AXIS] = corrected_position.x;
 | |
|       current_position[Y_AXIS] = corrected_position.y;
 | |
|       current_position[Z_AXIS] = corrected_position.z;
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
 | |
|       #endif
 | |
| 
 | |
|       SYNC_PLAN_POSITION_KINEMATIC();
 | |
|     }
 | |
| 
 | |
|   #endif // !AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
| 
 | |
|     /**
 | |
|      * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
 | |
|      */
 | |
|     static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
 | |
|       if (bed_level[x][y] != 0.0) {
 | |
|         return;  // Don't overwrite good values.
 | |
|       }
 | |
|       float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
 | |
|       float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
 | |
|       float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
 | |
|       float median = c;  // Median is robust (ignores outliers).
 | |
|       if (a < b) {
 | |
|         if (b < c) median = b;
 | |
|         if (c < a) median = a;
 | |
|       }
 | |
|       else {  // b <= a
 | |
|         if (c < b) median = b;
 | |
|         if (a < c) median = a;
 | |
|       }
 | |
|       bed_level[x][y] = median;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Fill in the unprobed points (corners of circular print surface)
 | |
|      * using linear extrapolation, away from the center.
 | |
|      */
 | |
|     static void extrapolate_unprobed_bed_level() {
 | |
|       int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
 | |
|       for (int y = 0; y <= half; y++) {
 | |
|         for (int x = 0; x <= half; x++) {
 | |
|           if (x + y < 3) continue;
 | |
|           extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
 | |
|           extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
 | |
|           extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
 | |
|           extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Print calibration results for plotting or manual frame adjustment.
 | |
|      */
 | |
|     static void print_bed_level() {
 | |
|       for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | |
|         for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | |
|           SERIAL_PROTOCOL_F(bed_level[x][y], 2);
 | |
|           SERIAL_PROTOCOLCHAR(' ');
 | |
|         }
 | |
|         SERIAL_EOL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Reset calibration results to zero.
 | |
|      */
 | |
|     void reset_bed_level() {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
 | |
|       #endif
 | |
|       for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
 | |
|         for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
 | |
|           bed_level[x][y] = 0.0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   #endif // DELTA
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
| /**
 | |
|  * Home an individual axis
 | |
|  */
 | |
| 
 | |
| #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
 | |
| 
 | |
| static void homeaxis(AxisEnum axis) {
 | |
|   #define HOMEAXIS_DO(LETTER) \
 | |
|     ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
 | |
| 
 | |
|   if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> homeaxis(", axis);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   int axis_home_dir =
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       (axis == X_AXIS) ? x_home_dir(active_extruder) :
 | |
|     #endif
 | |
|     home_dir(axis);
 | |
| 
 | |
|   // Homing Z towards the bed? Deploy the Z probe or endstop.
 | |
|   #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
 | |
|     if (axis == Z_AXIS && axis_home_dir < 0) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
 | |
|       #endif
 | |
|       if (DEPLOY_PROBE()) return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Set the axis position as setup for the move
 | |
|   current_position[axis] = 0;
 | |
|   sync_plan_position();
 | |
| 
 | |
|   // Set a flag for Z motor locking
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     if (axis == Z_AXIS) stepper.set_homing_flag(true);
 | |
|   #endif
 | |
| 
 | |
|   // Move towards the endstop until an endstop is triggered
 | |
|   line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
 | |
| 
 | |
|   // Set the axis position as setup for the move
 | |
|   current_position[axis] = 0;
 | |
|   sync_plan_position();
 | |
| 
 | |
|   // Move away from the endstop by the axis HOME_BUMP_MM
 | |
|   line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
 | |
| 
 | |
|   // Move slowly towards the endstop until triggered
 | |
|   line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
 | |
| 
 | |
|   // reset current_position to 0 to reflect hitting endpoint
 | |
|   current_position[axis] = 0;
 | |
|   sync_plan_position();
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(Z_DUAL_ENDSTOPS)
 | |
|     if (axis == Z_AXIS) {
 | |
|       float adj = fabs(z_endstop_adj);
 | |
|       bool lockZ1;
 | |
|       if (axis_home_dir > 0) {
 | |
|         adj = -adj;
 | |
|         lockZ1 = (z_endstop_adj > 0);
 | |
|       }
 | |
|       else
 | |
|         lockZ1 = (z_endstop_adj < 0);
 | |
| 
 | |
|       if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
 | |
| 
 | |
|       // Move to the adjusted endstop height
 | |
|       line_to_axis_pos(axis, adj);
 | |
| 
 | |
|       if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
 | |
|       stepper.set_homing_flag(false);
 | |
|     } // Z_AXIS
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     // retrace by the amount specified in endstop_adj
 | |
|     if (endstop_adj[axis] * axis_home_dir < 0) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) {
 | |
|           SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
 | |
|           DEBUG_POS("", current_position);
 | |
|         }
 | |
|       #endif
 | |
|       line_to_axis_pos(axis, endstop_adj[axis]);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   // Set the axis position to its home position (plus home offsets)
 | |
|   set_axis_is_at_home(axis);
 | |
| 
 | |
|   SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
 | |
|   #endif
 | |
| 
 | |
|   destination[axis] = current_position[axis];
 | |
|   endstops.hit_on_purpose(); // clear endstop hit flags
 | |
|   axis_known_position[axis] = true;
 | |
|   axis_homed[axis] = true;
 | |
| 
 | |
|   // Put away the Z probe
 | |
|   #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
 | |
|     if (axis == Z_AXIS && axis_home_dir < 0) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
 | |
|       #endif
 | |
|       if (STOW_PROBE()) return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR("<<< homeaxis(", axis);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   void retract(bool retracting, bool swapping = false) {
 | |
| 
 | |
|     if (retracting == retracted[active_extruder]) return;
 | |
| 
 | |
|     float old_feedrate_mm_m = feedrate_mm_m;
 | |
| 
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     if (retracting) {
 | |
| 
 | |
|       feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
 | |
|       current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
 | |
|       sync_plan_position_e();
 | |
|       prepare_move_to_destination();
 | |
| 
 | |
|       if (retract_zlift > 0.01) {
 | |
|         current_position[Z_AXIS] -= retract_zlift;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         prepare_move_to_destination();
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
| 
 | |
|       if (retract_zlift > 0.01) {
 | |
|         current_position[Z_AXIS] += retract_zlift;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|       }
 | |
| 
 | |
|       feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
 | |
|       float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
 | |
|       current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
 | |
|       sync_plan_position_e();
 | |
|       prepare_move_to_destination();
 | |
|     }
 | |
| 
 | |
|     feedrate_mm_m = old_feedrate_mm_m;
 | |
|     retracted[active_extruder] = retracting;
 | |
| 
 | |
|   } // retract()
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
| 
 | |
|   void normalize_mix() {
 | |
|     float mix_total = 0.0;
 | |
|     for (int i = 0; i < MIXING_STEPPERS; i++) {
 | |
|       float v = mixing_factor[i];
 | |
|       if (v < 0) v = mixing_factor[i] = 0;
 | |
|       mix_total += v;
 | |
|     }
 | |
|     // Scale all values if they don't add up to ~1.0
 | |
|     if (mix_total < 0.9999 || mix_total > 1.0001) {
 | |
|       SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
 | |
|       float mix_scale = 1.0 / mix_total;
 | |
|       for (int i = 0; i < MIXING_STEPPERS; i++)
 | |
|         mixing_factor[i] *= mix_scale;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     // Get mixing parameters from the GCode
 | |
|     // Factors that are left out are set to 0
 | |
|     // The total "must" be 1.0 (but it will be normalized)
 | |
|     void gcode_get_mix() {
 | |
|       const char* mixing_codes = "ABCDHI";
 | |
|       for (int i = 0; i < MIXING_STEPPERS; i++)
 | |
|         mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
 | |
| 
 | |
|       normalize_mix();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ***************************************************************************
 | |
|  * ***************************** G-CODE HANDLING *****************************
 | |
|  * ***************************************************************************
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Set XYZE destination and feedrate from the current GCode command
 | |
|  *
 | |
|  *  - Set destination from included axis codes
 | |
|  *  - Set to current for missing axis codes
 | |
|  *  - Set the feedrate, if included
 | |
|  */
 | |
| void gcode_get_destination() {
 | |
|   LOOP_XYZE(i) {
 | |
|     if (code_seen(axis_codes[i]))
 | |
|       destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
 | |
|     else
 | |
|       destination[i] = current_position[i];
 | |
|   }
 | |
| 
 | |
|   if (code_seen('F') && code_value_linear_units() > 0.0)
 | |
|     feedrate_mm_m = code_value_linear_units();
 | |
| 
 | |
|   #if ENABLED(PRINTCOUNTER)
 | |
|     if (!DEBUGGING(DRYRUN))
 | |
|       print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
 | |
|   #endif
 | |
| 
 | |
|   // Get ABCDHI mixing factors
 | |
|   #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     gcode_get_mix();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void unknown_command_error() {
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | |
|   SERIAL_ECHO(current_command);
 | |
|   SERIAL_ECHOLNPGM("\"");
 | |
| }
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * Output a "busy" message at regular intervals
 | |
|    * while the machine is not accepting commands.
 | |
|    */
 | |
|   void host_keepalive() {
 | |
|     millis_t ms = millis();
 | |
|     if (host_keepalive_interval && busy_state != NOT_BUSY) {
 | |
|       if (PENDING(ms, next_busy_signal_ms)) return;
 | |
|       switch (busy_state) {
 | |
|         case IN_HANDLER:
 | |
|         case IN_PROCESS:
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
 | |
|           break;
 | |
|         case PAUSED_FOR_USER:
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
 | |
|           break;
 | |
|         case PAUSED_FOR_INPUT:
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
 | |
|           break;
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
 | |
|   }
 | |
| 
 | |
| #endif //HOST_KEEPALIVE_FEATURE
 | |
| 
 | |
| /**
 | |
|  * G0, G1: Coordinated movement of X Y Z E axes
 | |
|  */
 | |
| inline void gcode_G0_G1() {
 | |
|   if (IsRunning()) {
 | |
|     gcode_get_destination(); // For X Y Z E F
 | |
| 
 | |
|     #if ENABLED(FWRETRACT)
 | |
| 
 | |
|       if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
 | |
|         float echange = destination[E_AXIS] - current_position[E_AXIS];
 | |
|         // Is this move an attempt to retract or recover?
 | |
|         if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
 | |
|           current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
 | |
|           sync_plan_position_e();  // AND from the planner
 | |
|           retract(!retracted[active_extruder]);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #endif //FWRETRACT
 | |
| 
 | |
|     prepare_move_to_destination();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * G2: Clockwise Arc
 | |
|  * G3: Counterclockwise Arc
 | |
|  */
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
|   inline void gcode_G2_G3(bool clockwise) {
 | |
|     if (IsRunning()) {
 | |
| 
 | |
|       #if ENABLED(SF_ARC_FIX)
 | |
|         bool relative_mode_backup = relative_mode;
 | |
|         relative_mode = true;
 | |
|       #endif
 | |
| 
 | |
|       gcode_get_destination();
 | |
| 
 | |
|       #if ENABLED(SF_ARC_FIX)
 | |
|         relative_mode = relative_mode_backup;
 | |
|       #endif
 | |
| 
 | |
|       // Center of arc as offset from current_position
 | |
|       float arc_offset[2] = {
 | |
|         code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
 | |
|         code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
 | |
|       };
 | |
| 
 | |
|       // Send an arc to the planner
 | |
|       plan_arc(destination, arc_offset, clockwise);
 | |
| 
 | |
|       refresh_cmd_timeout();
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * G4: Dwell S<seconds> or P<milliseconds>
 | |
|  */
 | |
| inline void gcode_G4() {
 | |
|   millis_t dwell_ms = 0;
 | |
| 
 | |
|   if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
 | |
|   if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
 | |
| 
 | |
|   stepper.synchronize();
 | |
|   refresh_cmd_timeout();
 | |
|   dwell_ms += previous_cmd_ms;  // keep track of when we started waiting
 | |
| 
 | |
|   if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
 | |
| 
 | |
|   while (PENDING(millis(), dwell_ms)) idle();
 | |
| }
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * Parameters interpreted according to:
 | |
|    * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
 | |
|    * However I, J omission is not supported at this point; all
 | |
|    * parameters can be omitted and default to zero.
 | |
|    */
 | |
| 
 | |
|   /**
 | |
|    * G5: Cubic B-spline
 | |
|    */
 | |
|   inline void gcode_G5() {
 | |
|     if (IsRunning()) {
 | |
| 
 | |
|       gcode_get_destination();
 | |
| 
 | |
|       float offset[] = {
 | |
|         code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
 | |
|         code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
 | |
|         code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
 | |
|         code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
 | |
|       };
 | |
| 
 | |
|       plan_cubic_move(offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   /**
 | |
|    * G10 - Retract filament according to settings of M207
 | |
|    * G11 - Recover filament according to settings of M208
 | |
|    */
 | |
|   inline void gcode_G10_G11(bool doRetract=false) {
 | |
|     #if EXTRUDERS > 1
 | |
|       if (doRetract) {
 | |
|         retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
 | |
|       }
 | |
|     #endif
 | |
|     retract(doRetract
 | |
|      #if EXTRUDERS > 1
 | |
|       , retracted_swap[active_extruder]
 | |
|      #endif
 | |
|     );
 | |
|   }
 | |
| 
 | |
| #endif //FWRETRACT
 | |
| 
 | |
| #if ENABLED(NOZZLE_CLEAN_FEATURE)
 | |
|   /**
 | |
|    * G12: Clean the nozzle
 | |
|    */
 | |
|   inline void gcode_G12() {
 | |
|     // Don't allow nozzle cleaning without homing first
 | |
|     if (axis_unhomed_error(true, true, true)) { return; }
 | |
| 
 | |
|     uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
 | |
|     uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
 | |
|     uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
 | |
| 
 | |
|     Nozzle::clean(pattern, strokes, objects);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(INCH_MODE_SUPPORT)
 | |
|   /**
 | |
|    * G20: Set input mode to inches
 | |
|    */
 | |
|   inline void gcode_G20() {
 | |
|     set_input_linear_units(LINEARUNIT_INCH);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * G21: Set input mode to millimeters
 | |
|    */
 | |
|   inline void gcode_G21() {
 | |
|     set_input_linear_units(LINEARUNIT_MM);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(NOZZLE_PARK_FEATURE)
 | |
|   /**
 | |
|    * G27: Park the nozzle
 | |
|    */
 | |
|   inline void gcode_G27() {
 | |
|     // Don't allow nozzle parking without homing first
 | |
|     if (axis_unhomed_error(true, true, true)) { return; }
 | |
|     uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
 | |
|     Nozzle::park(z_action);
 | |
|   }
 | |
| #endif // NOZZLE_PARK_FEATURE
 | |
| 
 | |
| #if ENABLED(QUICK_HOME)
 | |
| 
 | |
|   static void quick_home_xy() {
 | |
| 
 | |
|     // Pretend the current position is 0,0
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
 | |
|     sync_plan_position();
 | |
| 
 | |
|     int x_axis_home_dir =
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
|         x_home_dir(active_extruder)
 | |
|       #else
 | |
|         home_dir(X_AXIS)
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     float mlx = max_length(X_AXIS),
 | |
|           mly = max_length(Y_AXIS),
 | |
|           mlratio = mlx > mly ? mly / mlx : mlx / mly,
 | |
|           fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
 | |
| 
 | |
|     do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
 | |
|     endstops.hit_on_purpose(); // clear endstop hit flags
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
 | |
| 
 | |
|   }
 | |
| 
 | |
| #endif // QUICK_HOME
 | |
| 
 | |
| /**
 | |
|  * G28: Home all axes according to settings
 | |
|  *
 | |
|  * Parameters
 | |
|  *
 | |
|  *  None  Home to all axes with no parameters.
 | |
|  *        With QUICK_HOME enabled XY will home together, then Z.
 | |
|  *
 | |
|  * Cartesian parameters
 | |
|  *
 | |
|  *  X   Home to the X endstop
 | |
|  *  Y   Home to the Y endstop
 | |
|  *  Z   Home to the Z endstop
 | |
|  *
 | |
|  */
 | |
| inline void gcode_G28() {
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
 | |
|   #endif
 | |
| 
 | |
|   // Wait for planner moves to finish!
 | |
|   stepper.synchronize();
 | |
| 
 | |
|   // For auto bed leveling, clear the level matrix
 | |
|   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     planner.bed_level_matrix.set_to_identity();
 | |
|     #if ENABLED(DELTA)
 | |
|       reset_bed_level();
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   // Always home with tool 0 active
 | |
|   #if HOTENDS > 1
 | |
|     uint8_t old_tool_index = active_extruder;
 | |
|     tool_change(0, 0, true);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
|     extruder_duplication_enabled = false;
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * For mesh bed leveling deactivate the mesh calculations, will be turned
 | |
|    * on again when homing all axis
 | |
|    */
 | |
|   #if ENABLED(MESH_BED_LEVELING)
 | |
|     float pre_home_z = MESH_HOME_SEARCH_Z;
 | |
|     if (mbl.active()) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
 | |
|       #endif
 | |
|       // Save known Z position if already homed
 | |
|       if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
 | |
|         pre_home_z = current_position[Z_AXIS];
 | |
|         pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
 | |
|       }
 | |
|       mbl.set_active(false);
 | |
|       current_position[Z_AXIS] = pre_home_z;
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
 | |
|       #endif
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   setup_for_endstop_or_probe_move();
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
 | |
|   #endif
 | |
|   endstops.enable(true); // Enable endstops for next homing move
 | |
| 
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     /**
 | |
|      * A delta can only safely home all axes at the same time
 | |
|      */
 | |
| 
 | |
|     // Pretend the current position is 0,0,0
 | |
|     // This is like quick_home_xy() but for 3 towers.
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
 | |
|     sync_plan_position();
 | |
| 
 | |
|     // Move all carriages up together until the first endstop is hit.
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
 | |
|     feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
 | |
|     line_to_current_position();
 | |
|     stepper.synchronize();
 | |
|     endstops.hit_on_purpose(); // clear endstop hit flags
 | |
|     current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
 | |
| 
 | |
|     // take care of back off and rehome. Now one carriage is at the top.
 | |
|     HOMEAXIS(X);
 | |
|     HOMEAXIS(Y);
 | |
|     HOMEAXIS(Z);
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
 | |
|     #endif
 | |
| 
 | |
|   #else // NOT DELTA
 | |
| 
 | |
|     bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
 | |
| 
 | |
|     home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
 | |
| 
 | |
|     set_destination_to_current();
 | |
| 
 | |
|     #if Z_HOME_DIR > 0  // If homing away from BED do Z first
 | |
| 
 | |
|       if (home_all_axis || homeZ) {
 | |
|         HOMEAXIS(Z);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #else
 | |
| 
 | |
|       if (home_all_axis || homeX || homeY) {
 | |
|         // Raise Z before homing any other axes and z is not already high enough (never lower z)
 | |
|         destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING);
 | |
|         if (destination[Z_AXIS] > current_position[Z_AXIS]) {
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
 | |
|               SERIAL_EOL;
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           do_blocking_move_to_z(destination[Z_AXIS]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(QUICK_HOME)
 | |
| 
 | |
|       if (home_all_axis || (homeX && homeY)) quick_home_xy();
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(HOME_Y_BEFORE_X)
 | |
| 
 | |
|       // Home Y
 | |
|       if (home_all_axis || homeY) {
 | |
|         HOMEAXIS(Y);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|     #endif
 | |
| 
 | |
|     // Home X
 | |
|     if (home_all_axis || homeX) {
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
|         int tmp_extruder = active_extruder;
 | |
|         active_extruder = !active_extruder;
 | |
|         HOMEAXIS(X);
 | |
|         inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
 | |
|         active_extruder = tmp_extruder;
 | |
|         HOMEAXIS(X);
 | |
|         // reset state used by the different modes
 | |
|         memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | |
|         delayed_move_time = 0;
 | |
|         active_extruder_parked = true;
 | |
|       #else
 | |
|         HOMEAXIS(X);
 | |
|       #endif
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if DISABLED(HOME_Y_BEFORE_X)
 | |
|       // Home Y
 | |
|       if (home_all_axis || homeY) {
 | |
|         HOMEAXIS(Y);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     // Home Z last if homing towards the bed
 | |
|     #if Z_HOME_DIR < 0
 | |
| 
 | |
|       if (home_all_axis || homeZ) {
 | |
| 
 | |
|         #if ENABLED(Z_SAFE_HOMING)
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           if (home_all_axis) {
 | |
| 
 | |
|             /**
 | |
|              * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
 | |
|              * No need to move Z any more as this height should already be safe
 | |
|              * enough to reach Z_SAFE_HOMING XY positions.
 | |
|              * Just make sure the planner is in sync.
 | |
|              */
 | |
|             SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|             /**
 | |
|              * Move the Z probe (or just the nozzle) to the safe homing point
 | |
|              */
 | |
|             destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
 | |
|             destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
 | |
|             destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
 | |
| 
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
 | |
|                 DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
 | |
|               }
 | |
|             #endif
 | |
| 
 | |
|             // Move in the XY plane
 | |
|             do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
 | |
|           }
 | |
| 
 | |
|           // Let's see if X and Y are homed
 | |
|           if (axis_unhomed_error(true, true, false)) return;
 | |
| 
 | |
|           /**
 | |
|            * Make sure the Z probe is within the physical limits
 | |
|            * NOTE: This doesn't necessarily ensure the Z probe is also
 | |
|            * within the bed!
 | |
|            */
 | |
|           float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
 | |
|           if (   cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
 | |
|               && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
 | |
|               && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
 | |
|               && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
 | |
| 
 | |
|             // Home the Z axis
 | |
|             HOMEAXIS(Z);
 | |
|           }
 | |
|           else {
 | |
|             LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
 | |
|             SERIAL_ECHO_START;
 | |
|             SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
 | |
|           }
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|         #else // !Z_SAFE_HOMING
 | |
| 
 | |
|           HOMEAXIS(Z);
 | |
| 
 | |
|         #endif // !Z_SAFE_HOMING
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
 | |
|         #endif
 | |
| 
 | |
|       } // home_all_axis || homeZ
 | |
| 
 | |
|     #endif // Z_HOME_DIR < 0
 | |
| 
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|   #endif // !DELTA (gcode_G28)
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
 | |
|   #endif
 | |
|   endstops.not_homing();
 | |
|   endstops.hit_on_purpose(); // clear endstop hit flags
 | |
| 
 | |
|   // Enable mesh leveling again
 | |
|   #if ENABLED(MESH_BED_LEVELING)
 | |
|     if (mbl.has_mesh()) {
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
 | |
|       #endif
 | |
|       if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
 | |
|         #endif
 | |
|         current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
 | |
|           #if Z_HOME_DIR > 0
 | |
|             + Z_MAX_POS
 | |
|           #endif
 | |
|         ;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         mbl.set_active(true);
 | |
|         #if ENABLED(MESH_G28_REST_ORIGIN)
 | |
|           current_position[Z_AXIS] = 0.0;
 | |
|           set_destination_to_current();
 | |
|           feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
 | |
|           line_to_destination();
 | |
|           stepper.synchronize();
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
 | |
|           #endif
 | |
|         #else
 | |
|           current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
 | |
|             mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
 | |
|             #if Z_HOME_DIR > 0
 | |
|               + Z_MAX_POS
 | |
|             #endif
 | |
|           ;
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
 | |
|           #endif
 | |
|         #endif
 | |
|       }
 | |
|       else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
 | |
|         current_position[Z_AXIS] = pre_home_z;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         mbl.set_active(true);
 | |
|         current_position[Z_AXIS] = pre_home_z -
 | |
|           mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA)
 | |
|     // move to a height where we can use the full xy-area
 | |
|     do_blocking_move_to_z(delta_clip_start_height);
 | |
|   #endif
 | |
| 
 | |
|   clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
 | |
|   #endif
 | |
| 
 | |
|   // Restore the active tool after homing
 | |
|   #if HOTENDS > 1
 | |
|     tool_change(old_tool_index, 0, true);
 | |
|   #endif
 | |
| 
 | |
|   report_current_position();
 | |
| }
 | |
| 
 | |
| #if HAS_PROBING_PROCEDURE
 | |
| 
 | |
|   void out_of_range_error(const char* p_edge) {
 | |
|     SERIAL_PROTOCOLPGM("?Probe ");
 | |
|     serialprintPGM(p_edge);
 | |
|     SERIAL_PROTOCOLLNPGM(" position out of range.");
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
|   inline void _mbl_goto_xy(float x, float y) {
 | |
|     float old_feedrate_mm_m = feedrate_mm_m;
 | |
|     feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
 | |
| 
 | |
|     current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
 | |
|       #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
 | |
|         + Z_RAISE_BETWEEN_PROBINGS
 | |
|       #elif MIN_Z_HEIGHT_FOR_HOMING > 0
 | |
|         + MIN_Z_HEIGHT_FOR_HOMING
 | |
|       #endif
 | |
|     ;
 | |
|     line_to_current_position();
 | |
| 
 | |
|     current_position[X_AXIS] = LOGICAL_X_POSITION(x);
 | |
|     current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
 | |
|     line_to_current_position();
 | |
| 
 | |
|     #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
 | |
|       current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
 | |
|       line_to_current_position();
 | |
|     #endif
 | |
| 
 | |
|     feedrate_mm_m = old_feedrate_mm_m;
 | |
|     stepper.synchronize();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * G29: Mesh-based Z probe, probes a grid and produces a
 | |
|    *      mesh to compensate for variable bed height
 | |
|    *
 | |
|    * Parameters With MESH_BED_LEVELING:
 | |
|    *
 | |
|    *  S0              Produce a mesh report
 | |
|    *  S1              Start probing mesh points
 | |
|    *  S2              Probe the next mesh point
 | |
|    *  S3 Xn Yn Zn.nn  Manually modify a single point
 | |
|    *  S4 Zn.nn        Set z offset. Positive away from bed, negative closer to bed.
