start documentation

fywut
Jack Humbert 6 years ago
parent 1d44465dbd
commit 6a46da81cd

@ -0,0 +1,90 @@
# RGB Matrix Lighting
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your `rules.mk`:
RGB_MATRIX_ENABLE = yes
Configure the hardware via your `config.h`:
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.
Define these arrays:
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
....
}
Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet](http://www.issi.com/WW/pdf/31FL3731.pdf). The `driver` is the index of the driver you defined in your `config.h`.
const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
/* {row | col << 4}
* | {x=0..224, y=0..64}
* | | modifier
* | | | */
{{0|(0<<4)}, {20.36*0, 21.33*0}, 1},
{{0|(1<<4)}, {20.36*1, 21.33*0}, 1},
....
}
The format for the matrix position used in this array is `{row | (col << 4)}`. The `x` is between (inclusive) 0-224, and `y` is between (inclusive) 0-64. The easiest way to calculate these positions is:
x = 224 / ( NUMBER_OF_ROWS - 1 ) * ROW_POSITION
y = 64 / (NUMBER_OF_COLS - 1 ) * COL_POSITION
Where all variables are decimels/floats.
## Keycodes
Many RGB keycodes are currently shared with the RGBLIGHT system:
* `RGB_TOG` - toggle
* `RGB_MOD` - cycle through modes
* `RGB_HUI` - increase hue
* `RGB_HUD` - decrease hue
* `RGB_SAI` - increase saturation
* `RGB_SAD` - decrease saturation
* `RGB_VAI` - increase value
* `RGB_VAD` - decrease value
* `RGB_MODE_*` keycodes will generally work, but are not currently mapped to the correct effects for the RGB Matrix system
## Custom layer effects
Customised effects can be defined with
## Additional `config.h` Options
#define RGB_MATRIX_KEYPRESSES // reacts to keypresses (will slow down matrix scan by a lot)
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
## EEPROM storage
The EEPROM for it is currently shared with the RGBLIGHT system (it's generally assumed only one RGB would be used at a time), but could be configured to use its own 32bit address with:
#define EECONFIG_RGB_MATRIX (uint32_t *)16

@ -37,8 +37,11 @@ rgb_config_t rgb_matrix_config;
#define RGB_DISABLE_WHEN_USB_SUSPENDED false
#endif
#ifndef EECONFIG_RGB_MATRIX
#define EECONFIG_RGB_MATRIX EECONFIG_RGBLIGHT
#endif
bool g_suspend_state = false;
uint8_t g_indicator_state = 0;
// Global tick at 20 Hz
uint32_t g_tick = 0;
@ -54,10 +57,10 @@ uint32_t g_any_key_hit = 0;
#endif
uint32_t eeconfig_read_rgb_matrix(void) {
return eeprom_read_dword(EECONFIG_RGBLIGHT);
return eeprom_read_dword(EECONFIG_RGB_MATRIX);
}
void eeconfig_update_rgb_matrix(uint32_t val) {
eeprom_update_dword(EECONFIG_RGBLIGHT, val);
eeprom_update_dword(EECONFIG_RGB_MATRIX, val);
}
void eeconfig_update_rgb_matrix_default(void) {
dprintf("eeconfig_update_rgb_matrix_default\n");
@ -142,10 +145,6 @@ void rgb_matrix_set_suspend_state(bool state) {
g_suspend_state = state;
}
void rgb_matrix_set_indicator_state(uint8_t state) {
g_indicator_state = state;
}
void rgb_matrix_test(void) {
// Mask out bits 4 and 5
// This 2-bit value will stay the same for 16 ticks.
@ -688,7 +687,19 @@ void rgb_matrix_task(void) {
}
// void backlight_set_indicator_index( uint8_t *index, uint8_t row, uint8_t column )
void rgb_matrix_indicators(void) {
rgb_matrix_indicators_kb();
rgb_matrix_indicators_user();
}
__attribute__((weak))
void rgb_matrix_indicators_kb(void) {}
__attribute__((weak))
void rgb_matrix_indicators_user(void) {}
// void rgb_matrix_set_indicator_index( uint8_t *index, uint8_t row, uint8_t column )
// {
// if ( row >= MATRIX_ROWS )
// {
@ -759,7 +770,7 @@ uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
// void *backlight_get_custom_key_color_eeprom_address( uint8_t led )
// {
// // 3 bytes per color
// return EECONFIG_RGBLIGHT + ( led * 3 );
// return EECONFIG_RGB_MATRIX + ( led * 3 );
// }
// void backlight_get_key_color( uint8_t led, HSV *hsv )

@ -86,8 +86,9 @@ enum rgb_matrix_effects {
// This runs after another backlight effect and replaces
// colors already set
__attribute__((weak))
void rgb_matrix_indicators(void) {};
void rgb_matrix_indicators(void);
void rgb_matrix_indicators_kb(void);
void rgb_matrix_indicators_user(void);
void rgb_matrix_single_LED_test(void);

Loading…
Cancel
Save