Added HID class bootloader, compatible with a modified version of the command line Teensy loader from PJRC.com.

pull/1469/head
Dean Camera 14 years ago
parent 5430e1973c
commit cae0fa73d7

@ -127,6 +127,13 @@ void EVENT_USB_Device_ConfigurationChanged(void)
*/
void EVENT_USB_Device_ControlRequest(void)
{
/* Ignore any requests that aren't directed to the CDC interface */
if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
(REQTYPE_CLASS | REQREC_INTERFACE))
{
return;
}
/* Process CDC specific control requests */
switch (USB_ControlRequest.bRequest)
{

@ -0,0 +1,156 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the HID class bootloader. This file contains the complete bootloader logic.
*/
#include "BootloaderHID.h"
/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
* via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
* started via a forced watchdog reset.
*/
bool RunBootloader = true;
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until instructed to soft-exit.
*/
int main(void)
{
/* Setup hardware required for the bootloader */
SetupHardware();
/* Enable global interrupts so that the USB stack can function */
sei();
while (RunBootloader)
USB_USBTask();
/* Disconnect from the host - USB interface will be reset later along with the AVR */
USB_Detach();
/* Enable the watchdog and force a timeout to reset the AVR */
wdt_enable(WDTO_250MS);
for (;;);
}
/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Relocate the interrupt vector table to the bootloader section */
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
/* Initialize USB subsystem */
USB_Init();
}
/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
* to relay data to and from the attached USB host.
*/
void EVENT_USB_Device_ConfigurationChanged(void)
{
/* Setup HID Report Endpoint */
Endpoint_ConfigureEndpoint(HID_IN_EPNUM, EP_TYPE_INTERRUPT,
ENDPOINT_DIR_IN, HID_IN_EPSIZE,
ENDPOINT_BANK_SINGLE);
}
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
* the device from the USB host before passing along unhandled control requests to the library for processing
* internally.
*/
void EVENT_USB_Device_ControlRequest(void)
{
/* Ignore any requests that aren't directed to the HID interface */
if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
(REQTYPE_CLASS | REQREC_INTERFACE))
{
return;
}
/* Process HID specific control requests */
switch (USB_ControlRequest.bRequest)
{
case HID_REQ_SetReport:
Endpoint_ClearSETUP();
/* Wait until the command has been sent by the host */
while (!(Endpoint_IsOUTReceived()));
/* Read in the write destination address */
uint16_t PageAddress = Endpoint_Read_Word_LE();
/* Check if the command is a program page command, or a start application command */
if (PageAddress == COMMAND_STARTAPPLICATION)
{
RunBootloader = false;
}
else
{
/* Erase the given FLASH page, ready to be programmed */
boot_page_erase(PageAddress);
boot_spm_busy_wait();
/* Write each of the FLASH page's bytes in sequence */
for (uint16_t PageByte = 0; PageByte < SPM_PAGESIZE; PageByte += 2)
{
/* Check if endpoint is empty - if so clear it and wait until ready for next packet */
if (!(Endpoint_BytesInEndpoint()))
{
Endpoint_ClearOUT();
while (!(Endpoint_IsOUTReceived()));
}
/* Write the next data word to the FLASH page */
boot_page_fill(PageAddress + PageByte, Endpoint_Read_Word_LE());
}
/* Write the filled FLASH page to memory */
boot_page_write(PageAddress);
boot_spm_busy_wait();
/* Re-enable RWW section */
boot_rww_enable();
}
Endpoint_ClearOUT();
Endpoint_ClearStatusStage();
break;
}
}

@ -0,0 +1,61 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for TeensyHID.c.
*/
#ifndef _TEENSYHID_H_
#define _TEENSYHID_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/boot.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include "Descriptors.h"
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
/** Bootloader special address to start the user application */
#define COMMAND_STARTAPPLICATION 0xFFFF
/* Function Prototypes: */
void SetupHardware(void);
void EVENT_USB_Device_ConfigurationChanged(void);
void EVENT_USB_Device_UnhandledControlRequest(void);
#endif

@ -0,0 +1,69 @@
/** \file
*
* This file contains special DoxyGen information for the generation of the main page and other special
* documentation pages. It is not a project source file.
*/
/** \mainpage HID Class USB AVR Bootloader
*
* \section SSec_Compat Demo Compatibility:
*
* The following list indicates what microcontrollers are compatible with this demo.
*
* - Series 7 USB AVRs (AT90USBxxx7)
* - Series 6 USB AVRs (AT90USBxxx6)
* - Series 4 USB AVRs (ATMEGAxxU4)
* - Series 2 USB AVRs (AT90USBxx2, ATMEGAxxU2)
*
* \section SSec_Info USB Information:
*
* The following table gives a rundown of the USB utilization of this demo.
*
* <table>
* <tr>
* <td><b>USB Mode:</b></td>
* <td>Device</td>
* </tr>
* <tr>
* <td><b>USB Class:</b></td>
* <td>Human Interface Device Class (HID)</td>
* </tr>
* <tr>
* <td><b>USB Subclass:</b></td>
* <td>N/A</td>
* </tr>
* <tr>
* <td><b>Relevant Standards:</b></td>
* <td>USBIF HID Class Standard \n
* Teensy Programming Protocol Specification</td>
* </tr>
* <tr>
* <td><b>Usable Speeds:</b></td>
* <td>Low Speed Mode \n
* Full Speed Mode</td>
* </tr>
* </table>
*
* \section SSec_Description Project Description:
*
* This bootloader enumerates to the host as a HID Class device, allowing for device FLASH programming through
* the supplied command line software, which is a modified version of Paul's TeensyHID Command Line loader code
* from PJRC, used with permission. This bootloader is delibertely non-compatible with the properietary HalfKay
* bootloader GUI; only the command line interface software accompanying this bootloader will work with it.
*
* Out of the box this bootloader builds for the USB1287, and will fit into 4KB of bootloader space. If
* you wish to enlarge this space and/or change the AVR model, you will need to edit the BOOT_START and MCU
* values in the accompanying makefile.
*
* \section SSec_Options Project Options
*
* The following defines can be found in this demo, which can control the demo behaviour when defined, or changed in value.
*
* <table>
* <tr>
* <td>
* None
* </td>
* </tr>
* </table>
*/

@ -0,0 +1,186 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** HID class report descriptor. This is a special descriptor constructed with values from the
* USBIF HID class specification to describe the reports and capabilities of the HID device. This
* descriptor is parsed by the host and its contents used to determine what data (and in what encoding)
* the device will send, and what it may be sent back from the host. Refer to the HID specification for
* more details on HID report descriptors.
*/
USB_Descriptor_HIDReport_Datatype_t HIDReport[] =
{
HID_RI_USAGE_PAGE(16, 0xFF00), /* Vendor Page 1 */
HID_RI_USAGE(8, 0x01), /* Vendor Usage 1 */
HID_RI_COLLECTION(8, 0x01), /* Vendor Usage 1 */
HID_RI_USAGE(8, 0x03), /* Vendor Usage 3 */
HID_RI_LOGICAL_MINIMUM(8, 0x00),
HID_RI_LOGICAL_MAXIMUM(8, 0xFF),
HID_RI_REPORT_SIZE(8, 0x08),
HID_RI_REPORT_COUNT(16, (sizeof(uint16_t) + SPM_PAGESIZE)),
HID_RI_OUTPUT(8, HID_IOF_DATA | HID_IOF_VARIABLE | HID_IOF_ABSOLUTE | HID_IOF_NON_VOLATILE),
HID_RI_END_COLLECTION(0),
};
/** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
USB_Descriptor_Device_t DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(01.10),
.Class = USB_CSCP_NoDeviceClass,
.SubClass = USB_CSCP_NoDeviceSubclass,
.Protocol = USB_CSCP_NoDeviceProtocol,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = 0x03EB,
.ProductID = 0x2067,
.ReleaseNumber = VERSION_BCD(00.01),
.ManufacturerStrIndex = NO_DESCRIPTOR,
.ProductStrIndex = NO_DESCRIPTOR,
.SerialNumStrIndex = NO_DESCRIPTOR,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
USB_Descriptor_Configuration_t ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t),
.TotalInterfaces = 1,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = USB_CONFIG_ATTR_BUSPOWERED,
.MaxPowerConsumption = USB_CONFIG_POWER_MA(100)
},
.HID_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 0x00,
.AlternateSetting = 0x00,
.TotalEndpoints = 1,
.Class = HID_CSCP_HIDClass,
.SubClass = HID_CSCP_NonBootSubclass,
.Protocol = HID_CSCP_NonBootProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.HID_VendorHID =
{
.Header = {.Size = sizeof(USB_HID_Descriptor_HID_t), .Type = HID_DTYPE_HID},
.HIDSpec = VERSION_BCD(01.11),
.CountryCode = 0x00,
.TotalReportDescriptors = 1,
.HIDReportType = HID_DTYPE_Report,
.HIDReportLength = sizeof(HIDReport)
},
.HID_ReportINEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DESCRIPTOR_DIR_IN | HID_IN_EPNUM),
.Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = HID_IN_EPSIZE,
.PollingIntervalMS = 0x01
},
};
/** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
/* If/Else If chain compiles slightly smaller than a switch case */
if (DescriptorType == DTYPE_Device)
{
Address = &DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
}
else if (DescriptorType == DTYPE_Configuration)
{
Address = &ConfigurationDescriptor;
Size = sizeof(USB_Descriptor_Configuration_t);
}
else if (DescriptorType == HID_DTYPE_HID)
{
Address = &ConfigurationDescriptor.HID_VendorHID;
Size = sizeof(USB_HID_Descriptor_HID_t);
}
else
{
Address = &HIDReport;
Size = sizeof(HIDReport);
}
*DescriptorAddress = Address;
return Size;
}

@ -0,0 +1,68 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <LUFA/Drivers/USB/USB.h>
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
USB_Descriptor_Interface_t HID_Interface;
USB_HID_Descriptor_HID_t HID_VendorHID;
USB_Descriptor_Endpoint_t HID_ReportINEndpoint;
} USB_Descriptor_Configuration_t;
/* Macros: */
/** Endpoint number of the HID data IN endpoint. */
#define HID_IN_EPNUM 1
/** Size in bytes of the HID reporting IN endpoint. */
#define HID_IN_EPSIZE 64
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3);
#endif