 | |
|    *  S5              Reset and disable mesh
 | |
|    *
 | |
|    * The S0 report the points as below
 | |
|    *
 | |
|    *  +----> X-axis  1-n
 | |
|    *  |
 | |
|    *  |
 | |
|    *  v Y-axis  1-n
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_G29() {
 | |
| 
 | |
|     static int probe_point = -1;
 | |
|     MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
 | |
|     if (state < 0 || state > 5) {
 | |
|       SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int8_t px, py;
 | |
| 
 | |
|     switch (state) {
 | |
|       case MeshReport:
 | |
|         if (mbl.has_mesh()) {
 | |
|           SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
 | |
|           SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
 | |
|           SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
 | |
|           SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
 | |
|           SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
 | |
|           SERIAL_PROTOCOLLNPGM("\nMeasured points:");
 | |
|           for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
 | |
|             for (px = 0; px < MESH_NUM_X_POINTS; px++) {
 | |
|               SERIAL_PROTOCOLPGM("  ");
 | |
|               SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
 | |
|             }
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         }
 | |
|         else
 | |
|           SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
 | |
|         break;
 | |
| 
 | |
|       case MeshStart:
 | |
|         mbl.reset();
 | |
|         probe_point = 0;
 | |
|         enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
 | |
|         break;
 | |
| 
 | |
|       case MeshNext:
 | |
|         if (probe_point < 0) {
 | |
|           SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
 | |
|           return;
 | |
|         }
 | |
|         // For each G29 S2...
 | |
|         if (probe_point == 0) {
 | |
|           // For the initial G29 S2 make Z a positive value (e.g., 4.0)
 | |
|           current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
 | |
|             #if Z_HOME_DIR > 0
 | |
|               + Z_MAX_POS
 | |
|             #endif
 | |
|           ;
 | |
|           SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         }
 | |
|         else {
 | |
|           // For G29 S2 after adjusting Z.
 | |
|           mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
 | |
|         }
 | |
|         // If there's another point to sample, move there with optional lift.
 | |
|         if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
 | |
|           mbl.zigzag(probe_point, px, py);
 | |
|           _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
 | |
|           probe_point++;
 | |
|         }
 | |
|         else {
 | |
|           // One last "return to the bed" (as originally coded) at completion
 | |
|           current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
 | |
|             #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
 | |
|               + Z_RAISE_BETWEEN_PROBINGS
 | |
|             #elif MIN_Z_HEIGHT_FOR_HOMING > 0
 | |
|               + MIN_Z_HEIGHT_FOR_HOMING
 | |
|             #endif
 | |
|           ;
 | |
|           line_to_current_position();
 | |
|           stepper.synchronize();
 | |
| 
 | |
|           // After recording the last point, activate the mbl and home
 | |
|           SERIAL_PROTOCOLLNPGM("Mesh probing done.");
 | |
|           probe_point = -1;
 | |
|           mbl.set_has_mesh(true);
 | |
|           enqueue_and_echo_commands_P(PSTR("G28"));
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshSet:
 | |
|         if (code_seen('X')) {
 | |
|           px = code_value_int() - 1;
 | |
|           if (px < 0 || px >= MESH_NUM_X_POINTS) {
 | |
|             SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM("X not entered.");
 | |
|           return;
 | |
|         }
 | |
|         if (code_seen('Y')) {
 | |
|           py = code_value_int() - 1;
 | |
|           if (py < 0 || py >= MESH_NUM_Y_POINTS) {
 | |
|             SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM("Y not entered.");
 | |
|           return;
 | |
|         }
 | |
|         if (code_seen('Z')) {
 | |
|           mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM("Z not entered.");
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshSetZOffset:
 | |
|         if (code_seen('Z')) {
 | |
|           mbl.z_offset = code_value_axis_units(Z_AXIS);
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM("Z not entered.");
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case MeshReset:
 | |
|         if (mbl.active()) {
 | |
|           current_position[Z_AXIS] +=
 | |
|             mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
 | |
|           mbl.reset();
 | |
|           SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         }
 | |
|         else
 | |
|           mbl.reset();
 | |
| 
 | |
|     } // switch(state)
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * G29: Detailed Z probe, probes the bed at 3 or more points.
 | |
|    *      Will fail if the printer has not been homed with G28.
 | |
|    *
 | |
|    * Enhanced G29 Auto Bed Leveling Probe Routine
 | |
|    *
 | |
|    * Parameters With AUTO_BED_LEVELING_GRID:
 | |
|    *
 | |
|    *  P  Set the size of the grid that will be probed (P x P points).
 | |
|    *     Not supported by non-linear delta printer bed leveling.
 | |
|    *     Example: "G29 P4"
 | |
|    *
 | |
|    *  S  Set the XY travel speed between probe points (in units/min)
 | |
|    *
 | |
|    *  D  Dry-Run mode. Just evaluate the bed Topology - Don't apply
 | |
|    *     or clean the rotation Matrix. Useful to check the topology
 | |
|    *     after a first run of G29.
 | |
|    *
 | |
|    *  V  Set the verbose level (0-4). Example: "G29 V3"
 | |
|    *
 | |
|    *  T  Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
 | |
|    *     This is useful for manual bed leveling and finding flaws in the bed (to
 | |
|    *     assist with part placement).
 | |
|    *     Not supported by non-linear delta printer bed leveling.
 | |
|    *
 | |
|    *  F  Set the Front limit of the probing grid
 | |
|    *  B  Set the Back limit of the probing grid
 | |
|    *  L  Set the Left limit of the probing grid
 | |
|    *  R  Set the Right limit of the probing grid
 | |
|    *
 | |
|    * Global Parameters:
 | |
|    *
 | |
|    * E/e By default G29 will engage the Z probe, test the bed, then disengage.
 | |
|    *     Include "E" to engage/disengage the Z probe for each sample.
 | |
|    *     There's no extra effect if you have a fixed Z probe.
 | |
|    *     Usage: "G29 E" or "G29 e"
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_G29() {
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOLNPGM(">>> gcode_G29");
 | |
|         DEBUG_POS("", current_position);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     // Don't allow auto-leveling without homing first
 | |
|     if (axis_unhomed_error(true, true, true)) return;
 | |
| 
 | |
|     int verbose_level = code_seen('V') ? code_value_int() : 1;
 | |
|     if (verbose_level < 0 || verbose_level > 4) {
 | |
|       SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     bool dryrun = code_seen('D');
 | |
|     bool stow_probe_after_each = code_seen('E');
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_GRID)
 | |
| 
 | |
|       #if DISABLED(DELTA)
 | |
|         bool do_topography_map = verbose_level > 2 || code_seen('T');
 | |
|       #endif
 | |
| 
 | |
|       if (verbose_level > 0) {
 | |
|         SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
 | |
|         if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
 | |
|       }
 | |
| 
 | |
|       int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
 | |
| 
 | |
|       #if DISABLED(DELTA)
 | |
|         if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
 | |
|         if (auto_bed_leveling_grid_points < 2) {
 | |
|           SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
 | |
| 
 | |
|       int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
 | |
|           right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
 | |
|           front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
 | |
|           back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
 | |
| 
 | |
|       bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
 | |
|            left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
 | |
|            right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
 | |
|            right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
 | |
|            front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
 | |
|            front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
 | |
|            back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
 | |
|            back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
 | |
| 
 | |
|       if (left_out || right_out || front_out || back_out) {
 | |
|         if (left_out) {
 | |
|           out_of_range_error(PSTR("(L)eft"));
 | |
|           left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
 | |
|         }
 | |
|         if (right_out) {
 | |
|           out_of_range_error(PSTR("(R)ight"));
 | |
|           right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
 | |
|         }
 | |
|         if (front_out) {
 | |
|           out_of_range_error(PSTR("(F)ront"));
 | |
|           front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
 | |
|         }
 | |
|         if (back_out) {
 | |
|           out_of_range_error(PSTR("(B)ack"));
 | |
|           back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     #endif // AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|     if (!dryrun) {
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
 | |
|         if (DEBUGGING(LEVELING)) {
 | |
|           vector_3 corrected_position = planner.adjusted_position();
 | |
|           DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
 | |
|           DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
 | |
|       planner.bed_level_matrix.set_to_identity();
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         reset_bed_level();
 | |
|       #else //!DELTA
 | |
| 
 | |
|         //vector_3 corrected_position = planner.adjusted_position();
 | |
|         //corrected_position.debug("position before G29");
 | |
|         vector_3 uncorrected_position = planner.adjusted_position();
 | |
|         //uncorrected_position.debug("position during G29");
 | |
|         current_position[X_AXIS] = uncorrected_position.x;
 | |
|         current_position[Y_AXIS] = uncorrected_position.y;
 | |
|         current_position[Z_AXIS] = uncorrected_position.z;
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
 | |
|         #endif
 | |
| 
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|       #endif // !DELTA
 | |
|     }
 | |
| 
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     // Deploy the probe. Probe will raise if needed.
 | |
|     if (DEPLOY_PROBE()) return;
 | |
| 
 | |
|     bed_leveling_in_progress = true;
 | |
| 
 | |
|     #if ENABLED(AUTO_BED_LEVELING_GRID)
 | |
| 
 | |
|       // probe at the points of a lattice grid
 | |
|       const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
 | |
|                 yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         delta_grid_spacing[0] = xGridSpacing;
 | |
|         delta_grid_spacing[1] = yGridSpacing;
 | |
|         float zoffset = zprobe_zoffset;
 | |
|         if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
 | |
|       #else // !DELTA
 | |
|         /**
 | |
|          * solve the plane equation ax + by + d = z
 | |
|          * A is the matrix with rows [x y 1] for all the probed points
 | |
|          * B is the vector of the Z positions
 | |
|          * the normal vector to the plane is formed by the coefficients of the
 | |
|          * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | |
|          * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | |
|          */
 | |
| 
 | |
|         int abl2 = sq(auto_bed_leveling_grid_points);
 | |
| 
 | |
|         double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
 | |
|                eqnBVector[abl2],     // "B" vector of Z points
 | |
|                mean = 0.0;
 | |
|         int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
 | |
|       #endif // !DELTA
 | |
| 
 | |
|       int probePointCounter = 0;
 | |
|       bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
 | |
| 
 | |
|       for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
 | |
|         double yProbe = front_probe_bed_position + yGridSpacing * yCount;
 | |
|         int xStart, xStop, xInc;
 | |
| 
 | |
|         if (zig) {
 | |
|           xStart = 0;
 | |
|           xStop = auto_bed_leveling_grid_points;
 | |
|           xInc = 1;
 | |
|         }
 | |
|         else {
 | |
|           xStart = auto_bed_leveling_grid_points - 1;
 | |
|           xStop = -1;
 | |
|           xInc = -1;
 | |
|         }
 | |
| 
 | |
|         zig = !zig;
 | |
| 
 | |
|         for (int xCount = xStart; xCount != xStop; xCount += xInc) {
 | |
|           double xProbe = left_probe_bed_position + xGridSpacing * xCount;
 | |
| 
 | |
|           #if ENABLED(DELTA)
 | |
|             // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
 | |
|             float distance_from_center = HYPOT(xProbe, yProbe);
 | |
|             if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
 | |
|           #endif //DELTA
 | |
| 
 | |
|           float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
 | |
| 
 | |
|           #if DISABLED(DELTA)
 | |
|             mean += measured_z;
 | |
| 
 | |
|             eqnBVector[probePointCounter] = measured_z;
 | |
|             eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
 | |
|             eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
 | |
|             eqnAMatrix[probePointCounter + 2 * abl2] = 1;
 | |
|             indexIntoAB[xCount][yCount] = probePointCounter;
 | |
|           #else
 | |
|             bed_level[xCount][yCount] = measured_z + zoffset;
 | |
|           #endif
 | |
| 
 | |
|           probePointCounter++;
 | |
| 
 | |
|           idle();
 | |
| 
 | |
|         } //xProbe
 | |
|       } //yProbe
 | |
| 
 | |
|     #else // !AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
 | |
|       #endif
 | |
| 
 | |
|       // Probe at 3 arbitrary points
 | |
|       float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
 | |
|                                   LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
 | |
|                                   stow_probe_after_each, verbose_level),
 | |
|             z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
 | |
|                                   LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
 | |
|                                   stow_probe_after_each, verbose_level),
 | |
|             z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
 | |
|                                   LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
 | |
|                                   stow_probe_after_each, verbose_level);
 | |
| 
 | |
|       if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
 | |
| 
 | |
|     #endif // !AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|     // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
 | |
|     if (STOW_PROBE()) return;
 | |
| 
 | |
|     // Restore state after probing
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
 | |
|     #endif
 | |
| 
 | |
|     // Calculate leveling, print reports, correct the position
 | |
|     #if ENABLED(AUTO_BED_LEVELING_GRID)
 | |
|       #if ENABLED(DELTA)
 | |
| 
 | |
|         if (!dryrun) extrapolate_unprobed_bed_level();
 | |
|         print_bed_level();
 | |
| 
 | |
|       #else // !DELTA
 | |
| 
 | |
|         // solve lsq problem
 | |
|         double plane_equation_coefficients[3];
 | |
|         qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
 | |
| 
 | |
|         mean /= abl2;
 | |
| 
 | |
|         if (verbose_level) {
 | |
|           SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | |
|           SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
 | |
|           SERIAL_PROTOCOLPGM(" b: ");
 | |
|           SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
 | |
|           SERIAL_PROTOCOLPGM(" d: ");
 | |
|           SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
 | |
|           SERIAL_EOL;
 | |
|           if (verbose_level > 2) {
 | |
|             SERIAL_PROTOCOLPGM("Mean of sampled points: ");
 | |
|             SERIAL_PROTOCOL_F(mean, 8);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
 | |
| 
 | |
|         // Show the Topography map if enabled
 | |
|         if (do_topography_map) {
 | |
| 
 | |
|           SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
 | |
|                                  "   +--- BACK --+\n"
 | |
|                                  "   |           |\n"
 | |
|                                  " L |    (+)    | R\n"
 | |
|                                  " E |           | I\n"
 | |
|                                  " F | (-) N (+) | G\n"
 | |
|                                  " T |           | H\n"
 | |
|                                  "   |    (-)    | T\n"
 | |
|                                  "   |           |\n"
 | |
|                                  "   O-- FRONT --+\n"
 | |
|                                  " (0,0)");
 | |
| 
 | |
|           float min_diff = 999;
 | |
| 
 | |
|           for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
 | |
|             for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
 | |
|               int ind = indexIntoAB[xx][yy];
 | |
|               float diff = eqnBVector[ind] - mean;
 | |
| 
 | |
|               float x_tmp = eqnAMatrix[ind + 0 * abl2],
 | |
|                     y_tmp = eqnAMatrix[ind + 1 * abl2],
 | |
|                     z_tmp = 0;
 | |
| 
 | |
|               apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
 | |
| 
 | |
|               NOMORE(min_diff, eqnBVector[ind] - z_tmp);
 | |
| 
 | |
|               if (diff >= 0.0)
 | |
|                 SERIAL_PROTOCOLPGM(" +");   // Include + for column alignment
 | |
|               else
 | |
|                 SERIAL_PROTOCOLCHAR(' ');
 | |
|               SERIAL_PROTOCOL_F(diff, 5);
 | |
|             } // xx
 | |
|             SERIAL_EOL;
 | |
|           } // yy
 | |
|           SERIAL_EOL;
 | |
|           if (verbose_level > 3) {
 | |
|             SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
 | |
| 
 | |
|             for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
 | |
|               for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
 | |
|                 int ind = indexIntoAB[xx][yy];
 | |
|                 float x_tmp = eqnAMatrix[ind + 0 * abl2],
 | |
|                       y_tmp = eqnAMatrix[ind + 1 * abl2],
 | |
|                       z_tmp = 0;
 | |
| 
 | |
|                 apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
 | |
| 
 | |
|                 float diff = eqnBVector[ind] - z_tmp - min_diff;
 | |
|                 if (diff >= 0.0)
 | |
|                   SERIAL_PROTOCOLPGM(" +");
 | |
|                 // Include + for column alignment
 | |
|                 else
 | |
|                   SERIAL_PROTOCOLCHAR(' ');
 | |
|                 SERIAL_PROTOCOL_F(diff, 5);
 | |
|               } // xx
 | |
|               SERIAL_EOL;
 | |
|             } // yy
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         } //do_topography_map
 | |
|       #endif //!DELTA
 | |
|     #endif // AUTO_BED_LEVELING_GRID
 | |
| 
 | |
|     #if DISABLED(DELTA)
 | |
|       if (verbose_level > 0)
 | |
|         planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
 | |
| 
 | |
|       if (!dryrun) {
 | |
|         /**
 | |
|          * Correct the Z height difference from Z probe position and nozzle tip position.
 | |
|          * The Z height on homing is measured by Z probe, but the Z probe is quite far
 | |
|          * from the nozzle. When the bed is uneven, this height must be corrected.
 | |
|          */
 | |
|         float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|               y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|               z_tmp = current_position[Z_AXIS],
 | |
|               stepper_z = stepper.get_axis_position_mm(Z_AXIS);  //get the real Z (since planner.adjusted_position is now correcting the plane)
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
 | |
|             SERIAL_ECHOPAIR(" ... z_tmp  = ", z_tmp);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         // Apply the correction sending the Z probe offset
 | |
|         apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp  = ", z_tmp);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         // Adjust the current Z and send it to the planner.
 | |
|         current_position[Z_AXIS] += z_tmp - stepper_z;
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
 | |
|         #endif
 | |
|       }
 | |
|     #endif // !DELTA
 | |
| 
 | |
|     #ifdef Z_PROBE_END_SCRIPT
 | |
|       #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|         if (DEBUGGING(LEVELING)) {
 | |
|           SERIAL_ECHOPGM("Z Probe End Script: ");
 | |
|           SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
 | |
|         }
 | |
|       #endif
 | |
|       enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
 | |
|       stepper.synchronize();
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
 | |
|     #endif
 | |
| 
 | |
|     bed_leveling_in_progress = false;
 | |
| 
 | |
|     report_current_position();
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   }
 | |
| 
 | |
| #endif //AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   /**
 | |
|    * G30: Do a single Z probe at the current XY
 | |
|    */
 | |
|   inline void gcode_G30() {
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     // TODO: clear the leveling matrix or the planner will be set incorrectly
 | |
|     float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|                                 current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
 | |
|                                 true, 1);
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Bed X: ");
 | |
|     SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
 | |
|     SERIAL_PROTOCOLPGM(" Y: ");
 | |
|     SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
 | |
|     SERIAL_PROTOCOLPGM(" Z: ");
 | |
|     SERIAL_PROTOCOL(measured_z + 0.0001);
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|     /**
 | |
|      * G31: Deploy the Z probe
 | |
|      */
 | |
|     inline void gcode_G31() { DEPLOY_PROBE(); }
 | |
| 
 | |
|     /**
 | |
|      * G32: Stow the Z probe
 | |
|      */
 | |
|     inline void gcode_G32() { STOW_PROBE(); }
 | |
| 
 | |
|   #endif // Z_PROBE_SLED
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| /**
 | |
|  * G92: Set current position to given X Y Z E
 | |
|  */
 | |
| inline void gcode_G92() {
 | |
|   bool didE = code_seen('E');
 | |
| 
 | |
|   if (!didE) stepper.synchronize();
 | |
| 
 | |
|   bool didXYZ = false;
 | |
|   LOOP_XYZE(i) {
 | |
|     if (code_seen(axis_codes[i])) {
 | |
|       float p = current_position[i],
 | |
|             v = code_value_axis_units(i);
 | |
| 
 | |
|       current_position[i] = v;
 | |
| 
 | |
|       if (i != E_AXIS) {
 | |
|         position_shift[i] += v - p; // Offset the coordinate space
 | |
|         update_software_endstops((AxisEnum)i);
 | |
|         didXYZ = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (didXYZ)
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|   else if (didE)
 | |
|     sync_plan_position_e();
 | |
| }
 | |
| 
 | |
| #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|   /**
 | |
|    * M0: Unconditional stop - Wait for user button press on LCD
 | |
|    * M1: Conditional stop   - Wait for user button press on LCD
 | |
|    */
 | |
|   inline void gcode_M0_M1() {
 | |
|     char* args = current_command_args;
 | |
| 
 | |
|     millis_t codenum = 0;
 | |
|     bool hasP = false, hasS = false;
 | |
|     if (code_seen('P')) {
 | |
|       codenum = code_value_millis(); // milliseconds to wait
 | |
|       hasP = codenum > 0;
 | |
|     }
 | |
|     if (code_seen('S')) {
 | |
|       codenum = code_value_millis_from_seconds(); // seconds to wait
 | |
|       hasS = codenum > 0;
 | |
|     }
 | |
| 
 | |
|     if (!hasP && !hasS && *args != '\0')
 | |
|       lcd_setstatus(args, true);
 | |
|     else {
 | |
|       LCD_MESSAGEPGM(MSG_USERWAIT);
 | |
|       #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
 | |
|         dontExpireStatus();
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     lcd_ignore_click();
 | |
|     stepper.synchronize();
 | |
|     refresh_cmd_timeout();
 | |
|     if (codenum > 0) {
 | |
|       codenum += previous_cmd_ms;  // wait until this time for a click
 | |
|       KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|       while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
 | |
|       KEEPALIVE_STATE(IN_HANDLER);
 | |
|       lcd_ignore_click(false);
 | |
|     }
 | |
|     else {
 | |
|       if (!lcd_detected()) return;
 | |
|       KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|       while (!lcd_clicked()) idle();
 | |
|       KEEPALIVE_STATE(IN_HANDLER);
 | |
|     }
 | |
|     if (IS_SD_PRINTING)
 | |
|       LCD_MESSAGEPGM(MSG_RESUMING);
 | |
|     else
 | |
|       LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|   }
 | |
| 
 | |
| #endif // ULTIPANEL
 | |
| 
 | |
| /**
 | |
|  * M17: Enable power on all stepper motors
 | |
|  */
 | |
| inline void gcode_M17() {
 | |
|   LCD_MESSAGEPGM(MSG_NO_MOVE);
 | |
|   enable_all_steppers();
 | |
| }
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * M20: List SD card to serial output
 | |
|    */
 | |
|   inline void gcode_M20() {
 | |
|     SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
 | |
|     card.ls();
 | |
|     SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M21: Init SD Card
 | |
|    */
 | |
|   inline void gcode_M21() {
 | |
|     card.initsd();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M22: Release SD Card
 | |
|    */
 | |
|   inline void gcode_M22() {
 | |
|     card.release();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M23: Open a file
 | |
|    */
 | |
|   inline void gcode_M23() {
 | |
|     card.openFile(current_command_args, true);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M24: Start SD Print
 | |
|    */
 | |
|   inline void gcode_M24() {
 | |
|     card.startFileprint();
 | |
|     print_job_timer.start();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M25: Pause SD Print
 | |
|    */
 | |
|   inline void gcode_M25() {
 | |
|     card.pauseSDPrint();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M26: Set SD Card file index
 | |
|    */
 | |
|   inline void gcode_M26() {
 | |
|     if (card.cardOK && code_seen('S'))
 | |
|       card.setIndex(code_value_long());
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M27: Get SD Card status
 | |
|    */
 | |
|   inline void gcode_M27() {
 | |
|     card.getStatus();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M28: Start SD Write
 | |
|    */
 | |
|   inline void gcode_M28() {
 | |
|     card.openFile(current_command_args, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M29: Stop SD Write
 | |
|    * Processed in write to file routine above
 | |
|    */
 | |
|   inline void gcode_M29() {
 | |
|     // card.saving = false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M30 <filename>: Delete SD Card file
 | |
|    */
 | |
|   inline void gcode_M30() {
 | |
|     if (card.cardOK) {
 | |
|       card.closefile();
 | |
|       card.removeFile(current_command_args);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif //SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * M31: Get the time since the start of SD Print (or last M109)
 | |
|  */
 | |
| inline void gcode_M31() {
 | |
|   char buffer[21];
 | |
|   duration_t elapsed = print_job_timer.duration();
 | |
|   elapsed.toString(buffer);
 | |
| 
 | |
|   lcd_setstatus(buffer);
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPGM("Print time: ");
 | |
|   SERIAL_ECHOLN(buffer);
 | |
| 
 | |
|   thermalManager.autotempShutdown();
 | |
| }
 | |
| 
 | |
| #if ENABLED(SDSUPPORT)
 | |
| 
 | |
|   /**
 | |
|    * M32: Select file and start SD Print
 | |
|    */
 | |
|   inline void gcode_M32() {
 | |
|     if (card.sdprinting)
 | |
|       stepper.synchronize();
 | |
| 
 | |
|     char* namestartpos = strchr(current_command_args, '!');  // Find ! to indicate filename string start.
