You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1592 lines
						
					
					
						
							39 KiB
						
					
					
				
			
		
		
	
	
							1592 lines
						
					
					
						
							39 KiB
						
					
					
				/**
 | 
						|
 * Marlin 3D Printer Firmware
 | 
						|
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "qr_solve.h"
 | 
						|
 | 
						|
#if ENABLED(AUTO_BED_LEVELING_GRID)
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
//# include "r8lib.h"
 | 
						|
 | 
						|
int i4_min(int i1, int i2)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    I4_MIN returns the smaller of two I4's.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    29 August 2006
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int I1, I2, two integers to be compared.
 | 
						|
 | 
						|
    Output, int I4_MIN, the smaller of I1 and I2.
 | 
						|
*/
 | 
						|
{
 | 
						|
  return (i1 < i2) ? i1 : i2;
 | 
						|
}
 | 
						|
 | 
						|
double r8_epsilon(void)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8_EPSILON returns the R8 round off unit.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    R8_EPSILON is a number R which is a power of 2 with the property that,
 | 
						|
    to the precision of the computer's arithmetic,
 | 
						|
      1 < 1 + R
 | 
						|
    but
 | 
						|
      1 = ( 1 + R / 2 )
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    01 September 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Output, double R8_EPSILON, the R8 round-off unit.
 | 
						|
*/
 | 
						|
{
 | 
						|
  const double value = 2.220446049250313E-016;
 | 
						|
  return value;
 | 
						|
}
 | 
						|
 | 
						|
double r8_max(double x, double y)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8_MAX returns the maximum of two R8's.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    07 May 2006
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, double X, Y, the quantities to compare.
 | 
						|
 | 
						|
    Output, double R8_MAX, the maximum of X and Y.
 | 
						|
*/
 | 
						|
{
 | 
						|
  return (y < x) ? x : y;
 | 
						|
}
 | 
						|
 | 
						|
double r8_abs(double x)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8_ABS returns the absolute value of an R8.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    07 May 2006
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, double X, the quantity whose absolute value is desired.
 | 
						|
 | 
						|
    Output, double R8_ABS, the absolute value of X.
 | 
						|
*/
 | 
						|
{
 | 
						|
  return (x < 0.0) ? -x : x;
 | 
						|
}
 | 
						|
 | 
						|
double r8_sign(double x)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8_SIGN returns the sign of an R8.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    08 May 2006
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, double X, the number whose sign is desired.
 | 
						|
 | 
						|
    Output, double R8_SIGN, the sign of X.
 | 
						|
*/
 | 
						|
{
 | 
						|
  return (x < 0.0) ? -1.0 : 1.0;
 | 
						|
}
 | 
						|
 | 
						|
double r8mat_amax(int m, int n, double a[])
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8MAT_AMAX returns the maximum absolute value entry of an R8MAT.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | 
						|
    in column-major order.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    07 September 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int M, the number of rows in A.
 | 
						|
 | 
						|
    Input, int N, the number of columns in A.
 | 
						|
 | 
						|
    Input, double A[M*N], the M by N matrix.
 | 
						|
 | 
						|
    Output, double R8MAT_AMAX, the maximum absolute value entry of A.
 | 
						|
*/
 | 
						|
{
 | 
						|
  double value = r8_abs(a[0 + 0 * m]);
 | 
						|
  for (int j = 0; j < n; j++) {
 | 
						|
    for (int i = 0; i < m; i++) {
 | 
						|
      NOLESS(value, r8_abs(a[i + j * m]));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return value;
 | 
						|
}
 | 
						|
 | 
						|
void r8mat_copy(double a2[], int m, int n, double a1[])
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
 | 
						|
    in column-major order.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    26 July 2008
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int M, N, the number of rows and columns.
 | 
						|
 | 
						|
    Input, double A1[M*N], the matrix to be copied.
 | 
						|
 | 
						|
    Output, double R8MAT_COPY_NEW[M*N], the copy of A1.
 | 
						|
*/
 | 
						|
{
 | 
						|
  for (int j = 0; j < n; j++) {
 | 
						|
    for (int i = 0; i < m; i++)
 | 
						|
      a2[i + j * m] = a1[i + j * m];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void daxpy(int n, double da, double dx[], int incx, double dy[], int incy)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DAXPY computes constant times a vector plus a vector.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    This routine uses unrolled loops for increments equal to one.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    30 March 2007
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979.
 | 
						|
 | 
						|
    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
						|
    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
						|
    Algorithm 539,
 | 
						|
    ACM Transactions on Mathematical Software,
 | 
						|
    Volume 5, Number 3, September 1979, pages 308-323.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int N, the number of elements in DX and DY.
 | 
						|
 | 
						|
    Input, double DA, the multiplier of DX.
 | 
						|
 | 
						|
    Input, double DX[*], the first vector.
 | 
						|
 | 
						|
    Input, int INCX, the increment between successive entries of DX.
 | 
						|
 | 
						|
    Input/output, double DY[*], the second vector.
 | 
						|
    On output, DY[*] has been replaced by DY[*] + DA * DX[*].
 | 
						|
 | 
						|
    Input, int INCY, the increment between successive entries of DY.
 | 
						|
*/
 | 
						|
{
 | 
						|
  if (n <= 0 || da == 0.0) return;
 | 
						|
 | 
						|
  int i, ix, iy, m;
 | 
						|
  /**
 | 
						|
    Code for unequal increments or equal increments
 | 
						|
    not equal to 1.
 | 
						|
  */
 | 
						|
  if (incx != 1 || incy != 1) {
 | 
						|
    if (0 <= incx)
 | 
						|
      ix = 0;
 | 
						|
    else
 | 
						|
      ix = (- n + 1) * incx;
 | 
						|
    if (0 <= incy)
 | 
						|
      iy = 0;
 | 
						|
    else
 | 
						|
      iy = (- n + 1) * incy;
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
      dy[iy] = dy[iy] + da * dx[ix];
 | 
						|
      ix = ix + incx;
 | 
						|
      iy = iy + incy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Code for both increments equal to 1.