@ -0,0 +1,1565 @@
# Doxyfile 1.6.2
# This file describes the settings to be used by the documentation system
# doxygen (www.doxygen.org) for a project
#
# All text after a hash (#) is considered a comment and will be ignored
# The format is:
# TAG = value [value, ...]
# For lists items can also be appended using:
# TAG += value [value, ...]
# Values that contain spaces should be placed between quotes (" ")
#---------------------------------------------------------------------------
# Project related configuration options
#---------------------------------------------------------------------------
# This tag specifies the encoding used for all characters in the config file
# that follow. The default is UTF-8 which is also the encoding used for all
# text before the first occurrence of this tag. Doxygen uses libiconv (or the
# iconv built into libc) for the transcoding. See
# http://www.gnu.org/software/libiconv for the list of possible encodings.
DOXYFILE_ENCODING = UTF-8
# The PROJECT_NAME tag is a single word (or a sequence of words surrounded
# by quotes) that should identify the project.
PROJECT_NAME = "LUFA Library - HID Class Bootloader"
# The PROJECT_NUMBER tag can be used to enter a project or revision number.
# This could be handy for archiving the generated documentation or
# if some version control system is used.
PROJECT_NUMBER = 0.0.0
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute)
# base path where the generated documentation will be put.
# If a relative path is entered, it will be relative to the location
# where doxygen was started. If left blank the current directory will be used.
OUTPUT_DIRECTORY = ./Documentation/
# If the CREATE_SUBDIRS tag is set to YES, then doxygen will create
# 4096 sub-directories (in 2 levels) under the output directory of each output
# format and will distribute the generated files over these directories.
# Enabling this option can be useful when feeding doxygen a huge amount of
# source files, where putting all generated files in the same directory would
# otherwise cause performance problems for the file system.
CREATE_SUBDIRS = NO
# The OUTPUT_LANGUAGE tag is used to specify the language in which all
# documentation generated by doxygen is written. Doxygen will use this
# information to generate all constant output in the proper language.
# The default language is English, other supported languages are:
# Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional,
# Croatian, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, French, German,
# Greek, Hungarian, Italian, Japanese, Japanese-en (Japanese with English
# messages), Korean, Korean-en, Lithuanian, Norwegian, Macedonian, Persian,
# Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrilic, Slovak,
# Slovene, Spanish, Swedish, Ukrainian, and Vietnamese.
OUTPUT_LANGUAGE = English
# If the BRIEF_MEMBER_DESC tag is set to YES (the default) Doxygen will
# include brief member descriptions after the members that are listed in
# the file and class documentation (similar to JavaDoc).
# Set to NO to disable this.
BRIEF_MEMBER_DESC = YES
# If the REPEAT_BRIEF tag is set to YES (the default) Doxygen will prepend
# the brief description of a member or function before the detailed description.
# Note: if both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the
# brief descriptions will be completely suppressed.
REPEAT_BRIEF = YES
# This tag implements a quasi-intelligent brief description abbreviator
# that is used to form the text in various listings. Each string
# in this list, if found as the leading text of the brief description, will be
# stripped from the text and the result after processing the whole list, is
# used as the annotated text. Otherwise, the brief description is used as-is.
# If left blank, the following values are used ("$name" is automatically
# replaced with the name of the entity): "The $name class" "The $name widget"
# "The $name file" "is" "provides" "specifies" "contains"
# "represents" "a" "an" "the"
ABBREVIATE_BRIEF = "The $name class" \
"The $name widget" \
"The $name file" \
is \
provides \
specifies \
contains \
represents \
a \
an \
the
# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then
# Doxygen will generate a detailed section even if there is only a brief
# description.
ALWAYS_DETAILED_SEC = NO
# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all
# inherited members of a class in the documentation of that class as if those
# members were ordinary class members. Constructors, destructors and assignment
# operators of the base classes will not be shown.
INLINE_INHERITED_MEMB = NO
# If the FULL_PATH_NAMES tag is set to YES then Doxygen will prepend the full
# path before files name in the file list and in the header files. If set
# to NO the shortest path that makes the file name unique will be used.
FULL_PATH_NAMES = YES
# If the FULL_PATH_NAMES tag is set to YES then the STRIP_FROM_PATH tag
# can be used to strip a user-defined part of the path. Stripping is
# only done if one of the specified strings matches the left-hand part of
# the path. The tag can be used to show relative paths in the file list.
# If left blank the directory from which doxygen is run is used as the
# path to strip.
STRIP_FROM_PATH =
# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of
# the path mentioned in the documentation of a class, which tells
# the reader which header file to include in order to use a class.
# If left blank only the name of the header file containing the class
# definition is used. Otherwise one should specify the include paths that
# are normally passed to the compiler using the -I flag.
STRIP_FROM_INC_PATH =
# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter
# (but less readable) file names. This can be useful is your file systems
# doesn't support long names like on DOS, Mac, or CD-ROM.
SHORT_NAMES = YES
# If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen
# will interpret the first line (until the first dot) of a JavaDoc-style
# comment as the brief description. If set to NO, the JavaDoc
# comments will behave just like regular Qt-style comments
# (thus requiring an explicit @brief command for a brief description.)
JAVADOC_AUTOBRIEF = NO
# If the QT_AUTOBRIEF tag is set to YES then Doxygen will
# interpret the first line (until the first dot) of a Qt-style
# comment as the brief description. If set to NO, the comments
# will behave just like regular Qt-style comments (thus requiring
# an explicit \brief command for a brief description.)
QT_AUTOBRIEF = NO
# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make Doxygen
# treat a multi-line C++ special comment block (i.e. a block of //! or ///
# comments) as a brief description. This used to be the default behaviour.
# The new default is to treat a multi-line C++ comment block as a detailed
# description. Set this tag to YES if you prefer the old behaviour instead.
MULTILINE_CPP_IS_BRIEF = NO
# If the INHERIT_DOCS tag is set to YES (the default) then an undocumented
# member inherits the documentation from any documented member that it
# re-implements.
INHERIT_DOCS = YES
# If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce
# a new page for each member. If set to NO, the documentation of a member will
# be part of the file/class/namespace that contains it.
SEPARATE_MEMBER_PAGES = NO
# The TAB_SIZE tag can be used to set the number of spaces in a tab.
# Doxygen uses this value to replace tabs by spaces in code fragments.
TAB_SIZE = 4
# This tag can be used to specify a number of aliases that acts
# as commands in the documentation. An alias has the form "name=value".
# For example adding "sideeffect=\par Side Effects:\n" will allow you to
# put the command \sideeffect (or @sideeffect) in the documentation, which
# will result in a user-defined paragraph with heading "Side Effects:".
# You can put \n's in the value part of an alias to insert newlines.
ALIASES =
# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C
# sources only. Doxygen will then generate output that is more tailored for C.
# For instance, some of the names that are used will be different. The list
# of all members will be omitted, etc.
OPTIMIZE_OUTPUT_FOR_C = YES
# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java
# sources only. Doxygen will then generate output that is more tailored for
# Java. For instance, namespaces will be presented as packages, qualified
# scopes will look different, etc.
OPTIMIZE_OUTPUT_JAVA = NO
# Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran
# sources only. Doxygen will then generate output that is more tailored for
# Fortran.
OPTIMIZE_FOR_FORTRAN = NO
# Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL
# sources. Doxygen will then generate output that is tailored for
# VHDL.
OPTIMIZE_OUTPUT_VHDL = NO
# Doxygen selects the parser to use depending on the extension of the files it parses.
# With this tag you can assign which parser to use for a given extension.
# Doxygen has a built-in mapping, but you can override or extend it using this tag.
# The format is ext=language, where ext is a file extension, and language is one of
# the parsers supported by doxygen: IDL, Java, Javascript, C#, C, C++, D, PHP,
# Objective-C, Python, Fortran, VHDL, C, C++. For instance to make doxygen treat
# .inc files as Fortran files (default is PHP), and .f files as C (default is Fortran),
# use: inc=Fortran f=C. Note that for custom extensions you also need to set FILE_PATTERNS otherwise the files are not read by doxygen.
EXTENSION_MAPPING =
# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want
# to include (a tag file for) the STL sources as input, then you should
# set this tag to YES in order to let doxygen match functions declarations and
# definitions whose arguments contain STL classes (e.g. func(std::string); v.s.
# func(std::string) {}). This also make the inheritance and collaboration
# diagrams that involve STL classes more complete and accurate.
BUILTIN_STL_SUPPORT = NO
# If you use Microsoft's C++/CLI language, you should set this option to YES to
# enable parsing support.
CPP_CLI_SUPPORT = NO
# Set the SIP_SUPPORT tag to YES if your project consists of sip sources only.
# Doxygen will parse them like normal C++ but will assume all classes use public
# instead of private inheritance when no explicit protection keyword is present.
SIP_SUPPORT = NO
# For Microsoft's IDL there are propget and propput attributes to indicate getter
# and setter methods for a property. Setting this option to YES (the default)
# will make doxygen to replace the get and set methods by a property in the
# documentation. This will only work if the methods are indeed getting or
# setting a simple type. If this is not the case, or you want to show the
# methods anyway, you should set this option to NO.
IDL_PROPERTY_SUPPORT = YES
# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC
# tag is set to YES, then doxygen will reuse the documentation of the first
# member in the group (if any) for the other members of the group. By default
# all members of a group must be documented explicitly.
DISTRIBUTE_GROUP_DOC = NO
# Set the SUBGROUPING tag to YES (the default) to allow class member groups of
# the same type (for instance a group of public functions) to be put as a
# subgroup of that type (e.g. under the Public Functions section). Set it to
# NO to prevent subgrouping. Alternatively, this can be done per class using
# the \nosubgrouping command.
SUBGROUPING = YES
# When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct, union, or enum
# is documented as struct, union, or enum with the name of the typedef. So
# typedef struct TypeS {} TypeT, will appear in the documentation as a struct
# with name TypeT. When disabled the typedef will appear as a member of a file,
# namespace, or class. And the struct will be named TypeS. This can typically
# be useful for C code in case the coding convention dictates that all compound
# types are typedef'ed and only the typedef is referenced, never the tag name.
TYPEDEF_HIDES_STRUCT = NO
# The SYMBOL_CACHE_SIZE determines the size of the internal cache use to
# determine which symbols to keep in memory and which to flush to disk.
# When the cache is full, less often used symbols will be written to disk.
# For small to medium size projects (<1000 input files) the default value is
# probably good enough. For larger projects a too small cache size can cause
# doxygen to be busy swapping symbols to and from disk most of the time
# causing a significant performance penality.
# If the system has enough physical memory increasing the cache will improve the
# performance by keeping more symbols in memory. Note that the value works on
# a logarithmic scale so increasing the size by one will rougly double the
# memory usage. The cache size is given by this formula:
# 2^(16+SYMBOL_CACHE_SIZE). The valid range is 0..9, the default is 0,
# corresponding to a cache size of 2^16 = 65536 symbols
SYMBOL_CACHE_SIZE = 0
#---------------------------------------------------------------------------
# Build related configuration options
#---------------------------------------------------------------------------
# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in
# documentation are documented, even if no documentation was available.
# Private class members and static file members will be hidden unless
# the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES
EXTRACT_ALL = YES
# If the EXTRACT_PRIVATE tag is set to YES all private members of a class
# will be included in the documentation.
EXTRACT_PRIVATE = YES
# If the EXTRACT_STATIC tag is set to YES all static members of a file
# will be included in the documentation.
EXTRACT_STATIC = YES
# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs)
# defined locally in source files will be included in the documentation.
# If set to NO only classes defined in header files are included.
EXTRACT_LOCAL_CLASSES = YES
# This flag is only useful for Objective-C code. When set to YES local
# methods, which are defined in the implementation section but not in
# the interface are included in the documentation.
# If set to NO (the default) only methods in the interface are included.
EXTRACT_LOCAL_METHODS = NO
# If this flag is set to YES, the members of anonymous namespaces will be
# extracted and appear in the documentation as a namespace called
# 'anonymous_namespace{file}', where file will be replaced with the base
# name of the file that contains the anonymous namespace. By default
# anonymous namespace are hidden.
EXTRACT_ANON_NSPACES = NO
# If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all
# undocumented members of documented classes, files or namespaces.
# If set to NO (the default) these members will be included in the
# various overviews, but no documentation section is generated.
# This option has no effect if EXTRACT_ALL is enabled.
HIDE_UNDOC_MEMBERS = NO
# If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all
# undocumented classes that are normally visible in the class hierarchy.
# If set to NO (the default) these classes will be included in the various
# overviews. This option has no effect if EXTRACT_ALL is enabled.
HIDE_UNDOC_CLASSES = NO
# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all
# friend (class|struct|union) declarations.
# If set to NO (the default) these declarations will be included in the
# documentation.
HIDE_FRIEND_COMPOUNDS = NO
# If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any
# documentation blocks found inside the body of a function.
# If set to NO (the default) these blocks will be appended to the
# function's detailed documentation block.
HIDE_IN_BODY_DOCS = NO
# The INTERNAL_DOCS tag determines if documentation
# that is typed after a \internal command is included. If the tag is set
# to NO (the default) then the documentation will be excluded.
# Set it to YES to include the internal documentation.
INTERNAL_DOCS = NO
# If the CASE_SENSE_NAMES tag is set to NO then Doxygen will only generate
# file names in lower-case letters. If set to YES upper-case letters are also
# allowed. This is useful if you have classes or files whose names only differ
# in case and if your file system supports case sensitive file names. Windows
# and Mac users are advised to set this option to NO.
CASE_SENSE_NAMES = NO
# If the HIDE_SCOPE_NAMES tag is set to NO (the default) then Doxygen
# will show members with their full class and namespace scopes in the
# documentation. If set to YES the scope will be hidden.
HIDE_SCOPE_NAMES = NO
# If the SHOW_INCLUDE_FILES tag is set to YES (the default) then Doxygen
# will put a list of the files that are included by a file in the documentation
# of that file.
SHOW_INCLUDE_FILES = YES
# If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen
# will list include files with double quotes in the documentation
# rather than with sharp brackets.
FORCE_LOCAL_INCLUDES = NO
# If the INLINE_INFO tag is set to YES (the default) then a tag [inline]
# is inserted in the documentation for inline members.
INLINE_INFO = YES
# If the SORT_MEMBER_DOCS tag is set to YES (the default) then doxygen
# will sort the (detailed) documentation of file and class members
# alphabetically by member name. If set to NO the members will appear in
# declaration order.
SORT_MEMBER_DOCS = YES
# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the
# brief documentation of file, namespace and class members alphabetically
# by member name. If set to NO (the default) the members will appear in
# declaration order.
SORT_BRIEF_DOCS = NO
# If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen will sort the (brief and detailed) documentation of class members so that constructors and destructors are listed first. If set to NO (the default) the constructors will appear in the respective orders defined by SORT_MEMBER_DOCS and SORT_BRIEF_DOCS. This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO.
SORT_MEMBERS_CTORS_1ST = NO
# If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the
# hierarchy of group names into alphabetical order. If set to NO (the default)
# the group names will appear in their defined order.
SORT_GROUP_NAMES = NO
# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be
# sorted by fully-qualified names, including namespaces. If set to
# NO (the default), the class list will be sorted only by class name,
# not including the namespace part.
# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES.
# Note: This option applies only to the class list, not to the
# alphabetical list.
SORT_BY_SCOPE_NAME = NO
# The GENERATE_TODOLIST tag can be used to enable (YES) or
# disable (NO) the todo list. This list is created by putting \todo
# commands in the documentation.
GENERATE_TODOLIST = NO
# The GENERATE_TESTLIST tag can be used to enable (YES) or
# disable (NO) the test list. This list is created by putting \test
# commands in the documentation.
GENERATE_TESTLIST = NO
# The GENERATE_BUGLIST tag can be used to enable (YES) or
# disable (NO) the bug list. This list is created by putting \bug
# commands in the documentation.
GENERATE_BUGLIST = NO
# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or
# disable (NO) the deprecated list. This list is created by putting
# \deprecated commands in the documentation.
GENERATE_DEPRECATEDLIST= YES
# The ENABLED_SECTIONS tag can be used to enable conditional
# documentation sections, marked by \if sectionname ... \endif.
ENABLED_SECTIONS =
# The MAX_INITIALIZER_LINES tag determines the maximum number of lines
# the initial value of a variable or define consists of for it to appear in
# the documentation. If the initializer consists of more lines than specified
# here it will be hidden. Use a value of 0 to hide initializers completely.
# The appearance of the initializer of individual variables and defines in the
# documentation can be controlled using \showinitializer or \hideinitializer
# command in the documentation regardless of this setting.
MAX_INITIALIZER_LINES = 30
# Set the SHOW_USED_FILES tag to NO to disable the list of files generated
# at the bottom of the documentation of classes and structs. If set to YES the
# list will mention the files that were used to generate the documentation.
SHOW_USED_FILES = YES
# If the sources in your project are distributed over multiple directories
# then setting the SHOW_DIRECTORIES tag to YES will show the directory hierarchy
# in the documentation. The default is NO.
SHOW_DIRECTORIES = YES
# Set the SHOW_FILES tag to NO to disable the generation of the Files page.
# This will remove the Files entry from the Quick Index and from the
# Folder Tree View (if specified). The default is YES.
SHOW_FILES = YES