 | |
|     if (!namestartpos)
 | |
|       namestartpos = current_command_args; // Default name position, 4 letters after the M
 | |
|     else
 | |
|       namestartpos++; //to skip the '!'
 | |
| 
 | |
|     bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
 | |
| 
 | |
|     if (card.cardOK) {
 | |
|       card.openFile(namestartpos, true, call_procedure);
 | |
| 
 | |
|       if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
 | |
|         card.setIndex(code_value_long());
 | |
| 
 | |
|       card.startFileprint();
 | |
| 
 | |
|       // Procedure calls count as normal print time.
 | |
|       if (!call_procedure) print_job_timer.start();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
 | |
| 
 | |
|     /**
 | |
|      * M33: Get the long full path of a file or folder
 | |
|      *
 | |
|      * Parameters:
 | |
|      *   <dospath> Case-insensitive DOS-style path to a file or folder
 | |
|      *
 | |
|      * Example:
 | |
|      *   M33 miscel~1/armchair/armcha~1.gco
 | |
|      *
 | |
|      * Output:
 | |
|      *   /Miscellaneous/Armchair/Armchair.gcode
 | |
|      */
 | |
|     inline void gcode_M33() {
 | |
|       card.printLongPath(current_command_args);
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * M928: Start SD Write
 | |
|    */
 | |
|   inline void gcode_M928() {
 | |
|     card.openLogFile(current_command_args);
 | |
|   }
 | |
| 
 | |
| #endif // SDSUPPORT
 | |
| 
 | |
| /**
 | |
|  * M42: Change pin status via GCode
 | |
|  *
 | |
|  *  P<pin>  Pin number (LED if omitted)
 | |
|  *  S<byte> Pin status from 0 - 255
 | |
|  */
 | |
| inline void gcode_M42() {
 | |
|   if (!code_seen('S')) return;
 | |
| 
 | |
|   int pin_status = code_value_int();
 | |
|   if (pin_status < 0 || pin_status > 255) return;
 | |
| 
 | |
|   int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
 | |
|   if (pin_number < 0) return;
 | |
| 
 | |
|   for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
 | |
|     if (pin_number == sensitive_pins[i]) return;
 | |
| 
 | |
|   pinMode(pin_number, OUTPUT);
 | |
|   digitalWrite(pin_number, pin_status);
 | |
|   analogWrite(pin_number, pin_status);
 | |
| 
 | |
|   #if FAN_COUNT > 0
 | |
|     switch (pin_number) {
 | |
|       #if HAS_FAN0
 | |
|         case FAN_PIN: fanSpeeds[0] = pin_status; break;
 | |
|       #endif
 | |
|       #if HAS_FAN1
 | |
|         case FAN1_PIN: fanSpeeds[1] = pin_status; break;
 | |
|       #endif
 | |
|       #if HAS_FAN2
 | |
|         case FAN2_PIN: fanSpeeds[2] = pin_status; break;
 | |
|       #endif
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
 | |
| 
 | |
|   /**
 | |
|    * M48: Z probe repeatability measurement function.
 | |
|    *
 | |
|    * Usage:
 | |
|    *   M48 <P#> <X#> <Y#> <V#> <E> <L#>
 | |
|    *     P = Number of sampled points (4-50, default 10)
 | |
|    *     X = Sample X position
 | |
|    *     Y = Sample Y position
 | |
|    *     V = Verbose level (0-4, default=1)
 | |
|    *     E = Engage Z probe for each reading
 | |
|    *     L = Number of legs of movement before probe
 | |
|    *     S = Schizoid (Or Star if you prefer)
 | |
|    *
 | |
|    * This function assumes the bed has been homed.  Specifically, that a G28 command
 | |
|    * as been issued prior to invoking the M48 Z probe repeatability measurement function.
 | |
|    * Any information generated by a prior G29 Bed leveling command will be lost and need to be
 | |
|    * regenerated.
 | |
|    */
 | |
|   inline void gcode_M48() {
 | |
| 
 | |
|     if (axis_unhomed_error(true, true, true)) return;
 | |
| 
 | |
|     int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
 | |
|     if (verbose_level < 0 || verbose_level > 4) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (verbose_level > 0)
 | |
|       SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
 | |
| 
 | |
|     int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
 | |
|     if (n_samples < 4 || n_samples > 50) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     float  X_current = current_position[X_AXIS],
 | |
|            Y_current = current_position[Y_AXIS];
 | |
| 
 | |
|     bool stow_probe_after_each = code_seen('E');
 | |
| 
 | |
|     float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|     #if DISABLED(DELTA)
 | |
|       if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
 | |
|         out_of_range_error(PSTR("X"));
 | |
|         return;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|     #if DISABLED(DELTA)
 | |
|       if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
 | |
|         out_of_range_error(PSTR("Y"));
 | |
|         return;
 | |
|       }
 | |
|     #else
 | |
|       if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
 | |
|         SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
 | |
|         return;
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     bool seen_L = code_seen('L');
 | |
|     uint8_t n_legs = seen_L ? code_value_byte() : 0;
 | |
|     if (n_legs > 15) {
 | |
|       SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
 | |
|       return;
 | |
|     }
 | |
|     if (n_legs == 1) n_legs = 2;
 | |
| 
 | |
|     bool schizoid_flag = code_seen('S');
 | |
|     if (schizoid_flag && !seen_L) n_legs = 7;
 | |
| 
 | |
|     /**
 | |
|      * Now get everything to the specified probe point So we can safely do a
 | |
|      * probe to get us close to the bed.  If the Z-Axis is far from the bed,
 | |
|      * we don't want to use that as a starting point for each probe.
 | |
|      */
 | |
|     if (verbose_level > 2)
 | |
|       SERIAL_PROTOCOLLNPGM("Positioning the probe...");
 | |
| 
 | |
|     #if ENABLED(DELTA)
 | |
|       // we don't do bed level correction in M48 because we want the raw data when we probe
 | |
|       reset_bed_level();
 | |
|     #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|       // we don't do bed level correction in M48 because we want the raw data when we probe
 | |
|       planner.bed_level_matrix.set_to_identity();
 | |
|     #endif
 | |
| 
 | |
|     setup_for_endstop_or_probe_move();
 | |
| 
 | |
|     // Move to the first point, deploy, and probe
 | |
|     probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
 | |
| 
 | |
|     randomSeed(millis());
 | |
| 
 | |
|     double mean = 0, sigma = 0, sample_set[n_samples];
 | |
|     for (uint8_t n = 0; n < n_samples; n++) {
 | |
|       if (n_legs) {
 | |
|         int dir = (random(0, 10) > 5.0) ? -1 : 1;  // clockwise or counter clockwise
 | |
|         float angle = random(0.0, 360.0),
 | |
|               radius = random(
 | |
|                 #if ENABLED(DELTA)
 | |
|                   DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
 | |
|                 #else
 | |
|                   5, X_MAX_LENGTH / 8
 | |
|                 #endif
 | |
|               );
 | |
| 
 | |
|         if (verbose_level > 3) {
 | |
|           SERIAL_ECHOPAIR("Starting radius: ", radius);
 | |
|           SERIAL_ECHOPAIR("   angle: ", angle);
 | |
|           SERIAL_ECHOPGM(" Direction: ");
 | |
|           if (dir > 0) SERIAL_ECHOPGM("Counter-");
 | |
|           SERIAL_ECHOLNPGM("Clockwise");
 | |
|         }
 | |
| 
 | |
|         for (uint8_t l = 0; l < n_legs - 1; l++) {
 | |
|           double delta_angle;
 | |
| 
 | |
|           if (schizoid_flag)
 | |
|             // The points of a 5 point star are 72 degrees apart.  We need to
 | |
|             // skip a point and go to the next one on the star.
 | |
|             delta_angle = dir * 2.0 * 72.0;
 | |
| 
 | |
|           else
 | |
|             // If we do this line, we are just trying to move further
 | |
|             // around the circle.
 | |
|             delta_angle = dir * (float) random(25, 45);
 | |
| 
 | |
|           angle += delta_angle;
 | |
| 
 | |
|           while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
 | |
|             angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
 | |
|           while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
 | |
|             angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
 | |
| 
 | |
|           X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
 | |
|           Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
 | |
| 
 | |
|           #if DISABLED(DELTA)
 | |
|             X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
 | |
|             Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
 | |
|           #else
 | |
|             // If we have gone out too far, we can do a simple fix and scale the numbers
 | |
|             // back in closer to the origin.
 | |
|             while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
 | |
|               X_current /= 1.25;
 | |
|               Y_current /= 1.25;
 | |
|               if (verbose_level > 3) {
 | |
|                 SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
 | |
|                 SERIAL_ECHOPAIR(", ", Y_current);
 | |
|                 SERIAL_EOL;
 | |
|               }
 | |
|             }
 | |
|           #endif
 | |
|           if (verbose_level > 3) {
 | |
|             SERIAL_PROTOCOLPGM("Going to:");
 | |
|             SERIAL_ECHOPAIR(" X", X_current);
 | |
|             SERIAL_ECHOPAIR(" Y", Y_current);
 | |
|             SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|           do_blocking_move_to_xy(X_current, Y_current);
 | |
|         } // n_legs loop
 | |
|       } // n_legs
 | |
| 
 | |
|       // Probe a single point
 | |
|       sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
 | |
| 
 | |
|       /**
 | |
|        * Get the current mean for the data points we have so far
 | |
|        */
 | |
|       double sum = 0.0;
 | |
|       for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
 | |
|       mean = sum / (n + 1);
 | |
| 
 | |
|       /**
 | |
|        * Now, use that mean to calculate the standard deviation for the
 | |
|        * data points we have so far
 | |
|        */
 | |
|       sum = 0.0;
 | |
|       for (uint8_t j = 0; j <= n; j++)
 | |
|         sum += sq(sample_set[j] - mean);
 | |
| 
 | |
|       sigma = sqrt(sum / (n + 1));
 | |
|       if (verbose_level > 0) {
 | |
|         if (verbose_level > 1) {
 | |
|           SERIAL_PROTOCOL(n + 1);
 | |
|           SERIAL_PROTOCOLPGM(" of ");
 | |
|           SERIAL_PROTOCOL((int)n_samples);
 | |
|           SERIAL_PROTOCOLPGM("   z: ");
 | |
|           SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
 | |
|           if (verbose_level > 2) {
 | |
|             SERIAL_PROTOCOLPGM(" mean: ");
 | |
|             SERIAL_PROTOCOL_F(mean, 6);
 | |
|             SERIAL_PROTOCOLPGM("   sigma: ");
 | |
|             SERIAL_PROTOCOL_F(sigma, 6);
 | |
|           }
 | |
|         }
 | |
|         SERIAL_EOL;
 | |
|       }
 | |
| 
 | |
|     } // End of probe loop
 | |
| 
 | |
|     if (STOW_PROBE()) return;
 | |
| 
 | |
|     if (verbose_level > 0) {
 | |
|       SERIAL_PROTOCOLPGM("Mean: ");
 | |
|       SERIAL_PROTOCOL_F(mean, 6);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("Standard Deviation: ");
 | |
|     SERIAL_PROTOCOL_F(sigma, 6);
 | |
|     SERIAL_EOL; SERIAL_EOL;
 | |
| 
 | |
|     clean_up_after_endstop_or_probe_move();
 | |
| 
 | |
|     report_current_position();
 | |
|   }
 | |
| 
 | |
| #endif // Z_MIN_PROBE_REPEATABILITY_TEST
 | |
| 
 | |
| /**
 | |
|  * M75: Start print timer
 | |
|  */
 | |
| inline void gcode_M75() { print_job_timer.start(); }
 | |
| 
 | |
| /**
 | |
|  * M76: Pause print timer
 | |
|  */
 | |
| inline void gcode_M76() { print_job_timer.pause(); }
 | |
| 
 | |
| /**
 | |
|  * M77: Stop print timer
 | |
|  */
 | |
| inline void gcode_M77() { print_job_timer.stop(); }
 | |
| 
 | |
| #if ENABLED(PRINTCOUNTER)
 | |
|   /**
 | |
|    * M78: Show print statistics
 | |
|    */
 | |
|   inline void gcode_M78() {
 | |
|     // "M78 S78" will reset the statistics
 | |
|     if (code_seen('S') && code_value_int() == 78)
 | |
|       print_job_timer.initStats();
 | |
|     else print_job_timer.showStats();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M104: Set hot end temperature
 | |
|  */
 | |
| inline void gcode_M104() {
 | |
|   if (get_target_extruder_from_command(104)) return;
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|   #if ENABLED(SINGLENOZZLE)
 | |
|     if (target_extruder != active_extruder) return;
 | |
|   #endif
 | |
| 
 | |
|   if (code_seen('S')) {
 | |
|     thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | |
|         thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|       /**
 | |
|        * Stop the timer at the end of print, starting is managed by
 | |
|        * 'heat and wait' M109.
 | |
|        * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
 | |
|        * stand by mode, for instance in a dual extruder setup, without affecting
 | |
|        * the running print timer.
 | |
|        */
 | |
|       if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
 | |
|         print_job_timer.stop();
 | |
|         LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|       }
 | |
|     #endif
 | |
| 
 | |
|     if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if HAS_TEMP_HOTEND || HAS_TEMP_BED
 | |
| 
 | |
|   void print_heaterstates() {
 | |
|     #if HAS_TEMP_HOTEND
 | |
|       SERIAL_PROTOCOLPGM(" T:");
 | |
|       SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
 | |
|       SERIAL_PROTOCOLPGM(" /");
 | |
|       SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
 | |
|       #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|         SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
 | |
|         SERIAL_CHAR(')')
 | |
|       #endif
 | |
|     #endif
 | |
|     #if HAS_TEMP_BED
 | |
|       SERIAL_PROTOCOLPGM(" B:");
 | |
|       SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
 | |
|       SERIAL_PROTOCOLPGM(" /");
 | |
|       SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
 | |
|       #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|         SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
 | |
|         SERIAL_CHAR(')')
 | |
|       #endif
 | |
|     #endif
 | |
|     #if HOTENDS > 1
 | |
|       HOTEND_LOOP() {
 | |
|         SERIAL_PROTOCOLPAIR(" T", e);
 | |
|         SERIAL_PROTOCOLCHAR(':');
 | |
|         SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
 | |
|         SERIAL_PROTOCOLPGM(" /");
 | |
|         SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
 | |
|         #if ENABLED(SHOW_TEMP_ADC_VALUES)
 | |
|           SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
 | |
|           SERIAL_CHAR(')')
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
|     SERIAL_PROTOCOLPGM(" @:");
 | |
|     SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
 | |
|     #if HAS_TEMP_BED
 | |
|       SERIAL_PROTOCOLPGM(" B@:");
 | |
|       SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
 | |
|     #endif
 | |
|     #if HOTENDS > 1
 | |
|       HOTEND_LOOP() {
 | |
|         SERIAL_PROTOCOLPAIR(" @", e);
 | |
|         SERIAL_PROTOCOLCHAR(':');
 | |
|         SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M105: Read hot end and bed temperature
 | |
|  */
 | |
| inline void gcode_M105() {
 | |
|   if (get_target_extruder_from_command(105)) return;
 | |
| 
 | |
|   #if HAS_TEMP_HOTEND || HAS_TEMP_BED
 | |
|     SERIAL_PROTOCOLPGM(MSG_OK);
 | |
|     print_heaterstates();
 | |
|   #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
 | |
|   #endif
 | |
| 
 | |
|   SERIAL_EOL;
 | |
| }
 | |
| 
 | |
| #if FAN_COUNT > 0
 | |
| 
 | |
|   /**
 | |
|    * M106: Set Fan Speed
 | |
|    *
 | |
|    *  S<int>   Speed between 0-255
 | |
|    *  P<index> Fan index, if more than one fan
 | |
|    */
 | |
|   inline void gcode_M106() {
 | |
|     uint16_t s = code_seen('S') ? code_value_ushort() : 255,
 | |
|              p = code_seen('P') ? code_value_ushort() : 0;
 | |
|     NOMORE(s, 255);
 | |
|     if (p < FAN_COUNT) fanSpeeds[p] = s;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M107: Fan Off
 | |
|    */
 | |
|   inline void gcode_M107() {
 | |
|     uint16_t p = code_seen('P') ? code_value_ushort() : 0;
 | |
|     if (p < FAN_COUNT) fanSpeeds[p] = 0;
 | |
|   }
 | |
| 
 | |
| #endif // FAN_COUNT > 0
 | |
| 
 | |
| #if DISABLED(EMERGENCY_PARSER)
 | |
| 
 | |
|   /**
 | |
|    * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
 | |
|    */
 | |
|   inline void gcode_M108() { wait_for_heatup = false; }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * M112: Emergency Stop
 | |
|    */
 | |
|   inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * M410: Quickstop - Abort all planned moves
 | |
|    *
 | |
|    * This will stop the carriages mid-move, so most likely they
 | |
|    * will be out of sync with the stepper position after this.
 | |
|    */
 | |
|   inline void gcode_M410() { quickstop_stepper(); }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|   #ifndef MIN_COOLING_SLOPE_DEG
 | |
|     #define MIN_COOLING_SLOPE_DEG 1.50
 | |
|   #endif
 | |
|   #ifndef MIN_COOLING_SLOPE_TIME
 | |
|     #define MIN_COOLING_SLOPE_TIME 60
 | |
|   #endif
 | |
| 
 | |
| /**
 | |
|  * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
 | |
|  *       Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
 | |
|  */
 | |
| inline void gcode_M109() {
 | |
| 
 | |
|   if (get_target_extruder_from_command(109)) return;
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|   #if ENABLED(SINGLENOZZLE)
 | |
|     if (target_extruder != active_extruder) return;
 | |
|   #endif
 | |
| 
 | |
|   bool no_wait_for_cooling = code_seen('S');
 | |
|   if (no_wait_for_cooling || code_seen('R')) {
 | |
|     thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
 | |
|         thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|       /**
 | |
|        * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
 | |
|        * stand by mode, for instance in a dual extruder setup, without affecting
 | |
|        * the running print timer.
 | |
|        */
 | |
|       if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
 | |
|         print_job_timer.stop();
 | |
|         LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|       }
 | |
|       /**
 | |
|        * We do not check if the timer is already running because this check will
 | |
|        * be done for us inside the Stopwatch::start() method thus a running timer
 | |
|        * will not restart.
 | |
|        */
 | |
|       else print_job_timer.start();
 | |
|     #endif
 | |
| 
 | |
|     if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(AUTOTEMP)
 | |
|     planner.autotemp_M109();
 | |
|   #endif
 | |
| 
 | |
|   #if TEMP_RESIDENCY_TIME > 0
 | |
|     millis_t residency_start_ms = 0;
 | |
|     // Loop until the temperature has stabilized
 | |
|     #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
 | |
|   #else
 | |
|     // Loop until the temperature is very close target
 | |
|     #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
 | |
|   #endif //TEMP_RESIDENCY_TIME > 0
 | |
| 
 | |
|   float theTarget = -1.0, old_temp = 9999.0;
 | |
|   bool wants_to_cool = false;
 | |
|   wait_for_heatup = true;
 | |
|   millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
 | |
| 
 | |
|   KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
|   do {
 | |
|     // Target temperature might be changed during the loop
 | |
|     if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
 | |
|       wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
 | |
|       theTarget = thermalManager.degTargetHotend(target_extruder);
 | |
| 
 | |
|       // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
 | |
|       if (no_wait_for_cooling && wants_to_cool) break;
 | |
|     }
 | |
| 
 | |
|     now = millis();
 | |
|     if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
 | |
|       next_temp_ms = now + 1000UL;
 | |
|       print_heaterstates();
 | |
|       #if TEMP_RESIDENCY_TIME > 0
 | |
|         SERIAL_PROTOCOLPGM(" W:");
 | |
|         if (residency_start_ms) {
 | |
|           long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
 | |
|           SERIAL_PROTOCOLLN(rem);
 | |
|         }
 | |
|         else {
 | |
|           SERIAL_PROTOCOLLNPGM("?");
 | |
|         }
 | |
|       #else
 | |
|         SERIAL_EOL;
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     idle();
 | |
|     refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
 | |
| 
 | |
|     float temp = thermalManager.degHotend(target_extruder);
 | |
| 
 | |
|     #if TEMP_RESIDENCY_TIME > 0
 | |
| 
 | |
|       float temp_diff = fabs(theTarget - temp);
 | |
| 
 | |
|       if (!residency_start_ms) {
 | |
|         // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
 | |
|         if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
 | |
|       }
 | |
|       else if (temp_diff > TEMP_HYSTERESIS) {
 | |
|         // Restart the timer whenever the temperature falls outside the hysteresis.
 | |
|         residency_start_ms = now;
 | |
|       }
 | |
| 
 | |
|     #endif //TEMP_RESIDENCY_TIME > 0
 | |
| 
 | |
|     // Prevent a wait-forever situation if R is misused i.e. M109 R0
 | |
|     if (wants_to_cool) {
 | |
|       // break after MIN_COOLING_SLOPE_TIME seconds
 | |
|       // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
 | |
|       if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
 | |
|         if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
 | |
|         next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
 | |
|         old_temp = temp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } while (wait_for_heatup && TEMP_CONDITIONS);
 | |
| 
 | |
|   LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
 | |
|   KEEPALIVE_STATE(IN_HANDLER);
 | |
| }
 | |
| 
 | |
| #if HAS_TEMP_BED
 | |
| 
 | |
|   #ifndef MIN_COOLING_SLOPE_DEG_BED
 | |
|     #define MIN_COOLING_SLOPE_DEG_BED 1.50
 | |
|   #endif
 | |
|   #ifndef MIN_COOLING_SLOPE_TIME_BED
 | |
|     #define MIN_COOLING_SLOPE_TIME_BED 60
 | |
|   #endif
 | |
| 
 | |
|   /**
 | |
|    * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | |
|    *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | |
|    */
 | |
|   inline void gcode_M190() {
 | |
|     if (DEBUGGING(DRYRUN)) return;
 | |
| 
 | |
|     LCD_MESSAGEPGM(MSG_BED_HEATING);
 | |
|     bool no_wait_for_cooling = code_seen('S');
 | |
|     if (no_wait_for_cooling || code_seen('R')) {
 | |
|       thermalManager.setTargetBed(code_value_temp_abs());
 | |
|       #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
 | |
|         if (code_value_temp_abs() > BED_MINTEMP) {
 | |
|           /**
 | |
|           * We start the timer when 'heating and waiting' command arrives, LCD
 | |
|           * functions never wait. Cooling down managed by extruders.
 | |
|           *
 | |
|           * We do not check if the timer is already running because this check will
 | |
|           * be done for us inside the Stopwatch::start() method thus a running timer
 | |
|           * will not restart.
 | |
|           */
 | |
|           print_job_timer.start();
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     #if TEMP_BED_RESIDENCY_TIME > 0
 | |
|       millis_t residency_start_ms = 0;
 | |
|       // Loop until the temperature has stabilized
 | |
|       #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
 | |
|     #else
 | |
|       // Loop until the temperature is very close target
 | |
|       #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
 | |
|     #endif //TEMP_BED_RESIDENCY_TIME > 0
 | |
| 
 | |
|     float theTarget = -1.0, old_temp = 9999.0;
 | |
|     bool wants_to_cool = false;
 | |
|     wait_for_heatup = true;
 | |
|     millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
 | |
| 
 | |
|     KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
|     target_extruder = active_extruder; // for print_heaterstates
 | |
| 
 | |
|     do {
 | |
|       // Target temperature might be changed during the loop
 | |
|       if (theTarget != thermalManager.degTargetBed()) {
 | |
|         wants_to_cool = thermalManager.isCoolingBed();
 | |
|         theTarget = thermalManager.degTargetBed();
 | |
| 
 | |
|         // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
 | |
|         if (no_wait_for_cooling && wants_to_cool) break;
 | |
|       }
 | |
| 
 | |
|       now = millis();
 | |
|       if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
 | |
|         next_temp_ms = now + 1000UL;
 | |
|         print_heaterstates();
 | |
|         #if TEMP_BED_RESIDENCY_TIME > 0
 | |
|           SERIAL_PROTOCOLPGM(" W:");
 | |
|           if (residency_start_ms) {
 | |
|             long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
 | |
|             SERIAL_PROTOCOLLN(rem);
 | |
|           }
 | |
|           else {
 | |
|             SERIAL_PROTOCOLLNPGM("?");
 | |
|           }
 | |
|         #else
 | |
|           SERIAL_EOL;
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       idle();
 | |
|       refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
 | |
| 
 | |
|       float temp = thermalManager.degBed();
 | |
| 
 | |
|       #if TEMP_BED_RESIDENCY_TIME > 0
 | |
| 
 | |
|         float temp_diff = fabs(theTarget - temp);
 | |
| 
 | |
|         if (!residency_start_ms) {
 | |
|           // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
 | |
|           if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
 | |
|         }
 | |
|         else if (temp_diff > TEMP_BED_HYSTERESIS) {
 | |
|           // Restart the timer whenever the temperature falls outside the hysteresis.
