/* Copyright 2019 Ryan Caltabiano This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "i2c_master.h" #include "oled_driver.h" #include OLED_FONT_H #include "timer.h" #include "print.h" #include #if defined(__AVR__) #include #include #elif defined(ESP8266) #include #else // defined(ESP8266) #define PROGMEM #define memcpy_P(des, src, len) memcpy(des, src, len) #endif // defined(__AVR__) // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf // for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf // Fundamental Commands #define CONTRAST 0x81 #define DISPLAY_ALL_ON 0xA5 #define DISPLAY_ALL_ON_RESUME 0xA4 #define NORMAL_DISPLAY 0xA6 #define DISPLAY_ON 0xAF #define DISPLAY_OFF 0xAE #define NOP 0xE3 // Scrolling Commands #define ACTIVATE_SCROLL 0x2F #define DEACTIVATE_SCROLL 0x2E #define SCROLL_RIGHT 0x26 #define SCROLL_LEFT 0x27 #define SCROLL_RIGHT_UP 0x29 #define SCROLL_LEFT_UP 0x2A // Addressing Setting Commands #define MEMORY_MODE 0x20 #define COLUMN_ADDR 0x21 #define PAGE_ADDR 0x22 #define PAM_SETCOLUMN_LSB 0x00 #define PAM_SETCOLUMN_MSB 0x10 #define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7 // Hardware Configuration Commands #define DISPLAY_START_LINE 0x40 #define SEGMENT_REMAP 0xA0 #define SEGMENT_REMAP_INV 0xA1 #define MULTIPLEX_RATIO 0xA8 #define COM_SCAN_INC 0xC0 #define COM_SCAN_DEC 0xC8 #define DISPLAY_OFFSET 0xD3 #define COM_PINS 0xDA #define COM_PINS_SEQ 0x02 #define COM_PINS_ALT 0x12 #define COM_PINS_SEQ_LR 0x22 #define COM_PINS_ALT_LR 0x32 // Timing & Driving Commands #define DISPLAY_CLOCK 0xD5 #define PRE_CHARGE_PERIOD 0xD9 #define VCOM_DETECT 0xDB // Charge Pump Commands #define CHARGE_PUMP 0x8D // Misc defines #define OLED_TIMEOUT 60000 #define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8) #define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT) // i2c defines #define I2C_CMD 0x00 #define I2C_DATA 0x40 #if defined(__AVR__) // already defined on ARM #define I2C_TIMEOUT 100 #define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) #else // defined(__AVR__) #define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) #endif // defined(__AVR__) #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT) #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT) #define HAS_FLAGS(bits, flags) ((bits & flags) == flags) // Display buffer's is the same as the OLED memory layout // this is so we don't end up with rounding errors with // parts of the display unusable or don't get cleared correctly // and also allows for drawing & inverting uint8_t oled_buffer[OLED_MATRIX_SIZE]; uint8_t* oled_cursor; OLED_BLOCK_TYPE oled_dirty = 0; bool oled_initialized = false; bool oled_active = false; bool oled_scrolling = false; uint8_t oled_rotation = 0; uint8_t oled_rotation_width = 0; #if !defined(OLED_DISABLE_TIMEOUT) uint16_t oled_last_activity; #endif // Internal variables to reduce math instructions #if defined(__AVR__) // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently // probably should move this into i2c_master... static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(address | I2C_WRITE, timeout); for (uint16_t i = 0; i < length && status >= 0; i++) { status = i2c_write(pgm_read_byte((const char*)data++), timeout); if (status) break; } i2c_stop(); return status; } #endif // Flips the rendering bits for a character at the current cursor position static void InvertCharacter(uint8_t *cursor) { const uint8_t *end = cursor + OLED_FONT_WIDTH; while (cursor < end) { *cursor = ~(*cursor); cursor++; } } bool oled_init(uint8_t rotation) { oled_rotation = oled_init_user(rotation); if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { oled_rotation_width = OLED_DISPLAY_WIDTH; } else { oled_rotation_width = OLED_DISPLAY_HEIGHT; } i2c_init(); static const uint8_t PROGMEM display_setup1[] = { I2C_CMD, DISPLAY_OFF, DISPLAY_CLOCK, 0x80, MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1, DISPLAY_OFFSET, 0x00, DISPLAY_START_LINE | 0x00, CHARGE_PUMP, 0x14, #if (OLED_IC != OLED_IC_SH1106) // MEMORY_MODE is unsupported on SH1106 (Page Addressing only) MEMORY_MODE, 0x00, // Horizontal addressing mode #endif }; if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) { print("oled_init cmd set 1 failed\n"); return false; } if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) { static const uint8_t PROGMEM display_normal[] = { I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC }; if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) { print("oled_init cmd normal rotation failed\n"); return false; } } else { static