Move out Bluetooth stack callback functions to a seperate BluetoothEvents.c/.h set of files for clarity in the Incomplete BluetoothHost demo. Add a new stack callback for opened ACL channels, make the demo save the RFCOMM channel when opened so that it does not have to search for it on each iteration of the main program loop.

pull/1469/head
Dean Camera 14 years ago
parent dea897ef57
commit 70983caea5

@ -0,0 +1,156 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Bluetooth stack event callback handlers. This module handles the callback events that are
* thrown from the Bluetooth stack in response to changes in the connection and channel
* states.
*/
#include "BluetoothEvents.h"
/** Bluetooth RFCOMM channel structure - used to send and receive RFCOMM data between the local and remote
* device once a RFCOMM channel has been opened.
*/
Bluetooth_Channel_t* RFCOMMChannel = NULL;
/** Bluetooth stack callback event for when the Bluetooth stack has fully initialized using the attached
* Bluetooth dongle.
*/
void Bluetooth_StackInitialized(void)
{
printf_P(PSTR("Stack initialized with local address %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_State.LocalBDADDR[5], Bluetooth_State.LocalBDADDR[4], Bluetooth_State.LocalBDADDR[3],
Bluetooth_State.LocalBDADDR[2], Bluetooth_State.LocalBDADDR[1], Bluetooth_State.LocalBDADDR[0]);
/* Reinitialize the services placed on top of the Bluetooth stack ready for new connections */
RFCOMM_Initialize();
}
/** Bluetooth stack callback event for a Bluetooth connection request. When this callback fires, the
* user application must indicate if the connection is to be allowed or rejected.
*
* \param[in] RemoteAddress Bluetooth address of the remote device attempting the connection
*
* \return Boolean true to accept the connection, false to reject it
*/
bool Bluetooth_ConnectionRequest(const uint8_t* RemoteAddress)
{
printf_P(PSTR("Connection Request from Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
RemoteAddress[5], RemoteAddress[4], RemoteAddress[3], RemoteAddress[2],
RemoteAddress[1], RemoteAddress[0]);
/* Always accept connections from remote devices */
return true;
}
/** Bluetooth stack callback event for a completed Bluetooth connection. When this callback is made,
* the connection information can be accessed through the global \ref Bluetooth_Connection structure.
*/
void Bluetooth_ConnectionComplete(void)
{
printf_P(PSTR("Connection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
}
/** Bluetooth stack callback event for a completed Bluetooth disconnection. When this callback is made,
* the connection information in the global \ref Bluetooth_Connection structure is invalidated with the
* exception of the RemoteAddress element, which can be used to determine the address of the device that
* was disconnected.
*/
void Bluetooth_DisconnectionComplete(void)
{
printf_P(PSTR("Disconnection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_READY);
}
/** Bluetooth stack callback event for a Bluetooth ACL Channel connection request. When is callback fires,
* the user application must indicate if the channel connection should be rejected or not, based on the
* protocol (PSM) value of the requested channel.
*
* \param[in] PSM Protocol PSM value for the requested channel
*
* \return Boolean true to accept the channel connection request, false to reject it
*/
bool Bluetooth_ChannelConnectionRequest(const uint16_t PSM)
{
/* Always accept channel connection requests regardless of PSM */
return true;
}
/** Bluetooth stack callback event for when a Bluetooth ACL channel has been fully created and configured,
* either at the request of the local device, or the remote device.
*
* \param[in] Channel Bluetooth ACL data channel information structure for the channel that can now be used
*/
void Bluetooth_ChannelOpened(Bluetooth_Channel_t* const Channel)
{
/* Save the RFCOMM channel for later use when we want to send RFCOMM data */
if (Channel->PSM == CHANNEL_PSM_RFCOMM)
RFCOMMChannel = Channel;
}
/** Bluetooth stack callback event for a non-signal ACL packet reception. This callback fires once a connection
* to a remote Bluetooth device has been made, and the remote device has sent a non-signalling ACL packet.
*
* \param[in] Data Pointer to a buffer where the received data is stored
* \param[in] DataLen Length of the packet data, in bytes
* \param[in] Channel Bluetooth ACL data channel information structure for the packet's destination channel
*/
void Bluetooth_PacketReceived(void* Data, uint16_t DataLen, Bluetooth_Channel_t* const Channel)
{
/* Run the correct packet handler based on the received packet's PSM, which indicates the service being carried */
switch (Channel->PSM)
{
case CHANNEL_PSM_SDP:
/* Service Discovery Protocol packet */
SDP_ProcessPacket(Data, Channel);
break;
case CHANNEL_PSM_RFCOMM:
/* RFCOMM (Serial Port) Protocol packet */
RFCOMM_ProcessPacket(Data, Channel);
break;
default:
/* Unknown Protocol packet */
printf_P(PSTR("Unknown Packet Received (Channel 0x%04X, PSM: 0x%02X, Len: 0x%04X):\r\n"),
Channel->LocalNumber, Channel->PSM, DataLen);
break;
}
}

