#include #include #include "config.h" #include "matrix.h" #include "quantum.h" #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifdef RGBLIGHT_ENABLE # include "rgblight.h" #endif #ifdef BACKLIGHT_ENABLE # include "backlight.h" extern backlight_config_t backlight_config; #endif #if defined(USE_I2C) || defined(EH) # include "i2c_master.h" # include "i2c_slave.h" typedef struct _I2C_slave_buffer_t { uint8_t backlit_level; #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) rgblight_syncinfo_t rgblight_sync; #endif matrix_row_t smatrix[ROWS_PER_HAND]; } I2C_slave_buffer_t; static I2C_slave_buffer_t * const i2c_buffer = (I2C_slave_buffer_t *)i2c_slave_reg; # define I2C_BACKLIT_START offsetof(I2C_slave_buffer_t, backlit_level) # define I2C_RGB_START offsetof(I2C_slave_buffer_t, rgblight_sync) # define I2C_KEYMAP_START offsetof(I2C_slave_buffer_t, smatrix) # define TIMEOUT 100 # ifndef SLAVE_I2C_ADDRESS # define SLAVE_I2C_ADDRESS 0x32 # endif // Get rows from other half over i2c bool transport_master(matrix_row_t matrix[]) { i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, sizeof(i2c_buffer->smatrix), TIMEOUT); // write backlight info # ifdef BACKLIGHT_ENABLE static uint8_t prev_level = ~0; uint8_t level = get_backlight_level(); if (level != prev_level) { if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIT_START, (void *)&level, sizeof(level), TIMEOUT) >= 0) { prev_level = level; } } # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) if (rgblight_get_change_flags()) { rgblight_syncinfo_t rgblight_sync; rgblight_get_syncinfo(&rgblight_sync); if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgblight_sync, sizeof(rgblight_sync), TIMEOUT) >= 0) { rgblight_clear_change_flags(); } } # endif return true; } void transport_slave(matrix_row_t matrix[]) { // Copy matrix to I2C buffer memcpy((void*)i2c_buffer->smatrix, (void *)matrix, sizeof(i2c_buffer->smatrix)); // Read Backlight Info # ifdef BACKLIGHT_ENABLE backlight_set(i2c_buffer->backlit_level); # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) // Update the RGB with the new data if (i2c_buffer->rgblight_sync.status.change_flags != 0) { rgblight_update_sync(&i2c_buffer->rgblight_sync, false); i2c_buffer->rgblight_sync.status.change_flags = 0; } # endif } void transport_master_init(void) { i2c_init(); } void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); } #else // USE_SERIAL # include "serial.h" typedef struct _Serial_s2m_buffer_t { // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack matrix_row_t smatrix[ROWS_PER_HAND]; } Serial_s2m_buffer_t; typedef struct _Serial_m2s_buffer_t { # ifdef BACKLIGHT_ENABLE uint8_t backlight_level; # endif } Serial_m2s_buffer_t; #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) // When MCUs on both sides drive their respective RGB LED chains, // it is necessary to synchronize, so it is necessary to communicate RGB // information. In that case, define RGBLIGHT_SPLIT with info on the number // of LEDs on each half. // // Otherwise, if the master side MCU drives both sides RGB LED chains, // there is no need to communicate. typedef struct _Serial_rgblight_t { rgblight_syncinfo_t rgblight_sync; } Serial_rgblight_t; volatile Serial_rgblight_t serial_rgblight = {}; uint8_t volatile status_rgblight = 0; #endif volatile Serial_s2m_buffer_t serial_s2m_buffer = {}; volatile Serial_m2s_buffer_t serial_m2s_buffer = {}; uint8_t volatile status0 = 0; enum serial_transaction_id { GET_SLAVE_MATRIX = 0, #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) PUT_RGBLIGHT, #endif }; SSTD_t transactions[] = { [GET_SLAVE_MATRIX] = { (uint8_t *)&status0, sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer, sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer, }, #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) [PUT_RGBLIGHT] = { (uint8_t *)&status_rgblight, sizeof(serial_rgblight), (uint8_t *)&serial_rgblight, 0, NULL // no slave to master transfer }, #endif }; void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); } void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); } #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) // rgblight synchronization information communication. void transport_rgblight_master(void) { if (rgblight_get_change_flags()) { rgblight_get_syncinfo((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync); if (soft_serial_transaction(PUT_RGBLIGHT) == TRANSACTION_END) { rgblight_clear_change_flags(); } } } void transport_rgblight_slave(void) { if (status_rgblight == TRANSACTION_ACCEPTED) { rgblight_update_sync((rgblight_syncinfo_t *)&serial_rgblight.rgblight_sync, false); status_rgblight = TRANSACTION_END; } } #else #define transport_rgblight_master() #define transport_rgblight_slave() #endif bool transport_master(matrix_row_t matrix[]) { #ifndef SERIAL_USE_MULTI_TRANSACTION if (soft_serial_transaction() != TRANSACTION_END) { return false; } #else transport_rgblight_master(); if (soft_serial_transaction(GET_SLAVE_MATRIX) != TRANSACTION_END) { return false; } #endif // TODO: if MATRIX_COLS > 8 change to unpack() for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[i] = serial_s2m_buffer.smatrix[i]; } # ifdef BACKLIGHT_ENABLE // Write backlight level for slave to read serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0; # endif return true; } void transport_slave(matrix_row_t matrix[]) { transport_rgblight_slave(); // TODO: if MATRIX_COLS > 8 change to pack() for (int i = 0; i < ROWS_PER_HAND; ++i) { serial_s2m_buffer.smatrix[i] = matrix[i]; } # ifdef BACKLIGHT_ENABLE backlight_set(serial_m2s_buffer.backlight_level); # endif } #endif