# Set the SHOW_NAMESPACES tag to NO to disable the generation of the
# Namespaces page.
# This will remove the Namespaces entry from the Quick Index
# and from the Folder Tree View (if specified). The default is YES.
SHOW_NAMESPACES = YES
# The FILE_VERSION_FILTER tag can be used to specify a program or script that
# doxygen should invoke to get the current version for each file (typically from
# the version control system). Doxygen will invoke the program by executing (via
# popen()) the command <command> <input-file>, where <command> is the value of
# the FILE_VERSION_FILTER tag, and <input-file> is the name of an input file
# provided by doxygen. Whatever the program writes to standard output
# is used as the file version. See the manual for examples.
FILE_VERSION_FILTER =
# The LAYOUT_FILE tag can be used to specify a layout file which will be parsed by
# doxygen. The layout file controls the global structure of the generated output files
# in an output format independent way. The create the layout file that represents
# doxygen's defaults, run doxygen with the -l option. You can optionally specify a
# file name after the option, if omitted DoxygenLayout.xml will be used as the name
# of the layout file.
LAYOUT_FILE =
#---------------------------------------------------------------------------
# configuration options related to warning and progress messages
#---------------------------------------------------------------------------
# The QUIET tag can be used to turn on/off the messages that are generated
# by doxygen. Possible values are YES and NO. If left blank NO is used.
QUIET = YES
# The WARNINGS tag can be used to turn on/off the warning messages that are
# generated by doxygen. Possible values are YES and NO. If left blank
# NO is used.
WARNINGS = YES
# If WARN_IF_UNDOCUMENTED is set to YES, then doxygen will generate warnings
# for undocumented members. If EXTRACT_ALL is set to YES then this flag will
# automatically be disabled.
WARN_IF_UNDOCUMENTED = YES
# If WARN_IF_DOC_ERROR is set to YES, doxygen will generate warnings for
# potential errors in the documentation, such as not documenting some
# parameters in a documented function, or documenting parameters that
# don't exist or using markup commands wrongly.
WARN_IF_DOC_ERROR = YES
# This WARN_NO_PARAMDOC option can be abled to get warnings for
# functions that are documented, but have no documentation for their parameters
# or return value. If set to NO (the default) doxygen will only warn about
# wrong or incomplete parameter documentation, but not about the absence of
# documentation.
WARN_NO_PARAMDOC = YES
# The WARN_FORMAT tag determines the format of the warning messages that
# doxygen can produce. The string should contain the $file, $line, and $text
# tags, which will be replaced by the file and line number from which the
# warning originated and the warning text. Optionally the format may contain
# $version, which will be replaced by the version of the file (if it could
# be obtained via FILE_VERSION_FILTER)
WARN_FORMAT = "$file:$line: $text"
# The WARN_LOGFILE tag can be used to specify a file to which warning
# and error messages should be written. If left blank the output is written
# to stderr.
WARN_LOGFILE =
#---------------------------------------------------------------------------
# configuration options related to the input files
#---------------------------------------------------------------------------
# The INPUT tag can be used to specify the files and/or directories that contain
# documented source files. You may enter file names like "myfile.cpp" or
# directories like "/usr/src/myproject". Separate the files or directories
# with spaces.
INPUT = ./
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is
# also the default input encoding. Doxygen uses libiconv (or the iconv built
# into libc) for the transcoding. See http://www.gnu.org/software/libiconv for
# the list of possible encodings.
INPUT_ENCODING = UTF-8
# If the value of the INPUT tag contains directories, you can use the
# FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp
# and *.h) to filter out the source-files in the directories. If left
# blank the following patterns are tested:
# *.c *.cc *.cxx *.cpp *.c++ *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh *.hxx
# *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.py *.f90
FILE_PATTERNS = *.h \
*.c \
*.txt
# The RECURSIVE tag can be used to turn specify whether or not subdirectories
# should be searched for input files as well. Possible values are YES and NO.
# If left blank NO is used.
RECURSIVE = YES
# The EXCLUDE tag can be used to specify files and/or directories that should
# excluded from the INPUT source files. This way you can easily exclude a
# subdirectory from a directory tree whose root is specified with the INPUT tag.
EXCLUDE = Documentation/
# The EXCLUDE_SYMLINKS tag can be used select whether or not files or
# directories that are symbolic links (a Unix filesystem feature) are excluded
# from the input.
EXCLUDE_SYMLINKS = NO
# If the value of the INPUT tag contains directories, you can use the
# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude
# certain files from those directories. Note that the wildcards are matched
# against the file with absolute path, so to exclude all test directories
# for example use the pattern */test/*
EXCLUDE_PATTERNS =
# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names
# (namespaces, classes, functions, etc.) that should be excluded from the
# output. The symbol name can be a fully qualified name, a word, or if the
# wildcard * is used, a substring. Examples: ANamespace, AClass,
# AClass::ANamespace, ANamespace::*Test
EXCLUDE_SYMBOLS = __* \
INCLUDE_FROM_*
# The EXAMPLE_PATH tag can be used to specify one or more files or
# directories that contain example code fragments that are included (see
# the \include command).
EXAMPLE_PATH =
# If the value of the EXAMPLE_PATH tag contains directories, you can use the
# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp
# and *.h) to filter out the source-files in the directories. If left
# blank all files are included.
EXAMPLE_PATTERNS = *
# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be
# searched for input files to be used with the \include or \dontinclude
# commands irrespective of the value of the RECURSIVE tag.
# Possible values are YES and NO. If left blank NO is used.
EXAMPLE_RECURSIVE = NO
# The IMAGE_PATH tag can be used to specify one or more files or
# directories that contain image that are included in the documentation (see
# the \image command).
IMAGE_PATH =
# The INPUT_FILTER tag can be used to specify a program that doxygen should
# invoke to filter for each input file. Doxygen will invoke the filter program
# by executing (via popen()) the command <filter> <input-file>, where <filter>
# is the value of the INPUT_FILTER tag, and <input-file> is the name of an
# input file. Doxygen will then use the output that the filter program writes
# to standard output.
# If FILTER_PATTERNS is specified, this tag will be
# ignored.
INPUT_FILTER =
# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern
# basis.
# Doxygen will compare the file name with each pattern and apply the
# filter if there is a match.
# The filters are a list of the form:
# pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further
# info on how filters are used. If FILTER_PATTERNS is empty, INPUT_FILTER
# is applied to all files.
FILTER_PATTERNS =
# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
# INPUT_FILTER) will be used to filter the input files when producing source
# files to browse (i.e. when SOURCE_BROWSER is set to YES).
FILTER_SOURCE_FILES = NO
#---------------------------------------------------------------------------
# configuration options related to source browsing
#---------------------------------------------------------------------------
# If the SOURCE_BROWSER tag is set to YES then a list of source files will
# be generated. Documented entities will be cross-referenced with these sources.
# Note: To get rid of all source code in the generated output, make sure also
# VERBATIM_HEADERS is set to NO.
SOURCE_BROWSER = NO
# Setting the INLINE_SOURCES tag to YES will include the body
# of functions and classes directly in the documentation.
INLINE_SOURCES = NO
# Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct
# doxygen to hide any special comment blocks from generated source code
# fragments. Normal C and C++ comments will always remain visible.
STRIP_CODE_COMMENTS = YES
# If the REFERENCED_BY_RELATION tag is set to YES
# then for each documented function all documented
# functions referencing it will be listed.
REFERENCED_BY_RELATION = NO
# If the REFERENCES_RELATION tag is set to YES
# then for each documented function all documented entities
# called/used by that function will be listed.
REFERENCES_RELATION = NO
# If the REFERENCES_LINK_SOURCE tag is set to YES (the default)
# and SOURCE_BROWSER tag is set to YES, then the hyperlinks from
# functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will
# link to the source code.
# Otherwise they will link to the documentation.
REFERENCES_LINK_SOURCE = NO
# If the USE_HTAGS tag is set to YES then the references to source code
# will point to the HTML generated by the htags(1) tool instead of doxygen
# built-in source browser. The htags tool is part of GNU's global source
# tagging system (see http://www.gnu.org/software/global/global.html). You
# will need version 4.8.6 or higher.
USE_HTAGS = NO
# If the VERBATIM_HEADERS tag is set to YES (the default) then Doxygen
# will generate a verbatim copy of the header file for each class for
# which an include is specified. Set to NO to disable this.
VERBATIM_HEADERS = NO
#---------------------------------------------------------------------------
# configuration options related to the alphabetical class index
#---------------------------------------------------------------------------
# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index
# of all compounds will be generated. Enable this if the project
# contains a lot of classes, structs, unions or interfaces.
ALPHABETICAL_INDEX = YES
# If the alphabetical index is enabled (see ALPHABETICAL_INDEX) then
# the COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns
# in which this list will be split (can be a number in the range [1..20])
COLS_IN_ALPHA_INDEX = 5
# In case all classes in a project start with a common prefix, all
# classes will be put under the same header in the alphabetical index.
# The IGNORE_PREFIX tag can be used to specify one or more prefixes that
# should be ignored while generating the index headers.
IGNORE_PREFIX =
#---------------------------------------------------------------------------
# configuration options related to the HTML output
#---------------------------------------------------------------------------
# If the GENERATE_HTML tag is set to YES (the default) Doxygen will
# generate HTML output.
GENERATE_HTML = YES
# The HTML_OUTPUT tag is used to specify where the HTML docs will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be
# put in front of it. If left blank `html' will be used as the default path.
HTML_OUTPUT = html
# The HTML_FILE_EXTENSION tag can be used to specify the file extension for
# each generated HTML page (for example: .htm,.php,.asp). If it is left blank
# doxygen will generate files with .html extension.
HTML_FILE_EXTENSION = .html
# The HTML_HEADER tag can be used to specify a personal HTML header for
# each generated HTML page. If it is left blank doxygen will generate a
# standard header.
HTML_HEADER =
# The HTML_FOOTER tag can be used to specify a personal HTML footer for
# each generated HTML page. If it is left blank doxygen will generate a
# standard footer.
HTML_FOOTER =
# The HTML_STYLESHEET tag can be used to specify a user-defined cascading
# style sheet that is used by each HTML page. It can be used to
# fine-tune the look of the HTML output. If the tag is left blank doxygen
# will generate a default style sheet. Note that doxygen will try to copy
# the style sheet file to the HTML output directory, so don't put your own
# stylesheet in the HTML output directory as well, or it will be erased!
HTML_STYLESHEET =
# If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML
# page will contain the date and time when the page was generated. Setting
# this to NO can help when comparing the output of multiple runs.
HTML_TIMESTAMP = NO
# If the HTML_ALIGN_MEMBERS tag is set to YES, the members of classes,
# files or namespaces will be aligned in HTML using tables. If set to
# NO a bullet list will be used.
HTML_ALIGN_MEMBERS = YES
# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
# documentation will contain sections that can be hidden and shown after the
# page has loaded. For this to work a browser that supports
# JavaScript and DHTML is required (for instance Mozilla 1.0+, Firefox
# Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari).
HTML_DYNAMIC_SECTIONS = YES
# If the GENERATE_DOCSET tag is set to YES, additional index files
# will be generated that can be used as input for Apple's Xcode 3
# integrated development environment, introduced with OSX 10.5 (Leopard).
# To create a documentation set, doxygen will generate a Makefile in the
# HTML output directory. Running make will produce the docset in that
# directory and running "make install" will install the docset in
# ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find
# it at startup.
# See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html for more information.
GENERATE_DOCSET = NO
# When GENERATE_DOCSET tag is set to YES, this tag determines the name of the
# feed. A documentation feed provides an umbrella under which multiple
# documentation sets from a single provider (such as a company or product suite)
# can be grouped.
DOCSET_FEEDNAME = "Doxygen generated docs"
# When GENERATE_DOCSET tag is set to YES, this tag specifies a string that
# should uniquely identify the documentation set bundle. This should be a
# reverse domain-name style string, e.g. com.mycompany.MyDocSet. Doxygen
# will append .docset to the name.
DOCSET_BUNDLE_ID = org.doxygen.Project
# If the GENERATE_HTMLHELP tag is set to YES, additional index files
# will be generated that can be used as input for tools like the
# Microsoft HTML help workshop to generate a compiled HTML help file (.chm)
# of the generated HTML documentation.
GENERATE_HTMLHELP = NO
# If the GENERATE_HTMLHELP tag is set to YES, the CHM_FILE tag can
# be used to specify the file name of the resulting .chm file. You
# can add a path in front of the file if the result should not be
# written to the html output directory.
CHM_FILE =
# If the GENERATE_HTMLHELP tag is set to YES, the HHC_LOCATION tag can
# be used to specify the location (absolute path including file name) of
# the HTML help compiler (hhc.exe). If non-empty doxygen will try to run
# the HTML help compiler on the generated index.hhp.
HHC_LOCATION =
# If the GENERATE_HTMLHELP tag is set to YES, the GENERATE_CHI flag
# controls if a separate .chi index file is generated (YES) or that
# it should be included in the master .chm file (NO).
GENERATE_CHI = NO
# If the GENERATE_HTMLHELP tag is set to YES, the CHM_INDEX_ENCODING
# is used to encode HtmlHelp index (hhk), content (hhc) and project file
# content.
CHM_INDEX_ENCODING =
# If the GENERATE_HTMLHELP tag is set to YES, the BINARY_TOC flag
# controls whether a binary table of contents is generated (YES) or a
# normal table of contents (NO) in the .chm file.
BINARY_TOC = NO
# The TOC_EXPAND flag can be set to YES to add extra items for group members
# to the contents of the HTML help documentation and to the tree view.
TOC_EXPAND = YES
# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and QHP_VIRTUAL_FOLDER
# are set, an additional index file will be generated that can be used as input for
# Qt's qhelpgenerator to generate a Qt Compressed Help (.qch) of the generated
# HTML documentation.
GENERATE_QHP = NO
# If the QHG_LOCATION tag is specified, the QCH_FILE tag can
# be used to specify the file name of the resulting .qch file.
# The path specified is relative to the HTML output folder.
QCH_FILE =
# The QHP_NAMESPACE tag specifies the namespace to use when generating
# Qt Help Project output. For more information please see
# http://doc.trolltech.com/qthelpproject.html#namespace
QHP_NAMESPACE = org.doxygen.Project
# The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating
# Qt Help Project output. For more information please see
# http://doc.trolltech.com/qthelpproject.html#virtual-folders
QHP_VIRTUAL_FOLDER = doc
# If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to add.
# For more information please see
# http://doc.trolltech.com/qthelpproject.html#custom-filters
QHP_CUST_FILTER_NAME =
# The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the custom filter to add.For more information please see
# <a href="http://doc.trolltech.com/qthelpproject.html#custom-filters">Qt Help Project / Custom Filters</a>.
QHP_CUST_FILTER_ATTRS =
# The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this project's
# filter section matches.
# <a href="http://doc.trolltech.com/qthelpproject.html#filter-attributes">Qt Help Project / Filter Attributes</a>.
QHP_SECT_FILTER_ATTRS =
# If the GENERATE_QHP tag is set to YES, the QHG_LOCATION tag can
# be used to specify the location of Qt's qhelpgenerator.
# If non-empty doxygen will try to run qhelpgenerator on the generated
# .qhp file.
QHG_LOCATION =
# If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files
# will be generated, which together with the HTML files, form an Eclipse help
# plugin. To install this plugin and make it available under the help contents
# menu in Eclipse, the contents of the directory containing the HTML and XML
# files needs to be copied into the plugins directory of eclipse. The name of
# the directory within the plugins directory should be the same as
# the ECLIPSE_DOC_ID value. After copying Eclipse needs to be restarted before the help appears.
GENERATE_ECLIPSEHELP = NO
# A unique identifier for the eclipse help plugin. When installing the plugin
# the directory name containing the HTML and XML files should also have
# this name.
ECLIPSE_DOC_ID = org.doxygen.Project
# The DISABLE_INDEX tag can be used to turn on/off the condensed index at
# top of each HTML page. The value NO (the default) enables the index and
# the value YES disables it.
DISABLE_INDEX = NO
# This tag can be used to set the number of enum values (range [1..20])
# that doxygen will group on one line in the generated HTML documentation.
ENUM_VALUES_PER_LINE = 1
# The GENERATE_TREEVIEW tag is used to specify whether a tree-like index
# structure should be generated to display hierarchical information.
# If the tag value is set to YES, a side panel will be generated
# containing a tree-like index structure (just like the one that
# is generated for HTML Help). For this to work a browser that supports
# JavaScript, DHTML, CSS and frames is required (i.e. any modern browser).
# Windows users are probably better off using the HTML help feature.
GENERATE_TREEVIEW = YES
# By enabling USE_INLINE_TREES, doxygen will generate the Groups, Directories,
# and Class Hierarchy pages using a tree view instead of an ordered list.
USE_INLINE_TREES = NO
# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be
# used to set the initial width (in pixels) of the frame in which the tree
# is shown.
TREEVIEW_WIDTH = 250
# Use this tag to change the font size of Latex formulas included
# as images in the HTML documentation. The default is 10. Note that
# when you change the font size after a successful doxygen run you need
# to manually remove any form_*.png images from the HTML output directory
# to force them to be regenerated.
FORMULA_FONTSIZE = 10
# When the SEARCHENGINE tag is enabled doxygen will generate a search box for the HTML output. The underlying search engine uses javascript
# and DHTML and should work on any modern browser. Note that when using HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets (GENERATE_DOCSET) there is already a search function so this one should
# typically be disabled. For large projects the javascript based search engine
# can be slow, then enabling SERVER_BASED_SEARCH may provide a better solution.
SEARCHENGINE = NO
# When the SERVER_BASED_SEARCH tag is enabled the search engine will be implemented using a PHP enabled web server instead of at the web client using Javascript. Doxygen will generate the search PHP script and index
# file to put on the web server. The advantage of the server based approach is that it scales better to large projects and allows full text search. The disadvances is that it is more difficult to setup
# and does not have live searching capabilities.
SERVER_BASED_SEARCH = NO