 | |
|           residency_start_ms = now;
 | |
|         }
 | |
| 
 | |
|       #endif //TEMP_BED_RESIDENCY_TIME > 0
 | |
| 
 | |
|       // Prevent a wait-forever situation if R is misused i.e. M190 R0
 | |
|       if (wants_to_cool) {
 | |
|         // break after MIN_COOLING_SLOPE_TIME_BED seconds
 | |
|         // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
 | |
|         if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
 | |
|           if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
 | |
|           next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
 | |
|           old_temp = temp;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     } while (wait_for_heatup && TEMP_BED_CONDITIONS);
 | |
| 
 | |
|     LCD_MESSAGEPGM(MSG_BED_DONE);
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_TEMP_BED
 | |
| 
 | |
| /**
 | |
|  * M110: Set Current Line Number
 | |
|  */
 | |
| inline void gcode_M110() {
 | |
|   if (code_seen('N')) gcode_N = code_value_long();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M111: Set the debug level
 | |
|  */
 | |
| inline void gcode_M111() {
 | |
|   marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
 | |
| 
 | |
|   const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
 | |
|   const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
 | |
|   const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
 | |
|   const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
 | |
|   const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
 | |
|   #endif
 | |
| 
 | |
|   const static char* const debug_strings[] PROGMEM = {
 | |
|     str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       str_debug_32
 | |
|     #endif
 | |
|   };
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
 | |
|   if (marlin_debug_flags) {
 | |
|     uint8_t comma = 0;
 | |
|     for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
 | |
|       if (TEST(marlin_debug_flags, i)) {
 | |
|         if (comma++) SERIAL_CHAR(',');
 | |
|         serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     SERIAL_ECHOPGM(MSG_DEBUG_OFF);
 | |
|   }
 | |
|   SERIAL_EOL;
 | |
| }
 | |
| 
 | |
| #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * M113: Get or set Host Keepalive interval (0 to disable)
 | |
|    *
 | |
|    *   S<seconds> Optional. Set the keepalive interval.
 | |
|    */
 | |
|   inline void gcode_M113() {
 | |
|     if (code_seen('S')) {
 | |
|       host_keepalive_interval = code_value_byte();
 | |
|       NOMORE(host_keepalive_interval, 60);
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BARICUDA)
 | |
| 
 | |
|   #if HAS_HEATER_1
 | |
|     /**
 | |
|      * M126: Heater 1 valve open
 | |
|      */
 | |
|     inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
 | |
|     /**
 | |
|      * M127: Heater 1 valve close
 | |
|      */
 | |
|     inline void gcode_M127() { baricuda_valve_pressure = 0; }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_HEATER_2
 | |
|     /**
 | |
|      * M128: Heater 2 valve open
 | |
|      */
 | |
|     inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
 | |
|     /**
 | |
|      * M129: Heater 2 valve close
 | |
|      */
 | |
|     inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
 | |
|   #endif
 | |
| 
 | |
| #endif //BARICUDA
 | |
| 
 | |
| /**
 | |
|  * M140: Set bed temperature
 | |
|  */
 | |
| inline void gcode_M140() {
 | |
|   if (DEBUGGING(DRYRUN)) return;
 | |
|   if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
 | |
| }
 | |
| 
 | |
| #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|   /**
 | |
|    * M145: Set the heatup state for a material in the LCD menu
 | |
|    *   S<material> (0=PLA, 1=ABS)
 | |
|    *   H<hotend temp>
 | |
|    *   B<bed temp>
 | |
|    *   F<fan speed>
 | |
|    */
 | |
|   inline void gcode_M145() {
 | |
|     int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
 | |
|     if (material < 0 || material > 1) {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
 | |
|     }
 | |
|     else {
 | |
|       int v;
 | |
|       switch (material) {
 | |
|         case 0:
 | |
|           if (code_seen('H')) {
 | |
|             v = code_value_int();
 | |
|             preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
 | |
|           }
 | |
|           if (code_seen('F')) {
 | |
|             v = code_value_int();
 | |
|             preheatFanSpeed1 = constrain(v, 0, 255);
 | |
|           }
 | |
|           #if TEMP_SENSOR_BED != 0
 | |
|             if (code_seen('B')) {
 | |
|               v = code_value_int();
 | |
|               preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
 | |
|             }
 | |
|           #endif
 | |
|           break;
 | |
|         case 1:
 | |
|           if (code_seen('H')) {
 | |
|             v = code_value_int();
 | |
|             preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
 | |
|           }
 | |
|           if (code_seen('F')) {
 | |
|             v = code_value_int();
 | |
|             preheatFanSpeed2 = constrain(v, 0, 255);
 | |
|           }
 | |
|           #if TEMP_SENSOR_BED != 0
 | |
|             if (code_seen('B')) {
 | |
|               v = code_value_int();
 | |
|               preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
 | |
|             }
 | |
|           #endif
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|   /**
 | |
|    * M149: Set temperature units
 | |
|    */
 | |
|   inline void gcode_M149() {
 | |
|     if (code_seen('C')) {
 | |
|       set_input_temp_units(TEMPUNIT_C);
 | |
|     } else if (code_seen('K')) {
 | |
|       set_input_temp_units(TEMPUNIT_K);
 | |
|     } else if (code_seen('F')) {
 | |
|       set_input_temp_units(TEMPUNIT_F);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if HAS_POWER_SWITCH
 | |
| 
 | |
|   /**
 | |
|    * M80: Turn on Power Supply
 | |
|    */
 | |
|   inline void gcode_M80() {
 | |
|     OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
 | |
| 
 | |
|     /**
 | |
|      * If you have a switch on suicide pin, this is useful
 | |
|      * if you want to start another print with suicide feature after
 | |
|      * a print without suicide...
 | |
|      */
 | |
|     #if HAS_SUICIDE
 | |
|       OUT_WRITE(SUICIDE_PIN, HIGH);
 | |
|     #endif
 | |
| 
 | |
|     #if ENABLED(ULTIPANEL)
 | |
|       powersupply = true;
 | |
|       LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|       lcd_update();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #endif // HAS_POWER_SWITCH
 | |
| 
 | |
| /**
 | |
|  * M81: Turn off Power, including Power Supply, if there is one.
 | |
|  *
 | |
|  *      This code should ALWAYS be available for EMERGENCY SHUTDOWN!
 | |
|  */
 | |
| inline void gcode_M81() {
 | |
|   thermalManager.disable_all_heaters();
 | |
|   stepper.finish_and_disable();
 | |
|   #if FAN_COUNT > 0
 | |
|     #if FAN_COUNT > 1
 | |
|       for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
 | |
|     #else
 | |
|       fanSpeeds[0] = 0;
 | |
|     #endif
 | |
|   #endif
 | |
|   delay(1000); // Wait 1 second before switching off
 | |
|   #if HAS_SUICIDE
 | |
|     stepper.synchronize();
 | |
|     suicide();
 | |
|   #elif HAS_POWER_SWITCH
 | |
|     OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|   #endif
 | |
|   #if ENABLED(ULTIPANEL)
 | |
|     #if HAS_POWER_SWITCH
 | |
|       powersupply = false;
 | |
|     #endif
 | |
|     LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
 | |
|     lcd_update();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * M82: Set E codes absolute (default)
 | |
|  */
 | |
| inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
 | |
| 
 | |
| /**
 | |
|  * M83: Set E codes relative while in Absolute Coordinates (G90) mode
 | |
|  */
 | |
| inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
 | |
| 
 | |
| /**
 | |
|  * M18, M84: Disable all stepper motors
 | |
|  */
 | |
| inline void gcode_M18_M84() {
 | |
|   if (code_seen('S')) {
 | |
|     stepper_inactive_time = code_value_millis_from_seconds();
 | |
|   }
 | |
|   else {
 | |
|     bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
 | |
|     if (all_axis) {
 | |
|       stepper.finish_and_disable();
 | |
|     }
 | |
|     else {
 | |
|       stepper.synchronize();
 | |
|       if (code_seen('X')) disable_x();
 | |
|       if (code_seen('Y')) disable_y();
 | |
|       if (code_seen('Z')) disable_z();
 | |
|       #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
 | |
|         if (code_seen('E')) {
 | |
|           disable_e0();
 | |
|           disable_e1();
 | |
|           disable_e2();
 | |
|           disable_e3();
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | |
|  */
 | |
| inline void gcode_M85() {
 | |
|   if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
 | |
|  *      (Follows the same syntax as G92)
 | |
|  */
 | |
| inline void gcode_M92() {
 | |
|   LOOP_XYZE(i) {
 | |
|     if (code_seen(axis_codes[i])) {
 | |
|       if (i == E_AXIS) {
 | |
|         float value = code_value_per_axis_unit(i);
 | |
|         if (value < 20.0) {
 | |
|           float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
 | |
|           planner.max_e_jerk *= factor;
 | |
|           planner.max_feedrate_mm_s[i] *= factor;
 | |
|           planner.max_acceleration_steps_per_s2[i] *= factor;
 | |
|         }
 | |
|         planner.axis_steps_per_mm[i] = value;
 | |
|       }
 | |
|       else {
 | |
|         planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   planner.refresh_positioning();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Output the current position to serial
 | |
|  */
 | |
| static void report_current_position() {
 | |
|   SERIAL_PROTOCOLPGM("X:");
 | |
|   SERIAL_PROTOCOL(current_position[X_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" Y:");
 | |
|   SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" Z:");
 | |
|   SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | |
|   SERIAL_PROTOCOLPGM(" E:");
 | |
|   SERIAL_PROTOCOL(current_position[E_AXIS]);
 | |
| 
 | |
|   stepper.report_positions();
 | |
| 
 | |
|   #if ENABLED(SCARA)
 | |
|     SERIAL_PROTOCOLPGM("SCARA Theta:");
 | |
|     SERIAL_PROTOCOL(delta[X_AXIS]);
 | |
|     SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | |
|     SERIAL_PROTOCOL(delta[Y_AXIS]);
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
 | |
|     SERIAL_PROTOCOL(delta[X_AXIS]);
 | |
|     SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
 | |
|     SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
 | |
|     SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
 | |
|     SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | |
|     SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
 | |
|     SERIAL_EOL; SERIAL_EOL;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M114: Output current position to serial port
 | |
|  */
 | |
| inline void gcode_M114() { report_current_position(); }
 | |
| 
 | |
| /**
 | |
|  * M115: Capabilities string
 | |
|  */
 | |
| inline void gcode_M115() {
 | |
|   SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M117: Set LCD Status Message
 | |
|  */
 | |
| inline void gcode_M117() {
 | |
|   lcd_setstatus(current_command_args);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M119: Output endstop states to serial output
 | |
|  */
 | |
| inline void gcode_M119() { endstops.M119(); }
 | |
| 
 | |
| /**
 | |
|  * M120: Enable endstops and set non-homing endstop state to "enabled"
 | |
|  */
 | |
| inline void gcode_M120() { endstops.enable_globally(true); }
 | |
| 
 | |
| /**
 | |
|  * M121: Disable endstops and set non-homing endstop state to "disabled"
 | |
|  */
 | |
| inline void gcode_M121() { endstops.enable_globally(false); }
 | |
| 
 | |
| #if ENABLED(BLINKM)
 | |
| 
 | |
|   /**
 | |
|    * M150: Set Status LED Color - Use R-U-B for R-G-B
 | |
|    */
 | |
|   inline void gcode_M150() {
 | |
|     SendColors(
 | |
|       code_seen('R') ? code_value_byte() : 0,
 | |
|       code_seen('U') ? code_value_byte() : 0,
 | |
|       code_seen('B') ? code_value_byte() : 0
 | |
|     );
 | |
|   }
 | |
| 
 | |
| #endif // BLINKM
 | |
| 
 | |
| #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
| 
 | |
|   /**
 | |
|    * M155: Send data to a I2C slave device
 | |
|    *
 | |
|    * This is a PoC, the formating and arguments for the GCODE will
 | |
|    * change to be more compatible, the current proposal is:
 | |
|    *
 | |
|    *  M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
 | |
|    *
 | |
|    *  M155 B<byte-1 value in base 10>
 | |
|    *  M155 B<byte-2 value in base 10>
 | |
|    *  M155 B<byte-3 value in base 10>
 | |
|    *
 | |
|    *  M155 S1 ; Send the buffered data and reset the buffer
 | |
|    *  M155 R1 ; Reset the buffer without sending data
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M155() {
 | |
|     // Set the target address
 | |
|     if (code_seen('A'))
 | |
|       i2c.address(code_value_byte());
 | |
| 
 | |
|     // Add a new byte to the buffer
 | |
|     else if (code_seen('B'))
 | |
|       i2c.addbyte(code_value_int());
 | |
| 
 | |
|     // Flush the buffer to the bus
 | |
|     else if (code_seen('S')) i2c.send();
 | |
| 
 | |
|     // Reset and rewind the buffer
 | |
|     else if (code_seen('R')) i2c.reset();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M156: Request X bytes from I2C slave device
 | |
|    *
 | |
|    * Usage: M156 A<slave device address base 10> B<number of bytes>
 | |
|    */
 | |
|   inline void gcode_M156() {
 | |
|     uint8_t addr = code_seen('A') ? code_value_byte() : 0;
 | |
|     int bytes    = code_seen('B') ? code_value_int() : 1;
 | |
| 
 | |
|     if (addr && bytes > 0 && bytes <= 32) {
 | |
|       i2c.address(addr);
 | |
|       i2c.reqbytes(bytes);
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERRORLN("Bad i2c request");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif //EXPERIMENTAL_I2CBUS
 | |
| 
 | |
| /**
 | |
|  * M200: Set filament diameter and set E axis units to cubic units
 | |
|  *
 | |
|  *    T<extruder> - Optional extruder number. Current extruder if omitted.
 | |
|  *    D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
 | |
|  */
 | |
| inline void gcode_M200() {
 | |
| 
 | |
|   if (get_target_extruder_from_command(200)) return;
 | |
| 
 | |
|   if (code_seen('D')) {
 | |
|     // setting any extruder filament size disables volumetric on the assumption that
 | |
|     // slicers either generate in extruder values as cubic mm or as as filament feeds
 | |
|     // for all extruders
 | |
|     volumetric_enabled = (code_value_linear_units() != 0.0);
 | |
|     if (volumetric_enabled) {
 | |
|       filament_size[target_extruder] = code_value_linear_units();
 | |
|       // make sure all extruders have some sane value for the filament size
 | |
|       for (uint8_t i = 0; i < COUNT(filament_size); i++)
 | |
|         if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     //reserved for setting filament diameter via UFID or filament measuring device
 | |
|     return;
 | |
|   }
 | |
|   calculate_volumetric_multipliers();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | |
|  */
 | |
| inline void gcode_M201() {
 | |
|   LOOP_XYZE(i) {
 | |
|     if (code_seen(axis_codes[i])) {
 | |
|       planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
 | |
|     }
 | |
|   }
 | |
|   // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | |
|   planner.reset_acceleration_rates();
 | |
| }
 | |
| 
 | |
| #if 0 // Not used for Sprinter/grbl gen6
 | |
|   inline void gcode_M202() {
 | |
|     LOOP_XYZE(i) {
 | |
|       if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
 | |
|  */
 | |
| inline void gcode_M203() {
 | |
|   LOOP_XYZE(i)
 | |
|     if (code_seen(axis_codes[i]))
 | |
|       planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
 | |
|  *
 | |
|  *    P = Printing moves
 | |
|  *    R = Retract only (no X, Y, Z) moves
 | |
|  *    T = Travel (non printing) moves
 | |
|  *
 | |
|  *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 | |
|  */
 | |
| inline void gcode_M204() {
 | |
|   if (code_seen('S')) {  // Kept for legacy compatibility. Should NOT BE USED for new developments.
 | |
|     planner.travel_acceleration = planner.acceleration = code_value_linear_units();
 | |
|     SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
|   if (code_seen('P')) {
 | |
|     planner.acceleration = code_value_linear_units();
 | |
|     SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
|   if (code_seen('R')) {
 | |
|     planner.retract_acceleration = code_value_linear_units();
 | |
|     SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
|   if (code_seen('T')) {
 | |
|     planner.travel_acceleration = code_value_linear_units();
 | |
|     SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M205: Set Advanced Settings
 | |
|  *
 | |
|  *    S = Min Feed Rate (units/s)
 | |
|  *    T = Min Travel Feed Rate (units/s)
 | |
|  *    B = Min Segment Time (µs)
 | |
|  *    X = Max XY Jerk (units/sec^2)
 | |
|  *    Z = Max Z Jerk (units/sec^2)
 | |
|  *    E = Max E Jerk (units/sec^2)
 | |
|  */
 | |
| inline void gcode_M205() {
 | |
|   if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
 | |
|   if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
 | |
|   if (code_seen('B')) planner.min_segment_time = code_value_millis();
 | |
|   if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
 | |
|   if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
 | |
|   if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
 | |
|  */
 | |
| inline void gcode_M206() {
 | |
|   LOOP_XYZ(i)
 | |
|     if (code_seen(axis_codes[i]))
 | |
|       set_home_offset((AxisEnum)i, code_value_axis_units(i));
 | |
| 
 | |
|   #if ENABLED(SCARA)
 | |
|     if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
 | |
|     if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
 | |
|   #endif
 | |
| 
 | |
|   SYNC_PLAN_POSITION_KINEMATIC();
 | |
|   report_current_position();
 | |
| }
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
|   /**
 | |
|    * M665: Set delta configurations
 | |
|    *
 | |
|    *    L = diagonal rod
 | |
|    *    R = delta radius
 | |
|    *    S = segments per second
 | |
|    *    A = Alpha (Tower 1) diagonal rod trim
 | |
|    *    B = Beta (Tower 2) diagonal rod trim
 | |
|    *    C = Gamma (Tower 3) diagonal rod trim
 | |
|    */
 | |
|   inline void gcode_M665() {
 | |
|     if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
 | |
|     if (code_seen('R')) delta_radius = code_value_linear_units();
 | |
|     if (code_seen('S')) delta_segments_per_second = code_value_float();
 | |
|     if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
 | |
|     if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
 | |
|     if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
 | |
|     recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|   }
 | |
|   /**
 | |
|    * M666: Set delta endstop adjustment
 | |
|    */
 | |
|   inline void gcode_M666() {
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOLNPGM(">>> gcode_M666");
 | |
|       }
 | |
|     #endif
 | |
|     LOOP_XYZ(i) {
 | |
|       if (code_seen(axis_codes[i])) {
 | |
|         endstop_adj[i] = code_value_axis_units(i);
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) {
 | |
|             SERIAL_ECHOPGM("endstop_adj[");
 | |
|             SERIAL_ECHO(axis_codes[i]);
 | |
|             SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
 | |
|             SERIAL_EOL;
 | |
|           }
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|     #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|       if (DEBUGGING(LEVELING)) {
 | |
|         SERIAL_ECHOLNPGM("<<< gcode_M666");
 | |
|       }
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
 | |
| 
 | |
|   /**
 | |
|    * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
 | |
|    */
 | |
|   inline void gcode_M666() {
 | |
|     if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
 | |
|     SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
| #endif // !DELTA && Z_DUAL_ENDSTOPS
 | |
| 
 | |
| #if ENABLED(FWRETRACT)
 | |
| 
 | |
|   /**
 | |
|    * M207: Set firmware retraction values
 | |
|    *
 | |
|    *   S[+units]    retract_length
 | |
|    *   W[+units]    retract_length_swap (multi-extruder)
 | |
|    *   F[units/min] retract_feedrate_mm_s
 | |
|    *   Z[units]     retract_zlift
 | |
|    */
 | |
|   inline void gcode_M207() {
 | |
|     if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
 | |
|     if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
 | |
|     if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
 | |
|     #if EXTRUDERS > 1
 | |
|       if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M208: Set firmware un-retraction values
 | |
|    *
 | |
|    *   S[+units]    retract_recover_length (in addition to M207 S*)
 | |
|    *   W[+units]    retract_recover_length_swap (multi-extruder)
 | |
|    *   F[units/min] retract_recover_feedrate_mm_s
 | |
|    */
 | |
|   inline void gcode_M208() {
 | |
|     if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
 | |
|     if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
 | |
|     #if EXTRUDERS > 1
 | |
|       if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M209: Enable automatic retract (M209 S1)
 | |
|    *       detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | |
|    */
 | |
|   inline void gcode_M209() {
 | |
|     if (code_seen('S')) {
 | |
|       int t = code_value_int();
 | |
|       switch (t) {
 | |
|         case 0:
 | |
|           autoretract_enabled = false;
 | |
|           break;
 | |
|         case 1:
 | |
|           autoretract_enabled = true;
 | |
|           break;
 | |
|         default:
 | |
|           unknown_command_error();
 | |
|           return;
 | |
|       }
 | |
|       for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #if HOTENDS > 1
 | |
| 
 | |
|   /**
 | |
|    * M218 - set hotend offset (in linear units)
 | |
|    *
 | |
|    *   T<tool>
 | |
|    *   X<xoffset>
 | |
|    *   Y<yoffset>
 | |
|    *   Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
 | |
|    */
 | |
|   inline void gcode_M218() {
 | |
|     if (get_target_extruder_from_command(218)) return;
 | |
| 
 | |
|     if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
 | |
|     if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
 | |
| 
 | |
|     #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
 | |
|       if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
 | |
|     #endif
 | |
| 
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|     HOTEND_LOOP() {
 | |
|       SERIAL_CHAR(' ');
 | |
|       SERIAL_ECHO(hotend_offset[X_AXIS][e]);
 | |
|       SERIAL_CHAR(',');
 | |
|       SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
 | |
|       #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
 | |
|       #endif
 | |
|     }
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
| #endif // HOTENDS > 1
 | |
| 
 | |
| /**
 | |
|  * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 | |
|  */
 | |
| inline void gcode_M220() {
 | |
|   if (code_seen('S')) feedrate_percentage = code_value_int();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M221: Set extrusion percentage (M221 T0 S95)
 | |
|  */
 | |
| inline void gcode_M221() {
 | |
|   if (get_target_extruder_from_command(221)) return;
 | |
|   if (code_seen('S'))
 | |
|     extruder_multiplier[target_extruder] = code_value_int();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
 | |
|  */
 | |
| inline void gcode_M226() {
 | |
|   if (code_seen('P')) {
 | |
|     int pin_number = code_value_int();
 | |
| 
 | |
|     int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
 | |
| 
 | |
|     if (pin_state >= -1 && pin_state <= 1) {
 | |
| 
 | |
|       for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
 | |
|         if (sensitive_pins[i] == pin_number) {
 | |
|           pin_number = -1;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (pin_number > -1) {
 | |
|         int target = LOW;
 | |
| 
 | |
|         stepper.synchronize();
 | |
| 
 | |
|         pinMode(pin_number, INPUT);
 | |
| 
 | |
|         switch (pin_state) {
 | |
|           case 1:
 | |
|             target = HIGH;
 | |
|             break;
 | |
| 
 | |
|           case 0:
 | |
|             target = LOW;
 | |
|             break;
 | |
| 
 | |
|           case -1:
 | |
|             target = !digitalRead(pin_number);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         while (digitalRead(pin_number) != target) idle();
 | |
| 
 | |
|       } // pin_number > -1
 | |
|     } // pin_state -1 0 1
 | |
|   } // code_seen('P')
 | |
| }
 | |
| 
 | |
| #if HAS_SERVOS
 | |
| 
 | |
|   /**
 | |
|    * M280: Get or set servo position. P<index> [S<angle>]
 | |
|    */
 | |
|   inline void gcode_M280() {
 | |
|     if (!code_seen('P')) return;
 | |
|     int servo_index = code_value_int();
 | |
|     if (servo_index >= 0 && servo_index < NUM_SERVOS) {
 | |
|       if (code_seen('S'))
 | |
|         MOVE_SERVO(servo_index, code_value_int());
 | |
|       else {
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPGM(" Servo ");
 | |
|         SERIAL_ECHO(servo_index);
 | |
|         SERIAL_ECHOPGM(": ");
 | |
|         SERIAL_ECHOLN(servo[servo_index].read());
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERROR("Servo ");
 | |
|       SERIAL_ERROR(servo_index);
 | |
|       SERIAL_ERRORLN(" out of range");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAS_SERVOS
 | |
| 
 | |
| #if HAS_BUZZER
 | |
| 
 | |
|   /**
 | |
|    * M300: Play beep sound S<frequency Hz> P<duration ms>
 | |
|    */
 | |
|   inline void gcode_M300() {
 | |
|     uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
 | |
|     uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
 | |
| 
 | |
|     // Limits the tone duration to 0-5 seconds.