 | 
						|
  */
 | 
						|
  else {
 | 
						|
    m = n % 4;
 | 
						|
    for (i = 0; i < m; i++)
 | 
						|
      dy[i] = dy[i] + da * dx[i];
 | 
						|
    for (i = m; i < n; i = i + 4) {
 | 
						|
      dy[i  ] = dy[i  ] + da * dx[i  ];
 | 
						|
      dy[i + 1] = dy[i + 1] + da * dx[i + 1];
 | 
						|
      dy[i + 2] = dy[i + 2] + da * dx[i + 2];
 | 
						|
      dy[i + 3] = dy[i + 3] + da * dx[i + 3];
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
double ddot(int n, double dx[], int incx, double dy[], int incy)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DDOT forms the dot product of two vectors.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    This routine uses unrolled loops for increments equal to one.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    30 March 2007
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979.
 | 
						|
 | 
						|
    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
						|
    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
						|
    Algorithm 539,
 | 
						|
    ACM Transactions on Mathematical Software,
 | 
						|
    Volume 5, Number 3, September 1979, pages 308-323.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int N, the number of entries in the vectors.
 | 
						|
 | 
						|
    Input, double DX[*], the first vector.
 | 
						|
 | 
						|
    Input, int INCX, the increment between successive entries in DX.
 | 
						|
 | 
						|
    Input, double DY[*], the second vector.
 | 
						|
 | 
						|
    Input, int INCY, the increment between successive entries in DY.
 | 
						|
 | 
						|
    Output, double DDOT, the sum of the product of the corresponding
 | 
						|
    entries of DX and DY.
 | 
						|
*/
 | 
						|
{
 | 
						|
 | 
						|
  if (n <= 0) return 0.0;
 | 
						|
 | 
						|
  int i, m;
 | 
						|
  double dtemp = 0.0;
 | 
						|
 | 
						|
  /**
 | 
						|
    Code for unequal increments or equal increments
 | 
						|
    not equal to 1.
 | 
						|
  */
 | 
						|
  if (incx != 1 || incy != 1) {
 | 
						|
    int ix = (incx >= 0) ? 0 : (-n + 1) * incx,
 | 
						|
        iy = (incy >= 0) ? 0 : (-n + 1) * incy;
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
      dtemp += dx[ix] * dy[iy];
 | 
						|
      ix = ix + incx;
 | 
						|
      iy = iy + incy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Code for both increments equal to 1.
 | 
						|
  */
 | 
						|
  else {
 | 
						|
    m = n % 5;
 | 
						|
    for (i = 0; i < m; i++)
 | 
						|
      dtemp += dx[i] * dy[i];
 | 
						|
    for (i = m; i < n; i = i + 5) {
 | 
						|
      dtemp += dx[i] * dy[i]
 | 
						|
              + dx[i + 1] * dy[i + 1]
 | 
						|
              + dx[i + 2] * dy[i + 2]
 | 
						|
              + dx[i + 3] * dy[i + 3]
 | 
						|
              + dx[i + 4] * dy[i + 4];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return dtemp;
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
double dnrm2(int n, double x[], int incx)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DNRM2 returns the euclidean norm of a vector.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
     DNRM2 ( X ) = sqrt ( X' * X )
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    30 March 2007
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979.
 | 
						|
 | 
						|
    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
						|
    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
						|
    Algorithm 539,
 | 
						|
    ACM Transactions on Mathematical Software,
 | 
						|
    Volume 5, Number 3, September 1979, pages 308-323.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int N, the number of entries in the vector.
 | 
						|
 | 
						|
    Input, double X[*], the vector whose norm is to be computed.
 | 
						|
 | 
						|
    Input, int INCX, the increment between successive entries of X.
 | 
						|
 | 
						|
    Output, double DNRM2, the Euclidean norm of X.
 | 
						|
*/
 | 
						|
{
 | 
						|
  double norm;
 | 
						|
  if (n < 1 || incx < 1)
 | 
						|
    norm = 0.0;
 | 
						|
  else if (n == 1)
 | 
						|
    norm = r8_abs(x[0]);
 | 
						|
  else {
 | 
						|
    double scale = 0.0, ssq = 1.0;
 | 
						|
    int ix = 0;
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
      if (x[ix] != 0.0) {
 | 
						|
        double absxi = r8_abs(x[ix]);
 | 
						|
        if (scale < absxi) {
 | 
						|
          ssq = 1.0 + ssq * (scale / absxi) * (scale / absxi);
 | 
						|
          scale = absxi;
 | 
						|
        }
 | 
						|
        else
 | 
						|
          ssq = ssq + (absxi / scale) * (absxi / scale);
 | 
						|
      }
 | 
						|
      ix += incx;
 | 
						|
    }
 | 
						|
    norm = scale * sqrt(ssq);
 | 
						|
  }
 | 
						|
  return norm;
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void dqrank(double a[], int lda, int m, int n, double tol, int* kr,
 | 
						|
            int jpvt[], double qraux[])
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DQRANK computes the QR factorization of a rectangular matrix.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    This routine is used in conjunction with DQRLSS to solve
 | 
						|
    overdetermined, underdetermined and singular linear systems
 | 
						|
    in a least squares sense.
 | 
						|
 | 
						|
    DQRANK uses the LINPACK subroutine DQRDC to compute the QR
 | 
						|
    factorization, with column pivoting, of an M by N matrix A.
 | 
						|
    The numerical rank is determined using the tolerance TOL.
 | 
						|
 | 
						|
    Note that on output, ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | 
						|
    of the condition number of the matrix of independent columns,
 | 
						|
    and of R.  This estimate will be <= 1/TOL.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    21 April 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt.
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979,
 | 
						|
    ISBN13: 978-0-898711-72-1,
 | 
						|
    LC: QA214.L56.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input/output, double A[LDA*N].  On input, the matrix whose
 | 
						|
    decomposition is to be computed.  On output, the information from DQRDC.
 | 
						|
    The triangular matrix R of the QR factorization is contained in the
 | 
						|
    upper triangle and information needed to recover the orthogonal
 | 
						|
    matrix Q is stored below the diagonal in A and in the vector QRAUX.
 | 
						|
 | 
						|
    Input, int LDA, the leading dimension of A, which must
 | 
						|
    be at least M.
 | 
						|
 | 
						|
    Input, int M, the number of rows of A.
 | 
						|
 | 
						|
    Input, int N, the number of columns of A.
 | 
						|
 | 
						|
    Input, double TOL, a relative tolerance used to determine the
 | 
						|
    numerical rank.  The problem should be scaled so that all the elements
 | 
						|
    of A have roughly the same absolute accuracy, EPS.  Then a reasonable
 | 
						|
    value for TOL is roughly EPS divided by the magnitude of the largest
 | 
						|
    element.
