You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qmk_firmware/keyboards/clueboard/2x1800/2019/2019.c

128 lines
3.6 KiB

/* Copyright 2017 Zach White <skullydazed@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "2019.h"
#include "encoder.h"
void matrix_init_kb(void) {
// Set our LED pins as output
setPinOutput(B4);
setPinOutput(B5);
setPinOutput(B6);
// Set our Tilt Sensor pins as input
setPinInputHigh(SHAKE_PIN_A);
setPinInputHigh(SHAKE_PIN_B);
// Run the keymap level init
matrix_init_user();
}
#ifdef SHAKE_ENABLE
uint8_t tilt_state[2] = {1,1};
uint8_t detected_shakes = 0;
static uint16_t shake_timer;
#endif
void matrix_scan_kb(void) {
#ifdef SHAKE_ENABLE
// Read the current state of the tilt sensor. It is physically
// impossible for both pins to register a low state at the same time.
uint8_t tilt_read[2] = {readPin(SHAKE_PIN_A), readPin(SHAKE_PIN_B)};
// Check to see if the tilt sensor has changed state since our last read
for (uint8_t i = 0; i < 2; i++) {
if (tilt_state[i] != tilt_read[i]) {
shake_timer = timer_read();
detected_shakes++;
tilt_state[i] = tilt_read[i];
}
}
if ((detected_shakes > 0) && (timer_elapsed(shake_timer) > SHAKE_TIMEOUT)) {
if (detected_shakes > SHAKE_COUNT) {
dprintf("Shake detected! We had %d shakes detected.\n", detected_shakes);
tap_code16(SHAKE_KEY);
}
detected_shakes = 0;
}
#endif
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
return process_record_user(keycode, record);
}
void led_set_kb(uint8_t usb_led) {
// Toggle numlock as needed
if (usb_led & (1<<USB_LED_NUM_LOCK)) {
writePinHigh(B4);
} else {
writePinLow(B4);
}
// Toggle capslock as needed
if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
writePinHigh(B5);
} else {
writePinLow(B5);
}
// Toggle scrolllock as needed
if (usb_led & (1<<USB_LED_SCROLL_LOCK)) {
writePinHigh(B6);
} else {
writePinLow(B6);
}
}
bool encoder_update_keymap(int8_t index, bool clockwise) {
return false;
}
void encoder_update_kb(int8_t index, bool clockwise) {
if (!encoder_update_keymap(index, clockwise)) {
// Encoder 1, outside left
if (index == 0 && clockwise) {
tap_code(KC_MS_U); // turned right
} else if (index == 0) {
tap_code(KC_MS_D); // turned left
}
// Encoder 2, inside left
else if (index == 1 && clockwise) {
tap_code(KC_WH_D); // turned right
} else if (index == 1) {
tap_code(KC_WH_U); // turned left
}
// Encoder 3, inside right
else if (index == 2 && clockwise) {
tap_code(KC_VOLU); // turned right
} else if (index == 2) {
tap_code(KC_VOLD); // turned left
}
// Encoder 4, outside right
else if (index == 3 && clockwise) {
tap_code(KC_MS_R); // turned right
} else if (index == 3) {
tap_code(KC_MS_L); // turned left
}
}
}