/* Copyright 2016 Jack Humbert * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "audio.h" #include "ch.h" #include "hal.h" #include #include "print.h" #include "keymap.h" #include "eeconfig.h" // ----------------------------------------------------------------------------- int voices = 0; int voice_place = 0; float frequency = 0; float frequency_alt = 0; int volume = 0; long position = 0; float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; bool sliding = false; float place = 0; uint8_t * sample; uint16_t sample_length = 0; bool playing_notes = false; bool playing_note = false; float note_frequency = 0; float note_length = 0; uint8_t note_tempo = TEMPO_DEFAULT; float note_timbre = TIMBRE_DEFAULT; uint16_t note_position = 0; float (* notes_pointer)[][2]; uint16_t notes_count; bool notes_repeat; bool note_resting = false; uint16_t current_note = 0; uint8_t rest_counter = 0; #ifdef VIBRATO_ENABLE float vibrato_counter = 0; float vibrato_strength = .5; float vibrato_rate = 0.125; #endif float polyphony_rate = 0; static bool audio_initialized = false; audio_config_t audio_config; uint16_t envelope_index = 0; bool glissando = true; #ifndef STARTUP_SONG #define STARTUP_SONG SONG(STARTUP_SOUND) #endif float startup_song[][2] = STARTUP_SONG; #define DAC_BUFFER_SIZE 100U #ifndef DAC_SAMPLE_MAX #define DAC_SAMPLE_MAX 4095U #endif #define DAC_SAMPLE_RATE 30000U GPTConfig gpt7cfg1 = { .frequency = DAC_SAMPLE_RATE, .callback = NULL, .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ .dier = 0U }; static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = { // First half is max, second half is 0 // [0 ... DAC_BUFFER_SIZE/2-1] = DAC_SAMPLE_MAX, // [DAC_BUFFER_SIZE/2 ... DAC_BUFFER_SIZE -1] = 0, // max 4095 0x800,0x880,0x900,0x97f,0x9fd,0xa78,0xaf1,0xb67, 0xbda,0xc49,0xcb3,0xd19,0xd79,0xdd4,0xe29,0xe78, 0xec0,0xf02,0xf3c,0xf6f,0xf9b,0xfbf,0xfdb,0xfef, 0xffb,0xfff,0xffb,0xfef,0xfdb,0xfbf,0xf9b,0xf6f, 0xf3c,0xf02,0xec0,0xe78,0xe29,0xdd4,0xd79,0xd19, 0xcb3,0xc49,0xbda,0xb67,0xaf1,0xa78,0x9fd,0x97f, 0x900,0x880,0x800,0x77f,0x6ff,0x680,0x602,0x587, 0x50e,0x498,0x425,0x3b6,0x34c,0x2e6,0x286,0x22b, 0x1d6,0x187,0x13f,0xfd,0xc3,0x90,0x64,0x40, 0x24,0x10,0x4,0x0,0x4,0x10,0x24,0x40, 0x64,0x90,0xc3,0xfd,0x13f,0x187,0x1d6,0x22b, 0x286,0x2e6,0x34c,0x3b6,0x425,0x498,0x50e,0x587, 0x602,0x680,0x6ff,0x77f }; dacsample_t dac_buffer_lr[1] = { DAC_SAMPLE_MAX / 2 }; float dac_if[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; /* * DAC streaming callback. */ static void end_cb1(DACDriver * dacp, dacsample_t * samples, size_t pos) { (void)dacp; (void)pos; //for (uint8_t i = 0; i < DAC_BUFFER_SIZE; i++) { //samples[0] = (dac_buffer[dac_i] + dac_buffer[dac_j]) / 2; //} uint16_t sample_sum = 0; for (int i = 0; i < voices; i++) { dac_if[i] = dac_if[i] + ((frequencies[i]*(float)DAC_BUFFER_SIZE)/(float)DAC_SAMPLE_RATE*1.5); while(dac_if[i] >= DAC_BUFFER_SIZE) dac_if[i] = dac_if[i] - DAC_BUFFER_SIZE; sample_sum += dac_buffer[(uint8_t)round(dac_if[i]) % DAC_BUFFER_SIZE] / voices; } if (voices > 0) { samples[0] = sample_sum; } else { samples[0] = DAC_SAMPLE_MAX; } } /* * DAC error callback. */ static void error_cb1(DACDriver *dacp, dacerror_t err) { (void)dacp; (void)err; chSysHalt("DAC failure"); } static const DACConfig dac1cfg1 = { .init = DAC_SAMPLE_MAX, .datamode = DAC_DHRM_12BIT_RIGHT }; static const DACConversionGroup dacgrpcfg1 = { .num_channels = 1U, .end_cb = end_cb1, .error_cb = error_cb1, .trigger = DAC_TRG(0) }; void audio_init() { if (audio_initialized) { return; } // Check EEPROM #if defined(STM32_EEPROM_ENABLE) || defined(PROTOCOL_ARM_ATSAM) || defined(EEPROM_SIZE) if (!eeconfig_is_enabled()) { eeconfig_init(); } audio_config.raw = eeconfig_read_audio(); #else // ARM EEPROM audio_config.enable = true; #ifdef AUDIO_CLICKY_ON audio_config.clicky_enable = true; #endif #endif // ARM EEPROM palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG ); // palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG ); palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL ); palSetPad(GPIOA, 4); // dacStart(&DACD1, &dac1cfg1); // dacStartConversion(&DACD1, &dacgrpcfg1, dac_buffer_lr, 