#---------------------------------------------------------------------------
# configuration options related to the LaTeX output
#---------------------------------------------------------------------------
# If the GENERATE_LATEX tag is set to YES (the default) Doxygen will
# generate Latex output.
GENERATE_LATEX = NO
# The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be
# put in front of it. If left blank `latex' will be used as the default path.
LATEX_OUTPUT = latex
# The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
# invoked. If left blank `latex' will be used as the default command name.
# Note that when enabling USE_PDFLATEX this option is only used for
# generating bitmaps for formulas in the HTML output, but not in the
# Makefile that is written to the output directory.
LATEX_CMD_NAME = latex
# The MAKEINDEX_CMD_NAME tag can be used to specify the command name to
# generate index for LaTeX. If left blank `makeindex' will be used as the
# default command name.
MAKEINDEX_CMD_NAME = makeindex
# If the COMPACT_LATEX tag is set to YES Doxygen generates more compact
# LaTeX documents. This may be useful for small projects and may help to
# save some trees in general.
COMPACT_LATEX = NO
# The PAPER_TYPE tag can be used to set the paper type that is used
# by the printer. Possible values are: a4, a4wide, letter, legal and
# executive. If left blank a4wide will be used.
PAPER_TYPE = a4wide
# The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX
# packages that should be included in the LaTeX output.
EXTRA_PACKAGES =
# The LATEX_HEADER tag can be used to specify a personal LaTeX header for
# the generated latex document. The header should contain everything until
# the first chapter. If it is left blank doxygen will generate a
# standard header. Notice: only use this tag if you know what you are doing!
LATEX_HEADER =
# If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated
# is prepared for conversion to pdf (using ps2pdf). The pdf file will
# contain links (just like the HTML output) instead of page references
# This makes the output suitable for online browsing using a pdf viewer.
PDF_HYPERLINKS = YES
# If the USE_PDFLATEX tag is set to YES, pdflatex will be used instead of
# plain latex in the generated Makefile. Set this option to YES to get a
# higher quality PDF documentation.
USE_PDFLATEX = YES
# If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \\batchmode.
# command to the generated LaTeX files. This will instruct LaTeX to keep
# running if errors occur, instead of asking the user for help.
# This option is also used when generating formulas in HTML.
LATEX_BATCHMODE = NO
# If LATEX_HIDE_INDICES is set to YES then doxygen will not
# include the index chapters (such as File Index, Compound Index, etc.)
# in the output.
LATEX_HIDE_INDICES = NO
# If LATEX_SOURCE_CODE is set to YES then doxygen will include source code with syntax highlighting in the LaTeX output. Note that which sources are shown also depends on other settings such as SOURCE_BROWSER.
LATEX_SOURCE_CODE = NO
#---------------------------------------------------------------------------
# configuration options related to the RTF output
#---------------------------------------------------------------------------
# If the GENERATE_RTF tag is set to YES Doxygen will generate RTF output
# The RTF output is optimized for Word 97 and may not look very pretty with
# other RTF readers or editors.
GENERATE_RTF = NO
# The RTF_OUTPUT tag is used to specify where the RTF docs will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be
# put in front of it. If left blank `rtf' will be used as the default path.
RTF_OUTPUT = rtf
# If the COMPACT_RTF tag is set to YES Doxygen generates more compact
# RTF documents. This may be useful for small projects and may help to
# save some trees in general.
COMPACT_RTF = NO
# If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated
# will contain hyperlink fields. The RTF file will
# contain links (just like the HTML output) instead of page references.
# This makes the output suitable for online browsing using WORD or other
# programs which support those fields.
# Note: wordpad (write) and others do not support links.
RTF_HYPERLINKS = NO
# Load stylesheet definitions from file. Syntax is similar to doxygen's
# config file, i.e. a series of assignments. You only have to provide
# replacements, missing definitions are set to their default value.
RTF_STYLESHEET_FILE =
# Set optional variables used in the generation of an rtf document.
# Syntax is similar to doxygen's config file.
RTF_EXTENSIONS_FILE =
#---------------------------------------------------------------------------
# configuration options related to the man page output
#---------------------------------------------------------------------------
# If the GENERATE_MAN tag is set to YES (the default) Doxygen will
# generate man pages
GENERATE_MAN = NO
# The MAN_OUTPUT tag is used to specify where the man pages will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be
# put in front of it. If left blank `man' will be used as the default path.
MAN_OUTPUT = man
# The MAN_EXTENSION tag determines the extension that is added to
# the generated man pages (default is the subroutine's section .3)
MAN_EXTENSION = .3
# If the MAN_LINKS tag is set to YES and Doxygen generates man output,
# then it will generate one additional man file for each entity
# documented in the real man page(s). These additional files
# only source the real man page, but without them the man command
# would be unable to find the correct page. The default is NO.
MAN_LINKS = NO
#---------------------------------------------------------------------------
# configuration options related to the XML output
#---------------------------------------------------------------------------
# If the GENERATE_XML tag is set to YES Doxygen will
# generate an XML file that captures the structure of
# the code including all documentation.
GENERATE_XML = NO
# The XML_OUTPUT tag is used to specify where the XML pages will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be
# put in front of it. If left blank `xml' will be used as the default path.
XML_OUTPUT = xml
# The XML_SCHEMA tag can be used to specify an XML schema,
# which can be used by a validating XML parser to check the
# syntax of the XML files.
XML_SCHEMA =
# The XML_DTD tag can be used to specify an XML DTD,
# which can be used by a validating XML parser to check the
# syntax of the XML files.
XML_DTD =
# If the XML_PROGRAMLISTING tag is set to YES Doxygen will
# dump the program listings (including syntax highlighting
# and cross-referencing information) to the XML output. Note that
# enabling this will significantly increase the size of the XML output.
XML_PROGRAMLISTING = YES
#---------------------------------------------------------------------------
# configuration options for the AutoGen Definitions output
#---------------------------------------------------------------------------
# If the GENERATE_AUTOGEN_DEF tag is set to YES Doxygen will
# generate an AutoGen Definitions (see autogen.sf.net) file
# that captures the structure of the code including all
# documentation. Note that this feature is still experimental
# and incomplete at the moment.
GENERATE_AUTOGEN_DEF = NO
#---------------------------------------------------------------------------
# configuration options related to the Perl module output
#---------------------------------------------------------------------------
# If the GENERATE_PERLMOD tag is set to YES Doxygen will
# generate a Perl module file that captures the structure of
# the code including all documentation. Note that this
# feature is still experimental and incomplete at the
# moment.
GENERATE_PERLMOD = NO
# If the PERLMOD_LATEX tag is set to YES Doxygen will generate
# the necessary Makefile rules, Perl scripts and LaTeX code to be able
# to generate PDF and DVI output from the Perl module output.
PERLMOD_LATEX = NO
# If the PERLMOD_PRETTY tag is set to YES the Perl module output will be
# nicely formatted so it can be parsed by a human reader.
# This is useful
# if you want to understand what is going on.
# On the other hand, if this
# tag is set to NO the size of the Perl module output will be much smaller
# and Perl will parse it just the same.
PERLMOD_PRETTY = YES
# The names of the make variables in the generated doxyrules.make file
# are prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX.
# This is useful so different doxyrules.make files included by the same
# Makefile don't overwrite each other's variables.
PERLMOD_MAKEVAR_PREFIX =
#---------------------------------------------------------------------------
# Configuration options related to the preprocessor
#---------------------------------------------------------------------------
# If the ENABLE_PREPROCESSING tag is set to YES (the default) Doxygen will
# evaluate all C-preprocessor directives found in the sources and include
# files.
ENABLE_PREPROCESSING = YES
# If the MACRO_EXPANSION tag is set to YES Doxygen will expand all macro
# names in the source code. If set to NO (the default) only conditional
# compilation will be performed. Macro expansion can be done in a controlled
# way by setting EXPAND_ONLY_PREDEF to YES.
MACRO_EXPANSION = YES
# If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES
# then the macro expansion is limited to the macros specified with the
# PREDEFINED and EXPAND_AS_DEFINED tags.
EXPAND_ONLY_PREDEF = YES
# If the SEARCH_INCLUDES tag is set to YES (the default) the includes files
# in the INCLUDE_PATH (see below) will be search if a #include is found.
SEARCH_INCLUDES = YES
# The INCLUDE_PATH tag can be used to specify one or more directories that
# contain include files that are not input files but should be processed by
# the preprocessor.
INCLUDE_PATH =
# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard
# patterns (like *.h and *.hpp) to filter out the header-files in the
# directories. If left blank, the patterns specified with FILE_PATTERNS will
# be used.
INCLUDE_FILE_PATTERNS =
# The PREDEFINED tag can be used to specify one or more macro names that
# are defined before the preprocessor is started (similar to the -D option of
# gcc). The argument of the tag is a list of macros of the form: name
# or name=definition (no spaces). If the definition and the = are
# omitted =1 is assumed. To prevent a macro definition from being
# undefined via #undef or recursively expanded use the := operator
# instead of the = operator.
PREDEFINED = __DOXYGEN__ \
PROGMEM
# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then
# this tag can be used to specify a list of macro names that should be expanded.
# The macro definition that is found in the sources will be used.
# Use the PREDEFINED tag if you want to use a different macro definition.
EXPAND_AS_DEFINED =
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
# doxygen's preprocessor will remove all function-like macros that are alone
# on a line, have an all uppercase name, and do not end with a semicolon. Such
# function macros are typically used for boiler-plate code, and will confuse
# the parser if not removed.
SKIP_FUNCTION_MACROS = YES
#---------------------------------------------------------------------------
# Configuration::additions related to external references
#---------------------------------------------------------------------------
# The TAGFILES option can be used to specify one or more tagfiles.
# Optionally an initial location of the external documentation
# can be added for each tagfile. The format of a tag file without
# this location is as follows:
#
# TAGFILES = file1 file2 ...
# Adding location for the tag files is done as follows:
#
# TAGFILES = file1=loc1 "file2 = loc2" ...
# where "loc1" and "loc2" can be relative or absolute paths or
# URLs. If a location is present for each tag, the installdox tool
# does not have to be run to correct the links.
# Note that each tag file must have a unique name
# (where the name does NOT include the path)
# If a tag file is not located in the directory in which doxygen
# is run, you must also specify the path to the tagfile here.
TAGFILES =
# When a file name is specified after GENERATE_TAGFILE, doxygen will create
# a tag file that is based on the input files it reads.
GENERATE_TAGFILE =
# If the ALLEXTERNALS tag is set to YES all external classes will be listed
# in the class index. If set to NO only the inherited external classes
# will be listed.
ALLEXTERNALS = NO
# If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed
# in the modules index. If set to NO, only the current project's groups will
# be listed.
EXTERNAL_GROUPS = YES
# The PERL_PATH should be the absolute path and name of the perl script
# interpreter (i.e. the result of `which perl').
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
# If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will
# generate a inheritance diagram (in HTML, RTF and LaTeX) for classes with base
# or super classes. Setting the tag to NO turns the diagrams off. Note that
# this option is superseded by the HAVE_DOT option below. This is only a
# fallback. It is recommended to install and use dot, since it yields more
# powerful graphs.
CLASS_DIAGRAMS = NO
# You can define message sequence charts within doxygen comments using the \msc
# command. Doxygen will then run the mscgen tool (see
# http://www.mcternan.me.uk/mscgen/) to produce the chart and insert it in the
# documentation. The MSCGEN_PATH tag allows you to specify the directory where
# the mscgen tool resides. If left empty the tool is assumed to be found in the
# default search path.
MSCGEN_PATH =
# If set to YES, the inheritance and collaboration graphs will hide
# inheritance and usage relations if the target is undocumented
# or is not a class.
HIDE_UNDOC_RELATIONS = YES
# If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is
# available from the path. This tool is part of Graphviz, a graph visualization
# toolkit from AT&T and Lucent Bell Labs. The other options in this section
# have no effect if this option is set to NO (the default)
HAVE_DOT = NO
# By default doxygen will write a font called FreeSans.ttf to the output
# directory and reference it in all dot files that doxygen generates. This
# font does not include all possible unicode characters however, so when you need
# these (or just want a differently looking font) you can specify the font name
# using DOT_FONTNAME. You need need to make sure dot is able to find the font,
# which can be done by putting it in a standard location or by setting the
# DOTFONTPATH environment variable or by setting DOT_FONTPATH to the directory
# containing the font.
DOT_FONTNAME = FreeSans
# The DOT_FONTSIZE tag can be used to set the size of the font of dot graphs.
# The default size is 10pt.
DOT_FONTSIZE = 10
# By default doxygen will tell dot to use the output directory to look for the
# FreeSans.ttf font (which doxygen will put there itself). If you specify a
# different font using DOT_FONTNAME you can set the path where dot
# can find it using this tag.
DOT_FONTPATH =
# If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen
# will generate a graph for each documented class showing the direct and
# indirect inheritance relations. Setting this tag to YES will force the
# the CLASS_DIAGRAMS tag to NO.
CLASS_GRAPH = NO
# If the COLLABORATION_GRAPH and HAVE_DOT tags are set to YES then doxygen
# will generate a graph for each documented class showing the direct and
# indirect implementation dependencies (inheritance, containment, and
# class references variables) of the class with other documented classes.
COLLABORATION_GRAPH = NO
# If the GROUP_GRAPHS and HAVE_DOT tags are set to YES then doxygen
# will generate a graph for groups, showing the direct groups dependencies
GROUP_GRAPHS = NO
# If the UML_LOOK tag is set to YES doxygen will generate inheritance and
# collaboration diagrams in a style similar to the OMG's Unified Modeling
# Language.
UML_LOOK = NO
# If set to YES, the inheritance and collaboration graphs will show the
# relations between templates and their instances.
TEMPLATE_RELATIONS = NO
# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDE_GRAPH, and HAVE_DOT
# tags are set to YES then doxygen will generate a graph for each documented
# file showing the direct and indirect include dependencies of the file with
# other documented files.
INCLUDE_GRAPH = NO
# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDED_BY_GRAPH, and
# HAVE_DOT tags are set to YES then doxygen will generate a graph for each
# documented header file showing the documented files that directly or
# indirectly include this file.
INCLUDED_BY_GRAPH = NO
# If the CALL_GRAPH and HAVE_DOT options are set to YES then
# doxygen will generate a call dependency graph for every global function
# or class method. Note that enabling this option will significantly increase
# the time of a run. So in most cases it will be better to enable call graphs
# for selected functions only using the \callgraph command.
CALL_GRAPH = NO
# If the CALLER_GRAPH and HAVE_DOT tags are set to YES then
# doxygen will generate a caller dependency graph for every global function
# or class method. Note that enabling this option will significantly increase
# the time of a run. So in most cases it will be better to enable caller
# graphs for selected functions only using the \callergraph command.
CALLER_GRAPH = NO
# If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen
# will graphical hierarchy of all classes instead of a textual one.
GRAPHICAL_HIERARCHY = NO
# If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES
# then doxygen will show the dependencies a directory has on other directories
# in a graphical way. The dependency relations are determined by the #include
# relations between the files in the directories.
DIRECTORY_GRAPH = NO
# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
# generated by dot. Possible values are png, jpg, or gif
# If left blank png will be used.
DOT_IMAGE_FORMAT = png
# The tag DOT_PATH can be used to specify the path where the dot tool can be
# found. If left blank, it is assumed the dot tool can be found in the path.
DOT_PATH =
# The DOTFILE_DIRS tag can be used to specify one or more directories that
# contain dot files that are included in the documentation (see the
# \dotfile command).
DOTFILE_DIRS =
# The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of
# nodes that will be shown in the graph. If the number of nodes in a graph
# becomes larger than this value, doxygen will truncate the graph, which is
# visualized by representing a node as a red box. Note that doxygen if the
# number of direct children of the root node in a graph is already larger than
# DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note
# that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH.
DOT_GRAPH_MAX_NODES = 15
# The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the
# graphs generated by dot. A depth value of 3 means that only nodes reachable
# from the root by following a path via at most 3 edges will be shown. Nodes
# that lay further from the root node will be omitted. Note that setting this
# option to 1 or 2 may greatly reduce the computation time needed for large
# code bases. Also note that the size of a graph can be further restricted by
# DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction.
MAX_DOT_GRAPH_DEPTH = 2
# Set the DOT_TRANSPARENT tag to YES to generate images with a transparent
# background. This is disabled by default, because dot on Windows does not
# seem to support this out of the box. Warning: Depending on the platform used,
# enabling this option may lead to badly anti-aliased labels on the edges of
# a graph (i.e. they become hard to read).
DOT_TRANSPARENT = YES
# Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output
# files in one run (i.e. multiple -o and -T options on the command line). This
# makes dot run faster, but since only newer versions of dot (>1.8.10)
# support this, this feature is disabled by default.
DOT_MULTI_TARGETS = NO
# If the GENERATE_LEGEND tag is set to YES (the default) Doxygen will
# generate a legend page explaining the meaning of the various boxes and
# arrows in the dot generated graphs.
GENERATE_LEGEND = YES
# If the DOT_CLEANUP tag is set to YES (the default) Doxygen will
# remove the intermediate dot files that are used to generate
# the various graphs.
DOT_CLEANUP = YES