 | 
						|
 | 
						|
    Output, int *KR, the numerical rank.
 | 
						|
 | 
						|
    Output, int JPVT[N], the pivot information from DQRDC.
 | 
						|
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | 
						|
    independent to within the tolerance TOL and the remaining columns
 | 
						|
    are linearly dependent.
 | 
						|
 | 
						|
    Output, double QRAUX[N], will contain extra information defining
 | 
						|
    the QR factorization.
 | 
						|
*/
 | 
						|
{
 | 
						|
  double work[n];
 | 
						|
 | 
						|
  for (int i = 0; i < n; i++)
 | 
						|
    jpvt[i] = 0;
 | 
						|
 | 
						|
  int job = 1;
 | 
						|
 | 
						|
  dqrdc(a, lda, m, n, qraux, jpvt, work, job);
 | 
						|
 | 
						|
  *kr = 0;
 | 
						|
  int k = i4_min(m, n);
 | 
						|
  for (int j = 0; j < k; j++) {
 | 
						|
    if (r8_abs(a[j + j * lda]) <= tol * r8_abs(a[0 + 0 * lda]))
 | 
						|
      return;
 | 
						|
    *kr = j + 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void dqrdc(double a[], int lda, int n, int p, double qraux[], int jpvt[],
 | 
						|
           double work[], int job)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DQRDC computes the QR factorization of a real rectangular matrix.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    DQRDC uses Householder transformations.
 | 
						|
 | 
						|
    Column pivoting based on the 2-norms of the reduced columns may be
 | 
						|
    performed at the user's option.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    07 June 2005
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt.
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, (Society for Industrial and Applied Mathematics),
 | 
						|
    3600 University City Science Center,
 | 
						|
    Philadelphia, PA, 19104-2688.
 | 
						|
    ISBN 0-89871-172-X
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input/output, double A(LDA,P).  On input, the N by P matrix
 | 
						|
    whose decomposition is to be computed.  On output, A contains in
 | 
						|
    its upper triangle the upper triangular matrix R of the QR
 | 
						|
    factorization.  Below its diagonal A contains information from
 | 
						|
    which the orthogonal part of the decomposition can be recovered.
 | 
						|
    Note that if pivoting has been requested, the decomposition is not that
 | 
						|
    of the original matrix A but that of A with its columns permuted
 | 
						|
    as described by JPVT.
 | 
						|
 | 
						|
    Input, int LDA, the leading dimension of the array A.  LDA must
 | 
						|
    be at least N.
 | 
						|
 | 
						|
    Input, int N, the number of rows of the matrix A.
 | 
						|
 | 
						|
    Input, int P, the number of columns of the matrix A.
 | 
						|
 | 
						|
    Output, double QRAUX[P], contains further information required
 | 
						|
    to recover the orthogonal part of the decomposition.
 | 
						|
 | 
						|
    Input/output, integer JPVT[P].  On input, JPVT contains integers that
 | 
						|
    control the selection of the pivot columns.  The K-th column A(*,K) of A
 | 
						|
    is placed in one of three classes according to the value of JPVT(K).
 | 
						|
      > 0, then A(K) is an initial column.
 | 
						|
      = 0, then A(K) is a free column.
 | 
						|
      < 0, then A(K) is a final column.
 | 
						|
    Before the decomposition is computed, initial columns are moved to
 | 
						|
    the beginning of the array A and final columns to the end.  Both
 | 
						|
    initial and final columns are frozen in place during the computation
 | 
						|
    and only free columns are moved.  At the K-th stage of the
 | 
						|
    reduction, if A(*,K) is occupied by a free column it is interchanged
 | 
						|
    with the free column of largest reduced norm.  JPVT is not referenced
 | 
						|
    if JOB == 0.  On output, JPVT(K) contains the index of the column of the
 | 
						|
    original matrix that has been interchanged into the K-th column, if
 | 
						|
    pivoting was requested.
 | 
						|
 | 
						|
    Workspace, double WORK[P].  WORK is not referenced if JOB == 0.
 | 
						|
 | 
						|
    Input, int JOB, initiates column pivoting.
 | 
						|
    0, no pivoting is done.
 | 
						|
    nonzero, pivoting is done.
 | 
						|
*/
 | 
						|
{
 | 
						|
  int jp;
 | 
						|
  int j;
 | 
						|
  int lup;
 | 
						|
  int maxj;
 | 
						|
  double maxnrm, nrmxl, t, tt;
 | 
						|
 | 
						|
  int pl = 1, pu = 0;
 | 
						|
  /**
 | 
						|
    If pivoting is requested, rearrange the columns.
 | 
						|
  */
 | 
						|
  if (job != 0) {
 | 
						|
    for (j = 1; j <= p; j++) {
 | 
						|
      int swapj = (0 < jpvt[j - 1]);
 | 
						|
      jpvt[j - 1] = (jpvt[j - 1] < 0) ? -j : j;
 | 
						|
      if (swapj) {
 | 
						|
        if (j != pl)
 | 
						|
          dswap(n, a + 0 + (pl - 1)*lda, 1, a + 0 + (j - 1), 1);
 | 
						|
        jpvt[j - 1] = jpvt[pl - 1];
 | 
						|
        jpvt[pl - 1] = j;
 | 
						|
        pl++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    pu = p;
 | 
						|
    for (j = p; 1 <= j; j--) {
 | 
						|
      if (jpvt[j - 1] < 0) {
 | 
						|
        jpvt[j - 1] = -jpvt[j - 1];
 | 
						|
        if (j != pu) {
 | 
						|
          dswap(n, a + 0 + (pu - 1)*lda, 1, a + 0 + (j - 1)*lda, 1);
 | 
						|
          jp = jpvt[pu - 1];
 | 
						|
          jpvt[pu - 1] = jpvt[j - 1];
 | 
						|
          jpvt[j - 1] = jp;
 | 
						|
        }
 | 
						|
        pu = pu - 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Compute the norms of the free columns.
 | 
						|
  */
 | 
						|
  for (j = pl; j <= pu; j++)
 | 
						|
    qraux[j - 1] = dnrm2(n, a + 0 + (j - 1) * lda, 1);
 | 
						|
  for (j = pl; j <= pu; j++)
 | 
						|
    work[j - 1] = qraux[j - 1];
 | 
						|
  /**
 | 
						|
    Perform the Householder reduction of A.