@ -0,0 +1,70 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2010.
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
*/
/*
Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for BluetoothEvents.c.
*/
#ifndef _BLUETOOTH_EVENTS_H_
#define _BLUETOOTH_EVENTS_H_
/* Includes: */
#include <avr/io.h>
#include <stdio.h>
#include "BluetoothHost.h"
#include "Lib/BluetoothStack.h"
#include "Lib/SDP.h"
#include "Lib/RFCOMM.h"
#include <LUFA/Drivers/Peripheral/SerialStream.h>
#include <LUFA/Drivers/Board/LEDs.h>
/* Macros: */
/** LED mask for the library LED driver, to indicate that the USB interface is not ready. */
#define LEDMASK_USB_NOTREADY LEDS_LED1
/** LED mask for the library LED driver, to indicate that the USB interface is enumerating. */
#define LEDMASK_USB_ENUMERATING (LEDS_LED2 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is ready. */
#define LEDMASK_USB_READY (LEDS_LED2 | LEDS_LED4)
/** LED mask for the library LED driver, to indicate that an error has occurred in the USB interface. */
#define LEDMASK_USB_ERROR (LEDS_LED1 | LEDS_LED3)
/** LED mask for the library LED driver, to indicate that the USB interface is busy. */
#define LEDMASK_USB_BUSY LEDS_LED2
/* External Variables: */
extern Bluetooth_Channel_t* RFCOMMChannel;
#endif

@ -58,17 +58,11 @@ int main(void)
for (;;)
{
if (Bluetooth_Connection.IsConnected)
{
Bluetooth_Channel_t* RFCOMMChannel = Bluetooth_GetChannelData(CHANNEL_PSM_RFCOMM, CHANNEL_SEARCH_PSM);
/* If an RFCOMM channel is open, service the RFCOMM logical channels */
if (RFCOMMChannel)
RFCOMM_ServiceChannels(RFCOMMChannel);
}
if ((RFCOMMChannel != NULL) && (RFCOMMChannel->State == BT_Channel_Open))
RFCOMM_ServiceChannels(RFCOMMChannel);
Bluetooth_Stack_USBTask();
Bluetooth_Host_Task();
Bluetooth_Stack_USBTask();
USB_USBTask();
}
}
@ -213,103 +207,3 @@ void Bluetooth_Host_Task(void)
break;
}
}
/** Bluetooth stack callback event for when the Bluetooth stack has fully initialized using the attached
* Bluetooth dongle.
*/
void Bluetooth_StackInitialized(void)
{
printf_P(PSTR("Stack initialized with local address %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_State.LocalBDADDR[5], Bluetooth_State.LocalBDADDR[4], Bluetooth_State.LocalBDADDR[3],
Bluetooth_State.LocalBDADDR[2], Bluetooth_State.LocalBDADDR[1], Bluetooth_State.LocalBDADDR[0]);
/* Reinitialize the services placed on top of the Bluetooth stack ready for new connections */
RFCOMM_Initialize();
}
/** Bluetooth stack callback event for a Bluetooth connection request. When this callback fires, the
* user application must indicate if the connection is to be allowed or rejected.
*
* \param[in] RemoteAddress Bluetooth address of the remote device attempting the connection
*
* \return Boolean true to accept the connection, false to reject it
*/
bool Bluetooth_ConnectionRequest(const uint8_t* RemoteAddress)
{
printf_P(PSTR("Connection Request from Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
RemoteAddress[5], RemoteAddress[4], RemoteAddress[3], RemoteAddress[2],
RemoteAddress[1], RemoteAddress[0]);
/* Always accept connections from remote devices */
return true;
}
/** Bluetooth stack callback event for a completed Bluetooth connection. When this callback is made,
* the connection information can be accessed through the global \ref Bluetooth_Connection structure.
*/
void Bluetooth_ConnectionComplete(void)
{
printf_P(PSTR("Connection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
}
/** Bluetooth stack callback event for a completed Bluetooth disconnection. When this callback is made,
* the connection information in the global \ref Bluetooth_Connection structure is invalidated with the
* exception of the RemoteAddress element, which can be used to determine the address of the device that
* was disconnected.
*/
void Bluetooth_DisconnectionComplete(void)
{
printf_P(PSTR("Disconnection Complete to Device %02X:%02X:%02X:%02X:%02X:%02X.\r\n"),
Bluetooth_Connection.RemoteAddress[5], Bluetooth_Connection.RemoteAddress[4],
Bluetooth_Connection.RemoteAddress[3], Bluetooth_Connection.RemoteAddress[2],
Bluetooth_Connection.RemoteAddress[1], Bluetooth_Connection.RemoteAddress[0]);
LEDs_SetAllLEDs(LEDMASK_USB_READY);
}
/** Bluetooth stack callback event for a Bluetooth ACL Channel connection request. When is callback fires,
* the user application must indicate if the channel connection should be rejected or not, based on the
* protocol (PSM) value of the requested channel.
*
* \param[in] PSM Protocol PSM value for the requested channel
*
* \return Boolean true to accept the channel connection request, false to reject it
*/
bool Bluetooth_ChannelConnectionRequest(const uint16_t PSM)
{
/* Always accept channel connection requests regardless of PSM */
return true;
}
/** Bluetooth stack callback event for a non-signal ACL packet reception. This callback fires once a connection
* to a remote Bluetooth device has been made, and the remote device has sent a non-signalling ACL packet.
*
* \param[in] Data Pointer to a buffer where the received data is stored
* \param[in] DataLen Length of the packet data, in bytes
* \param[in] Channel Bluetooth ACL data channel information structure for the packet's destination channel
*/
void Bluetooth_PacketReceived(void* Data, uint16_t DataLen, Bluetooth_Channel_t* const Channel)
{
/* Run the correct packet handler based on the received packet's PSM, which indicates the service being carried */
switch (Channel->PSM)
{
case CHANNEL_PSM_SDP:
/* Service Discovery Protocol packet */
SDP_ProcessPacket(Data, Channel);
break;
case CHANNEL_PSM_RFCOMM:
/* RFCOMM (Serial Port) Protocol packet */
RFCOMM_ProcessPacket(Data, Channel);
break;
default:
/* Unknown Protocol packet */
printf_P(PSTR("Unknown Packet Received (Channel 0x%04X, PSM: 0x%02X, Len: 0x%04X):\r\n"),
Channel->LocalNumber, Channel->PSM, DataLen);
break;
}
}

