/* SID.cpp - Atmega8 MOS6581 SID Emulator Copyright (c) 2007 Christoph Haberer, christoph(at)roboterclub-freiburg.de Arduino Library Conversion by Mario Patino, cybernesto(at)gmail.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /************************************************************************ Atmega8 MOS6581 SID Emulator SID = Sound Interface Device This program tries to emulate the sound chip SID of the famous historical C64 Commodore computer. The SID emulator includes all registers of the original SID, but some functions may not be implemented yet. If you want to program the SID registers to generate your own sound, please refer to the MOS6581 datasheet. The emulator tries to be as compatible as possible. In the main program there is an interrupt routine which sets the ouptut values for the PWM-Output at 62.5kHz. Therefore the high frequency noise of the PWM should not be audible to normal people. The output is calculated with a 16kHz sample frequency to save processing cycles. The envelope generators are updated every 1ms. The amplitude value is output as an 8Bit PWM value. The PWM-Output may be directly connected to an audio amplifier. ************************************************************************ Hardware processor: ATMEGA8, ATMEGA168 clock: 16MHz Crystal PIN15 PB1/OC1A 8Bit PWM sound output PIN19 PB0 test LED ***************************************************************************/ #include #include "SID.h" // attack, decay, release envelope timings const static uint16_t AttackRate[16]={2,4,16,24,38,58,68,80,100,250,500,800,1000,3000,5000,8000}; const static uint16_t DecayReleaseRate[16]={6,24,48,72,114,168,204,240,300,750,1500,2400,3000,9000,15000,24000}; static uint8_t output; static Sid_t Sid; static Oscillator_t osc[OSCILLATORS]; void initialize() { // TIMER1 used to generate sound output // TIMER1: Fast PWM 8-bit TCCR1A = (1 << WGM10) | (1 << COM1A1) ; // TIMER1: no prescaling TCCR1B = (1 << WGM12) | (1 << CS10); #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) // TIMER2 used to generate sample and ms interrupts // TIMER2: Normal Mode TCCR2 = 0; // TIMER2: clock/8 prescaling TCCR2 |= (1 << CS21); // TIMER2: set compare value to generate a 16kHz sample rate OCR2 = SAMPLERATECOUNT; // interrupt mask register: enable timer2 OCR2A interrupt TIMSK = (1 << OCIE2); // interrupt mask register: enable timer1 overflow TIMSK |= (1 << TOIE1); #else // TIMER2 used to generate sample and ms interrupts // TIMER2: Normal Mode TCCR2A = 0 ; // TIMER2: clock/8 prescaling TCCR2B = (1 << CS21); // TIMER2: set compare value to generate a 16kHz sample rate OCR2A = SAMPLERATECOUNT; // interrupt mask register: enable timer2 OCR2A interrupt TIMSK2 = (1 << OCIE2A); // interrupt mask register: enable timer1 overflow TIMSK1 = (1 << TOIE1); #endif } static int8_t wave(Voice_t *voice, uint16_t phase) { int8_t out; uint8_t n = phase >> 8; uint8_t wavetype = voice->ControlReg; if(wavetype & SAWTOOTH) { out = n - 128; } if(wavetype & TRIANGLE) { if(n&0x80) out = ((n^0xFF)<<1)-128; else out = (n<<1)-128; } if(wavetype & RECTANGLE) { if(n > (voice->PW >> 4)) // SID has 12Bit pwm, here we use only 8Bit out = 127; else out = -127; } return out; } static void waveforms() { static uint16_t phase[3], sig[3]; static int16_t temp,temp1; static uint8_t i,j,k; static uint16_t noise = 0xACE1; static uint8_t noise8; static uint16_t tempphase; // noise generator based on Galois LFSR noise = (noise >> 1) ^ (-(noise & 1) & 0xB400u); noise8 = noise>>8; for(i = 0; i< 3; i++) { j = (i == 0 ? 2 : i - 1); tempphase=phase[i]+osc[i].freq_coefficient; //0.88us if(Sid.block.voice[i].ControlReg&NOISE) { if((tempphase^phase[i])&0x4000) sig[i]=noise8*osc[i].envelope; } else { if(Sid.block.voice[i].ControlReg&RINGMOD) { if(phase[j]&0x8000) sig[i]=osc[i].envelope*-wave(&Sid.block.voice[i],phase[i]); else sig[i]=osc[i].envelope*wave(&Sid.block.voice[i],phase[i]); } else { if(Sid.block.voice[i].ControlReg&SYNC) { if(tempphase < phase[j]) phase[i] = 0; } else sig[i]=osc[i].envelope*wave(&Sid.block.voice[i],phase[i]); //2.07us } } phase[i]=tempphase; } // voice filter selection temp=0; // direct output variable temp1=0; // filter output variable if(Sid.block.RES_Filt&FILT1) temp1+=sig[0]; else temp+=sig[0]; if(Sid.block.RES_Filt&FILT2) temp1+=sig[1]; else temp+=sig[1]; if(Sid.block.RES_Filt&FILT3) temp1+=sig[2]; else if(!