@ -0,0 +1,39 @@
OS ?= LINUX
#OS ?= WINDOWS
#OS ?= MACOSX
#OS ?= BSD
ifeq ($(OS), LINUX) # also works on FreeBSD
CC ?= gcc
CFLAGS ?= -O2 -Wall
teensy_loader_cli: teensy_loader_cli.c
$(CC) $(CFLAGS) -s -DUSE_LIBUSB -o teensy_loader_cli teensy_loader_cli.c -lusb
else ifeq ($(OS), WINDOWS)
CC = i586-mingw32msvc-gcc
CFLAGS ?= -O2 -Wall
teensy_loader_cli.exe: teensy_loader_cli.c
$(CC) $(CFLAGS) -s -DUSE_WIN32 -o teensy_loader_cli.exe teensy_loader_cli.c -lhid -lsetupapi
else ifeq ($(OS), MACOSX)
CC ?= gcc
SDK ?= /Developer/SDKs/MacOSX10.5.sdk
CFLAGS ?= -O2 -Wall
teensy_loader_cli: teensy_loader_cli.c
$(CC) $(CFLAGS) -DUSE_APPLE_IOKIT -isysroot $(SDK) -o teensy_loader_cli teensy_loader_cli.c -Wl,-syslibroot,$(SDK) -framework IOKit -framework CoreFoundation
else ifeq ($(OS), BSD) # works on NetBSD and OpenBSD
CC ?= gcc
CFLAGS ?= -O2 -Wall
teensy_loader_cli: teensy_loader_cli.c
$(CC) $(CFLAGS) -s -DUSE_UHID -o teensy_loader_cli teensy_loader_cli.c
endif
clean:
rm -f teensy_loader_cli teensy_loader_cli.exe