@ -44,12 +44,10 @@
#include <avr/interrupt.h>
#include <stdio.h>
#include "Lib/BluetoothStack.h"
#include "Lib/SDP.h"
#include "Lib/RFCOMM.h"
#include "BluetoothEvents.h"
#include "DeviceDescriptor.h"
#include "ConfigDescriptor.h"
#include "Lib/BluetoothStack.h"
#include <LUFA/Version.h>
#include <LUFA/Drivers/Misc/TerminalCodes.h>

@ -552,6 +552,7 @@ static inline void Bluetooth_Signal_ConfigurationReq(const BT_Signal_Header_t* c
break;
case BT_Channel_Config_WaitReq:
ChannelData->State = BT_Channel_Open;
Bluetooth_ChannelOpened(ChannelData);
break;
}
}
@ -594,6 +595,7 @@ static inline void Bluetooth_Signal_ConfigurationResp(const BT_Signal_Header_t*
break;
case BT_Channel_Config_WaitResp:
ChannelData->State = BT_Channel_Open;
Bluetooth_ChannelOpened(ChannelData);
break;
}
}

@ -156,6 +156,8 @@
void Bluetooth_DisconnectionComplete(void);
bool Bluetooth_ChannelConnectionRequest(const uint16_t PSM);
void Bluetooth_PacketReceived(void* Data, uint16_t DataLen, Bluetooth_Channel_t* const Channel);
void Bluetooth_ChannelOpened(Bluetooth_Channel_t* const Channel);
Bluetooth_Channel_t* Bluetooth_GetChannelData(const uint16_t SearchValue, const uint8_t SearchKey);
Bluetooth_Channel_t* Bluetooth_OpenChannel(const uint16_t PSM);
void Bluetooth_CloseChannel(Bluetooth_Channel_t* const Channel);

@ -130,6 +130,7 @@ LUFA_OPTS += -D USE_STATIC_OPTIONS="(USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
BluetoothEvents.c \
DeviceDescriptor.c \
ConfigDescriptor.c \
Lib/BluetoothStack.c \

File diff suppressed because one or more lines are too long

@ -126,10 +126,10 @@ LUFA_OPTS += -D USE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENAB
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
Descriptors.c \
Lib/V2Protocol.c \
Lib/V2ProtocolParams.c \
Lib/ISP/ISPProtocol.c \
Lib/ISP/ISPTarget.c \
Lib/V2Protocol.c \
Lib/V2ProtocolParams.c \
Lib/ISP/ISPProtocol.c \
Lib/ISP/ISPTarget.c \
Lib/XPROG/XPROGProtocol.c \
Lib/XPROG/XPROGTarget.c \
Lib/XPROG/XMEGANVM.c \

Loading…
Cancel
Save