 | |
|     NOMORE(duration, 5000);
 | |
| 
 | |
|     buzzer.tone(duration, frequency);
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BUZZER
 | |
| 
 | |
| #if ENABLED(PIDTEMP)
 | |
| 
 | |
|   /**
 | |
|    * M301: Set PID parameters P I D (and optionally C, L)
 | |
|    *
 | |
|    *   P[float] Kp term
 | |
|    *   I[float] Ki term (unscaled)
 | |
|    *   D[float] Kd term (unscaled)
 | |
|    *
 | |
|    * With PID_ADD_EXTRUSION_RATE:
 | |
|    *
 | |
|    *   C[float] Kc term
 | |
|    *   L[float] LPQ length
 | |
|    */
 | |
|   inline void gcode_M301() {
 | |
| 
 | |
|     // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
 | |
|     // default behaviour (omitting E parameter) is to update for extruder 0 only
 | |
|     int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
 | |
| 
 | |
|     if (e < HOTENDS) { // catch bad input value
 | |
|       if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
 | |
|       if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
 | |
|       if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
 | |
|       #if ENABLED(PID_ADD_EXTRUSION_RATE)
 | |
|         if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
 | |
|         if (code_seen('L')) lpq_len = code_value_float();
 | |
|         NOMORE(lpq_len, LPQ_MAX_LEN);
 | |
|       #endif
 | |
| 
 | |
|       thermalManager.updatePID();
 | |
|       SERIAL_ECHO_START;
 | |
|       #if ENABLED(PID_PARAMS_PER_HOTEND)
 | |
|         SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
 | |
|         SERIAL_ECHO(e);
 | |
|       #endif // PID_PARAMS_PER_HOTEND
 | |
|       SERIAL_ECHOPGM(" p:");
 | |
|       SERIAL_ECHO(PID_PARAM(Kp, e));
 | |
|       SERIAL_ECHOPGM(" i:");
 | |
|       SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
 | |
|       SERIAL_ECHOPGM(" d:");
 | |
|       SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
 | |
|       #if ENABLED(PID_ADD_EXTRUSION_RATE)
 | |
|         SERIAL_ECHOPGM(" c:");
 | |
|         //Kc does not have scaling applied above, or in resetting defaults
 | |
|         SERIAL_ECHO(PID_PARAM(Kc, e));
 | |
|       #endif
 | |
|       SERIAL_EOL;
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PIDTEMP
 | |
| 
 | |
| #if ENABLED(PIDTEMPBED)
 | |
| 
 | |
|   inline void gcode_M304() {
 | |
|     if (code_seen('P')) thermalManager.bedKp = code_value_float();
 | |
|     if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
 | |
|     if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
 | |
| 
 | |
|     thermalManager.updatePID();
 | |
| 
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(" p:");
 | |
|     SERIAL_ECHO(thermalManager.bedKp);
 | |
|     SERIAL_ECHOPGM(" i:");
 | |
|     SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
 | |
|     SERIAL_ECHOPGM(" d:");
 | |
|     SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
 | |
|   }
 | |
| 
 | |
| #endif // PIDTEMPBED
 | |
| 
 | |
| #if defined(CHDK) || HAS_PHOTOGRAPH
 | |
| 
 | |
|   /**
 | |
|    * M240: Trigger a camera by emulating a Canon RC-1
 | |
|    *       See http://www.doc-diy.net/photo/rc-1_hacked/
 | |
|    */
 | |
|   inline void gcode_M240() {
 | |
|     #ifdef CHDK
 | |
| 
 | |
|       OUT_WRITE(CHDK, HIGH);
 | |
|       chdkHigh = millis();
 | |
|       chdkActive = true;
 | |
| 
 | |
|     #elif HAS_PHOTOGRAPH
 | |
| 
 | |
|       const uint8_t NUM_PULSES = 16;
 | |
|       const float PULSE_LENGTH = 0.01524;
 | |
|       for (int i = 0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|       }
 | |
|       delay(7.33);
 | |
|       for (int i = 0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|       }
 | |
| 
 | |
|     #endif // !CHDK && HAS_PHOTOGRAPH
 | |
|   }
 | |
| 
 | |
| #endif // CHDK || PHOTOGRAPH_PIN
 | |
| 
 | |
| #if HAS_LCD_CONTRAST
 | |
| 
 | |
|   /**
 | |
|    * M250: Read and optionally set the LCD contrast
 | |
|    */
 | |
|   inline void gcode_M250() {
 | |
|     if (code_seen('C')) set_lcd_contrast(code_value_int());
 | |
|     SERIAL_PROTOCOLPGM("lcd contrast value: ");
 | |
|     SERIAL_PROTOCOL(lcd_contrast);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
| #endif // HAS_LCD_CONTRAST
 | |
| 
 | |
| #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | |
| 
 | |
|   /**
 | |
|    * M302: Allow cold extrudes, or set the minimum extrude temperature
 | |
|    *
 | |
|    *       S<temperature> sets the minimum extrude temperature
 | |
|    *       P<bool> enables (1) or disables (0) cold extrusion
 | |
|    *
 | |
|    *  Examples:
 | |
|    *
 | |
|    *       M302         ; report current cold extrusion state
 | |
|    *       M302 P0      ; enable cold extrusion checking
 | |
|    *       M302 P1      ; disables cold extrusion checking
 | |
|    *       M302 S0      ; always allow extrusion (disables checking)
 | |
|    *       M302 S170    ; only allow extrusion above 170
 | |
|    *       M302 S170 P1 ; set min extrude temp to 170 but leave disabled
 | |
|    */
 | |
|   inline void gcode_M302() {
 | |
|     bool seen_S = code_seen('S');
 | |
|     if (seen_S) {
 | |
|       thermalManager.extrude_min_temp = code_value_temp_abs();
 | |
|       thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
 | |
|     }
 | |
| 
 | |
|     if (code_seen('P'))
 | |
|       thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
 | |
|     else if (!seen_S) {
 | |
|       // Report current state
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
 | |
|       SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
 | |
|       SERIAL_ECHOLNPGM("C)");
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PREVENT_DANGEROUS_EXTRUDE
 | |
| 
 | |
| /**
 | |
|  * M303: PID relay autotune
 | |
|  *
 | |
|  *       S<temperature> sets the target temperature. (default 150C)
 | |
|  *       E<extruder> (-1 for the bed) (default 0)
 | |
|  *       C<cycles>
 | |
|  *       U<bool> with a non-zero value will apply the result to current settings
 | |
|  */
 | |
| inline void gcode_M303() {
 | |
|   #if HAS_PID_HEATING
 | |
|     int e = code_seen('E') ? code_value_int() : 0;
 | |
|     int c = code_seen('C') ? code_value_int() : 5;
 | |
|     bool u = code_seen('U') && code_value_bool();
 | |
| 
 | |
|     float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
 | |
| 
 | |
|     if (e >= 0 && e < HOTENDS)
 | |
|       target_extruder = e;
 | |
| 
 | |
|     KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
 | |
| 
 | |
|     thermalManager.PID_autotune(temp, e, c, u);
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
|   #else
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(SCARA)
 | |
|   bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
 | |
|     //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|     //SERIAL_ECHOLNPGM(" Soft endstops disabled");
 | |
|     if (IsRunning()) {
 | |
|       //gcode_get_destination(); // For X Y Z E F
 | |
|       delta[X_AXIS] = delta_x;
 | |
|       delta[Y_AXIS] = delta_y;
 | |
|       forward_kinematics_SCARA(delta);
 | |
|       destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
 | |
|       destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
 | |
|       prepare_move_to_destination();
 | |
|       //ok_to_send();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | |
|    */
 | |
|   inline bool gcode_M360() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta 0");
 | |
|     return SCARA_move_to_cal(0, 120);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | |
|    */
 | |
|   inline bool gcode_M361() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta 90");
 | |
|     return SCARA_move_to_cal(90, 130);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | |
|    */
 | |
|   inline bool gcode_M362() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Psi 0");
 | |
|     return SCARA_move_to_cal(60, 180);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | |
|    */
 | |
|   inline bool gcode_M363() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Psi 90");
 | |
|     return SCARA_move_to_cal(50, 90);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | |
|    */
 | |
|   inline bool gcode_M364() {
 | |
|     SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
 | |
|     return SCARA_move_to_cal(45, 135);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M365: SCARA calibration: Scaling factor, X, Y, Z axis
 | |
|    */
 | |
|   inline void gcode_M365() {
 | |
|     LOOP_XYZ(i)
 | |
|       if (code_seen(axis_codes[i]))
 | |
|         axis_scaling[i] = code_value_float();
 | |
|   }
 | |
| 
 | |
| #endif // SCARA
 | |
| 
 | |
| #if ENABLED(EXT_SOLENOID)
 | |
| 
 | |
|   void enable_solenoid(uint8_t num) {
 | |
|     switch (num) {
 | |
|       case 0:
 | |
|         OUT_WRITE(SOL0_PIN, HIGH);
 | |
|         break;
 | |
|         #if HAS_SOLENOID_1
 | |
|           case 1:
 | |
|             OUT_WRITE(SOL1_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|         #if HAS_SOLENOID_2
 | |
|           case 2:
 | |
|             OUT_WRITE(SOL2_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|         #if HAS_SOLENOID_3
 | |
|           case 3:
 | |
|             OUT_WRITE(SOL3_PIN, HIGH);
 | |
|             break;
 | |
|         #endif
 | |
|       default:
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
 | |
| 
 | |
|   void disable_all_solenoids() {
 | |
|     OUT_WRITE(SOL0_PIN, LOW);
 | |
|     OUT_WRITE(SOL1_PIN, LOW);
 | |
|     OUT_WRITE(SOL2_PIN, LOW);
 | |
|     OUT_WRITE(SOL3_PIN, LOW);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M380: Enable solenoid on the active extruder
 | |
|    */
 | |
|   inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
 | |
| 
 | |
|   /**
 | |
|    * M381: Disable all solenoids
 | |
|    */
 | |
|   inline void gcode_M381() { disable_all_solenoids(); }
 | |
| 
 | |
| #endif // EXT_SOLENOID
 | |
| 
 | |
| /**
 | |
|  * M400: Finish all moves
 | |
|  */
 | |
| inline void gcode_M400() { stepper.synchronize(); }
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   /**
 | |
|    * M401: Engage Z Servo endstop if available
 | |
|    */
 | |
|   inline void gcode_M401() { DEPLOY_PROBE(); }
 | |
| 
 | |
|   /**
 | |
|    * M402: Retract Z Servo endstop if enabled
 | |
|    */
 | |
|   inline void gcode_M402() { STOW_PROBE(); }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
| 
 | |
|   /**
 | |
|    * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
 | |
|    */
 | |
|   inline void gcode_M404() {
 | |
|     if (code_seen('W')) {
 | |
|       filament_width_nominal = code_value_linear_units();
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
 | |
|       SERIAL_PROTOCOLLN(filament_width_nominal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M405: Turn on filament sensor for control
 | |
|    */
 | |
|   inline void gcode_M405() {
 | |
|     // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
 | |
|     // everything else, it uses code_value_int() instead of code_value_linear_units().
 | |
|     if (code_seen('D')) meas_delay_cm = code_value_int();
 | |
|     NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
 | |
| 
 | |
|     if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
 | |
|       int temp_ratio = thermalManager.widthFil_to_size_ratio();
 | |
| 
 | |
|       for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
 | |
|         measurement_delay[i] = temp_ratio - 100;  // Subtract 100 to scale within a signed byte
 | |
| 
 | |
|       filwidth_delay_index1 = filwidth_delay_index2 = 0;
 | |
|     }
 | |
| 
 | |
|     filament_sensor = true;
 | |
| 
 | |
|     //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | |
|     //SERIAL_PROTOCOL(filament_width_meas);
 | |
|     //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
 | |
|     //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M406: Turn off filament sensor for control
 | |
|    */
 | |
|   inline void gcode_M406() { filament_sensor = false; }
 | |
| 
 | |
|   /**
 | |
|    * M407: Get measured filament diameter on serial output
 | |
|    */
 | |
|   inline void gcode_M407() {
 | |
|     SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
 | |
|     SERIAL_PROTOCOLLN(filament_width_meas);
 | |
|   }
 | |
| 
 | |
| #endif // FILAMENT_WIDTH_SENSOR
 | |
| 
 | |
| void quickstop_stepper() {
 | |
|   stepper.quick_stop();
 | |
|   #if DISABLED(SCARA)
 | |
|     stepper.synchronize();
 | |
|     LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|   /**
 | |
|    * M420: Enable/Disable Mesh Bed Leveling
 | |
|    */
 | |
|   inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
 | |
| 
 | |
|   /**
 | |
|    * M421: Set a single Mesh Bed Leveling Z coordinate
 | |
|    * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
 | |
|    */
 | |
|   inline void gcode_M421() {
 | |
|     int8_t px = 0, py = 0;
 | |
|     float z = 0;
 | |
|     bool hasX, hasY, hasZ, hasI, hasJ;
 | |
|     if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
 | |
|     if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
 | |
|     if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
 | |
|     if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
 | |
|     if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
 | |
| 
 | |
|     if (hasX && hasY && hasZ) {
 | |
| 
 | |
|       if (px >= 0 && py >= 0)
 | |
|         mbl.set_z(px, py, z);
 | |
|       else {
 | |
|         SERIAL_ERROR_START;
 | |
|         SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
 | |
|       }
 | |
|     }
 | |
|     else if (hasI && hasJ && hasZ) {
 | |
|       if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
 | |
|         mbl.set_z(px, py, z);
 | |
|       else {
 | |
|         SERIAL_ERROR_START;
 | |
|         SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M428: Set home_offset based on the distance between the
 | |
|  *       current_position and the nearest "reference point."
 | |
|  *       If an axis is past center its endstop position
 | |
|  *       is the reference-point. Otherwise it uses 0. This allows
 | |
|  *       the Z offset to be set near the bed when using a max endstop.
 | |
|  *
 | |
|  *       M428 can't be used more than 2cm away from 0 or an endstop.
 | |
|  *
 | |
|  *       Use M206 to set these values directly.
 | |
|  */
 | |
| inline void gcode_M428() {
 | |
|   bool err = false;
 | |
|   LOOP_XYZ(i) {
 | |
|     if (axis_homed[i]) {
 | |
|       float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
 | |
|             diff = current_position[i] - LOGICAL_POSITION(base, i);
 | |
|       if (diff > -20 && diff < 20) {
 | |
|         set_home_offset((AxisEnum)i, home_offset[i] - diff);
 | |
|       }
 | |
|       else {
 | |
|         SERIAL_ERROR_START;
 | |
|         SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
 | |
|         LCD_ALERTMESSAGEPGM("Err: Too far!");
 | |
|         #if HAS_BUZZER
 | |
|           buzzer.tone(200, 40);
 | |
|         #endif
 | |
|         err = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!err) {
 | |
|     SYNC_PLAN_POSITION_KINEMATIC();
 | |
|     report_current_position();
 | |
|     LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
 | |
|     #if HAS_BUZZER
 | |
|       buzzer.tone(200, 659);
 | |
|       buzzer.tone(200, 698);
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M500: Store settings in EEPROM
 | |
|  */
 | |
| inline void gcode_M500() {
 | |
|   Config_StoreSettings();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M501: Read settings from EEPROM
 | |
|  */
 | |
| inline void gcode_M501() {
 | |
|   Config_RetrieveSettings();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M502: Revert to default settings
 | |
|  */
 | |
| inline void gcode_M502() {
 | |
|   Config_ResetDefault();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * M503: print settings currently in memory
 | |
|  */
 | |
| inline void gcode_M503() {
 | |
|   Config_PrintSettings(code_seen('S') && !code_value_bool());
 | |
| }
 | |
| 
 | |
| #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
| 
 | |
|   /**
 | |
|    * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
 | |
|    */
 | |
|   inline void gcode_M540() {
 | |
|     if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
 | |
|   }
 | |
| 
 | |
| #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
| 
 | |
| #if HAS_BED_PROBE
 | |
| 
 | |
|   inline void gcode_M851() {
 | |
| 
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
 | |
|     SERIAL_CHAR(' ');
 | |
| 
 | |
|     if (code_seen('Z')) {
 | |
|       float value = code_value_axis_units(Z_AXIS);
 | |
|       if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
 | |
|         zprobe_zoffset = value;
 | |
|         SERIAL_ECHO(zprobe_zoffset);
 | |
|       }
 | |
|       else {
 | |
|         SERIAL_ECHOPGM(MSG_Z_MIN);
 | |
|         SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHOPGM(MSG_Z_MAX);
 | |
|         SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       SERIAL_ECHOPAIR(": ", zprobe_zoffset);
 | |
|     }
 | |
| 
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
| #endif // HAS_BED_PROBE
 | |
| 
 | |
| #if ENABLED(FILAMENT_CHANGE_FEATURE)
 | |
| 
 | |
|   /**
 | |
|    * M600: Pause for filament change
 | |
|    *
 | |
|    *  E[distance] - Retract the filament this far (negative value)
 | |
|    *  Z[distance] - Move the Z axis by this distance
 | |
|    *  X[position] - Move to this X position, with Y
 | |
|    *  Y[position] - Move to this Y position, with X
 | |
|    *  L[distance] - Retract distance for removal (manual reload)
 | |
|    *
 | |
|    *  Default values are used for omitted arguments.
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M600() {
 | |
| 
 | |
|     if (thermalManager.tooColdToExtrude(active_extruder)) {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Show initial message and wait for synchronize steppers
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     float lastpos[NUM_AXIS];
 | |
| 
 | |
|     // Save current position of all axes
 | |
|     LOOP_XYZE(i)
 | |
|       lastpos[i] = destination[i] = current_position[i];
 | |
| 
 | |
|     // Define runplan for move axes
 | |
|     #if ENABLED(DELTA)
 | |
|       #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
 | |
|                                  planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
 | |
|     #else
 | |
|       #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
 | |
|     #endif
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|     // Initial retract before move to filament change position
 | |
|     if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
 | |
|     #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
 | |
|       else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
 | |
|     #endif
 | |
| 
 | |
|     RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
 | |
| 
 | |
|     // Lift Z axis
 | |
|     float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
 | |
|       #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
 | |
|         FILAMENT_CHANGE_Z_ADD
 | |
|       #else
 | |
|         0
 | |
|       #endif
 | |
|     ;
 | |
| 
 | |
|     if (z_lift > 0) {
 | |
|       destination[Z_AXIS] += z_lift;
 | |
|       NOMORE(destination[Z_AXIS], Z_MAX_POS);
 | |
|       RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
 | |
|     }
 | |
| 
 | |
|     // Move XY axes to filament exchange position
 | |
|     if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
 | |
|     #ifdef FILAMENT_CHANGE_X_POS
 | |
|       else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
 | |
|     #endif
 | |
| 
 | |
|     if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
 | |
|     #ifdef FILAMENT_CHANGE_Y_POS
 | |
|       else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
 | |
|     #endif
 | |
| 
 | |
|     RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
 | |
| 
 | |
|     stepper.synchronize();
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
 | |
| 
 | |
|     // Unload filament
 | |
|     if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
 | |
|     #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
 | |
|       else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
 | |
|     #endif
 | |
| 
 | |
|     RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
 | |
| 
 | |
|     // Synchronize steppers and then disable extruders steppers for manual filament changing
 | |
|     stepper.synchronize();
 | |
|     disable_e0();
 | |
|     disable_e1();
 | |
|     disable_e2();
 | |
|     disable_e3();
 | |
|     delay(100);
 | |
| 
 | |
|     #if HAS_BUZZER
 | |
|       millis_t next_tick = 0;
 | |
|     #endif
 | |
| 
 | |
|     // Wait for filament insert by user and press button
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
 | |
| 
 | |
|     while (!lcd_clicked()) {
 | |
|       #if HAS_BUZZER
 | |
|         millis_t ms = millis();
 | |
|         if (ms >= next_tick) {
 | |
|           buzzer.tone(300, 2000);
 | |
|           next_tick = ms + 2500; // Beep every 2.5s while waiting
 | |
|         }
 | |
|       #endif
 | |
|       idle(true);
 | |
|     }
 | |
|     delay(100);
 | |
|     while (lcd_clicked()) idle(true);
 | |
|     delay(100);
 | |
| 
 | |
|     // Show load message
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
 | |
| 
 | |
|     // Load filament
 | |
|     if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
 | |
|     #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
 | |
|       else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
 | |
|     #endif
 | |
| 
 | |
|     RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
 | |
|       do {
 | |
|         // Extrude filament to get into hotend
 | |
|         lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
 | |
|         destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
 | |
|         RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
 | |
|         stepper.synchronize();
 | |
|         // Ask user if more filament should be extruded
 | |
|         KEEPALIVE_STATE(PAUSED_FOR_USER);
 | |
|         lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
 | |
|         while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
 | |
|         KEEPALIVE_STATE(IN_HANDLER);
 | |
|       } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
 | |
|     #endif
 | |
| 
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
 | |
| 
 | |
|     KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|     // Set extruder to saved position
 | |
|     current_position[E_AXIS] = lastpos[E_AXIS];
 | |
|     destination[E_AXIS] = lastpos[E_AXIS];
 | |
|     planner.set_e_position_mm(current_position[E_AXIS]);
 | |
| 
 | |
|     #if ENABLED(DELTA)
 | |
|       // Move XYZ to starting position, then E
 | |
|       inverse_kinematics(lastpos);
 | |
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
 | |
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
 | |
|     #else
 | |
|       // Move XY to starting position, then Z, then E
 | |
|       destination[X_AXIS] = lastpos[X_AXIS];
 | |
|       destination[Y_AXIS] = lastpos[Y_AXIS];
 | |
|       RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
 | |
|       destination[Z_AXIS] = lastpos[Z_AXIS];
 | |
|       RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
 | |
|     #endif
 | |
|     stepper.synchronize();
 | |
| 
 | |
|     #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|       filament_ran_out = false;
 | |
|     #endif
 | |
| 
 | |
|     // Show status screen
 | |
|     lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
 | |
|   }
 | |
| 
 | |
| #endif // FILAMENT_CHANGE_FEATURE
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   /**
 | |
|    * M605: Set dual x-carriage movement mode
 | |
|    *
 | |
|    *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
 | |
|    *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
 | |
|    *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
 | |
|    *                         units x-offset and an optional differential hotend temperature of
 | |
|    *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
 | |
|    *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
 | |
|    *
 | |
|    *    Note: the X axis should be homed after changing dual x-carriage mode.
 | |
|    */
 | |
|   inline void gcode_M605() {
 | |
|     stepper.synchronize();
 | |
|     if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
 | |
|     switch (dual_x_carriage_mode) {
 | |
|       case DXC_DUPLICATION_MODE:
 | |
|         if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
 | |
|         if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO(hotend_offset[X_AXIS][0]);
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
 | |
|         SERIAL_CHAR(' ');
 | |
|         SERIAL_ECHO(duplicate_extruder_x_offset);
 | |
|         SERIAL_CHAR(',');
 | |
|         SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
 | |
|         break;
 | |
|       case DXC_FULL_CONTROL_MODE:
 | |
|       case DXC_AUTO_PARK_MODE:
 | |
|         break;
 | |
|       default:
 | |
|         dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
|         break;
 | |
|     }
 | |
|     active_extruder_parked = false;
 | |
|     extruder_duplication_enabled = false;
 | |
|     delayed_move_time = 0;
 | |
|   }
 | |
| 
 | |
| #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
 | |
| 
 | |
|   inline void gcode_M605() {
 | |
|     stepper.synchronize();
 | |
|     extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
 | |
|     SERIAL_EOL;
 | |
|   }
 | |
| 
 | |
| #endif // M605
 | |
| 
 | |
| #if ENABLED(LIN_ADVANCE)
 | |
|   /**
 | |
|    * M905: Set advance factor
 | |
|    */
 | |
|   inline void gcode_M905() {
 | |
|     stepper.synchronize();
 | |
|     stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 | |
|  */
 | |
| inline void gcode_M907() {
 | |
|   #if HAS_DIGIPOTSS
 | |
|     LOOP_XYZE(i)
 | |
|       if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
 | |
|     if (code_seen('B')) stepper.digipot_current(4, code_value_int());
 | |
|     if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
 | |
|   #endif
 | |
|   #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
 | |
|     if (code_seen('X')) stepper.digipot_current(0, code_value_int());
 | |
|   #endif
 | |
|   #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
 | |
|     if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
 | |
|   #endif
 | |
|   #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
 | |
|     if (code_seen('E')) stepper.digipot_current(2, code_value_int());
 | |
|   #endif
 | |
|   #if ENABLED(DIGIPOT_I2C)
 | |
|     // this one uses actual amps in floating point
 | |
|     LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
 | |
|     // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
 | |
|     for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
 | |
|   #endif
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT)
 | |
|     if (code_seen('S')) {
 | |
|       float dac_percent = code_value_float();
 | |
|       for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
 | |
|     }
 | |
|     LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
 | |
| 
 | |
|   /**
 | |
|    * M908: Control digital trimpot directly (M908 P<pin> S<current>)
 | |
|    */
 | |
|   inline void gcode_M908() {
 | |
|     #if HAS_DIGIPOTSS
 | |
|       stepper.digitalPotWrite(
 | |
|         code_seen('P') ? code_value_int() : 0,
 | |
|         code_seen('S') ? code_value_int() : 0
 | |
|       );
 | |
|     #endif
 | |
|     #ifdef DAC_STEPPER_CURRENT
 | |
|       dac_current_raw(
 | |
|         code_seen('P') ? code_value_byte() : -1,
 | |
|         code_seen('S') ? code_value_ushort() : 0
 | |
|       );
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
 | |
| 
 | |
|     inline void gcode_M909() { dac_print_values(); }
 | |
| 
 | |
|     inline void gcode_M910() { dac_commit_eeprom(); }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
| #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
 | |
| 
 | |
| #if HAS_MICROSTEPS
 | |
| 
 | |
|   // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | |
|   inline void gcode_M350() {
 | |
|     if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
 | |
|     LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
 | |
|     if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
 | |
|     stepper.microstep_readings();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
 | |
|    *       S# determines MS1 or MS2, X# sets the pin high/low.