 | 
						|
  */
 | 
						|
  lup = i4_min(n, p);
 | 
						|
  for (int l = 1; l <= lup; l++) {
 | 
						|
    /**
 | 
						|
      Bring the column of largest norm into the pivot position.
 | 
						|
    */
 | 
						|
    if (pl <= l && l < pu) {
 | 
						|
      maxnrm = 0.0;
 | 
						|
      maxj = l;
 | 
						|
      for (j = l; j <= pu; j++) {
 | 
						|
        if (maxnrm < qraux[j - 1]) {
 | 
						|
          maxnrm = qraux[j - 1];
 | 
						|
          maxj = j;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (maxj != l) {
 | 
						|
        dswap(n, a + 0 + (l - 1)*lda, 1, a + 0 + (maxj - 1)*lda, 1);
 | 
						|
        qraux[maxj - 1] = qraux[l - 1];
 | 
						|
        work[maxj - 1] = work[l - 1];
 | 
						|
        jp = jpvt[maxj - 1];
 | 
						|
        jpvt[maxj - 1] = jpvt[l - 1];
 | 
						|
        jpvt[l - 1] = jp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /**
 | 
						|
      Compute the Householder transformation for column L.
 | 
						|
    */
 | 
						|
    qraux[l - 1] = 0.0;
 | 
						|
    if (l != n) {
 | 
						|
      nrmxl = dnrm2(n - l + 1, a + l - 1 + (l - 1) * lda, 1);
 | 
						|
      if (nrmxl != 0.0) {
 | 
						|
        if (a[l - 1 + (l - 1)*lda] != 0.0)
 | 
						|
          nrmxl = nrmxl * r8_sign(a[l - 1 + (l - 1) * lda]);
 | 
						|
        dscal(n - l + 1, 1.0 / nrmxl, a + l - 1 + (l - 1)*lda, 1);
 | 
						|
        a[l - 1 + (l - 1)*lda] = 1.0 + a[l - 1 + (l - 1) * lda];
 | 
						|
        /**
 | 
						|
          Apply the transformation to the remaining columns, updating the norms.
 | 
						|
        */
 | 
						|
        for (j = l + 1; j <= p; j++) {
 | 
						|
          t = -ddot(n - l + 1, a + l - 1 + (l - 1) * lda, 1, a + l - 1 + (j - 1) * lda, 1)
 | 
						|
              / a[l - 1 + (l - 1) * lda];
 | 
						|
          daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
 | 
						|
          if (pl <= j && j <= pu) {
 | 
						|
            if (qraux[j - 1] != 0.0) {
 | 
						|
              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
 | 
						|
              tt = r8_max(tt, 0.0);
 | 
						|
              t = tt;
 | 
						|
              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
 | 
						|
              if (tt != 1.0)
 | 
						|
                qraux[j - 1] = qraux[j - 1] * sqrt(t);
 | 
						|
              else {
 | 
						|
                qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
 | 
						|
                work[j - 1] = qraux[j - 1];
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        /**
 | 
						|
          Save the transformation.
 | 
						|
        */
 | 
						|
        qraux[l - 1] = a[l - 1 + (l - 1) * lda];
 | 
						|
        a[l - 1 + (l - 1)*lda] = -nrmxl;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
int dqrls(double a[], int lda, int m, int n, double tol, int* kr, double b[],
 | 
						|
          double x[], double rsd[], int jpvt[], double qraux[], int itask)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DQRLS factors and solves a linear system in the least squares sense.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    The linear system may be overdetermined, underdetermined or singular.
 | 
						|
    The solution is obtained using a QR factorization of the
 | 
						|
    coefficient matrix.
 | 
						|
 | 
						|
    DQRLS can be efficiently used to solve several least squares
 | 
						|
    problems with the same matrix A.  The first system is solved
 | 
						|
    with ITASK = 1.  The subsequent systems are solved with
 | 
						|
    ITASK = 2, to avoid the recomputation of the matrix factors.
 | 
						|
    The parameters KR, JPVT, and QRAUX must not be modified
 | 
						|
    between calls to DQRLS.
 | 
						|
 | 
						|
    DQRLS is used to solve in a least squares sense
 | 
						|
    overdetermined, underdetermined and singular linear systems.
 | 
						|
    The system is A*X approximates B where A is M by N.
 | 
						|
    B is a given M-vector, and X is the N-vector to be computed.
 | 
						|
    A solution X is found which minimimzes the sum of squares (2-norm)
 | 
						|
    of the residual,  A*X - B.
 | 
						|
 | 
						|
    The numerical rank of A is determined using the tolerance TOL.
 | 
						|
 | 
						|
    DQRLS uses the LINPACK subroutine DQRDC to compute the QR
 | 
						|
    factorization, with column pivoting, of an M by N matrix A.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    10 September 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt.
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    David Kahaner, Cleve Moler, Steven Nash,
 | 
						|
    Numerical Methods and Software,
 | 
						|
    Prentice Hall, 1989,
 | 
						|
    ISBN: 0-13-627258-4,
 | 
						|
    LC: TA345.K34.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input/output, double A[LDA*N], an M by N matrix.
 | 
						|
    On input, the matrix whose decomposition is to be computed.
 | 
						|
    In a least squares data fitting problem, A(I,J) is the
 | 
						|
    value of the J-th basis (model) function at the I-th data point.
 | 
						|
    On output, A contains the output from DQRDC.  The triangular matrix R
 | 
						|
    of the QR factorization is contained in the upper triangle and
 | 
						|
    information needed to recover the orthogonal matrix Q is stored
 | 
						|
    below the diagonal in A and in the vector QRAUX.
 | 
						|
 | 
						|
    Input, int LDA, the leading dimension of A.
 | 
						|
 | 
						|
    Input, int M, the number of rows of A.
 | 
						|
 | 
						|
    Input, int N, the number of columns of A.
 | 
						|
 | 
						|
    Input, double TOL, a relative tolerance used to determine the
 | 
						|
    numerical rank.  The problem should be scaled so that all the elements
 | 
						|
    of A have roughly the same absolute accuracy EPS.  Then a reasonable
 | 
						|
    value for TOL is roughly EPS divided by the magnitude of the largest
 | 
						|
    element.
 | 
						|
 | 
						|
    Output, int *KR, the numerical rank.
