Move out RFCOMM channel structure init code to a seperate routine, to save on compiled code space and to prevent copy-paste errors.

pull/1469/head
Dean Camera 14 years ago
parent fbabecee66
commit 31a34154db

@ -58,12 +58,15 @@ int main(void)
for (;;)
{
Bluetooth_Channel_t* RFCOMMChannel = Bluetooth_GetChannelData(CHANNEL_PSM_RFCOMM, CHANNEL_SEARCH_PSM);
/* If an RFCOMM channel is open, service the RFCOMM logical channels */
if (RFCOMMChannel)
RFCOMM_ServiceChannels(RFCOMMChannel);
if (Bluetooth_Connection.IsConnected)
{
Bluetooth_Channel_t* RFCOMMChannel = Bluetooth_GetChannelData(CHANNEL_PSM_RFCOMM, CHANNEL_SEARCH_PSM);
/* If an RFCOMM channel is open, service the RFCOMM logical channels */
if (RFCOMMChannel)
RFCOMM_ServiceChannels(RFCOMMChannel);
}
Bluetooth_Stack_USBTask();
Bluetooth_Host_Task();
USB_USBTask();

@ -129,6 +129,11 @@ void RFCOMM_ProcessPacket(void* Data, Bluetooth_Channel_t* const Channel)
}
}
RFCOMM_Channel_t* RFCOMM_OpenChannel(Bluetooth_Channel_t* const BluetoothChannel)
{
return NULL;
}
void RFCOMM_SendChannelSignals(const RFCOMM_Channel_t* const RFCOMMChannel, Bluetooth_Channel_t* const BluetoothChannel)
{
BT_RFCOMM_DEBUG(1, ">> MSC Command");
@ -151,6 +156,33 @@ void RFCOMM_SendChannelSignals(const RFCOMM_Channel_t* const RFCOMMChannel, Blue
RFCOMM_SendFrame(RFCOMM_CONTROL_DLCI, true, RFCOMM_Frame_UIH, sizeof(MSCommand), &MSCommand, BluetoothChannel);
}
RFCOMM_Channel_t* RFCOMM_GetFreeChannelEntry(const uint8_t DLCI)
{
/* Find a free entry in the RFCOMM channel multiplexer state array */
for (uint8_t i = 0; i < RFCOMM_MAX_OPEN_CHANNELS; i++)
{
RFCOMM_Channel_t* RFCOMMChannel = &RFCOMM_Channels[i];
/* If the channel's state is closed, the channel state entry is free */
if (RFCOMMChannel->State == RFCOMM_Channel_Closed)
{
RFCOMMChannel->DLCI = DLCI;
RFCOMMChannel->State = RFCOMM_Channel_Configure;
RFCOMMChannel->Priority = 7 + (RFCOMMChannel->DLCI & 0xF8);
RFCOMMChannel->MTU = 0xFFFF;
RFCOMMChannel->Remote.Signals = 0 | (1 << 0);
RFCOMMChannel->Remote.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->Local.Signals = RFCOMM_SIGNAL_RTC | RFCOMM_SIGNAL_RTR | RFCOMM_SIGNAL_DV | (1 << 0);
RFCOMMChannel->Local.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->ConfigFlags = 0;
return RFCOMMChannel;
}
}
return NULL;
}
RFCOMM_Channel_t* RFCOMM_GetChannelData(const uint8_t DLCI)
{
/* Search through the RFCOMM channel list, looking for the specified channel */
@ -268,32 +300,25 @@ static void RFCOMM_ProcessSABM(const RFCOMM_Address_t* const FrameAddress, Bluet
BT_RFCOMM_DEBUG(1, "<< SABM Received");
BT_RFCOMM_DEBUG(2, "-- DLCI 0x%02X", FrameAddress->DLCI);
RFCOMM_Channel_t* RFCOMMChannel;
if (FrameAddress->DLCI != RFCOMM_CONTROL_DLCI)
if (FrameAddress->DLCI == RFCOMM_CONTROL_DLCI)
{
/* Find a free entry in the RFCOMM channel multiplexer state array */
for (uint8_t i = 0; i < RFCOMM_MAX_OPEN_CHANNELS; i++)
{
/* If the channel's state is closed, the channel state entry is free */
if (RFCOMM_Channels[i].State == RFCOMM_Channel_Closed)
{
RFCOMMChannel = &RFCOMM_Channels[i];
RFCOMMChannel->DLCI = FrameAddress->DLCI;
RFCOMMChannel->State = RFCOMM_Channel_Configure;
RFCOMMChannel->Priority = 7 + (RFCOMMChannel->DLCI & 0xF8);
RFCOMMChannel->MTU = 0xFFFF;
RFCOMMChannel->Remote.Signals = 0 | (1 << 0);
RFCOMMChannel->Remote.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->Local.Signals = RFCOMM_SIGNAL_RTC | RFCOMM_SIGNAL_RTR | RFCOMM_SIGNAL_DV | (1 << 0);
RFCOMMChannel->Local.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->ConfigFlags = 0;
break;
}
}
BT_RFCOMM_DEBUG(1, ">> UA Sent");
/* Free channel found, or request was to the control channel - accept SABM by sending a UA frame */
RFCOMM_SendFrame(FrameAddress->DLCI, true, (RFCOMM_Frame_UA | FRAME_POLL_FINAL), 0, NULL, Channel);
return;
}
/* Find the existing channel's entry in the channel table */
RFCOMM_Channel_t* RFCOMMChannel = RFCOMM_GetChannelData(FrameAddress->DLCI);
if (RFCOMMChannel || (FrameAddress->DLCI == RFCOMM_CONTROL_DLCI))
/* Existing entry not found, create a new entry for the channel */
if (RFCOMMChannel == NULL)
RFCOMMChannel = RFCOMM_GetFreeChannelEntry(FrameAddress->DLCI);
/* If space was found in the channel table for the new channel, ACK the request */
if (RFCOMMChannel != NULL)
{
BT_RFCOMM_DEBUG(1, ">> UA Sent");