 | |
|    */
 | |
|   inline void gcode_M351() {
 | |
|     if (code_seen('S')) switch (code_value_byte()) {
 | |
|       case 1:
 | |
|         LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
 | |
|         if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
 | |
|         break;
 | |
|       case 2:
 | |
|         LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
 | |
|         if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
 | |
|         break;
 | |
|     }
 | |
|     stepper.microstep_readings();
 | |
|   }
 | |
| 
 | |
| #endif // HAS_MICROSTEPS
 | |
| 
 | |
| #if ENABLED(MIXING_EXTRUDER)
 | |
| 
 | |
|   /**
 | |
|    * M163: Set a single mix factor for a mixing extruder
 | |
|    *       This is called "weight" by some systems.
 | |
|    *
 | |
|    *   S[index]   The channel index to set
 | |
|    *   P[float]   The mix value
 | |
|    *
 | |
|    */
 | |
|   inline void gcode_M163() {
 | |
|     int mix_index = code_seen('S') ? code_value_int() : 0;
 | |
|     float mix_value = code_seen('P') ? code_value_float() : 0.0;
 | |
|     if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
 | |
|   }
 | |
| 
 | |
|   #if MIXING_VIRTUAL_TOOLS > 1
 | |
| 
 | |
|     /**
 | |
|      * M164: Store the current mix factors as a virtual tool.
 | |
|      *
 | |
|      *   S[index]   The virtual tool to store
 | |
|      *
 | |
|      */
 | |
|     inline void gcode_M164() {
 | |
|       int tool_index = code_seen('S') ? code_value_int() : 0;
 | |
|       if (tool_index < MIXING_VIRTUAL_TOOLS) {
 | |
|         normalize_mix();
 | |
|         for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | |
|           mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|     /**
 | |
|      * M165: Set multiple mix factors for a mixing extruder.
 | |
|      *       Factors that are left out will be set to 0.
 | |
|      *       All factors together must add up to 1.0.
 | |
|      *
 | |
|      *   A[factor] Mix factor for extruder stepper 1
 | |
|      *   B[factor] Mix factor for extruder stepper 2
 | |
|      *   C[factor] Mix factor for extruder stepper 3
 | |
|      *   D[factor] Mix factor for extruder stepper 4
 | |
|      *   H[factor] Mix factor for extruder stepper 5
 | |
|      *   I[factor] Mix factor for extruder stepper 6
 | |
|      *
 | |
|      */
 | |
|     inline void gcode_M165() { gcode_get_mix(); }
 | |
|   #endif
 | |
| 
 | |
| #endif // MIXING_EXTRUDER
 | |
| 
 | |
| /**
 | |
|  * M999: Restart after being stopped
 | |
|  *
 | |
|  * Default behaviour is to flush the serial buffer and request
 | |
|  * a resend to the host starting on the last N line received.
 | |
|  *
 | |
|  * Sending "M999 S1" will resume printing without flushing the
 | |
|  * existing command buffer.
 | |
|  *
 | |
|  */
 | |
| inline void gcode_M999() {
 | |
|   Running = true;
 | |
|   lcd_reset_alert_level();
 | |
| 
 | |
|   if (code_seen('S') && code_value_bool()) return;
 | |
| 
 | |
|   // gcode_LastN = Stopped_gcode_LastN;
 | |
|   FlushSerialRequestResend();
 | |
| }
 | |
| 
 | |
| #if ENABLED(SWITCHING_EXTRUDER)
 | |
|   inline void move_extruder_servo(uint8_t e) {
 | |
|     const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
 | |
|     MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| inline void invalid_extruder_error(const uint8_t &e) {
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_CHAR('T');
 | |
|   SERIAL_PROTOCOL_F(e, DEC);
 | |
|   SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | |
| }
 | |
| 
 | |
| void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool no_move/*=false*/) {
 | |
|   #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
 | |
| 
 | |
|     if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
 | |
|       invalid_extruder_error(tmp_extruder);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // T0-Tnnn: Switch virtual tool by changing the mix
 | |
|     for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
 | |
|       mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
 | |
| 
 | |
|   #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
 | |
| 
 | |
|     #if HOTENDS > 1
 | |
| 
 | |
|       if (tmp_extruder >= EXTRUDERS) {
 | |
|         invalid_extruder_error(tmp_extruder);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       float old_feedrate_mm_m = feedrate_mm_m;
 | |
| 
 | |
|       feedrate_mm_m = fr_mm_m > 0.0 ? (old_feedrate_mm_m = fr_mm_m) : XY_PROBE_FEEDRATE_MM_M;
 | |
| 
 | |
|       if (tmp_extruder != active_extruder) {
 | |
|         if (!no_move && axis_unhomed_error(true, true, true)) {
 | |
|           SERIAL_ECHOLNPGM("No move on toolchange");
 | |
|           no_move = true;
 | |
|         }
 | |
| 
 | |
|         // Save current position to destination, for use later
 | |
|         set_destination_to_current();
 | |
| 
 | |
|         #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPGM("Dual X Carriage Mode ");
 | |
|               switch (dual_x_carriage_mode) {
 | |
|                 case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
 | |
|                 case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
 | |
|                 case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
 | |
|               }
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
 | |
|               (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
 | |
|           ) {
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
 | |
|                 SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
 | |
|                 SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
 | |
|               }
 | |
|             #endif
 | |
|             // Park old head: 1) raise 2) move to park position 3) lower
 | |
|             for (uint8_t i = 0; i < 3; i++)
 | |
|               planner.buffer_line(
 | |
|                 i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
 | |
|                 current_position[Y_AXIS],
 | |
|                 current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
 | |
|                 current_position[E_AXIS],
 | |
|                 planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
 | |
|                 active_extruder
 | |
|               );
 | |
|             stepper.synchronize();
 | |
|           }
 | |
| 
 | |
|           // apply Y & Z extruder offset (x offset is already used in determining home pos)
 | |
|           current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
 | |
|           current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
 | |
|           active_extruder = tmp_extruder;
 | |
| 
 | |
|           // This function resets the max/min values - the current position may be overwritten below.
 | |
|           set_axis_is_at_home(X_AXIS);
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
 | |
|           #endif
 | |
| 
 | |
|           switch (dual_x_carriage_mode) {
 | |
|             case DXC_FULL_CONTROL_MODE:
 | |
|               current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
 | |
|               inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
 | |
|               break;
 | |
|             case DXC_DUPLICATION_MODE:
 | |
|               active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
 | |
|               if (active_extruder_parked)
 | |
|                 current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
 | |
|               else
 | |
|                 current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
 | |
|               inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
 | |
|               extruder_duplication_enabled = false;
 | |
|               break;
 | |
|             default:
 | |
|               // record raised toolhead position for use by unpark
 | |
|               memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | |
|               raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
 | |
|               active_extruder_parked = true;
 | |
|               delayed_move_time = 0;
 | |
|               break;
 | |
|           }
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
 | |
|               SERIAL_EOL;
 | |
|               DEBUG_POS("New extruder (parked)", current_position);
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
 | |
|         #else // !DUAL_X_CARRIAGE
 | |
| 
 | |
|           #if ENABLED(SWITCHING_EXTRUDER)
 | |
|             // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
 | |
|             float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
 | |
|                   z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
 | |
| 
 | |
|             // Always raise by some amount
 | |
|             planner.buffer_line(
 | |
|               current_position[X_AXIS],
 | |
|               current_position[Y_AXIS],
 | |
|               current_position[Z_AXIS] + z_raise,
 | |
|               current_position[E_AXIS],
 | |
|               planner.max_feedrate_mm_s[Z_AXIS],
 | |
|               active_extruder
 | |
|             );
 | |
|             stepper.synchronize();
 | |
| 
 | |
|             move_extruder_servo(active_extruder);
 | |
|             delay(500);
 | |
| 
 | |
|             // Move back down, if needed
 | |
|             if (z_raise != z_diff) {
 | |
|               planner.buffer_line(
 | |
|                 current_position[X_AXIS],
 | |
|                 current_position[Y_AXIS],
 | |
|                 current_position[Z_AXIS] + z_diff,
 | |
|                 current_position[E_AXIS],
 | |
|                 planner.max_feedrate_mm_s[Z_AXIS],
 | |
|                 active_extruder
 | |
|               );
 | |
|               stepper.synchronize();
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           /**
 | |
|            * Set current_position to the position of the new nozzle.
 | |
|            * Offsets are based on linear distance, so we need to get
 | |
|            * the resulting position in coordinate space.
 | |
|            *
 | |
|            * - With grid or 3-point leveling, offset XYZ by a tilted vector
 | |
|            * - With mesh leveling, update Z for the new position
 | |
|            * - Otherwise, just use the raw linear distance
 | |
|            *
 | |
|            * Software endstops are altered here too. Consider a case where:
 | |
|            *   E0 at X=0 ... E1 at X=10
 | |
|            * When we switch to E1 now X=10, but E1 can't move left.
 | |
|            * To express this we apply the change in XY to the software endstops.
 | |
|            * E1 can move farther right than E0, so the right limit is extended.
 | |
|            *
 | |
|            * Note that we don't adjust the Z software endstops. Why not?
 | |
|            * Consider a case where Z=0 (here) and switching to E1 makes Z=1
 | |
|            * because the bed is 1mm lower at the new position. As long as
 | |
|            * the first nozzle is out of the way, the carriage should be
 | |
|            * allowed to move 1mm lower. This technically "breaks" the
 | |
|            * Z software endstop. But this is technically correct (and
 | |
|            * there is no viable alternative).
 | |
|            */
 | |
|           #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|             // Offset extruder, make sure to apply the bed level rotation matrix
 | |
|             vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
 | |
|                                                hotend_offset[Y_AXIS][tmp_extruder],
 | |
|                                                0),
 | |
|                      act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
 | |
|                                                hotend_offset[Y_AXIS][active_extruder],
 | |
|                                                0),
 | |
|                      offset_vec = tmp_offset_vec - act_offset_vec;
 | |
| 
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) {
 | |
|                 tmp_offset_vec.debug("tmp_offset_vec");
 | |
|                 act_offset_vec.debug("act_offset_vec");
 | |
|                 offset_vec.debug("offset_vec (BEFORE)");
 | |
|               }
 | |
|             #endif
 | |
| 
 | |
|             offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
 | |
| 
 | |
|             #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|               if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
 | |
|             #endif
 | |
| 
 | |
|             // Adjustments to the current position
 | |
|             float xydiff[2] = { offset_vec.x, offset_vec.y };
 | |
|             current_position[Z_AXIS] += offset_vec.z;
 | |
| 
 | |
|           #else // !AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
|             float xydiff[2] = {
 | |
|               hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
 | |
|               hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
 | |
|             };
 | |
| 
 | |
|             #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
|               if (mbl.active()) {
 | |
|                 #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|                   if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
 | |
|                 #endif
 | |
|                 float xpos = RAW_CURRENT_POSITION(X_AXIS),
 | |
|                       ypos = RAW_CURRENT_POSITION(Y_AXIS);
 | |
|                 current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
 | |
|                 #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|                   if (DEBUGGING(LEVELING)) {
 | |
|                     SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
 | |
|                     SERIAL_EOL;
 | |
|                   }
 | |
|                 #endif
 | |
|               }
 | |
| 
 | |
|             #endif // MESH_BED_LEVELING
 | |
| 
 | |
|           #endif // !AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) {
 | |
|               SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
 | |
|               SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
 | |
|               SERIAL_ECHOLNPGM(" }");
 | |
|             }
 | |
|           #endif
 | |
| 
 | |
|           // The newly-selected extruder XY is actually at...
 | |
|           current_position[X_AXIS] += xydiff[X_AXIS];
 | |
|           current_position[Y_AXIS] += xydiff[Y_AXIS];
 | |
|           for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
 | |
|             position_shift[i] += xydiff[i];
 | |
|             update_software_endstops((AxisEnum)i);
 | |
|           }
 | |
| 
 | |
|           // Set the new active extruder
 | |
|           active_extruder = tmp_extruder;
 | |
| 
 | |
|         #endif // !DUAL_X_CARRIAGE
 | |
| 
 | |
|         #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|           if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
 | |
|         #endif
 | |
| 
 | |
|         // Tell the planner the new "current position"
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
| 
 | |
|         // Move to the "old position" (move the extruder into place)
 | |
|         if (!no_move && IsRunning()) {
 | |
|           #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|             if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
 | |
|           #endif
 | |
|           prepare_move_to_destination();
 | |
|         }
 | |
| 
 | |
|       } // (tmp_extruder != active_extruder)
 | |
| 
 | |
|       stepper.synchronize();
 | |
| 
 | |
|       #if ENABLED(EXT_SOLENOID)
 | |
|         disable_all_solenoids();
 | |
|         enable_solenoid_on_active_extruder();
 | |
|       #endif // EXT_SOLENOID
 | |
| 
 | |
|       feedrate_mm_m = old_feedrate_mm_m;
 | |
| 
 | |
|     #else // HOTENDS <= 1
 | |
| 
 | |
|       // Set the new active extruder
 | |
|       active_extruder = tmp_extruder;
 | |
| 
 | |
|       UNUSED(fr_mm_m);
 | |
|       UNUSED(no_move);
 | |
| 
 | |
|     #endif // HOTENDS <= 1
 | |
| 
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
 | |
|     SERIAL_PROTOCOLLN((int)active_extruder);
 | |
| 
 | |
|   #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * T0-T3: Switch tool, usually switching extruders
 | |
|  *
 | |
|  *   F[units/min] Set the movement feedrate
 | |
|  *   S1           Don't move the tool in XY after change
 | |
|  */
 | |
| inline void gcode_T(uint8_t tmp_extruder) {
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
 | |
|       SERIAL_ECHOLNPGM(")");
 | |
|       DEBUG_POS("BEFORE", current_position);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
 | |
| 
 | |
|     tool_change(tmp_extruder);
 | |
| 
 | |
|   #elif HOTENDS > 1
 | |
| 
 | |
|     tool_change(
 | |
|       tmp_extruder,
 | |
|       code_seen('F') ? code_value_axis_units(X_AXIS) : 0.0,
 | |
|       (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
 | |
|     );
 | |
| 
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DEBUG_LEVELING_FEATURE)
 | |
|     if (DEBUGGING(LEVELING)) {
 | |
|       DEBUG_POS("AFTER", current_position);
 | |
|       SERIAL_ECHOLNPGM("<<< gcode_T");
 | |
|     }
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Process a single command and dispatch it to its handler
 | |
|  * This is called from the main loop()
 | |
|  */
 | |
| void process_next_command() {
 | |
|   current_command = command_queue[cmd_queue_index_r];
 | |
| 
 | |
|   if (DEBUGGING(ECHO)) {
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOLN(current_command);
 | |
|   }
 | |
| 
 | |
|   // Sanitize the current command:
 | |
|   //  - Skip leading spaces
 | |
|   //  - Bypass N[-0-9][0-9]*[ ]*
 | |
|   //  - Overwrite * with nul to mark the end
 | |
|   while (*current_command == ' ') ++current_command;
 | |
|   if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
 | |
|     current_command += 2; // skip N[-0-9]
 | |
|     while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
 | |
|     while (*current_command == ' ') ++current_command; // skip [ ]*
 | |
|   }
 | |
|   char* starpos = strchr(current_command, '*');  // * should always be the last parameter
 | |
|   if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
 | |
| 
 | |
|   char *cmd_ptr = current_command;
 | |
| 
 | |
|   // Get the command code, which must be G, M, or T
 | |
|   char command_code = *cmd_ptr++;
 | |
| 
 | |
|   // Skip spaces to get the numeric part
 | |
|   while (*cmd_ptr == ' ') cmd_ptr++;
 | |
| 
 | |
|   uint16_t codenum = 0; // define ahead of goto
 | |
| 
 | |
|   // Bail early if there's no code
 | |
|   bool code_is_good = NUMERIC(*cmd_ptr);
 | |
|   if (!code_is_good) goto ExitUnknownCommand;
 | |
| 
 | |
|   // Get and skip the code number
 | |
|   do {
 | |
|     codenum = (codenum * 10) + (*cmd_ptr - '0');
 | |
|     cmd_ptr++;
 | |
|   } while (NUMERIC(*cmd_ptr));
 | |
| 
 | |
|   // Skip all spaces to get to the first argument, or nul
 | |
|   while (*cmd_ptr == ' ') cmd_ptr++;
 | |
| 
 | |
|   // The command's arguments (if any) start here, for sure!
 | |
|   current_command_args = cmd_ptr;
 | |
| 
 | |
|   KEEPALIVE_STATE(IN_HANDLER);
 | |
| 
 | |
|   // Handle a known G, M, or T
 | |
|   switch (command_code) {
 | |
|     case 'G': switch (codenum) {
 | |
| 
 | |
|       // G0, G1
 | |
|       case 0:
 | |
|       case 1:
 | |
|         gcode_G0_G1();
 | |
|         break;
 | |
| 
 | |
|       // G2, G3
 | |
|       #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
 | |
|         case 2: // G2  - CW ARC
 | |
|         case 3: // G3  - CCW ARC
 | |
|           gcode_G2_G3(codenum == 2);
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       // G4 Dwell
 | |
|       case 4:
 | |
|         gcode_G4();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
|         // G5
 | |
|         case 5: // G5  - Cubic B_spline
 | |
|           gcode_G5();
 | |
|           break;
 | |
|       #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
|       #if ENABLED(FWRETRACT)
 | |
|         case 10: // G10: retract
 | |
|         case 11: // G11: retract_recover
 | |
|           gcode_G10_G11(codenum == 10);
 | |
|           break;
 | |
|       #endif // FWRETRACT
 | |
| 
 | |
|       #if ENABLED(NOZZLE_CLEAN_FEATURE)
 | |
|         case 12:
 | |
|           gcode_G12(); // G12: Nozzle Clean
 | |
|           break;
 | |
|       #endif // NOZZLE_CLEAN_FEATURE
 | |
| 
 | |
|       #if ENABLED(INCH_MODE_SUPPORT)
 | |
|         case 20: //G20: Inch Mode
 | |
|           gcode_G20();
 | |
|           break;
 | |
| 
 | |
|         case 21: //G21: MM Mode
 | |
|           gcode_G21();
 | |
|           break;
 | |
|       #endif // INCH_MODE_SUPPORT
 | |
| 
 | |
|       #if ENABLED(NOZZLE_PARK_FEATURE)
 | |
|         case 27: // G27: Nozzle Park
 | |
|           gcode_G27();
 | |
|           break;
 | |
|       #endif // NOZZLE_PARK_FEATURE
 | |
| 
 | |
|       case 28: // G28: Home all axes, one at a time
 | |
|         gcode_G28();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
 | |
|         case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
 | |
|           gcode_G29();
 | |
|           break;
 | |
|       #endif // AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
| 
 | |
|         case 30: // G30 Single Z probe
 | |
|           gcode_G30();
 | |
|           break;
 | |
| 
 | |
|         #if ENABLED(Z_PROBE_SLED)
 | |
| 
 | |
|             case 31: // G31: dock the sled
 | |
|               gcode_G31();
 | |
|               break;
 | |
| 
 | |
|             case 32: // G32: undock the sled
 | |
|               gcode_G32();
 | |
|               break;
 | |
| 
 | |
|         #endif // Z_PROBE_SLED
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       case 90: // G90
 | |
|         relative_mode = false;
 | |
|         break;
 | |
|       case 91: // G91
 | |
|         relative_mode = true;
 | |
|         break;
 | |
| 
 | |
|       case 92: // G92
 | |
|         gcode_G92();
 | |
|         break;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case 'M': switch (codenum) {
 | |
|       #if ENABLED(ULTIPANEL)
 | |
|         case 0: // M0 - Unconditional stop - Wait for user button press on LCD
 | |
|         case 1: // M1 - Conditional stop - Wait for user button press on LCD
 | |
|           gcode_M0_M1();
 | |
|           break;
 | |
|       #endif // ULTIPANEL
 | |
| 
 | |
|       case 17:
 | |
|         gcode_M17();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(SDSUPPORT)
 | |
|         case 20: // M20 - list SD card
 | |
|           gcode_M20(); break;
 | |
|         case 21: // M21 - init SD card
 | |
|           gcode_M21(); break;
 | |
|         case 22: //M22 - release SD card
 | |
|           gcode_M22(); break;
 | |
|         case 23: //M23 - Select file
 | |
|           gcode_M23(); break;
 | |
|         case 24: //M24 - Start SD print
 | |
|           gcode_M24(); break;
 | |
|         case 25: //M25 - Pause SD print
 | |
|           gcode_M25(); break;
 | |
|         case 26: //M26 - Set SD index
 | |
|           gcode_M26(); break;
 | |
|         case 27: //M27 - Get SD status
 | |
|           gcode_M27(); break;
 | |
|         case 28: //M28 - Start SD write
 | |
|           gcode_M28(); break;
 | |
|         case 29: //M29 - Stop SD write
 | |
|           gcode_M29(); break;
 | |
|         case 30: //M30 <filename> Delete File
 | |
|           gcode_M30(); break;
 | |
|         case 32: //M32 - Select file and start SD print
 | |
|           gcode_M32(); break;
 | |
| 
 | |
|         #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
 | |
|           case 33: //M33 - Get the long full path to a file or folder
 | |
|             gcode_M33(); break;
 | |
|         #endif // LONG_FILENAME_HOST_SUPPORT
 | |
| 
 | |
|         case 928: //M928 - Start SD write
 | |
|           gcode_M928(); break;
 | |
|       #endif //SDSUPPORT
 | |
| 
 | |
|       case 31: //M31 take time since the start of the SD print or an M109 command
 | |
|         gcode_M31();
 | |
|         break;
 | |
| 
 | |
|       case 42: //M42 -Change pin status via gcode
 | |
|         gcode_M42();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
 | |
|         case 48: // M48 Z probe repeatability
 | |
|           gcode_M48();
 | |
|           break;
 | |
|       #endif // Z_MIN_PROBE_REPEATABILITY_TEST
 | |
| 
 | |
|       case 75: // Start print timer
 | |
|         gcode_M75();
 | |
|         break;
 | |
| 
 | |
|       case 76: // Pause print timer
 | |
|         gcode_M76();
 | |
|         break;
 | |
| 
 | |
|       case 77: // Stop print timer
 | |
|         gcode_M77();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(PRINTCOUNTER)
 | |
|         case 78: // Show print statistics
 | |
|           gcode_M78();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(M100_FREE_MEMORY_WATCHER)
 | |
|         case 100:
 | |
|           gcode_M100();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 104: // M104
 | |
|         gcode_M104();
 | |
|         break;
 | |
| 
 | |
|       case 110: // M110: Set Current Line Number
 | |
|         gcode_M110();
 | |
|         break;
 | |
| 
 | |
|       case 111: // M111: Set debug level
 | |
|         gcode_M111();
 | |
|         break;
 | |
| 
 | |
|       #if DISABLED(EMERGENCY_PARSER)
 | |
| 
 | |
|         case 108: // M108: Cancel Waiting
 | |
|           gcode_M108();
 | |
|           break;
 | |
| 
 | |
|         case 112: // M112: Emergency Stop
 | |
|           gcode_M112();
 | |
|           break;
 | |
| 
 | |
|         case 410: // M410 quickstop - Abort all the planned moves.