 | 
						|
 | 
						|
    Input, double B[M], the right hand side of the linear system.
 | 
						|
 | 
						|
    Output, double X[N], a least squares solution to the linear
 | 
						|
    system.
 | 
						|
 | 
						|
    Output, double RSD[M], the residual, B - A*X.  RSD may
 | 
						|
    overwrite B.
 | 
						|
 | 
						|
    Workspace, int JPVT[N], required if ITASK = 1.
 | 
						|
    Columns JPVT(1), ..., JPVT(KR) of the original matrix are linearly
 | 
						|
    independent to within the tolerance TOL and the remaining columns
 | 
						|
    are linearly dependent.  ABS ( A(1,1) ) / ABS ( A(KR,KR) ) is an estimate
 | 
						|
    of the condition number of the matrix of independent columns,
 | 
						|
    and of R.  This estimate will be <= 1/TOL.
 | 
						|
 | 
						|
    Workspace, double QRAUX[N], required if ITASK = 1.
 | 
						|
 | 
						|
    Input, int ITASK.
 | 
						|
    1, DQRLS factors the matrix A and solves the least squares problem.
 | 
						|
    2, DQRLS assumes that the matrix A was factored with an earlier
 | 
						|
       call to DQRLS, and only solves the least squares problem.
 | 
						|
 | 
						|
    Output, int DQRLS, error code.
 | 
						|
    0:  no error
 | 
						|
    -1: LDA < M   (fatal error)
 | 
						|
    -2: N < 1     (fatal error)
 | 
						|
    -3: ITASK < 1 (fatal error)
 | 
						|
*/
 | 
						|
{
 | 
						|
  int ind;
 | 
						|
  if (lda < m) {
 | 
						|
    /*fprintf ( stderr, "\n" );
 | 
						|
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
						|
    fprintf ( stderr, "  LDA < M.\n" );*/
 | 
						|
    ind = -1;
 | 
						|
    return ind;
 | 
						|
  }
 | 
						|
 | 
						|
  if (n <= 0) {
 | 
						|
    /*fprintf ( stderr, "\n" );
 | 
						|
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
						|
    fprintf ( stderr, "  N <= 0.\n" );*/
 | 
						|
    ind = -2;
 | 
						|
    return ind;
 | 
						|
  }
 | 
						|
 | 
						|
  if (itask < 1) {
 | 
						|
    /*fprintf ( stderr, "\n" );
 | 
						|
    fprintf ( stderr, "DQRLS - Fatal error!\n" );
 | 
						|
    fprintf ( stderr, "  ITASK < 1.\n" );*/
 | 
						|
    ind = -3;
 | 
						|
    return ind;
 | 
						|
  }
 | 
						|
 | 
						|
  ind = 0;
 | 
						|
  /**
 | 
						|
    Factor the matrix.
 | 
						|
  */
 | 
						|
  if (itask == 1)
 | 
						|
    dqrank(a, lda, m, n, tol, kr, jpvt, qraux);
 | 
						|
  /**
 | 
						|
    Solve the least-squares problem.
 | 
						|
  */
 | 
						|
  dqrlss(a, lda, m, n, *kr, b, x, rsd, jpvt, qraux);
 | 
						|
  return ind;
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void dqrlss(double a[], int lda, int m, int n, int kr, double b[], double x[],
 | 
						|
            double rsd[], int jpvt[], double qraux[])
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DQRLSS solves a linear system in a least squares sense.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    DQRLSS must be preceded by a call to DQRANK.
 | 
						|
 | 
						|
    The system is to be solved is
 | 
						|
      A * X = B
 | 
						|
    where
 | 
						|
      A is an M by N matrix with rank KR, as determined by DQRANK,
 | 
						|
      B is a given M-vector,
 | 
						|
      X is the N-vector to be computed.
 | 
						|
 | 
						|
    A solution X, with at most KR nonzero components, is found which
 | 
						|
    minimizes the 2-norm of the residual (A*X-B).
 | 
						|
 | 
						|
    Once the matrix A has been formed, DQRANK should be
 | 
						|
    called once to decompose it.  Then, for each right hand
 | 
						|
    side B, DQRLSS should be called once to obtain the
 | 
						|
    solution and residual.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    10 September 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, double A[LDA*N], the QR factorization information
 | 
						|
    from DQRANK.  The triangular matrix R of the QR factorization is
 | 
						|
    contained in the upper triangle and information needed to recover
 | 
						|
    the orthogonal matrix Q is stored below the diagonal in A and in
 | 
						|
    the vector QRAUX.
 | 
						|
 | 
						|
    Input, int LDA, the leading dimension of A, which must
 | 
						|
    be at least M.
 | 
						|
 | 
						|
    Input, int M, the number of rows of A.
 | 
						|
 | 
						|
    Input, int N, the number of columns of A.
 | 
						|
 | 
						|
    Input, int KR, the rank of the matrix, as estimated by DQRANK.
 | 
						|
 | 
						|
    Input, double B[M], the right hand side of the linear system.
 | 
						|
 | 
						|
    Output, double X[N], a least squares solution to the
 | 
						|
    linear system.
 | 
						|
 | 
						|
    Output, double RSD[M], the residual, B - A*X.  RSD may
 | 
						|
    overwrite B.
 | 
						|
 | 
						|
    Input, int JPVT[N], the pivot information from DQRANK.
 | 
						|
    Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
 | 
						|
    independent to within the tolerance TOL and the remaining columns
 | 
						|
    are linearly dependent.
 | 
						|
 | 
						|
    Input, double QRAUX[N], auxiliary information from DQRANK
 | 
						|
    defining the QR factorization.
 | 
						|
*/
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  int info;
 | 
						|
  int j;
 | 
						|
  int job;
 | 
						|
  int k;
 | 
						|
  double t;
 | 
						|
 | 
						|
  if (kr != 0) {
 | 
						|
    job = 110;
 | 
						|
    info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job); UNUSED(info);
 | 
						|
  }
 | 
						|
 | 
						|
  for (i = 0; i < n; i++)
 | 
						|
    jpvt[i] = - jpvt[i];
 | 
						|
 | 
						|
  for (i = kr; i < n; i++)
 | 
						|
    x[i] = 0.0;
 | 
						|
 | 
						|
  for (j = 1; j <= n; j++) {
 | 
						|
    if (jpvt[j - 1] <= 0) {
 | 
						|
      k = - jpvt[j - 1];
 | 
						|
      jpvt[j - 1] = k;
 | 
						|
 | 
						|
      while (k != j) {
 | 
						|
        t = x[j - 1];
 | 
						|
        x[j - 1] = x[k - 1];
 | 
						|
        x[k - 1] = t;
 | 
						|
        jpvt[k - 1] = -jpvt[k - 1];
 | 
						|
        k = jpvt[k - 1];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
int dqrsl(double a[], int lda, int n, int k, double qraux[], double y[],
 | 
						|
          double qy[], double qty[], double b[], double rsd[], double ab[], int job)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DQRSL computes transformations, projections, and least squares solutions.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    DQRSL requires the output of DQRDC.