1); dacStart(&DACD2, &dac1cfg1); dacStartConversion(&DACD2, &dacgrpcfg1, dac_buffer_lr, 1); gptStart(&GPTD6, &gpt7cfg1); gptStartContinuous(&GPTD6, 2U); // gptStart(&GPTD7, &gpt7cfg1); // gptStartContinuous(&GPTD7, 2U); audio_initialized = true; if (audio_config.enable) { PLAY_SONG(startup_song); } else { stop_all_notes(); } } void stop_all_notes() { dprintf("audio stop all notes"); if (!audio_initialized) { audio_init(); } voices = 0; gptStopTimer(&GPTD8); playing_notes = false; playing_note = false; frequency = 0; frequency_alt = 0; volume = 0; for (uint8_t i = 0; i < 8; i++) { frequencies[i] = 0; volumes[i] = 0; } } void stop_note(float freq) { dprintf("audio stop note freq=%d", (int)freq); if (playing_note) { if (!audio_initialized) { audio_init(); } for (int i = 7; i >= 0; i--) { if (frequencies[i] == freq) { frequencies[i] = 0; volumes[i] = 0; for (int j = i; (j < 7); j++) { frequencies[j] = frequencies[j+1]; frequencies[j+1] = 0; volumes[j] = volumes[j+1]; volumes[j+1] = 0; } break; } } voices--; if (voices < 0) { voices = 0; } if (voice_place >= voices) { voice_place = 0; } if (voices == 0) { frequency = 0; frequency_alt = 0; volume = 0; playing_note = false; } } } #ifdef VIBRATO_ENABLE float mod(float a, int b) { float r = fmod(a, b); return r < 0 ? r + b : r; } float vibrato(float average_freq) { #ifdef VIBRATO_STRENGTH_ENABLE float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength); #else float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter]; #endif vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0/average_freq)), VIBRATO_LUT_LENGTH); return vibrated_freq; } #endif void play_note(float freq, int vol) { dprintf("audio play note freq=%d vol=%d", (int)freq, vol); if (!audio_initialized) { audio_init(); } if (audio_config.enable && voices < 8) { // Cancel notes if notes are playing if (playing_notes) { stop_all_notes(); } playing_note = true; envelope_index = 0; if (freq > 0) { frequencies[voices] = freq; volumes[voices] = vol; voices++; } } } void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat) { if (!audio_initialized) { audio_init(); } if (audio_config.enable) { // Cancel note if a note is playing if (playing_note) { stop_all_notes(); } playing_notes = true; notes_pointer = np; notes_count = n_count; notes_repeat = n_repeat; place = 0; current_note = 0; note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100); note_position = 0; } } bool is_playing_notes(void) { return playing_notes; } bool is_audio_on(void) { return (audio_config.enable != 0); } void audio_toggle(void) { audio_config.enable ^= 1; eeconfig_update_audio(audio_config.raw); if (audio_config.enable) { audio_on_user(); } } void audio_on(void) { audio_config.enable = 1; eeconfig_update_audio(audio_config.raw); audio_on_user(); } void audio_off(void) { stop_all_notes(); audio_config.enable = 0; eeconfig_update_audio(audio_config.raw); } #ifdef VIBRATO_ENABLE // Vibrato rate functions void set_vibrato_rate(float rate) { vibrato_rate = rate; } void increase_vibrato_rate(float change) { vibrato_rate *= change; } void decrease_vibrato_rate(float change) { vibrato_rate /= change; } #ifdef VIBRATO_STRENGTH_ENABLE void set_vibrato_strength(float strength) { vibrato_strength = strength; } void increase_vibrato_strength(float change) { vibrato_strength *= change; } void decrease_vibrato_strength(float change) { vibrato_strength /= change; } #endif /* VIBRATO_STRENGTH_ENABLE */ #endif /* VIBRATO_ENABLE */ // Polyphony functions void set_polyphony_rate(float rate) { polyphony_rate = rate; } void enable_polyphony() { polyphony_rate = 5; } void disable_polyphony() { polyphony_rate = 0; } void increase_polyphony_rate(float change) { polyphony_rate *= change; } void decrease_polyphony_rate(float change) { polyphony_rate /= change; } // Timbre function void set_timbre(float timbre) { note_timbre = timbre; } // Tempo functions void set_tempo(uint8_t tempo) { note_tempo = tempo; } void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; } void increase_tempo(uint8_t tempo_change) { if (note_tempo - tempo_change < 10) { note_tempo = 10; } else { note_tempo -= tempo_change; } }