@ -0,0 +1,21 @@
OS ?= FreeBSD
#OS ?= NetBSD
#OS ?= OpenBSD
CFLAGS ?= -O2 -Wall
CC ?= gcc
.if $(OS) == "FreeBSD"
CFLAGS += -DUSE_LIBUSB
LIBS = -lusb
.elif $(OS) == "NetBSD" || $(OS) == "OpenBSD"
CFLAGS += -DUSE_UHID
LIBS =
.endif
teensy_loader_cli: teensy_loader_cli.c
$(CC) $(CFLAGS) -s -o teensy_loader_cli teensy_loader_cli.c $(LIBS)
clean:
rm -f teensy_loader_cli

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

@ -0,0 +1,960 @@
/* Teensy Loader, Command Line Interface
* Program and Reboot Teensy Board with HalfKay Bootloader
* http://www.pjrc.com/teensy/loader_cli.html
* Copyright 2008-2010, PJRC.COM, LLC
*
* You may redistribute this program and/or modify it under the terms
* of the GNU General Public License as published by the Free Software
* Foundation, version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/
*/
/* Want to incorporate this code into a proprietary application??
* Just email paul@pjrc.com to ask. Usually it's not a problem,
* but you do need to ask to use this code in any way other than
* those permitted by the GNU General Public License, version 3 */
/* For non-root permissions on ubuntu or similar udev-based linux
* http://www.pjrc.com/teensy/49-teensy.rules
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
void usage(void)
{
fprintf(stderr, "Usage: teensy_loader_cli -mmcu=<MCU> [-w] [-h] [-n] [-v] <file.hex>\n");
fprintf(stderr, "\t-w : Wait for device to appear\n");
fprintf(stderr, "\t-r : Use hard reboot if device not online\n");
fprintf(stderr, "\t-n : No reboot after programming\n");
fprintf(stderr, "\t-v : Verbose output\n");
fprintf(stderr, "\n<MCU> = atmega32u4 | at90usb162 | at90usb646 | at90usb1286\n");
fprintf(stderr, "\nFor more information, please visit:\n");
fprintf(stderr, "http://www.pjrc.com/teensy/loader_cli.html\n");
exit(1);
}
// USB Access Functions
int teensy_open(void);
int teensy_write(void *buf, int len, double timeout);
void teensy_close(void);
int hard_reboot(void);
// Intel Hex File Functions
int read_intel_hex(const char *filename);
int ihex_bytes_within_range(int begin, int end);
void ihex_get_data(int addr, int len, unsigned char *bytes);
// Misc stuff
int printf_verbose(const char *format, ...);
void delay(double seconds);
void die(const char *str, ...);
void parse_options(int argc, char **argv);
// options (from user via command line args)
int wait_for_device_to_appear = 0;
int hard_reboot_device = 0;
int reboot_after_programming = 1;
int verbose = 0;
int code_size = 0, block_size = 0;
const char *filename=NULL;
/****************************************************************/
/* */
/* Main Program */
/* */
/****************************************************************/
int main(int argc, char **argv)
{
unsigned char buf[260];
int num, addr, r, first_block=1, waited=0;
// parse command line arguments
parse_options(argc, argv);
if (!filename) {
fprintf(stderr, "Filename must be specified\n\n");
usage();
}
if (!code_size) {
fprintf(stderr, "MCU type must be specified\n\n");
usage();
}
printf_verbose("Teensy Loader, Command Line, Version 2.0\n");
// read the intel hex file
// this is done first so any error is reported before using USB
num = read_intel_hex(filename);
if (num < 0) die("error reading intel hex file \"%s\"", filename);
printf_verbose("Read \"%s\": %d bytes, %.1f%% usage\n",
filename, num, (double)num / (double)code_size * 100.0);
// open the USB device
while (1) {
if (teensy_open()) break;
if (hard_reboot_device) {
if (!hard_reboot()) die("Unable to find rebootor\n");
printf_verbose("Hard Reboot performed\n");
hard_reboot_device = 0; // only hard reboot once
wait_for_device_to_appear = 1;
}
if (!wait_for_device_to_appear) die("Unable to open device\n");
if (!waited) {
printf_verbose("Waiting for Teensy device...\n");
printf_verbose(" (hint: press the reset button)\n");
waited = 1;
}
delay(0.25);
}
printf_verbose("Found HalfKay Bootloader\n");
// if we waited for the device, read the hex file again
// perhaps it changed while we were waiting?
if (waited) {
num = read_intel_hex(filename);
if (num < 0) die("error reading intel hex file \"%s\"", filename);
printf_verbose("Read \"%s\": %d bytes, %.1f%% usage\n",
filename, num, (double)num / (double)code_size * 100.0);
}
// program the data
printf_verbose("Programming");
fflush(stdout);
for (addr = 0; addr < code_size; addr += block_size) {
if (addr > 0 && !ihex_bytes_within_range(addr, addr + block_size - 1)) {
// don't waste time on blocks that are unused,
// but always do the first one to erase the chip
continue;
}
printf_verbose(".");
if (code_size < 0x10000) {
buf[0] = addr & 255;
buf[1] = (addr >> 8) & 255;
} else {
buf[0] = (addr >> 8) & 255;
buf[1] = (addr >> 16) & 255;
}
ihex_get_data(addr, block_size, buf + 2);
r = teensy_write(buf, block_size + 2, first_block ? 3.0 : 0.25);
if (!r) die("error writing to Teensy\n");
first_block = 0;
}
printf_verbose("\n");
// reboot to the user's new code
if (reboot_after_programming) {
printf_verbose("Booting\n");
buf[0] = 0xFF;
buf[1] = 0xFF;
memset(buf + 2, 0, sizeof(buf) - 2);
teensy_write(buf, block_size + 2, 0.25);
}
teensy_close();
return 0;
}
/****************************************************************/
/* */
/* USB Access - libusb (Linux & FreeBSD) */
/* */
/****************************************************************/
#if defined(USE_LIBUSB)
// http://libusb.sourceforge.net/doc/index.html
#include <usb.h>
usb_dev_handle * open_usb_device(int vid, int pid)
{
struct usb_bus *bus;
struct usb_device *dev;
usb_dev_handle *h;
char buf[128];
int r;
usb_init();
usb_find_busses();
usb_find_devices();
//printf_verbose("\nSearching for USB device:\n");
for (bus = usb_get_busses(); bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) {
//printf_verbose("bus \"%s\", device \"%s\" vid=%04X, pid=%04X\n",
// bus->dirname, dev->filename,
// dev->descriptor.idVendor,
// dev->descriptor.idProduct
//);
if (dev->descriptor.idVendor != vid) continue;
if (dev->descriptor.idProduct != pid) continue;
h = usb_open(dev);
if (!h) {
printf_verbose("Found device but unable to open");
continue;
}
#ifdef LIBUSB_HAS_GET_DRIVER_NP
r = usb_get_driver_np(h, 0, buf, sizeof(buf));
if (r >= 0) {
r = usb_detach_kernel_driver_np(h, 0);
if (r < 0) {
usb_close(h);
printf_verbose("Device is in use by \"%s\" driver", buf);
continue;
}
}
#endif
// Mac OS-X - removing this call to usb_claim_interface() might allow
// this to work, even though it is a clear misuse of the libusb API.
// normally Apple's IOKit should be used on Mac OS-X
r = usb_claim_interface(h, 0);
if (r < 0) {
usb_close(h);
printf_verbose("Unable to claim interface, check USB permissions");
continue;
}
return h;
}
}
return NULL;
}
static usb_dev_handle *libusb_teensy_handle = NULL;
int teensy_open(void)
{
teensy_close();
libusb_teensy_handle = open_usb_device(0x16C0, 0x0478);
if (libusb_teensy_handle) return 1;
return 0;
}
int teensy_write(void *buf, int len, double timeout)
{
int r;
if (!libusb_teensy_handle) return 0;
r = usb_control_msg(libusb_teensy_handle, 0x21, 9, 0x0200, 0, (char *)buf,
len, (int)(timeout * 1000.0));
if (r < 0) return 0;
return 1;
}
void teensy_close(void)
{
if (!libusb_teensy_handle) return;
usb_release_interface(libusb_teensy_handle, 0);
usb_close(libusb_teensy_handle);
libusb_teensy_handle = NULL;
}
int hard_reboot(void)
{
usb_dev_handle *rebootor;
int r;
rebootor = open_usb_device(0x16C0, 0x0477);
if (!rebootor) return 0;
r = usb_control_msg(rebootor, 0x21, 9, 0x0200, 0, "reboot", 6, 100);
usb_release_interface(rebootor, 0);
usb_close(rebootor);
if (r < 0) return 0;
return 1;
}
#endif
/****************************************************************/
/* */
/* USB Access - Microsoft WIN32 */
/* */
/****************************************************************/
#if defined(USE_WIN32)
// http://msdn.microsoft.com/en-us/library/ms790932.aspx
#include <windows.h>
#include <setupapi.h>
#include <ddk/hidsdi.h>
#include <ddk/hidclass.h>
HANDLE open_usb_device(int vid, int pid)
{
GUID guid;
HDEVINFO info;
DWORD index, required_size;
SP_DEVICE_INTERFACE_DATA iface;
SP_DEVICE_INTERFACE_DETAIL_DATA *details;
HIDD_ATTRIBUTES attrib;
HANDLE h;
BOOL ret;
HidD_GetHidGuid(&guid);
info = SetupDiGetClassDevs(&guid, NULL, NULL, DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);
if (info == INVALID_HANDLE_VALUE) return NULL;
for (index=0; 1 ;index++) {
iface.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);
ret = SetupDiEnumDeviceInterfaces(info, NULL, &guid, index, &iface);
if (!ret) {
SetupDiDestroyDeviceInfoList(info);
break;
}
SetupDiGetInterfaceDeviceDetail(info, &iface, NULL, 0, &required_size, NULL);
details = (SP_DEVICE_INTERFACE_DETAIL_DATA *)malloc(required_size);
if (details == NULL) continue;
memset(details, 0, required_size);
details->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);
ret = SetupDiGetDeviceInterfaceDetail(info, &iface, details,
required_size, NULL, NULL);
if (!ret) {
free(details);
continue;
}
h = CreateFile(details->DevicePath, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL);
free(details);
if (h == INVALID_HANDLE_VALUE) continue;
attrib.Size = sizeof(HIDD_ATTRIBUTES);
ret = HidD_GetAttributes(h, &attrib);
if (!ret) {
CloseHandle(h);
continue;
}
if (attrib.VendorID != vid || attrib.ProductID != pid) {
CloseHandle(h);
continue;
}
SetupDiDestroyDeviceInfoList(info);
return h;
}
return NULL;
}
int write_usb_device(HANDLE h, void *buf, int len, int timeout)
{
static HANDLE event = NULL;
unsigned char tmpbuf[1040];
OVERLAPPED ov;
DWORD n, r;
if (len > sizeof(tmpbuf) - 1) return 0;
if (event == NULL) {
event = CreateEvent(NULL, TRUE, TRUE, NULL);
if (!event) return 0;
}
ResetEvent(&event);
memset(&ov, 0, sizeof(ov));
ov.hEvent = event;
tmpbuf[0] = 0;
memcpy(tmpbuf + 1, buf, len);
if (!WriteFile(h, tmpbuf, len + 1, NULL, &ov)) {
if (GetLastError() != ERROR_IO_PENDING) return 0;
r = WaitForSingleObject(event, timeout);
if (r == WAIT_TIMEOUT) {
CancelIo(h);
return 0;
}
if (r != WAIT_OBJECT_0) return 0;
}
if (!GetOverlappedResult(h, &ov, &n, FALSE)) return 0;
if (n <= 0) return 0;
return 1;
}
void print_win32_err(void)
{
char buf[256];
DWORD err;
err = GetLastError();
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, err,
0, buf, sizeof(buf), NULL);
printf("err %ld: %s\n", err, buf);
}
static HANDLE win32_teensy_handle = NULL;
int teensy_open(void)
{
teensy_close();
win32_teensy_handle = open_usb_device(0x16C0, 0x0478);
if (win32_teensy_handle) return 1;
return 0;
}
int teensy_write(void *buf, int len, double timeout)
{
int r;
if (!win32_teensy_handle) return 0;
r = write_usb_device(win32_teensy_handle, buf, len, (int)(timeout * 1000.0));
//if (!r) print_win32_err();
return r;
}
void teensy_close(void)
{
if (!win32_teensy_handle) return;
CloseHandle(win32_teensy_handle);
win32_teensy_handle = NULL;
}
int hard_reboot(void)
{
HANDLE rebootor;
int r;
rebootor = open_usb_device(0x16C0, 0x0477);
if (!rebootor) return 0;
r = write_usb_device(rebootor, "reboot", 6, 100);
CloseHandle(rebootor);
return r;
}
#endif
/****************************************************************/
/* */
/* USB Access - Apple's IOKit, Mac OS-X */
/* */
/****************************************************************/
#if defined(USE_APPLE_IOKIT)
// http://developer.apple.com/technotes/tn2007/tn2187.html
#include <IOKit/IOKitLib.h>
#include <IOKit/hid/IOHIDLib.h>
#include <IOKit/hid/IOHIDDevice.h>