 | 
						|
 | 
						|
    For K <= min(N,P), let AK be the matrix
 | 
						|
 | 
						|
      AK = ( A(JPVT[0]), A(JPVT(2)), ..., A(JPVT(K)) )
 | 
						|
 | 
						|
    formed from columns JPVT[0], ..., JPVT(K) of the original
 | 
						|
    N by P matrix A that was input to DQRDC.  If no pivoting was
 | 
						|
    done, AK consists of the first K columns of A in their
 | 
						|
    original order.  DQRDC produces a factored orthogonal matrix Q
 | 
						|
    and an upper triangular matrix R such that
 | 
						|
 | 
						|
      AK = Q * (R)
 | 
						|
               (0)
 | 
						|
 | 
						|
    This information is contained in coded form in the arrays
 | 
						|
    A and QRAUX.
 | 
						|
 | 
						|
    The parameters QY, QTY, B, RSD, and AB are not referenced
 | 
						|
    if their computation is not requested and in this case
 | 
						|
    can be replaced by dummy variables in the calling program.
 | 
						|
    To save storage, the user may in some cases use the same
 | 
						|
    array for different parameters in the calling sequence.  A
 | 
						|
    frequently occurring example is when one wishes to compute
 | 
						|
    any of B, RSD, or AB and does not need Y or QTY.  In this
 | 
						|
    case one may identify Y, QTY, and one of B, RSD, or AB, while
 | 
						|
    providing separate arrays for anything else that is to be
 | 
						|
    computed.
 | 
						|
 | 
						|
    Thus the calling sequence
 | 
						|
 | 
						|
      dqrsl ( a, lda, n, k, qraux, y, dum, y, b, y, dum, 110, info )
 | 
						|
 | 
						|
    will result in the computation of B and RSD, with RSD
 | 
						|
    overwriting Y.  More generally, each item in the following
 | 
						|
    list contains groups of permissible identifications for
 | 
						|
    a single calling sequence.
 | 
						|
 | 
						|
      1. (Y,QTY,B) (RSD) (AB) (QY)
 | 
						|
 | 
						|
      2. (Y,QTY,RSD) (B) (AB) (QY)
 | 
						|
 | 
						|
      3. (Y,QTY,AB) (B) (RSD) (QY)
 | 
						|
 | 
						|
      4. (Y,QY) (QTY,B) (RSD) (AB)
 | 
						|
 | 
						|
      5. (Y,QY) (QTY,RSD) (B) (AB)
 | 
						|
 | 
						|
      6. (Y,QY) (QTY,AB) (B) (RSD)
 | 
						|
 | 
						|
    In any group the value returned in the array allocated to
 | 
						|
    the group corresponds to the last member of the group.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    07 June 2005
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt.
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, (Society for Industrial and Applied Mathematics),
 | 
						|
    3600 University City Science Center,
 | 
						|
    Philadelphia, PA, 19104-2688.
 | 
						|
    ISBN 0-89871-172-X
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, double A[LDA*P], contains the output of DQRDC.
 | 
						|
 | 
						|
    Input, int LDA, the leading dimension of the array A.
 | 
						|
 | 
						|
    Input, int N, the number of rows of the matrix AK.  It must
 | 
						|
    have the same value as N in DQRDC.
 | 
						|
 | 
						|
    Input, int K, the number of columns of the matrix AK.  K
 | 
						|
    must not be greater than min(N,P), where P is the same as in the
 | 
						|
    calling sequence to DQRDC.
 | 
						|
 | 
						|
    Input, double QRAUX[P], the auxiliary output from DQRDC.
 | 
						|
 | 
						|
    Input, double Y[N], a vector to be manipulated by DQRSL.
 | 
						|
 | 
						|
    Output, double QY[N], contains Q * Y, if requested.
 | 
						|
 | 
						|
    Output, double QTY[N], contains Q' * Y, if requested.
 | 
						|
 | 
						|
    Output, double B[K], the solution of the least squares problem
 | 
						|
      minimize norm2 ( Y - AK * B),
 | 
						|
    if its computation has been requested.  Note that if pivoting was
 | 
						|
    requested in DQRDC, the J-th component of B will be associated with
 | 
						|
    column JPVT(J) of the original matrix A that was input into DQRDC.
 | 
						|
 | 
						|
    Output, double RSD[N], the least squares residual Y - AK * B,
 | 
						|
    if its computation has been requested.  RSD is also the orthogonal
 | 
						|
    projection of Y onto the orthogonal complement of the column space
 | 
						|
    of AK.
 | 
						|
 | 
						|
    Output, double AB[N], the least squares approximation Ak * B,
 | 
						|
    if its computation has been requested.  AB is also the orthogonal
 | 
						|
    projection of Y onto the column space of A.
 | 
						|
 | 
						|
    Input, integer JOB, specifies what is to be computed.  JOB has
 | 
						|
    the decimal expansion ABCDE, with the following meaning:
 | 
						|
 | 
						|
      if A != 0, compute QY.
 | 
						|
      if B != 0, compute QTY.
 | 
						|
      if C != 0, compute QTY and B.
 | 
						|
      if D != 0, compute QTY and RSD.
 | 
						|
      if E != 0, compute QTY and AB.
 | 
						|
 | 
						|
    Note that a request to compute B, RSD, or AB automatically triggers
 | 
						|
    the computation of QTY, for which an array must be provided in the
 | 
						|
    calling sequence.
 | 
						|
 | 
						|
    Output, int DQRSL, is zero unless the computation of B has
 | 
						|
    been requested and R is exactly singular.  In this case, INFO is the
 | 
						|
    index of the first zero diagonal element of R, and B is left unaltered.