 | |
|           gcode_M410();
 | |
|           break;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(HOST_KEEPALIVE_FEATURE)
 | |
|         case 113: // M113: Set Host Keepalive interval
 | |
|           gcode_M113();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 140: // M140: Set bed temp
 | |
|         gcode_M140();
 | |
|         break;
 | |
| 
 | |
|       case 105: // M105: Read current temperature
 | |
|         gcode_M105();
 | |
|         KEEPALIVE_STATE(NOT_BUSY);
 | |
|         return; // "ok" already printed
 | |
| 
 | |
|       case 109: // M109: Wait for temperature
 | |
|         gcode_M109();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_TEMP_BED
 | |
|         case 190: // M190: Wait for bed heater to reach target
 | |
|           gcode_M190();
 | |
|           break;
 | |
|       #endif // HAS_TEMP_BED
 | |
| 
 | |
|       #if FAN_COUNT > 0
 | |
|         case 106: // M106: Fan On
 | |
|           gcode_M106();
 | |
|           break;
 | |
|         case 107: // M107: Fan Off
 | |
|           gcode_M107();
 | |
|           break;
 | |
|       #endif // FAN_COUNT > 0
 | |
| 
 | |
|       #if ENABLED(BARICUDA)
 | |
|         // PWM for HEATER_1_PIN
 | |
|         #if HAS_HEATER_1
 | |
|           case 126: // M126: valve open
 | |
|             gcode_M126();
 | |
|             break;
 | |
|           case 127: // M127: valve closed
 | |
|             gcode_M127();
 | |
|             break;
 | |
|         #endif // HAS_HEATER_1
 | |
| 
 | |
|         // PWM for HEATER_2_PIN
 | |
|         #if HAS_HEATER_2
 | |
|           case 128: // M128: valve open
 | |
|             gcode_M128();
 | |
|             break;
 | |
|           case 129: // M129: valve closed
 | |
|             gcode_M129();
 | |
|             break;
 | |
|         #endif // HAS_HEATER_2
 | |
|       #endif // BARICUDA
 | |
| 
 | |
|       #if HAS_POWER_SWITCH
 | |
| 
 | |
|         case 80: // M80: Turn on Power Supply
 | |
|           gcode_M80();
 | |
|           break;
 | |
| 
 | |
|       #endif // HAS_POWER_SWITCH
 | |
| 
 | |
|       case 81: // M81: Turn off Power, including Power Supply, if possible
 | |
|         gcode_M81();
 | |
|         break;
 | |
| 
 | |
|       case 82:
 | |
|         gcode_M82();
 | |
|         break;
 | |
|       case 83:
 | |
|         gcode_M83();
 | |
|         break;
 | |
|       case 18: // (for compatibility)
 | |
|       case 84: // M84
 | |
|         gcode_M18_M84();
 | |
|         break;
 | |
|       case 85: // M85
 | |
|         gcode_M85();
 | |
|         break;
 | |
|       case 92: // M92: Set the steps-per-unit for one or more axes
 | |
|         gcode_M92();
 | |
|         break;
 | |
|       case 115: // M115: Report capabilities
 | |
|         gcode_M115();
 | |
|         break;
 | |
|       case 117: // M117: Set LCD message text, if possible
 | |
|         gcode_M117();
 | |
|         break;
 | |
|       case 114: // M114: Report current position
 | |
|         gcode_M114();
 | |
|         break;
 | |
|       case 120: // M120: Enable endstops
 | |
|         gcode_M120();
 | |
|         break;
 | |
|       case 121: // M121: Disable endstops
 | |
|         gcode_M121();
 | |
|         break;
 | |
|       case 119: // M119: Report endstop states
 | |
|         gcode_M119();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(ULTIPANEL)
 | |
| 
 | |
|         case 145: // M145: Set material heatup parameters
 | |
|           gcode_M145();
 | |
|           break;
 | |
| 
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
 | |
|         case 149:
 | |
|           gcode_M149();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(BLINKM)
 | |
| 
 | |
|         case 150: // M150
 | |
|           gcode_M150();
 | |
|           break;
 | |
| 
 | |
|       #endif //BLINKM
 | |
| 
 | |
|       #if ENABLED(EXPERIMENTAL_I2CBUS)
 | |
| 
 | |
|         case 155:
 | |
|           gcode_M155();
 | |
|           break;
 | |
| 
 | |
|         case 156:
 | |
|           gcode_M156();
 | |
|           break;
 | |
| 
 | |
|       #endif //EXPERIMENTAL_I2CBUS
 | |
| 
 | |
|       #if ENABLED(MIXING_EXTRUDER)
 | |
|         case 163: // M163 S<int> P<float> set weight for a mixing extruder
 | |
|           gcode_M163();
 | |
|           break;
 | |
|         #if MIXING_VIRTUAL_TOOLS > 1
 | |
|           case 164: // M164 S<int> save current mix as a virtual extruder
 | |
|             gcode_M164();
 | |
|             break;
 | |
|         #endif
 | |
|         #if ENABLED(DIRECT_MIXING_IN_G1)
 | |
|           case 165: // M165 [ABCDHI]<float> set multiple mix weights
 | |
|             gcode_M165();
 | |
|             break;
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
|       case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
 | |
|         gcode_M200();
 | |
|         break;
 | |
|       case 201: // M201
 | |
|         gcode_M201();
 | |
|         break;
 | |
|       #if 0 // Not used for Sprinter/grbl gen6
 | |
|         case 202: // M202
 | |
|           gcode_M202();
 | |
|           break;
 | |
|       #endif
 | |
|       case 203: // M203 max feedrate units/sec
 | |
|         gcode_M203();
 | |
|         break;
 | |
|       case 204: // M204 acclereration S normal moves T filmanent only moves
 | |
|         gcode_M204();
 | |
|         break;
 | |
|       case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
 | |
|         gcode_M205();
 | |
|         break;
 | |
|       case 206: // M206 additional homing offset
 | |
|         gcode_M206();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(DELTA)
 | |
|         case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
 | |
|           gcode_M665();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
 | |
|         case 666: // M666 set delta / dual endstop adjustment
 | |
|           gcode_M666();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if ENABLED(FWRETRACT)
 | |
|         case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
 | |
|           gcode_M207();
 | |
|           break;
 | |
|         case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
 | |
|           gcode_M208();
 | |
|           break;
 | |
|         case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
 | |
|           gcode_M209();
 | |
|           break;
 | |
|       #endif // FWRETRACT
 | |
| 
 | |
|       #if HOTENDS > 1
 | |
|         case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
 | |
|           gcode_M218();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
 | |
|         gcode_M220();
 | |
|         break;
 | |
| 
 | |
|       case 221: // M221 - Set Flow Percentage: S<percent>
 | |
|         gcode_M221();
 | |
|         break;
 | |
| 
 | |
|       case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | |
|         gcode_M226();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_SERVOS
 | |
|         case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
 | |
|           gcode_M280();
 | |
|           break;
 | |
|       #endif // HAS_SERVOS
 | |
| 
 | |
|       #if HAS_BUZZER
 | |
|         case 300: // M300 - Play beep tone
 | |
|           gcode_M300();
 | |
|           break;
 | |
|       #endif // HAS_BUZZER
 | |
| 
 | |
|       #if ENABLED(PIDTEMP)
 | |
|         case 301: // M301
 | |
|           gcode_M301();
 | |
|           break;
 | |
|       #endif // PIDTEMP
 | |
| 
 | |
|       #if ENABLED(PIDTEMPBED)
 | |
|         case 304: // M304
 | |
|           gcode_M304();
 | |
|           break;
 | |
|       #endif // PIDTEMPBED
 | |
| 
 | |
|       #if defined(CHDK) || HAS_PHOTOGRAPH
 | |
|         case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
 | |
|           gcode_M240();
 | |
|           break;
 | |
|       #endif // CHDK || PHOTOGRAPH_PIN
 | |
| 
 | |
|       #if HAS_LCD_CONTRAST
 | |
|         case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
 | |
|           gcode_M250();
 | |
|           break;
 | |
|       #endif // HAS_LCD_CONTRAST
 | |
| 
 | |
|       #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | |
|         case 302: // allow cold extrudes, or set the minimum extrude temperature
 | |
|           gcode_M302();
 | |
|           break;
 | |
|       #endif // PREVENT_DANGEROUS_EXTRUDE
 | |
| 
 | |
|       case 303: // M303 PID autotune
 | |
|         gcode_M303();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(SCARA)
 | |
|         case 360:  // M360 SCARA Theta pos1
 | |
|           if (gcode_M360()) return;
 | |
|           break;
 | |
|         case 361:  // M361 SCARA Theta pos2
 | |
|           if (gcode_M361()) return;
 | |
|           break;
 | |
|         case 362:  // M362 SCARA Psi pos1
 | |
|           if (gcode_M362()) return;
 | |
|           break;
 | |
|         case 363:  // M363 SCARA Psi pos2
 | |
|           if (gcode_M363()) return;
 | |
|           break;
 | |
|         case 364:  // M364 SCARA Psi pos3 (90 deg to Theta)
 | |
|           if (gcode_M364()) return;
 | |
|           break;
 | |
|         case 365: // M365 Set SCARA scaling for X Y Z
 | |
|           gcode_M365();
 | |
|           break;
 | |
|       #endif // SCARA
 | |
| 
 | |
|       case 400: // M400 finish all moves
 | |
|         gcode_M400();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
|         case 401:
 | |
|           gcode_M401();
 | |
|           break;
 | |
|         case 402:
 | |
|           gcode_M402();
 | |
|           break;
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
|         case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
 | |
|           gcode_M404();
 | |
|           break;
 | |
|         case 405:  //M405 Turn on filament sensor for control
 | |
|           gcode_M405();
 | |
|           break;
 | |
|         case 406:  //M406 Turn off filament sensor for control
 | |
|           gcode_M406();
 | |
|           break;
 | |
|         case 407:   //M407 Display measured filament diameter
 | |
|           gcode_M407();
 | |
|           break;
 | |
|       #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
 | |
| 
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
|         case 420: // M420 Enable/Disable Mesh Bed Leveling
 | |
|           gcode_M420();
 | |
|           break;
 | |
|         case 421: // M421 Set a Mesh Bed Leveling Z coordinate
 | |
|           gcode_M421();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 428: // M428 Apply current_position to home_offset
 | |
|         gcode_M428();
 | |
|         break;
 | |
| 
 | |
|       case 500: // M500 Store settings in EEPROM
 | |
|         gcode_M500();
 | |
|         break;
 | |
|       case 501: // M501 Read settings from EEPROM
 | |
|         gcode_M501();
 | |
|         break;
 | |
|       case 502: // M502 Revert to default settings
 | |
|         gcode_M502();
 | |
|         break;
 | |
|       case 503: // M503 print settings currently in memory
 | |
|         gcode_M503();
 | |
|         break;
 | |
| 
 | |
|       #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
|         case 540:
 | |
|           gcode_M540();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       #if HAS_BED_PROBE
 | |
|         case 851:
 | |
|           gcode_M851();
 | |
|           break;
 | |
|       #endif // HAS_BED_PROBE
 | |
| 
 | |
|       #if ENABLED(FILAMENT_CHANGE_FEATURE)
 | |
|         case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | |
|           gcode_M600();
 | |
|           break;
 | |
|       #endif // FILAMENT_CHANGE_FEATURE
 | |
| 
 | |
|       #if ENABLED(DUAL_X_CARRIAGE)
 | |
|         case 605:
 | |
|           gcode_M605();
 | |
|           break;
 | |
|       #endif // DUAL_X_CARRIAGE
 | |
| 
 | |
|       #if ENABLED(LIN_ADVANCE)
 | |
|         case 905: // M905 Set advance factor.
 | |
|           gcode_M905();
 | |
|           break;
 | |
|       #endif
 | |
| 
 | |
|       case 907: // M907 Set digital trimpot motor current using axis codes.
 | |
|         gcode_M907();
 | |
|         break;
 | |
| 
 | |
|       #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
 | |
| 
 | |
|         case 908: // M908 Control digital trimpot directly.
 | |
|           gcode_M908();
 | |
|           break;
 | |
| 
 | |
|         #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
 | |
| 
 | |
|           case 909: // M909 Print digipot/DAC current value
 | |
|             gcode_M909();
 | |
|             break;
 | |
| 
 | |
|           case 910: // M910 Commit digipot/DAC value to external EEPROM
 | |
|             gcode_M910();
 | |
|             break;
 | |
| 
 | |
|         #endif
 | |
| 
 | |
|       #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
 | |
| 
 | |
|       #if HAS_MICROSTEPS
 | |
| 
 | |
|         case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | |
|           gcode_M350();
 | |
|           break;
 | |
| 
 | |
|         case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
 | |
|           gcode_M351();
 | |
|           break;
 | |
| 
 | |
|       #endif // HAS_MICROSTEPS
 | |
| 
 | |
|       case 999: // M999: Restart after being Stopped
 | |
|         gcode_M999();
 | |
|         break;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case 'T':
 | |
|       gcode_T(codenum);
 | |
|       break;
 | |
| 
 | |
|     default: code_is_good = false;
 | |
|   }
 | |
| 
 | |
|   KEEPALIVE_STATE(NOT_BUSY);
 | |
| 
 | |
| ExitUnknownCommand:
 | |
| 
 | |
|   // Still unknown command? Throw an error
 | |
|   if (!code_is_good) unknown_command_error();
 | |
| 
 | |
|   ok_to_send();
 | |
| }
 | |
| 
 | |
| void FlushSerialRequestResend() {
 | |
|   //char command_queue[cmd_queue_index_r][100]="Resend:";
 | |
|   MYSERIAL.flush();
 | |
|   SERIAL_PROTOCOLPGM(MSG_RESEND);
 | |
|   SERIAL_PROTOCOLLN(gcode_LastN + 1);
 | |
|   ok_to_send();
 | |
| }
 | |
| 
 | |
| void ok_to_send() {
 | |
|   refresh_cmd_timeout();
 | |
|   if (!send_ok[cmd_queue_index_r]) return;
 | |
|   SERIAL_PROTOCOLPGM(MSG_OK);
 | |
|   #if ENABLED(ADVANCED_OK)
 | |
|     char* p = command_queue[cmd_queue_index_r];
 | |
|     if (*p == 'N') {
 | |
|       SERIAL_PROTOCOL(' ');
 | |
|       SERIAL_ECHO(*p++);
 | |
|       while (NUMERIC_SIGNED(*p))
 | |
|         SERIAL_ECHO(*p++);
 | |
|     }
 | |
|     SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
 | |
|     SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
 | |
|   #endif
 | |
|   SERIAL_EOL;
 | |
| }
 | |
| 
 | |
| void clamp_to_software_endstops(float target[3]) {
 | |
|   if (min_software_endstops) {
 | |
|     NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
 | |
|     NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
 | |
|     NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
 | |
|   }
 | |
|   if (max_software_endstops) {
 | |
|     NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
 | |
|     NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
 | |
|     NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if ENABLED(DELTA)
 | |
| 
 | |
|   void recalc_delta_settings(float radius, float diagonal_rod) {
 | |
|     delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);  // front left tower
 | |
|     delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
 | |
|     delta_tower2_x =  SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);  // front right tower
 | |
|     delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
 | |
|     delta_tower3_x = 0.0;                                             // back middle tower
 | |
|     delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
 | |
|     delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
 | |
|     delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
 | |
|     delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
 | |
|   }
 | |
| 
 | |
|   void inverse_kinematics(const float in_cartesian[3]) {
 | |
| 
 | |
|     const float cartesian[3] = {
 | |
|       RAW_X_POSITION(in_cartesian[X_AXIS]),
 | |
|       RAW_Y_POSITION(in_cartesian[Y_AXIS]),
 | |
|       RAW_Z_POSITION(in_cartesian[Z_AXIS])
 | |
|     };
 | |
| 
 | |
|     delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
 | |
|                           - sq(delta_tower1_x - cartesian[X_AXIS])
 | |
|                           - sq(delta_tower1_y - cartesian[Y_AXIS])
 | |
|                          ) + cartesian[Z_AXIS];
 | |
|     delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
 | |
|                           - sq(delta_tower2_x - cartesian[X_AXIS])
 | |
|                           - sq(delta_tower2_y - cartesian[Y_AXIS])
 | |
|                          ) + cartesian[Z_AXIS];
 | |
|     delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
 | |
|                           - sq(delta_tower3_x - cartesian[X_AXIS])
 | |
|                           - sq(delta_tower3_y - cartesian[Y_AXIS])
 | |
|                          ) + cartesian[Z_AXIS];
 | |
|     /**
 | |
|     SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | |
|     SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | |
|     SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | |
| 
 | |
|     SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
 | |
|     SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
 | |
|     SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
 | |
|     */
 | |
|   }
 | |
| 
 | |
|   float delta_safe_distance_from_top() {
 | |
|     float cartesian[3] = {
 | |
|       LOGICAL_X_POSITION(0),
 | |
|       LOGICAL_Y_POSITION(0),
 | |
|       LOGICAL_Z_POSITION(0)
 | |
|     };
 | |
|     inverse_kinematics(cartesian);
 | |
|     float distance = delta[TOWER_3];
 | |
|     cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
 | |
|     inverse_kinematics(cartesian);
 | |
|     return abs(distance - delta[TOWER_3]);
 | |
|   }
 | |
| 
 | |
|   void forward_kinematics_DELTA(float z1, float z2, float z3) {
 | |
|     //As discussed in Wikipedia "Trilateration"
 | |
|     //we are establishing a new coordinate
 | |
|     //system in the plane of the three carriage points.
 | |
|     //This system will have the origin at tower1 and
 | |
|     //tower2 is on the x axis. tower3 is in the X-Y
 | |
|     //plane with a Z component of zero. We will define unit
 | |
|     //vectors in this coordinate system in our original
 | |
|     //coordinate system. Then when we calculate the
 | |
|     //Xnew, Ynew and Znew values, we can translate back into
 | |
|     //the original system by moving along those unit vectors
 | |
|     //by the corresponding values.
 | |
|     // https://en.wikipedia.org/wiki/Trilateration
 | |
| 
 | |
|     // Variable names matched to Marlin, c-version
 | |
|     // and avoiding a vector library
 | |
|     // by Andreas Hardtung 2016-06-7
 | |
|     // based on a Java function from
 | |
|     // "Delta Robot Kinematics by Steve Graves" V3
 | |
| 
 | |
|     // Result is in cartesian_position[].
 | |
| 
 | |
|     //Create a vector in old coordinates along x axis of new coordinate
 | |
|     float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
 | |
| 
 | |
|     //Get the Magnitude of vector.
 | |
|     float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
 | |
| 
 | |
|     //Create unit vector by dividing by magnitude.
 | |
|     float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
 | |
| 
 | |
|     //Now find vector from the origin of the new system to the third point.
 | |
|     float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
 | |
| 
 | |
|     //Now use dot product to find the component of this vector on the X axis.
 | |
|     float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
 | |
| 
 | |
|     //Now create a vector along the x axis that represents the x component of p13.
 | |
|     float iex[3] = { ex[0]*i,  ex[1]*i,  ex[2]*i  };
 | |
| 
 | |
|     //Now subtract the X component away from the original vector leaving only the Y component. We use the
 | |
|     //variable that will be the unit vector after we scale it.
 | |
|     float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
 | |
| 
 | |
|     //The magnitude of Y component
 | |
|     float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
 | |
| 
 | |
|     //Now make vector a unit vector
 | |
|     ey[0] /= j; ey[1] /= j;  ey[2] /= j;
 | |
| 
 | |
|     //The cross product of the unit x and y is the unit z
 | |
|     //float[] ez = vectorCrossProd(ex, ey);
 | |
|     float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
 | |
| 
 | |
|     //Now we have the d, i and j values defined in Wikipedia.
 | |
|     //We can plug them into the equations defined in
 | |
|     //Wikipedia for Xnew, Ynew and Znew
 | |
|     float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
 | |
|     float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
 | |
|     float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
 | |
| 
 | |
|     //Now we can start from the origin in the old coords and
 | |
|     //add vectors in the old coords that represent the
 | |
|     //Xnew, Ynew and Znew to find the point in the old system
 | |
|     cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
 | |
|     cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
 | |
|     cartesian_position[Z_AXIS] = z1             + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
 | |
|   };
 | |
| 
 | |
|   void forward_kinematics_DELTA(float point[3]) {
 | |
|     forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
 | |
|   }
 | |
| 
 | |
|   void set_cartesian_from_steppers() {
 | |
|     forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
 | |
|                              stepper.get_axis_position_mm(Y_AXIS),
 | |
|                              stepper.get_axis_position_mm(Z_AXIS));
 | |
|   }
 | |
| 
 | |
|   #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
| 
 | |
|     // Adjust print surface height by linear interpolation over the bed_level array.
 | |
|     void adjust_delta(float cartesian[3]) {
 | |
|       if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
 | |
| 
 | |
|       int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
 | |
|       float h1 = 0.001 - half, h2 = half - 0.001,
 | |
|             grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
 | |
|             grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
 | |
|       int floor_x = floor(grid_x), floor_y = floor(grid_y);
 | |
|       float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
 | |
|             z1 = bed_level[floor_x + half][floor_y + half],
 | |
|             z2 = bed_level[floor_x + half][floor_y + half + 1],
 | |
|             z3 = bed_level[floor_x + half + 1][floor_y + half],
 | |
|             z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
 | |
|             left = (1 - ratio_y) * z1 + ratio_y * z2,
 | |
|             right = (1 - ratio_y) * z3 + ratio_y * z4,
 | |
|             offset = (1 - ratio_x) * left + ratio_x * right;
 | |
| 
 | |
|       delta[X_AXIS] += offset;
 | |
|       delta[Y_AXIS] += offset;
 | |
|       delta[Z_AXIS] += offset;
 | |
| 
 | |
|       /**
 | |
|       SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
 | |
|       SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
 | |
|       SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
 | |
|       SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
 | |
|       SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
 | |
|       SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
 | |
|       SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
 | |
|       SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
 | |
|       SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
 | |
|       SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
 | |
|       SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
 | |
|       SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
 | |
|       SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
 | |
|       */
 | |
|     }
 | |
|   #endif // AUTO_BED_LEVELING_FEATURE
 | |
| 
 | |
| #endif // DELTA
 | |
| 
 | |
| void set_current_from_steppers_for_axis(AxisEnum axis) {
 | |
|   #if ENABLED(DELTA)
 | |
|     set_cartesian_from_steppers();
 | |
|     current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
 | |
|   #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|     vector_3 pos = planner.adjusted_position();
 | |
|     current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
 | |
|   #else
 | |
|     current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #if ENABLED(MESH_BED_LEVELING)
 | |
| 
 | |
| // This function is used to split lines on mesh borders so each segment is only part of one mesh area
 | |
| void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
 | |
|   int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
 | |
|       cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
 | |
|       cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
 | |
|       cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
 | |
|   NOMORE(cx1, MESH_NUM_X_POINTS - 2);
 | |
|   NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
 | |
|   NOMORE(cx2, MESH_NUM_X_POINTS - 2);
 | |
|   NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
 | |
| 
 | |
|   if (cx1 == cx2 && cy1 == cy2) {
 | |
|     // Start and end on same mesh square
 | |
|     line_to_destination(fr_mm_m);
 | |
|     set_current_to_destination();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
 | |
| 
 | |
|   float normalized_dist, end[NUM_AXIS];
 | |
| 
 | |
|   // Split at the left/front border of the right/top square
 | |
|   int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
 | |
|   if (cx2 != cx1 && TEST(x_splits, gcx)) {
 | |
|     memcpy(end, destination, sizeof(end));
 | |
|     destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
 | |
|     normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
 | |
|     destination[Y_AXIS] = MBL_SEGMENT_END(Y);
 | |
|     CBI(x_splits, gcx);
 | |
|   }
 | |
|   else if (cy2 != cy1 && TEST(y_splits, gcy)) {
 | |
|     memcpy(end, destination, sizeof(end));
 | |
|     destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
 | |
|     normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
 | |
|     destination[X_AXIS] = MBL_SEGMENT_END(X);
 | |
|     CBI(y_splits, gcy);
 | |
|   }
 | |
|   else {
 | |
|     // Already split on a border
 | |
|     line_to_destination(fr_mm_m);
 | |
|     set_current_to_destination();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   destination[Z_AXIS] = MBL_SEGMENT_END(Z);
 | |
|   destination[E_AXIS] = MBL_SEGMENT_END(E);
 | |
| 
 | |
|   // Do the split and look for more borders
 | |
|   mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
 | |
| 
 | |
|   // Restore destination from stack
 | |
|   memcpy(destination, end, sizeof(end));
 | |
|   mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
 | |
| }
 | |
| #endif  // MESH_BED_LEVELING
 | |
| 
 | |
| #if ENABLED(DELTA) || ENABLED(SCARA)
 | |
| 
 | |
|   inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
 | |
|     float difference[NUM_AXIS];
 | |
|     LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
 | |
| 
 | |
|     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | |
|     if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
 | |
|     if (cartesian_mm < 0.000001) return false;
 | |
|     float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
 | |
|     float seconds = cartesian_mm / _feedrate_mm_s;
 | |
|     int steps = max(1, int(delta_segments_per_second * seconds));
 | |
|     float inv_steps = 1.0/steps;
 | |
| 
 | |
|     // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | |
|     // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | |
|     // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | |
| 
 | |
|     for (int s = 1; s <= steps; s++) {
 | |
| 
 | |
|       float fraction = float(s) * inv_steps;
 | |
| 
 | |
|       LOOP_XYZE(i)
 | |
|         target[i] = current_position[i] + difference[i] * fraction;
 | |
| 
 | |
|       inverse_kinematics(target);
 | |
| 
 | |
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|         if (!bed_leveling_in_progress) adjust_delta(target);
 | |
|       #endif
 | |
| 
 | |
|       //DEBUG_POS("prepare_kinematic_move_to", target);
 | |
|       //DEBUG_POS("prepare_kinematic_move_to", delta);
 | |
| 
 | |
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| #endif // DELTA || SCARA
 | |
| 
 | |
| #if ENABLED(DUAL_X_CARRIAGE)
 | |
| 
 | |
|   inline bool prepare_move_to_destination_dualx() {
 | |
|     if (active_extruder_parked) {
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
 | |
|         // move duplicate extruder into correct duplication position.