struct usb_list_struct {
IOHIDDeviceRef ref;
int pid;
int vid;
struct usb_list_struct *next;
};
static struct usb_list_struct *usb_list=NULL;
static IOHIDManagerRef hid_manager=NULL;
void attach_callback(void *context, IOReturn r, void *hid_mgr, IOHIDDeviceRef dev)
{
CFTypeRef type;
struct usb_list_struct *n, *p;
int32_t pid, vid;
if (!dev) return;
type = IOHIDDeviceGetProperty(dev, CFSTR(kIOHIDVendorIDKey));
if (!type || CFGetTypeID(type) != CFNumberGetTypeID()) return;
if (!CFNumberGetValue((CFNumberRef)type, kCFNumberSInt32Type, &vid)) return;
type = IOHIDDeviceGetProperty(dev, CFSTR(kIOHIDProductIDKey));
if (!type || CFGetTypeID(type) != CFNumberGetTypeID()) return;
if (!CFNumberGetValue((CFNumberRef)type, kCFNumberSInt32Type, &pid)) return;
n = (struct usb_list_struct *)malloc(sizeof(struct usb_list_struct));
if (!n) return;
//printf("attach callback: vid=%04X, pid=%04X\n", vid, pid);
n->ref = dev;
n->vid = vid;
n->pid = pid;
n->next = NULL;
if (usb_list == NULL) {
usb_list = n;
} else {
for (p = usb_list; p->next; p = p->next) ;
p->next = n;
}
}
void detach_callback(void *context, IOReturn r, void *hid_mgr, IOHIDDeviceRef dev)
{
struct usb_list_struct *p, *tmp, *prev=NULL;
p = usb_list;
while (p) {
if (p->ref == dev) {
if (prev) {
prev->next = p->next;
} else {
usb_list = p->next;
}
tmp = p;
p = p->next;
free(tmp);
} else {
prev = p;
p = p->next;
}
}
}
void init_hid_manager(void)
{
CFMutableDictionaryRef dict;
IOReturn ret;
if (hid_manager) return;
hid_manager = IOHIDManagerCreate(kCFAllocatorDefault, kIOHIDOptionsTypeNone);
if (hid_manager == NULL || CFGetTypeID(hid_manager) != IOHIDManagerGetTypeID()) {
if (hid_manager) CFRelease(hid_manager);
printf_verbose("no HID Manager - maybe this is a pre-Leopard (10.5) system?\n");
return;
}
dict = CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
if (!dict) return;
IOHIDManagerSetDeviceMatching(hid_manager, dict);
CFRelease(dict);
IOHIDManagerScheduleWithRunLoop(hid_manager, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
IOHIDManagerRegisterDeviceMatchingCallback(hid_manager, attach_callback, NULL);
IOHIDManagerRegisterDeviceRemovalCallback(hid_manager, detach_callback, NULL);
ret = IOHIDManagerOpen(hid_manager, kIOHIDOptionsTypeNone);
if (ret != kIOReturnSuccess) {
IOHIDManagerUnscheduleFromRunLoop(hid_manager,
CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
CFRelease(hid_manager);
printf_verbose("Error opening HID Manager");
}
}
static void do_run_loop(void)
{
while (CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0, true) == kCFRunLoopRunHandledSource) ;
}
IOHIDDeviceRef open_usb_device(int vid, int pid)
{
struct usb_list_struct *p;
IOReturn ret;
init_hid_manager();
do_run_loop();
for (p = usb_list; p; p = p->next) {
if (p->vid == vid && p->pid == pid) {
ret = IOHIDDeviceOpen(p->ref, kIOHIDOptionsTypeNone);
if (ret == kIOReturnSuccess) return p->ref;
}
}
return NULL;
}
void close_usb_device(IOHIDDeviceRef dev)
{
struct usb_list_struct *p;
do_run_loop();
for (p = usb_list; p; p = p->next) {
if (p->ref == dev) {
IOHIDDeviceClose(dev, kIOHIDOptionsTypeNone);
return;
}
}
}
static IOHIDDeviceRef iokit_teensy_reference = NULL;
int teensy_open(void)
{
teensy_close();
iokit_teensy_reference = open_usb_device(0x16C0, 0x0478);
if (iokit_teensy_reference) return 1;
return 0;
}
int teensy_write(void *buf, int len, double timeout)
{
IOReturn ret;
// timeouts do not work on OS-X
// IOHIDDeviceSetReportWithCallback is not implemented
// even though Apple documents it with a code example!
// submitted to Apple on 22-sep-2009, problem ID 7245050
if (!iokit_teensy_reference) return 0;
ret = IOHIDDeviceSetReport(iokit_teensy_reference,
kIOHIDReportTypeOutput, 0, buf, len);
if (ret == kIOReturnSuccess) return 1;
return 0;
}
void teensy_close(void)
{
if (!iokit_teensy_reference) return;
close_usb_device(iokit_teensy_reference);
iokit_teensy_reference = NULL;
}
int hard_reboot(void)
{
IOHIDDeviceRef rebootor;
IOReturn ret;
rebootor = open_usb_device(0x16C0, 0x0477);
if (!rebootor) return 0;
ret = IOHIDDeviceSetReport(rebootor,
kIOHIDReportTypeOutput, 0, (uint8_t *)("reboot"), 6);
close_usb_device(rebootor);
if (ret == kIOReturnSuccess) return 1;
return 0;
}
#endif
/****************************************************************/
/* */
/* USB Access - BSD's UHID driver */
/* */
/****************************************************************/
#if defined(USE_UHID)
// Thanks to Todd T Fries for help getting this working on OpenBSD
// and to Chris Kuethe for the initial patch to use UHID.
#include <sys/ioctl.h>
#include <fcntl.h>
#include <dirent.h>
#include <dev/usb/usb.h>
#ifndef USB_GET_DEVICEINFO
#include <dev/usb/usb_ioctl.h>
#endif
int open_usb_device(int vid, int pid)
{
int r, fd;
DIR *dir;
struct dirent *d;
struct usb_device_info info;
char buf[256];
dir = opendir("/dev");
if (!dir) return -1;
while ((d = readdir(dir)) != NULL) {
if (strncmp(d->d_name, "uhid", 4) != 0) continue;
snprintf(buf, sizeof(buf), "/dev/%s", d->d_name);
fd = open(buf, O_RDWR);
if (fd < 0) continue;
r = ioctl(fd, USB_GET_DEVICEINFO, &info);
if (r < 0) {
// NetBSD: added in 2004
// OpenBSD: added November 23, 2009
// FreeBSD: missing (FreeBSD 8.0) - USE_LIBUSB works!
die("Error: your uhid driver does not support"
" USB_GET_DEVICEINFO, please upgrade!\n");
close(fd);
closedir(dir);
exit(1);
}
//printf("%s: v=%d, p=%d\n", buf, info.udi_vendorNo, info.udi_productNo);
if (info.udi_vendorNo == vid && info.udi_productNo == pid) {
closedir(dir);
return fd;
}
close(fd);
}
closedir(dir);
return -1;
}
static int uhid_teensy_fd = -1;
int teensy_open(void)
{
teensy_close();
uhid_teensy_fd = open_usb_device(0x16C0, 0x0478);
if (uhid_teensy_fd < 0) return 0;
return 1;
}
int teensy_write(void *buf, int len, double timeout)
{
int r;
// TODO: imeplement timeout... how??
r = write(uhid_teensy_fd, buf, len);
if (r == len) return 1;
return 0;
}
void teensy_close(void)
{
if (uhid_teensy_fd >= 0) {
close(uhid_teensy_fd);
uhid_teensy_fd = -1;
}
}
int hard_reboot(void)
{
int r, rebootor_fd;
rebootor_fd = open_usb_device(0x16C0, 0x0477);
if (rebootor_fd < 0) return 0;
r = write(rebootor_fd, "reboot", 6);
delay(0.1);
close(rebootor_fd);
if (r == 6) return 1;
return 0;
}
#endif
/****************************************************************/
/* */
/* Read Intel Hex File */
/* */
/****************************************************************/
// the maximum flash image size we can support
// chips with larger memory may be used, but only this
// much intel-hex data can be loaded into memory!
#define MAX_MEMORY_SIZE 0x10000
static unsigned char firmware_image[MAX_MEMORY_SIZE];
static unsigned char firmware_mask[MAX_MEMORY_SIZE];
static int end_record_seen=0;
static int byte_count;
static unsigned int extended_addr = 0;
static int parse_hex_line(char *line);
int read_intel_hex(const char *filename)
{
FILE *fp;
int i, lineno=0;
char buf[1024];
byte_count = 0;
end_record_seen = 0;
for (i=0; i<MAX_MEMORY_SIZE; i++) {
firmware_image[i] = 0xFF;
firmware_mask[i] = 0;
}
extended_addr = 0;
fp = fopen(filename, "r");
if (fp == NULL) {
//printf("Unable to read file %s\n", filename);
return -1;
}
while (!feof(fp)) {
*buf = '\0';
if (!fgets(buf, sizeof(buf), fp)) break;
lineno++;
if (*buf) {
if (parse_hex_line(buf) == 0) {
//printf("Warning, parse error line %d\n", lineno);
return -2;
}
}
if (end_record_seen) break;
if (feof(stdin)) break;
}
fclose(fp);
return byte_count;
}
/* from ihex.c, at http://www.pjrc.com/tech/8051/pm2_docs/intel-hex.html */
/* parses a line of intel hex code, stores the data in bytes[] */
/* and the beginning address in addr, and returns a 1 if the */
/* line was valid, or a 0 if an error occured. The variable */
/* num gets the number of bytes that were stored into bytes[] */
int
parse_hex_line(char *line)
{
int addr, code, num;
int sum, len, cksum, i;
char *ptr;
num = 0;
if (line[0] != ':') return 0;
if (strlen(line) < 11) return 0;
ptr = line+1;
if (!sscanf(ptr, "%02x", &len)) return 0;
ptr += 2;
if ((int)strlen(line) < (11 + (len * 2)) ) return 0;
if (!sscanf(ptr, "%04x", &addr)) return 0;
ptr += 4;
/* printf("Line: length=%d Addr=%d\n", len, addr); */
if (!sscanf(ptr, "%02x", &code)) return 0;
if (addr + extended_addr + len >= MAX_MEMORY_SIZE) return 0;
ptr += 2;
sum = (len & 255) + ((addr >> 8) & 255) + (addr & 255) + (code & 255);
if (code != 0) {
if (code == 1) {
end_record_seen = 1;
return 1;
}
if (code == 2 && len == 2) {
if (!sscanf(ptr, "%04x", &i)) return 1;
ptr += 4;
sum += ((i >> 8) & 255) + (i & 255);
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (((sum & 255) + (cksum & 255)) & 255) return 1;
extended_addr = i << 4;
//printf("ext addr = %05X\n", extended_addr);
}
if (code == 4 && len == 2) {
if (!sscanf(ptr, "%04x", &i)) return 1;
ptr += 4;
sum += ((i >> 8) & 255) + (i & 255);
if (!sscanf(ptr, "%02x", &cksum)) return 1;
if (((sum & 255) + (cksum & 255)) & 255) return 1;
extended_addr = i << 16;
//printf("ext addr = %08X\n", extended_addr);
}
return 1; // non-data line
}
byte_count += len;
while (num != len) {
if (sscanf(ptr, "%02x", &i) != 1) return 0;
i &= 255;
firmware_image[addr + extended_addr + num] = i;
firmware_mask[addr + extended_addr + num] = 1;
ptr += 2;
sum += i;
(num)++;
if (num >= 256) return 0;
}
if (!sscanf(ptr, "%02x", &cksum)) return 0;
if (((sum & 255) + (cksum & 255)) & 255) return 0; /* checksum error */
return 1;
}
int ihex_bytes_within_range(int begin, int end)
{
int i;
if (begin < 0 || begin >= MAX_MEMORY_SIZE ||
end < 0 || end >= MAX_MEMORY_SIZE) {
return 0;
}
for (i=begin; i<=end; i++) {
if (firmware_mask[i]) return 1;
}
return 0;
}
void ihex_get_data(int addr, int len, unsigned char *bytes)
{
int i;
if (addr < 0 || len < 0 || addr + len >= MAX_MEMORY_SIZE) {
for (i=0; i<len; i++) {
bytes[i] = 255;
}
return;
}
for (i=0; i<len; i++) {
if (firmware_mask[addr]) {
bytes[i] = firmware_image[addr];
} else {
bytes[i] = 255;
}
addr++;
}
}
/****************************************************************/
/* */
/* Misc Functions */
/* */
/****************************************************************/
int printf_verbose(const char *format, ...)
{
va_list ap;
int r;
va_start(ap, format);
if (verbose) {
r = vprintf(format, ap);
fflush(stdout);
return r;
}
return 0;
}
void delay(double seconds)
{
#ifdef WIN32
Sleep(seconds * 1000.0);
#else
usleep(seconds * 1000000.0);
#endif
}
void die(const char *str, ...)
{
va_list ap;
va_start(ap, str);
vfprintf(stderr, str, ap);
fprintf(stderr, "\n");
exit(1);
}
#if defined(WIN32)
#define strcasecmp stricmp
#endif
void parse_options(int argc, char **argv)
{
int i;
const char *arg;
for (i=1; i<argc; i++) {
arg = argv[i];
//printf("arg: %s\n", arg);
if (*arg == '-') {
if (strcmp(arg, "-w") == 0) {
wait_for_device_to_appear = 1;
} else if (strcmp(arg, "-r") == 0) {
hard_reboot_device = 1;
} else if (strcmp(arg, "-n") == 0) {
reboot_after_programming = 0;
} else if (strcmp(arg, "-v") == 0) {
verbose = 1;
} else if (strncmp(arg, "-mmcu=", 6) == 0) {
if (strcasecmp(arg+6, "at90usb162") == 0) {
code_size = 15872;
block_size = 128;
} else if (strcasecmp(arg+6, "atmega32u4") == 0) {
code_size = 32256;
block_size = 128;
} else if (strcasecmp(arg+6, "at90usb646") == 0) {
code_size = 64512;
block_size = 256;
} else if (strcasecmp(arg+6, "at90usb1286") == 0) {
code_size = 130048;
block_size = 256;
} else {
die("Unknown MCU type\n");
}
}
} else {
filename = argv[i];
}
}
}