@ -106,8 +106,9 @@
void RFCOMM_SendChannelSignals(const RFCOMM_Channel_t* const RFCOMMChannel,
Bluetooth_Channel_t* const BluetoothChannel);
RFCOMM_Channel_t* RFCOMM_GetChannelData(const uint8_t DLCI);
RFCOMM_Channel_t* RFCOMM_GetFreeChannelEntry(const uint8_t DLCI);
RFCOMM_Channel_t* RFCOMM_GetChannelData(const uint8_t DLCI);
uint16_t RFCOMM_GetVariableFieldValue(const uint8_t** BufferPos);
void RFCOMM_SendFrame(const uint8_t DLCI, const bool CommandResponse, const uint8_t Control,
const uint16_t DataLen, const void* Data, Bluetooth_Channel_t* const Channel);

@ -195,23 +195,8 @@ static void RFCOMM_ProcessDPNCommand(const RFCOMM_Command_t* const CommandHeader
/* Check if the channel has no corresponding entry - remote did not open it first */
if (RFCOMMChannel == NULL)
{
/* Find a free entry in the RFCOMM channel multiplexer state array */
for (uint8_t i = 0; i < RFCOMM_MAX_OPEN_CHANNELS; i++)
{
/* If the channel's state is closed, the channel state entry is free */
if (RFCOMM_Channels[i].State == RFCOMM_Channel_Closed)
{
RFCOMMChannel = &RFCOMM_Channels[i];
RFCOMMChannel->DLCI = Params->DLCI;
RFCOMMChannel->MTU = 0xFFFF;
RFCOMMChannel->Remote.Signals = 0 | (1 << 0);
RFCOMMChannel->Remote.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->Local.Signals = RFCOMM_SIGNAL_RTC | RFCOMM_SIGNAL_RTR | RFCOMM_SIGNAL_DV | (1 << 0);
RFCOMMChannel->Local.BreakSignal = 0 | (1 << 0);
RFCOMMChannel->ConfigFlags = 0;
break;
}
}
/* Create a new entry in the channel table for the new channel */
RFCOMMChannel = RFCOMM_GetFreeChannelEntry(Params->DLCI);
/* No free entry was found, discard the request */
if (RFCOMMChannel == NULL)

@ -59,6 +59,7 @@
#define RFCOMM_CONFIG_REMOTESIGNALS (1 << 0)
#define RFCOMM_CONFIG_LOCALSIGNALS (1 << 1)
#define RFCOMM_CONFIG_LOCALSIGNALSSENT (1 << 2)
#define RFCOMM_CONFIG_ABMMODESET (1 << 3)
/* Enums: */
enum RFCOMM_Control_Commands_t

Loading…
Cancel
Save