 | 
						|
*/
 | 
						|
{
 | 
						|
  int cab;
 | 
						|
  int cb;
 | 
						|
  int cqty;
 | 
						|
  int cqy;
 | 
						|
  int cr;
 | 
						|
  int i;
 | 
						|
  int info;
 | 
						|
  int j;
 | 
						|
  int jj;
 | 
						|
  int ju;
 | 
						|
  double t;
 | 
						|
  double temp;
 | 
						|
  /**
 | 
						|
    Set INFO flag.
 | 
						|
  */
 | 
						|
  info = 0;
 | 
						|
 | 
						|
  /**
 | 
						|
    Determine what is to be computed.
 | 
						|
  */
 | 
						|
  cqy  = ( job / 10000        != 0);
 | 
						|
  cqty = ((job % 10000)       != 0);
 | 
						|
  cb   = ((job %  1000) / 100 != 0);
 | 
						|
  cr   = ((job %   100) /  10 != 0);
 | 
						|
  cab  = ((job %    10)       != 0);
 | 
						|
  ju = i4_min(k, n - 1);
 | 
						|
 | 
						|
  /**
 | 
						|
    Special action when N = 1.
 | 
						|
  */
 | 
						|
  if (ju == 0) {
 | 
						|
    if (cqy)
 | 
						|
      qy[0] = y[0];
 | 
						|
    if (cqty)
 | 
						|
      qty[0] = y[0];
 | 
						|
    if (cab)
 | 
						|
      ab[0] = y[0];
 | 
						|
    if (cb) {
 | 
						|
      if (a[0 + 0 * lda] == 0.0)
 | 
						|
        info = 1;
 | 
						|
      else
 | 
						|
        b[0] = y[0] / a[0 + 0 * lda];
 | 
						|
    }
 | 
						|
    if (cr)
 | 
						|
      rsd[0] = 0.0;
 | 
						|
    return info;
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Set up to compute QY or QTY.
 | 
						|
  */
 | 
						|
  if (cqy) {
 | 
						|
    for (i = 1; i <= n; i++)
 | 
						|
      qy[i - 1] = y[i - 1];
 | 
						|
  }
 | 
						|
  if (cqty) {
 | 
						|
    for (i = 1; i <= n; i++)
 | 
						|
      qty[i - 1] = y[i - 1];
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Compute QY.
 | 
						|
  */
 | 
						|
  if (cqy) {
 | 
						|
    for (jj = 1; jj <= ju; jj++) {
 | 
						|
      j = ju - jj + 1;
 | 
						|
      if (qraux[j - 1] != 0.0) {
 | 
						|
        temp = a[j - 1 + (j - 1) * lda];
 | 
						|
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | 
						|
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qy + j - 1, 1) / a[j - 1 + (j - 1) * lda];
 | 
						|
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qy + j - 1, 1);
 | 
						|
        a[j - 1 + (j - 1)*lda] = temp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Compute Q'*Y.
 | 
						|
  */
 | 
						|
  if (cqty) {
 | 
						|
    for (j = 1; j <= ju; j++) {
 | 
						|
      if (qraux[j - 1] != 0.0) {
 | 
						|
        temp = a[j - 1 + (j - 1) * lda];
 | 
						|
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | 
						|
        t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, qty + j - 1, 1) / a[j - 1 + (j - 1) * lda];
 | 
						|
        daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, qty + j - 1, 1);
 | 
						|
        a[j - 1 + (j - 1)*lda] = temp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Set up to compute B, RSD, or AB.
 | 
						|
  */
 | 
						|
  if (cb) {
 | 
						|
    for (i = 1; i <= k; i++)
 | 
						|
      b[i - 1] = qty[i - 1];
 | 
						|
  }
 | 
						|
  if (cab) {
 | 
						|
    for (i = 1; i <= k; i++)
 | 
						|
      ab[i - 1] = qty[i - 1];
 | 
						|
  }
 | 
						|
  if (cr && k < n) {
 | 
						|
    for (i = k + 1; i <= n; i++)
 | 
						|
      rsd[i - 1] = qty[i - 1];
 | 
						|
  }
 | 
						|
  if (cab && k + 1 <= n) {
 | 
						|
    for (i = k + 1; i <= n; i++)
 | 
						|
      ab[i - 1] = 0.0;
 | 
						|
  }
 | 
						|
  if (cr) {
 | 
						|
    for (i = 1; i <= k; i++)
 | 
						|
      rsd[i - 1] = 0.0;
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Compute B.
 | 
						|
  */
 | 
						|
  if (cb) {
 | 
						|
    for (jj = 1; jj <= k; jj++) {
 | 
						|
      j = k - jj + 1;
 | 
						|
      if (a[j - 1 + (j - 1)*lda] == 0.0) {
 | 
						|
        info = j;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      b[j - 1] = b[j - 1] / a[j - 1 + (j - 1) * lda];
 | 
						|
      if (j != 1) {
 | 
						|
        t = -b[j - 1];
 | 
						|
        daxpy(j - 1, t, a + 0 + (j - 1)*lda, 1, b, 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /**
 | 
						|
    Compute RSD or AB as required.
 | 
						|
  */
 | 
						|
  if (cr || cab) {
 | 
						|
    for (jj = 1; jj <= ju; jj++) {
 | 
						|
      j = ju - jj + 1;
 | 
						|
      if (qraux[j - 1] != 0.0) {
 | 
						|
        temp = a[j - 1 + (j - 1) * lda];
 | 
						|
        a[j - 1 + (j - 1)*lda] = qraux[j - 1];
 | 
						|
        if (cr) {
 | 
						|
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, rsd + j - 1, 1)
 | 
						|
              / a[j - 1 + (j - 1) * lda];
 | 
						|
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, rsd + j - 1, 1);
 | 
						|
        }
 | 
						|
        if (cab) {
 | 
						|
          t = -ddot(n - j + 1, a + j - 1 + (j - 1) * lda, 1, ab + j - 1, 1)
 | 
						|
              / a[j - 1 + (j - 1) * lda];
 | 
						|
          daxpy(n - j + 1, t, a + j - 1 + (j - 1)*lda, 1, ab + j - 1, 1);
 | 
						|
        }
 | 
						|
        a[j - 1 + (j - 1)*lda] = temp;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return info;
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void dscal(int n, double sa, double x[], int incx)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DSCAL scales a vector by a constant.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    30 March 2007
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979.