@ -0,0 +1,703 @@
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, Jörg Wunsch, et al.
# >> Modified for use with the LUFA project. <<
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
# Dean Camera
# Opendous Inc.
# Denver Gingerich
#
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings below first!
#
# make doxygen = Generate DoxyGen documentation for the project (must have
# DoxyGen installed)
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# MCU name
MCU = at90usb1287
# Target board (see library "Board Types" documentation, NONE for projects not requiring
# LUFA board drivers). If USER is selected, put custom board drivers in a directory called
# "Board" inside the application directory.
BOARD = USBKEY
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_CLOCK below, as it is sourced by
# F_CLOCK after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 8000000
# Input clock frequency.
# This will define a symbol, F_CLOCK, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_CLOCK = $(F_CPU)
# Starting byte address of the bootloader, as a byte address - computed via the formula
# BOOT_START = ((FLASH_SIZE_KB - BOOT_SECTION_SIZE_KB) * 1024)
#
# Note that the bootloader size and start address given in AVRStudio is in words and not
# bytes, and so will need to be doubled to obtain the byte address needed by AVR-GCC.
FLASH_SIZE_KB = 128
BOOT_SECTION_SIZE_KB = 2
BOOT_START = 0x$(shell echo "obase=16; ($(FLASH_SIZE_KB) - $(BOOT_SECTION_SIZE_KB)) * 1024" | bc)
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# Target file name (without extension).
TARGET = BootloaderHID
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = .
# Path to the LUFA library
LUFA_PATH = ../..
# LUFA library compile-time options and predefined tokens
LUFA_OPTS = -D USB_DEVICE_ONLY
LUFA_OPTS += -D DEVICE_STATE_AS_GPIOR=0
LUFA_OPTS += -D ORDERED_EP_CONFIG
LUFA_OPTS += -D FIXED_CONTROL_ENDPOINT_SIZE=8
LUFA_OPTS += -D FIXED_NUM_CONFIGURATIONS=1
LUFA_OPTS += -D USE_RAM_DESCRIPTORS
LUFA_OPTS += -D USE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
LUFA_OPTS += -D NO_INTERNAL_SERIAL
LUFA_OPTS += -D NO_DEVICE_SELF_POWER
LUFA_OPTS += -D NO_DEVICE_REMOTE_WAKEUP
LUFA_OPTS += -D NO_SOF_EVENTS
#LUFA_OPTS += -D NO_BLOCK_SUPPORT
#LUFA_OPTS += -D NO_EEPROM_BYTE_SUPPORT
#LUFA_OPTS += -D NO_FLASH_BYTE_SUPPORT
#LUFA_OPTS += -D NO_LOCK_BYTE_WRITE_SUPPORT
# Create the LUFA source path variables by including the LUFA root makefile
include $(LUFA_PATH)/LUFA/makefile
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
Descriptors.c \
$(LUFA_SRC_USB) \
# List C++ source files here. (C dependencies are automatically generated.)
CPPSRC =
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS = $(LUFA_PATH)/
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=c99
# Place -D or -U options here for C sources
CDEFS = -DF_CPU=$(F_CPU)UL
CDEFS += -DF_CLOCK=$(F_CLOCK)UL
CDEFS += -DBOARD=BOARD_$(BOARD)
CDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CDEFS += $(LUFA_OPTS)
# Place -D or -U options here for ASM sources
ADEFS = -DF_CPU=$(F_CPU)
ADEFS += -DF_CLOCK=$(F_CLOCK)UL
ADEFS += -DBOARD=BOARD_$(BOARD)
ADEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
ADEFS += $(LUFA_OPTS)
# Place -D or -U options here for C++ sources
CPPDEFS = -DF_CPU=$(F_CPU)UL
CPPDEFS += -DF_CLOCK=$(F_CLOCK)UL
CPPDEFS += -DBOARD=BOARD_$(BOARD)
CPPDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CPPDEFS += $(LUFA_OPTS)
#CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS
#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char
CFLAGS += -funsigned-bitfields
CFLAGS += -ffunction-sections
CFLAGS += -fno-inline-small-functions
CFLAGS += -fpack-struct
CFLAGS += -fshort-enums
CFLAGS += -fno-strict-aliasing
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
#CFLAGS += -mshort-calls
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wundef
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(<:%.c=$(OBJDIR)/%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)
#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CPPFLAGS = -g$(DEBUG)
CPPFLAGS += $(CPPDEFS)
CPPFLAGS += -O$(OPT)
CPPFLAGS += -funsigned-char
CPPFLAGS += -funsigned-bitfields
CPPFLAGS += -fpack-struct
CPPFLAGS += -fshort-enums
CPPFLAGS += -fno-exceptions
CPPFLAGS += -Wall
CPPFLAGS += -Wundef
#CPPFLAGS += -mshort-calls
#CPPFLAGS += -fno-unit-at-a-time
#CPPFLAGS += -Wstrict-prototypes
#CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(<:%.cpp=$(OBJDIR)/%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = $(ADEFS) -Wa,-adhlns=$(<:%.S=$(OBJDIR)/%.lst),-gstabs,--listing-cont-lines=100
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
# List any extra directories to look for libraries here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRALIBDIRS =
#---------------- External Memory Options ----------------
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
EXTMEMOPTS =
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += -Wl,--section-start=.text=$(BOOT_START)
LDFLAGS += -Wl,--relax
LDFLAGS += -Wl,--gc-sections
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x
#---------------- Programming Options (avrdude) ----------------
# Programming hardware
# Type: avrdude -c ?
# to get a full listing.
#
AVRDUDE_PROGRAMMER = jtagmkII
# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = usb
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)
#---------------- Debugging Options ----------------
# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)
# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight
# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr
# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit
# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1
# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242
# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost
#============================================================================
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
AR = avr-ar rcs
NM = avr-nm
AVRDUDE = avrdude
REMOVE = rm -f
REMOVEDIR = rm -rf
COPY = cp
WINSHELL = cmd
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling C:
MSG_COMPILING_CPP = Compiling C++:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
# Define all object files.
OBJ = $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
# Define all listing files.
LST = $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
# Compiler flags to generate dependency files.
GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_CPPFLAGS = -mmcu=$(MCU) -I. -x c++ $(CPPFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: begin gccversion sizebefore build sizeafter end
# Change the build target to build a HEX file or a library.
build: elf hex eep lss sym
#build: lib
elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
end:
@echo $(MSG_END)
@echo
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) $(MCU_FLAG) $(FORMAT_FLAG) $(TARGET).elf
MCU_FLAG = $(shell $(SIZE) --help | grep -- --mcu > /dev/null && echo --mcu=$(MCU) )
FORMAT_FLAG = $(shell $(SIZE) --help | grep -- --format=.*avr > /dev/null && echo --format=avr )
sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi
sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi
# Display compiler version information.
gccversion :
@$(CC) --version
# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)
debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause
else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT = $(OBJCOPY) --debugging
COFFCONVERT += --change-section-address .data-0x800000
COFFCONVERT += --change-section-address .bss-0x800000
COFFCONVERT += --change-section-address .noinit-0x800000
COFFCONVERT += --change-section-address .eeprom-0x810000
coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom -R .fuse -R .lock $< $@
%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0
# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -S -z $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@
# Create library from object files.
.SECONDARY : $(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@echo
@echo $(MSG_CREATING_LIBRARY) $@
$(AR) $@ $(OBJ)
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
$(OBJDIR)/%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create object files from C++ source files.
$(OBJDIR)/%.o : %.cpp
@echo
@echo $(MSG_COMPILING_CPP) $<
$(CC) -c $(ALL_CPPFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C++ source files.
%.s : %.cpp
$(CC) -S $(ALL_CPPFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
$(OBJDIR)/%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@
# Target: clean project.
clean: begin clean_list end
clean_list :
@echo
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVEDIR) .dep
doxygen:
@echo Generating Project Documentation...
@doxygen Doxygen.conf
@echo Documentation Generation Complete.
clean_doxygen:
rm -rf Documentation
# Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null)
# Include the dependency files.
-include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)
# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff doxygen clean \
clean_list clean_doxygen program debug gdb-config

@ -14,13 +14,17 @@
# code.
all:
$(MAKE) -C DFU clean
$(MAKE) -C DFU all
$(MAKE) -C CDC clean
$(MAKE) -C CDC all
$(MAKE) -C HID clean
$(MAKE) -C HID all
$(MAKE) -C DFU clean
$(MAKE) -C DFU all
%:
$(MAKE) -C DFU $@
$(MAKE) -C CDC $@
$(MAKE) -C DFU $@
$(MAKE) -C HID $@

File diff suppressed because one or more lines are too long

@ -25,6 +25,7 @@
* - Added ability to write protect Mass Storage disk write operations from the host OS
* - Added new MIDIToneGenerator project
* - Added new KeyboardMouseMultiReport Device ClassDriver demo
* - Added HID class bootloader, compatible with a modified version of the command line Teensy loader from PJRC.com
*
* <b>Changed:</b>
* - Core:

@ -313,7 +313,7 @@
* 0x2067
* </td>
* <td>
* <i>Currently Unallocated</i>
* HID Class Bootloader
* </td>
* </tr>
*

Loading…
Cancel
Save