 | |
|         planner.set_position_mm(
 | |
|           LOGICAL_X_POSITION(inactive_extruder_x_pos),
 | |
|           current_position[Y_AXIS],
 | |
|           current_position[Z_AXIS],
 | |
|           current_position[E_AXIS]
 | |
|         );
 | |
|         planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
 | |
|                          current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
 | |
|         SYNC_PLAN_POSITION_KINEMATIC();
 | |
|         stepper.synchronize();
 | |
|         extruder_duplication_enabled = true;
 | |
|         active_extruder_parked = false;
 | |
|       }
 | |
|       else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
 | |
|         if (current_position[E_AXIS] == destination[E_AXIS]) {
 | |
|           // This is a travel move (with no extrusion)
 | |
|           // Skip it, but keep track of the current position
 | |
|           // (so it can be used as the start of the next non-travel move)
 | |
|           if (delayed_move_time != 0xFFFFFFFFUL) {
 | |
|             set_current_to_destination();
 | |
|             NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
 | |
|             delayed_move_time = millis();
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|         delayed_move_time = 0;
 | |
|         // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
 | |
|         planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
 | |
|         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
 | |
|         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
 | |
|         active_extruder_parked = false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| #endif // DUAL_X_CARRIAGE
 | |
| 
 | |
| #if DISABLED(DELTA) && DISABLED(SCARA)
 | |
| 
 | |
|   inline bool prepare_move_to_destination_cartesian() {
 | |
|     // Do not use feedrate_percentage for E or Z only moves
 | |
|     if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
 | |
|       line_to_destination();
 | |
|     }
 | |
|     else {
 | |
|       #if ENABLED(MESH_BED_LEVELING)
 | |
|         if (mbl.active()) {
 | |
|           mesh_line_to_destination(MMM_SCALED(feedrate_mm_m));
 | |
|           return false;
 | |
|         }
 | |
|         else
 | |
|       #endif
 | |
|           line_to_destination(MMM_SCALED(feedrate_mm_m));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| #endif // !DELTA && !SCARA
 | |
| 
 | |
| #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | |
| 
 | |
|   inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
 | |
|     if (DEBUGGING(DRYRUN)) return;
 | |
|     float de = dest_e - curr_e;
 | |
|     if (de) {
 | |
|       if (thermalManager.tooColdToExtrude(active_extruder)) {
 | |
|         curr_e = dest_e; // Behave as if the move really took place, but ignore E part
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | |
|       }
 | |
|       #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | |
|         if (labs(de) > EXTRUDE_MAXLENGTH) {
 | |
|           curr_e = dest_e; // Behave as if the move really took place, but ignore E part
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | |
|         }
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // PREVENT_DANGEROUS_EXTRUDE
 | |
| 
 | |
| /**
 | |
|  * Prepare a single move and get ready for the next one
 | |
|  *
 | |
|  * (This may call planner.buffer_line several times to put
 | |
|  *  smaller moves into the planner for DELTA or SCARA.)
 | |
|  */
 | |
| void prepare_move_to_destination() {
 | |
|   clamp_to_software_endstops(destination);
 | |
|   refresh_cmd_timeout();
 | |
| 
 | |
|   #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | |
|     prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(DELTA) || ENABLED(SCARA)
 | |
|     if (!prepare_kinematic_move_to(destination)) return;
 | |
|   #else
 | |
|     #if ENABLED(DUAL_X_CARRIAGE)
 | |
|       if (!prepare_move_to_destination_dualx()) return;
 | |
|     #endif
 | |
|     if (!prepare_move_to_destination_cartesian()) return;
 | |
|   #endif
 | |
| 
 | |
|   set_current_to_destination();
 | |
| }
 | |
| 
 | |
| #if ENABLED(ARC_SUPPORT)
 | |
|   /**
 | |
|    * Plan an arc in 2 dimensions
 | |
|    *
 | |
|    * The arc is approximated by generating many small linear segments.
 | |
|    * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
 | |
|    * Arcs should only be made relatively large (over 5mm), as larger arcs with
 | |
|    * larger segments will tend to be more efficient. Your slicer should have
 | |
|    * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | |
|    */
 | |
|   void plan_arc(
 | |
|     float target[NUM_AXIS], // Destination position
 | |
|     float* offset,          // Center of rotation relative to current_position
 | |
|     uint8_t clockwise       // Clockwise?
 | |
|   ) {
 | |
| 
 | |
|     float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
 | |
|           center_X = current_position[X_AXIS] + offset[X_AXIS],
 | |
|           center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
 | |
|           linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
 | |
|           extruder_travel = target[E_AXIS] - current_position[E_AXIS],
 | |
|           r_X = -offset[X_AXIS],  // Radius vector from center to current location
 | |
|           r_Y = -offset[Y_AXIS],
 | |
|           rt_X = target[X_AXIS] - center_X,
 | |
|           rt_Y = target[Y_AXIS] - center_Y;
 | |
| 
 | |
|     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | |
|     float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
 | |
|     if (angular_travel < 0) angular_travel += RADIANS(360);
 | |
|     if (clockwise) angular_travel -= RADIANS(360);
 | |
| 
 | |
|     // Make a circle if the angular rotation is 0
 | |
|     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
 | |
|       angular_travel += RADIANS(360);
 | |
| 
 | |
|     float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
 | |
|     if (mm_of_travel < 0.001) return;
 | |
|     uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
 | |
|     if (segments == 0) segments = 1;
 | |
| 
 | |
|     float theta_per_segment = angular_travel / segments;
 | |
|     float linear_per_segment = linear_travel / segments;
 | |
|     float extruder_per_segment = extruder_travel / segments;
 | |
| 
 | |
|     /**
 | |
|      * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | |
|      * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 | |
|      *     r_T = [cos(phi) -sin(phi);
 | |
|      *            sin(phi)  cos(phi] * r ;
 | |
|      *
 | |
|      * For arc generation, the center of the circle is the axis of rotation and the radius vector is
 | |
|      * defined from the circle center to the initial position. Each line segment is formed by successive
 | |
|      * vector rotations. This requires only two cos() and sin() computations to form the rotation
 | |
|      * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 | |
|      * all double numbers are single precision on the Arduino. (True double precision will not have
 | |
|      * round off issues for CNC applications.) Single precision error can accumulate to be greater than
 | |
|      * tool precision in some cases. Therefore, arc path correction is implemented.
 | |
|      *
 | |
|      * Small angle approximation may be used to reduce computation overhead further. This approximation
 | |
|      * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
 | |
|      * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 | |
|      * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
 | |
|      * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 | |
|      * issue for CNC machines with the single precision Arduino calculations.
 | |
|      *
 | |
|      * This approximation also allows plan_arc to immediately insert a line segment into the planner
 | |
|      * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 | |
|      * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
 | |
|      * This is important when there are successive arc motions.
 | |
|      */
 | |
|     // Vector rotation matrix values
 | |
|     float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
 | |
|     float sin_T = theta_per_segment;
 | |
| 
 | |
|     float arc_target[NUM_AXIS];
 | |
|     float sin_Ti, cos_Ti, r_new_Y;
 | |
|     uint16_t i;
 | |
|     int8_t count = 0;
 | |
| 
 | |
|     // Initialize the linear axis
 | |
|     arc_target[Z_AXIS] = current_position[Z_AXIS];
 | |
| 
 | |
|     // Initialize the extruder axis
 | |
|     arc_target[E_AXIS] = current_position[E_AXIS];
 | |
| 
 | |
|     float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
 | |
| 
 | |
|     millis_t next_idle_ms = millis() + 200UL;
 | |
| 
 | |
|     for (i = 1; i < segments; i++) { // Iterate (segments-1) times
 | |
| 
 | |
|       thermalManager.manage_heater();
 | |
|       millis_t now = millis();
 | |
|       if (ELAPSED(now, next_idle_ms)) {
 | |
|         next_idle_ms = now + 200UL;
 | |
|         idle();
 | |
|       }
 | |
| 
 | |
|       if (++count < N_ARC_CORRECTION) {
 | |
|         // Apply vector rotation matrix to previous r_X / 1
 | |
|         r_new_Y = r_X * sin_T + r_Y * cos_T;
 | |
|         r_X = r_X * cos_T - r_Y * sin_T;
 | |
|         r_Y = r_new_Y;
 | |
|       }
 | |
|       else {
 | |
|         // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | |
|         // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | |
|         // To reduce stuttering, the sin and cos could be computed at different times.
 | |
|         // For now, compute both at the same time.
 | |
|         cos_Ti = cos(i * theta_per_segment);
 | |
|         sin_Ti = sin(i * theta_per_segment);
 | |
|         r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
 | |
|         r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
 | |
|         count = 0;
 | |
|       }
 | |
| 
 | |
|       // Update arc_target location
 | |
|       arc_target[X_AXIS] = center_X + r_X;
 | |
|       arc_target[Y_AXIS] = center_Y + r_Y;
 | |
|       arc_target[Z_AXIS] += linear_per_segment;
 | |
|       arc_target[E_AXIS] += extruder_per_segment;
 | |
| 
 | |
|       clamp_to_software_endstops(arc_target);
 | |
| 
 | |
|       #if ENABLED(DELTA) || ENABLED(SCARA)
 | |
|         inverse_kinematics(arc_target);
 | |
|         #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|           adjust_delta(arc_target);
 | |
|         #endif
 | |
|         planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
 | |
|       #else
 | |
|         planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
 | |
|       #endif
 | |
|     }
 | |
| 
 | |
|     // Ensure last segment arrives at target location.
 | |
|     #if ENABLED(DELTA) || ENABLED(SCARA)
 | |
|       inverse_kinematics(target);
 | |
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
 | |
|         adjust_delta(target);
 | |
|       #endif
 | |
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
 | |
|     #else
 | |
|       planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
 | |
|     #endif
 | |
| 
 | |
|     // As far as the parser is concerned, the position is now == target. In reality the
 | |
|     // motion control system might still be processing the action and the real tool position
 | |
|     // in any intermediate location.
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if ENABLED(BEZIER_CURVE_SUPPORT)
 | |
| 
 | |
|   void plan_cubic_move(const float offset[4]) {
 | |
|     cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
 | |
| 
 | |
|     // As far as the parser is concerned, the position is now == target. In reality the
 | |
|     // motion control system might still be processing the action and the real tool position
 | |
|     // in any intermediate location.
 | |
|     set_current_to_destination();
 | |
|   }
 | |
| 
 | |
| #endif // BEZIER_CURVE_SUPPORT
 | |
| 
 | |
| #if HAS_CONTROLLERFAN
 | |
| 
 | |
|   void controllerFan() {
 | |
|     static millis_t lastMotorOn = 0; // Last time a motor was turned on
 | |
|     static millis_t nextMotorCheck = 0; // Last time the state was checked
 | |
|     millis_t ms = millis();
 | |
|     if (ELAPSED(ms, nextMotorCheck)) {
 | |
|       nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
 | |
|       if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
 | |
|           || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
 | |
|           #if E_STEPPERS > 1
 | |
|             || E1_ENABLE_READ == E_ENABLE_ON
 | |
|             #if HAS_X2_ENABLE
 | |
|               || X2_ENABLE_READ == X_ENABLE_ON
 | |
|             #endif
 | |
|             #if E_STEPPERS > 2
 | |
|               || E2_ENABLE_READ == E_ENABLE_ON
 | |
|               #if E_STEPPERS > 3
 | |
|                 || E3_ENABLE_READ == E_ENABLE_ON
 | |
|               #endif
 | |
|             #endif
 | |
|           #endif
 | |
|       ) {
 | |
|         lastMotorOn = ms; //... set time to NOW so the fan will turn on
 | |
|       }
 | |
| 
 | |
|       // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
 | |
|       uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
 | |
| 
 | |
|       // allows digital or PWM fan output to be used (see M42 handling)
 | |
|       digitalWrite(CONTROLLERFAN_PIN, speed);
 | |
|       analogWrite(CONTROLLERFAN_PIN, speed);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // HAS_CONTROLLERFAN
 | |
| 
 | |
| #if ENABLED(SCARA)
 | |
| 
 | |
|   void forward_kinematics_SCARA(float f_scara[3]) {
 | |
|     // Perform forward kinematics, and place results in delta[3]
 | |
|     // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | |
| 
 | |
|     float x_sin, x_cos, y_sin, y_cos;
 | |
| 
 | |
|     //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
 | |
|     //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
 | |
| 
 | |
|     x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
 | |
|     x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
 | |
|     y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
 | |
|     y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
 | |
| 
 | |
|     //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | |
|     //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | |
|     //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | |
|     //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | |
| 
 | |
|     delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
 | |
|     delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
 | |
| 
 | |
|     //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
|   }
 | |
| 
 | |
|   void inverse_kinematics(const float cartesian[3]) {
 | |
|     // Inverse kinematics.
 | |
|     // Perform SCARA IK and place results in delta[3].
 | |
|     // The maths and first version were done by QHARLEY.
 | |
|     // Integrated, tweaked by Joachim Cerny in June 2014.
 | |
| 
 | |
|     float SCARA_pos[2];
 | |
|     static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
 | |
| 
 | |
|     SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | |
|     SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | |
| 
 | |
|     #if (Linkage_1 == Linkage_2)
 | |
|       SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
 | |
|     #else
 | |
|       SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
 | |
|     #endif
 | |
| 
 | |
|     SCARA_S2 = sqrt(1 - sq(SCARA_C2));
 | |
| 
 | |
|     SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | |
|     SCARA_K2 = Linkage_2 * SCARA_S2;
 | |
| 
 | |
|     SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
 | |
|     SCARA_psi = atan2(SCARA_S2, SCARA_C2);
 | |
| 
 | |
|     delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | |
|     delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | |
|     delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
 | |
| 
 | |
|     /**
 | |
|     SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | |
|     SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | |
|     SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | |
| 
 | |
|     SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | |
|     SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | |
| 
 | |
|     SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | |
|     SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | |
| 
 | |
|     SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | |
|     SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | |
|     SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | |
|     SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | |
|     SERIAL_EOL;
 | |
|     */
 | |
|   }
 | |
| 
 | |
| #endif // SCARA
 | |
| 
 | |
| #if ENABLED(TEMP_STAT_LEDS)
 | |
| 
 | |
|   static bool red_led = false;
 | |
|   static millis_t next_status_led_update_ms = 0;
 | |
| 
 | |
|   void handle_status_leds(void) {
 | |
|     float max_temp = 0.0;
 | |
|     if (ELAPSED(millis(), next_status_led_update_ms)) {
 | |
|       next_status_led_update_ms += 500; // Update every 0.5s
 | |
|       HOTEND_LOOP() {
 | |
|         max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
 | |
|       }
 | |
|       #if HAS_TEMP_BED
 | |
|         max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
 | |
|       #endif
 | |
|       bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
 | |
|       if (new_led != red_led) {
 | |
|         red_led = new_led;
 | |
|         digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
 | |
|         digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void enable_all_steppers() {
 | |
|   enable_x();
 | |
|   enable_y();
 | |
|   enable_z();
 | |
|   enable_e0();
 | |
|   enable_e1();
 | |
|   enable_e2();
 | |
|   enable_e3();
 | |
| }
 | |
| 
 | |
| void disable_all_steppers() {
 | |
|   disable_x();
 | |
|   disable_y();
 | |
|   disable_z();
 | |
|   disable_e0();
 | |
|   disable_e1();
 | |
|   disable_e2();
 | |
|   disable_e3();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Standard idle routine keeps the machine alive
 | |
|  */
 | |
| void idle(
 | |
|   #if ENABLED(FILAMENT_CHANGE_FEATURE)
 | |
|     bool no_stepper_sleep/*=false*/
 | |
|   #endif
 | |
| ) {
 | |
|   lcd_update();
 | |
|   host_keepalive();
 | |
|   manage_inactivity(
 | |
|     #if ENABLED(FILAMENT_CHANGE_FEATURE)
 | |
|       no_stepper_sleep
 | |
|     #endif
 | |
|   );
 | |
| 
 | |
|   thermalManager.manage_heater();
 | |
| 
 | |
|   #if ENABLED(PRINTCOUNTER)
 | |
|     print_job_timer.tick();
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_BUZZER
 | |
|     buzzer.tick();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Manage several activities:
 | |
|  *  - Check for Filament Runout
 | |
|  *  - Keep the command buffer full
 | |
|  *  - Check for maximum inactive time between commands
 | |
|  *  - Check for maximum inactive time between stepper commands
 | |
|  *  - Check if pin CHDK needs to go LOW
 | |
|  *  - Check for KILL button held down
 | |
|  *  - Check for HOME button held down
 | |
|  *  - Check if cooling fan needs to be switched on
 | |
|  *  - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
 | |
|  */
 | |
| void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
 | |
| 
 | |
|   #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
|     if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
 | |
|       handle_filament_runout();
 | |
|   #endif
 | |
| 
 | |
|   if (commands_in_queue < BUFSIZE) get_available_commands();
 | |
| 
 | |
|   millis_t ms = millis();
 | |
| 
 | |
|   if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
 | |
| 
 | |
|   if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
 | |
|       && !ignore_stepper_queue && !planner.blocks_queued()) {
 | |
|     #if ENABLED(DISABLE_INACTIVE_X)
 | |
|       disable_x();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_Y)
 | |
|       disable_y();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_Z)
 | |
|       disable_z();
 | |
|     #endif
 | |
|     #if ENABLED(DISABLE_INACTIVE_E)
 | |
|       disable_e0();
 | |
|       disable_e1();
 | |
|       disable_e2();
 | |
|       disable_e3();
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
 | |
|     if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
 | |
|       chdkActive = false;
 | |
|       WRITE(CHDK, LOW);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_KILL
 | |
| 
 | |
|     // Check if the kill button was pressed and wait just in case it was an accidental
 | |
|     // key kill key press
 | |
|     // -------------------------------------------------------------------------------
 | |
|     static int killCount = 0;   // make the inactivity button a bit less responsive
 | |
|     const int KILL_DELAY = 750;
 | |
|     if (!READ(KILL_PIN))
 | |
|       killCount++;
 | |
|     else if (killCount > 0)
 | |
|       killCount--;
 | |
| 
 | |
|     // Exceeded threshold and we can confirm that it was not accidental
 | |
|     // KILL the machine
 | |
|     // ----------------------------------------------------------------
 | |
|     if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_HOME
 | |
|     // Check to see if we have to home, use poor man's debouncer
 | |
|     // ---------------------------------------------------------
 | |
|     static int homeDebounceCount = 0;   // poor man's debouncing count
 | |
|     const int HOME_DEBOUNCE_DELAY = 2500;
 | |
|     if (!READ(HOME_PIN)) {
 | |
|       if (!homeDebounceCount) {
 | |
|         enqueue_and_echo_commands_P(PSTR("G28"));
 | |
|         LCD_MESSAGEPGM(MSG_AUTO_HOME);
 | |
|       }
 | |
|       if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
 | |
|         homeDebounceCount++;
 | |
|       else
 | |
|         homeDebounceCount = 0;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if HAS_CONTROLLERFAN
 | |
|     controllerFan(); // Check if fan should be turned on to cool stepper drivers down
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
 | |
|     if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
 | |
|       && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
 | |
|       #if ENABLED(SWITCHING_EXTRUDER)
 | |
|         bool oldstatus = E0_ENABLE_READ;
 | |
|         enable_e0();
 | |
|       #else // !SWITCHING_EXTRUDER
 | |
|         bool oldstatus;
 | |
|         switch (active_extruder) {
 | |
|           case 0:
 | |
|             oldstatus = E0_ENABLE_READ;
 | |
|             enable_e0();
 | |
|             break;
 | |
|           #if E_STEPPERS > 1
 | |
|             case 1:
 | |
|               oldstatus = E1_ENABLE_READ;
 | |
|               enable_e1();
 | |
|               break;
 | |
|             #if E_STEPPERS > 2
 | |
|               case 2:
 | |
|                 oldstatus = E2_ENABLE_READ;
 | |
|                 enable_e2();
 | |
|                 break;
 | |
|               #if E_STEPPERS > 3
 | |
|                 case 3:
 | |
|                   oldstatus = E3_ENABLE_READ;
 | |
|                   enable_e3();
 | |
|                   break;
 | |
|               #endif
 | |
|             #endif
 | |
|           #endif
 | |
|         }
 | |
|       #endif // !SWITCHING_EXTRUDER
 | |
| 
 | |
|       float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
 | |
|       planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
 | |
|                        destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
 | |
|                        MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
 | |
|       current_position[E_AXIS] = oldepos;
 | |
|       destination[E_AXIS] = oldedes;
 | |
|       planner.set_e_position_mm(oldepos);
 | |
|       previous_cmd_ms = ms; // refresh_cmd_timeout()
 | |
|       stepper.synchronize();
 | |
|       #if ENABLED(SWITCHING_EXTRUDER)
 | |
|         E0_ENABLE_WRITE(oldstatus);
 | |
|       #else
 | |
|         switch (active_extruder) {
 | |
|           case 0:
 | |
|             E0_ENABLE_WRITE(oldstatus);
 | |
|             break;
 | |
|           #if E_STEPPERS > 1
 | |
|             case 1:
 | |
|               E1_ENABLE_WRITE(oldstatus);
 | |
|               break;
 | |
|             #if E_STEPPERS > 2
 | |
|               case 2:
 | |
|                 E2_ENABLE_WRITE(oldstatus);
 | |
|                 break;
 | |
|               #if E_STEPPERS > 3
 | |
|                 case 3:
 | |
|                   E3_ENABLE_WRITE(oldstatus);
 | |
|                   break;
 | |
|               #endif
 | |
|             #endif
 | |
|           #endif
 | |
|         }
 | |
|       #endif // !SWITCHING_EXTRUDER
 | |
|     }
 | |
|   #endif // EXTRUDER_RUNOUT_PREVENT
 | |
| 
 | |
|   #if ENABLED(DUAL_X_CARRIAGE)
 | |
|     // handle delayed move timeout
 | |
|     if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
 | |
|       // travel moves have been received so enact them
 | |
|       delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
 | |
|       set_destination_to_current();
 | |
|       prepare_move_to_destination();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   #if ENABLED(TEMP_STAT_LEDS)
 | |
|     handle_status_leds();
 | |
|   #endif
 | |
| 
 | |
|   planner.check_axes_activity();
 | |
| }
 | |
| 
 | |
| void kill(const char* lcd_msg) {
 | |
|   SERIAL_ERROR_START;
 | |
|   SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
 | |
| 
 | |
|   #if ENABLED(ULTRA_LCD)
 | |
|     kill_screen(lcd_msg);
 | |
|   #else
 | |
|     UNUSED(lcd_msg);
 | |
|   #endif
 | |
| 
 | |
|   for (int i = 5; i--;) delay(100); // Wait a short time
 | |
| 
 | |
|   cli(); // Stop interrupts
 | |
|   thermalManager.disable_all_heaters();
 | |
|   disable_all_steppers();
 | |
| 
 | |
|   #if HAS_POWER_SWITCH
 | |
|     pinMode(PS_ON_PIN, INPUT);
 | |
|   #endif
 | |
| 
 | |
|   suicide();
 | |
|   while (1) {
 | |
|     #if ENABLED(USE_WATCHDOG)
 | |
|       watchdog_reset();
 | |
|     #endif
 | |
|   } // Wait for reset
 | |
| }
 | |
| 
 | |
| #if ENABLED(FILAMENT_RUNOUT_SENSOR)
 | |
| 
 | |
|   void handle_filament_runout() {
 | |
|     if (!filament_ran_out) {
 | |
|       filament_ran_out = true;
 | |
|       enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
 | |
|       stepper.synchronize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #endif // FILAMENT_RUNOUT_SENSOR
 | |
| 
 | |
| #if ENABLED(FAST_PWM_FAN)
 | |
| 
 | |
|   void setPwmFrequency(uint8_t pin, int val) {
 | |
|     val &= 0x07;
 | |
|     switch (digitalPinToTimer(pin)) {
 | |
|       #if defined(TCCR0A)
 | |
|         case TIMER0A:
 | |
|         case TIMER0B:
 | |
|           // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | |
|           // TCCR0B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR1A)
 | |
|         case TIMER1A:
 | |
|         case TIMER1B:
 | |
|           // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | |
|           // TCCR1B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR2)
 | |
|         case TIMER2:
 | |
|         case TIMER2:
 | |
|           TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | |
|           TCCR2 |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR2A)
 | |
|         case TIMER2A:
 | |
|         case TIMER2B:
 | |
|           TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | |
|           TCCR2B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR3A)
 | |
|         case TIMER3A:
 | |
|         case TIMER3B:
 | |
|         case TIMER3C:
 | |
|           TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | |
|           TCCR3B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR4A)
 | |
|         case TIMER4A:
 | |
|         case TIMER4B:
 | |
|         case TIMER4C:
 | |
|           TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | |
|           TCCR4B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|       #if defined(TCCR5A)
 | |
|         case TIMER5A:
 | |
|         case TIMER5B:
 | |
|         case TIMER5C:
 | |
|           TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | |
|           TCCR5B |= val;
 | |
|           break;
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| #endif // FAST_PWM_FAN
 | |
| 
 | |
| void stop() {
 | |
|   thermalManager.disable_all_heaters();
 | |
|   if (IsRunning()) {
 | |
|     Running = false;
 | |
|     Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|     LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|   }
 | |
| }
 | |
| 
 | |
| float calculate_volumetric_multiplier(float diameter) {
 | |
|   if (!volumetric_enabled || diameter == 0) return 1.0;
 | |
|   float d2 = diameter * 0.5;
 | |
|   return 1.0 / (M_PI * d2 * d2);
 | |
| }
 | |
| 
 | |
| void calculate_volumetric_multipliers() {
 | |
|   for (uint8_t i = 0; i < COUNT(filament_size); i++)
 | |
|     volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
 | |
| }
 |