const uint8_t PROGMEM display_flipped[] = { I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC }; if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) { print("display_flipped failed\n"); return false; } } static const uint8_t PROGMEM display_setup2[] = { I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, 0x8F, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x40, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON }; if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) { print("display_setup2 failed\n"); return false; } oled_clear(); oled_initialized = true; oled_active = true; oled_scrolling = false; return true; } __attribute__((weak)) uint8_t oled_init_user(uint8_t rotation) { return rotation; } void oled_clear(void) { memset(oled_buffer, 0, sizeof(oled_buffer)); oled_cursor = &oled_buffer[0]; oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type } static void calc_bounds(uint8_t update_start, uint8_t* cmd_array) { // Calculate commands to set memory addressing bounds. uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH; uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH; #if (OLED_IC == OLED_IC_SH1106) // Commands for Page Addressing Mode. Sets starting page and column; has no end bound. // Column value must be split into high and low nybble and sent as two commands. cmd_array[0] = PAM_PAGE_ADDR | start_page; cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f); cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f); cmd_array[3] = NOP; cmd_array[4] = NOP; cmd_array[5] = NOP; #else // Commands for use in Horizontal Addressing mode. cmd_array[1] = start_column; cmd_array[4] = start_page; cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1]; cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1; #endif } static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array) { cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8; cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT; cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];; cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8; } uint8_t crot(uint8_t a, int8_t n) { const uint8_t mask = 0x7; n &= mask; return a << n | a >> (-n & mask); } static void rotate_90(const uint8_t* src, uint8_t* dest) { for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) { uint8_t selector = (1 << i); for (uint8_t j = 0; j < 8; ++j) { dest[i] |= crot(src[j] & selector, shift - (int8_t)j); } } } void oled_render(void) { // Do we have work to do? if (!oled_dirty || oled_scrolling) { return; } // Find first dirty block uint8_t update_start = 0; while (!(oled_dirty & (1 << update_start))) { ++update_start; } // Set column & page position static uint8_t display_start[] = { I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 }; if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start } else { calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start } // Send column & page position if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) { print("oled_render offset command failed\n"); return; } if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { // Send render data chunk as is if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { print("oled_render data failed\n"); return; } } else { // Rotate the render chunks const static uint8_t source_map[] = OLED_SOURCE_MAP; const static uint8_t target_map[] = OLED_TARGET_MAP; static uint8_t temp_buffer[OLED_BLOCK_SIZE]; memset(temp_buffer, 0, sizeof(temp_buffer)); for(uint8_t i = 0; i < sizeof(source_map); ++i) { rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]); } // Send render data chunk after rotating if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { print("oled_render data failed\n"); return; } } // Turn on display if it is off oled_on(); // Clear dirty flag oled_dirty &= ~(1 << update_start); } void oled_set_cursor(uint8_t col, uint8_t line) { uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH; // Out of bounds? if (index >= OLED_MATRIX_SIZE) { index = 0; } oled_cursor = &oled_buffer[index]; } void oled_advance_page(bool clearPageRemainder) { uint16_t index = oled_cursor - &oled_buffer[0]; uint8_t remaining = oled_rotation_width - (index % oled_rotation_width); if (clearPageRemainder) { // Remaining Char count remaining = remaining / OLED_FONT_WIDTH; // Write empty character until next line while (remaining--) oled_write_char(' ', false); } else { // Next page index out of bounds? if (index + remaining >= OLED_MATRIX_SIZE) { index = 0; remaining = 0; } oled_cursor = &oled_buffer[index + remaining]; } } void oled_advance_char(void) { uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH; uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width); // Do we have enough space on the current line for the next character if (remainingSpace < OLED_FONT_WIDTH) { nextIndex += remainingSpace; } // Did we go out of bounds if (nextIndex >= OLED_MATRIX_SIZE) { nextIndex = 0; } // Update cursor position oled_cursor = &oled_buffer[nextIndex]; } // Main handler that writes character data to the display buffer void oled_write_char(const char data, bool invert) { // Advance to the next line if newline if (data == '\n') { // Old source wrote ' ' until end of line... oled_advance_page(true); return; } // copy the current render buffer to check for dirty after static uint8_t oled_temp_buffer[OLED_FONT_WIDTH]; memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH); // set the reder buffer data uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) { memset(oled_cursor, 0x00, OLED_FONT_WIDTH); } else { const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH]; memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH); } // Invert if needed if (invert) { InvertCharacter(oled_cursor); } // Dirty check if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) { oled_dirty |= (1 << ((oled_cursor - &oled_buffer[0]) / OLED_BLOCK_SIZE)); } // Finally move to the next char oled_advance_char(); } void oled_write(const char *data, bool invert) { const char *end = data + strlen(data); while (data < end) { oled_write_char(*data, invert); data++; } } void oled_write_ln(const char *data, bool invert) { oled_write(data, invert); oled_advance_page(true); } #if defined(__AVR__) void oled_write_P(const char *data, bool invert) { uint8_t c = pgm_read_byte(data); while (c != 0) { oled_write_char(c, invert); c = pgm_read_byte(++data); } } void oled_write_ln_P(const char *data, bool invert) { oled_write_P(data, invert); oled_advance_page(true); } #endif // defined(__AVR__) bool oled_on(void) { #if !defined(OLED_DISABLE_TIMEOUT) oled_last_activity = timer_read(); #endif static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON }; if (!oled_active) { if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) { print("oled_on cmd failed\n"); return oled_active; } oled_active = true; } return oled_active; } bool oled_off(void) { static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF }; if (oled_active) { if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) { print("oled_off cmd failed\n"); return oled_active; } oled_active = false; } return !oled_active; } bool oled_scroll_right(void) { // Dont enable scrolling if we need to update the display // This prevents scrolling of bad data from starting the scroll too early after init if (!oled_dirty && !oled_scrolling) { static const uint8_t PROGMEM display_scroll_right[] = { I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL }; if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) { print("oled_scroll_right cmd failed\n"); return oled_scrolling; } oled_scrolling = true; } return oled_scrolling; } bool oled_scroll_left(void) { // Dont enable scrolling if we need to update the display // This prevents scrolling of bad data from starting the scroll too early after init if (!oled_dirty && !oled_scrolling) { static const uint8_t PROGMEM display_scroll_left[] = { I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL }; if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) { print("oled_scroll_left cmd failed\n"); return oled_scrolling; } oled_scrolling = true; } return oled_scrolling; } bool oled_scroll_off(void) { if (oled_scrolling) { static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL }; if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) { print("oled_scroll_off cmd failed\n"); return oled_scrolling; } oled_scrolling = false; } return !oled_scrolling; } uint8_t oled_max_chars(void) { if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH; } return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH; } uint8_t oled_max_lines(void) { if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT; } return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT; } void oled_task(void) { if (!oled_initialized) { return; } oled_set_cursor(0, 0); oled_task_user(); // Smart render system, no need to check for dirty oled_render(); // Display timeout check #if !defined(OLED_DISABLE_TIMEOUT) if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) { oled_off(); } #endif } __attribute__((weak)) void oled_task_user(void) { }