 | 
						|
 | 
						|
    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
						|
    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
						|
    Algorithm 539,
 | 
						|
    ACM Transactions on Mathematical Software,
 | 
						|
    Volume 5, Number 3, September 1979, pages 308-323.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int N, the number of entries in the vector.
 | 
						|
 | 
						|
    Input, double SA, the multiplier.
 | 
						|
 | 
						|
    Input/output, double X[*], the vector to be scaled.
 | 
						|
 | 
						|
    Input, int INCX, the increment between successive entries of X.
 | 
						|
*/
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  int ix;
 | 
						|
  int m;
 | 
						|
 | 
						|
  if (n <= 0) return;
 | 
						|
 | 
						|
  if (incx == 1) {
 | 
						|
    m = n % 5;
 | 
						|
    for (i = 0; i < m; i++)
 | 
						|
      x[i] = sa * x[i];
 | 
						|
    for (i = m; i < n; i = i + 5) {
 | 
						|
      x[i]   = sa * x[i];
 | 
						|
      x[i + 1] = sa * x[i + 1];
 | 
						|
      x[i + 2] = sa * x[i + 2];
 | 
						|
      x[i + 3] = sa * x[i + 3];
 | 
						|
      x[i + 4] = sa * x[i + 4];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (0 <= incx)
 | 
						|
      ix = 0;
 | 
						|
    else
 | 
						|
      ix = (- n + 1) * incx;
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
      x[ix] = sa * x[ix];
 | 
						|
      ix = ix + incx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
 | 
						|
void dswap(int n, double x[], int incx, double y[], int incy)
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    DSWAP interchanges two vectors.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    30 March 2007
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    C version by John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
 | 
						|
    LINPACK User's Guide,
 | 
						|
    SIAM, 1979.
 | 
						|
 | 
						|
    Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
 | 
						|
    Basic Linear Algebra Subprograms for Fortran Usage,
 | 
						|
    Algorithm 539,
 | 
						|
    ACM Transactions on Mathematical Software,
 | 
						|
    Volume 5, Number 3, September 1979, pages 308-323.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int N, the number of entries in the vectors.
 | 
						|
 | 
						|
    Input/output, double X[*], one of the vectors to swap.
 | 
						|
 | 
						|
    Input, int INCX, the increment between successive entries of X.
 | 
						|
 | 
						|
    Input/output, double Y[*], one of the vectors to swap.
 | 
						|
 | 
						|
    Input, int INCY, the increment between successive elements of Y.
 | 
						|
*/
 | 
						|
{
 | 
						|
  if (n <= 0) return;
 | 
						|
 | 
						|
  int i, ix, iy, m;
 | 
						|
  double temp;
 | 
						|
 | 
						|
  if (incx == 1 && incy == 1) {
 | 
						|
    m = n % 3;
 | 
						|
    for (i = 0; i < m; i++) {
 | 
						|
      temp = x[i];
 | 
						|
      x[i] = y[i];
 | 
						|
      y[i] = temp;
 | 
						|
    }
 | 
						|
    for (i = m; i < n; i = i + 3) {
 | 
						|
      temp = x[i];
 | 
						|
      x[i] = y[i];
 | 
						|
      y[i] = temp;
 | 
						|
      temp = x[i + 1];
 | 
						|
      x[i + 1] = y[i + 1];
 | 
						|
      y[i + 1] = temp;
 | 
						|
      temp = x[i + 2];
 | 
						|
      x[i + 2] = y[i + 2];
 | 
						|
      y[i + 2] = temp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    ix = (incx >= 0) ? 0 : (-n + 1) * incx;
 | 
						|
    iy = (incy >= 0) ? 0 : (-n + 1) * incy;
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
      temp = x[ix];
 | 
						|
      x[ix] = y[iy];
 | 
						|
      y[iy] = temp;
 | 
						|
      ix = ix + incx;
 | 
						|
      iy = iy + incy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
void qr_solve(double x[], int m, int n, double a[], double b[])
 | 
						|
 | 
						|
/******************************************************************************/
 | 
						|
/**
 | 
						|
  Purpose:
 | 
						|
 | 
						|
    QR_SOLVE solves a linear system in the least squares sense.
 | 
						|
 | 
						|
  Discussion:
 | 
						|
 | 
						|
    If the matrix A has full column rank, then the solution X should be the
 | 
						|
    unique vector that minimizes the Euclidean norm of the residual.
 | 
						|
 | 
						|
    If the matrix A does not have full column rank, then the solution is
 | 
						|
    not unique; the vector X will minimize the residual norm, but so will
 | 
						|
    various other vectors.
 | 
						|
 | 
						|
  Licensing:
 | 
						|
 | 
						|
    This code is distributed under the GNU LGPL license.
 | 
						|
 | 
						|
  Modified:
 | 
						|
 | 
						|
    11 September 2012
 | 
						|
 | 
						|
  Author:
 | 
						|
 | 
						|
    John Burkardt
 | 
						|
 | 
						|
  Reference:
 | 
						|
 | 
						|
    David Kahaner, Cleve Moler, Steven Nash,
 | 
						|
    Numerical Methods and Software,
 | 
						|
    Prentice Hall, 1989,
 | 
						|
    ISBN: 0-13-627258-4,
 | 
						|
    LC: TA345.K34.
 | 
						|
 | 
						|
  Parameters:
 | 
						|
 | 
						|
    Input, int M, the number of rows of A.
 | 
						|
 | 
						|
    Input, int N, the number of columns of A.
 | 
						|
 | 
						|
    Input, double A[M*N], the matrix.
 | 
						|
 | 
						|
    Input, double B[M], the right hand side.
 | 
						|
 | 
						|
    Output, double QR_SOLVE[N], the least squares solution.
 | 
						|
*/
 | 
						|
{
 | 
						|
  double a_qr[n * m], qraux[n], r[m], tol;
 | 
						|
  int ind, itask, jpvt[n], kr, lda;
 | 
						|
 | 
						|
  r8mat_copy(a_qr, m, n, a);
 | 
						|
  lda = m;
 | 
						|
  tol = r8_epsilon() / r8mat_amax(m, n, a_qr);
 | 
						|
  itask = 1;
 | 
						|
 | 
						|
  ind = dqrls(a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask); UNUSED(ind);
 | 
						|
}
 | 
						|
/******************************************************************************/
 | 
						|
 | 
						|
#endif
 |