#include "quantum.h" __attribute__ ((weak)) void matrix_init_kb(void) {} __attribute__ ((weak)) void matrix_scan_kb(void) {} __attribute__ ((weak)) bool process_action_kb(keyrecord_t *record) { return true; } __attribute__ ((weak)) void leader_start(void) {} __attribute__ ((weak)) void leader_end(void) {} #ifdef AUDIO_ENABLE uint8_t starting_note = 0x0C; int offset = 0; bool music_activated = false; #endif // Leader key stuff bool leading = false; uint16_t leader_time = 0; uint16_t leader_sequence[3] = {0, 0, 0}; uint8_t leader_sequence_size = 0; // Chording stuff #define CHORDING_MAX 4 bool chording = false; uint8_t chord_keys[CHORDING_MAX] = {0}; uint8_t chord_key_count = 0; uint8_t chord_key_down = 0; bool keys_chord(uint8_t keys[]) { uint8_t keys_size = sizeof(keys)/sizeof(keys[0]); bool pass = true; uint8_t in = 0; for (uint8_t i = 0; i < chord_key_count; i++) { bool found = false; for (uint8_t j = 0; j < keys_size; j++) { if (chord_keys[i] == (keys[j] & 0xFF)) { in++; // detects key in chord found = true; break; } } if (found) continue; if (chord_keys[i] != 0) { pass = false; // makes sure rest are blank } } return (pass && (in == keys_size)); } bool process_action_quantum(keyrecord_t *record) { /* This gets the keycode from the key pressed */ keypos_t key = record->event.key; uint16_t keycode; #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS) uint8_t layer; if (record->event.pressed) { layer = layer_switch_get_layer(key); update_source_layers_cache(key, layer); } else { layer = read_source_layers_cache(key); } keycode = keymap_key_to_keycode(layer, key); #else keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key); #endif #ifdef AUDIO_ENABLE if (music_activated) { if (record->event.pressed) { play_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF); } else { stop_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row))); } if (keycode < 0xFF) // ignores all normal keycodes, but lets RAISE, LOWER, etc through return false; } #endif #ifndef DISABLE_LEADER // Leader key set-up if (record->event.pressed) { if (!leading && keycode == KC_LEAD) { leader_start(); leading = true; leader_time = timer_read(); leader_sequence_size = 0; leader_sequence[0] = 0; leader_sequence[1] = 0; leader_sequence[2] = 0; return false; } if (leading && timer_elapsed(leader_time) < LEADER_TIMEOUT) { leader_sequence[leader_sequence_size] = keycode; leader_sequence_size++; return false; } } #endif #define DISABLE_CHORDING #ifndef DISABLE_CHORDING if (keycode >= 0x5700 && keycode <= 0x57FF) { if (record->event.pressed) { if (!chording) { chording = true; for (uint8_t i = 0; i < CHORDING_MAX; i++) chord_keys[i] = 0; chord_key_count = 0; chord_key_down = 0; } chord_keys[chord_key_count] = (keycode & 0xFF); chord_key_count++; chord_key_down++; return false; } else { if (chording) { chord_key_down--; if (chord_key_down == 0) { chording = false; // Chord Dictionary if (keys_chord((uint8_t[]){KC_ENTER, KC_SPACE})) { register_code(KC_A); unregister_code(KC_A); return false; } for (uint8_t i = 0; i < chord_key_count; i++) { register_code(chord_keys[i]); unregister_code(chord_keys[i]); return false; } } } } } #endif return process_action_kb(record); } void matrix_init_quantum() { matrix_init_kb(); } void matrix_scan_quantum() { matrix_scan_kb(); }