(Sid.block.Mode_Vol&VOICE3OFF))temp+=sig[2]; // voice 3 with special turn off bit //filterOutput = IIR2((struct IIR_filter*)&filter04_06, filterInput); //IIR2(filter04_06, temp1); k=(temp>>8)+128; k+=temp1>>10; // no real filter implemeted yet output = k; // Output to PWM } static void envelopes() { uint8_t n; uint8_t controll_regadr[3]={4,11,18}; // if gate is ONE then the attack,decay,sustain cycle begins // if gate switches to zero the sound decays for(n=0;nMAXLEVEL) { osc[n].amp=MAXLEVEL; osc[n].attackdecay_flag=false; // if level reached, then switch to decay } } else // decay cycle { if(osc[n].amp>osc[n].level_sustain) { osc[n].amp-=osc[n].m_decay; if(osc[n].amp0) { osc[n].amp-=osc[n].m_release; if(osc[n].amp<0) osc[n].amp=0; } } osc[n].envelope=osc[n].amp>>8; } } /************************************************************************ interrupt routine timer 1 overflow - set PWM output ************************************************************************/ ISR(TIMER1_OVF_vect) { OCR1A = output; // Output to PWM } /************************************************************************ interrupt routine timer 2 16kHz - calculate waverform phases - calculate waveforms - calculate attack decay release (1kHz) ************************************************************************/ #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) ISR(TIMER2_COMP_vect) { static uint8_t mscounter = 0; OCR2 += SAMPLERATECOUNT; // Output to PWM waveforms(); //~22us if(mscounter++ >= MSCOUNT) { envelopes(); //~16us mscounter = 0; } } #else ISR(TIMER2_COMPA_vect) { static uint8_t mscounter = 0; OCR2A += SAMPLERATECOUNT; // Output to PWM waveforms(); //~36us if(mscounter++ >= MSCOUNT) { envelopes(); //~16us mscounter = 0; } } #endif // Constructor ///////////////////////////////////////////////////////////////// // Function that handles the creation and setup of instances void SID::begin() { pinMode(9, OUTPUT); initialize(); //initialize SID-registers Sid.sidregister[6]=0xF0; Sid.sidregister[13]=0xF0; Sid.sidregister[20]=0xF0; // set all amplitudes to zero for(int n=0;nNUMREGISTERS-1) return 0; Sid.sidregister[regnum]=value; switch(regnum) { //voice1 case 1: osc[0].freq_coefficient=((uint16_t)Sid.sidregister[0]+((uint16_t)Sid.sidregister[1]<<8))>>2; break; case 5: setenvelope(&Sid.block.voice[0]);break; case 6: setenvelope(&Sid.block.voice[0]);break; //voice2 case 8: osc[1].freq_coefficient=((uint16_t)Sid.sidregister[7]+((uint16_t)Sid.sidregister[8]<<8))>>2; break; case 12: setenvelope(&Sid.block.voice[1]);break; case 13: setenvelope(&Sid.block.voice[1]);break; //voice3 case 15: osc[2].freq_coefficient=((uint16_t)Sid.sidregister[14]+((uint16_t)Sid.sidregister[15]<<8))>>2; break; case 19: setenvelope(&Sid.block.voice[2]);break; case 20: setenvelope(&Sid.block.voice[2]);break; } return 1; } /************************************************************************ uint8_t get_sidregister(uint8_t regnum) The registers of the virtual SID are read by this routine. If an invalid register is requested it returns zero. ************************************************************************/ uint8_t SID::get_register(uint8_t regnum) { if(regnum>NUMREGISTERS-1) return 0; return Sid.sidregister[regnum]; } // Private Methods ///////////////////////////////////////////////////////////// // Functions only available to other functions in this library uint8_t SID::get_wavenum(Voice_t *voice) { uint8_t n; if(voice==&Sid.block.voice[0]) n=0; if(voice==&Sid.block.voice[1]) n=1; if(voice==&Sid.block.voice[2]) n=2; return n; } void SID::setfreq(Voice_t *voice,uint16_t freq) { uint32_t templong; uint8_t n; n=get_wavenum(voice); templong=freq; osc[n].freq_coefficient=templong*4000/SAMPLEFREQ; } void SID::setenvelope(Voice_t *voice) { uint8_t n; n=get_wavenum(voice); osc[n].attackdecay_flag=true; osc[n].level_sustain=(voice->SustainRelease>>4)*SUSTAINFACTOR; osc[n].m_attack=MAXLEVEL/AttackRate[voice->AttackDecay>>4]; osc[n].m_decay=(MAXLEVEL-osc[n].level_sustain*SUSTAINFACTOR)/DecayReleaseRate[voice->AttackDecay&0x0F]; osc[n].m_release=(osc[n].level_sustain)/DecayReleaseRate[voice->SustainRelease&0x0F]; }