/* Copyright 2016-2017 Yang Liu * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #ifdef __AVR__ #include #include #endif #include "wait.h" #include "progmem.h" #include "timer.h" #include "rgblight.h" #include "debug.h" #include "led_tables.h" #ifndef RGBLIGHT_LIMIT_VAL #define RGBLIGHT_LIMIT_VAL 255 #endif #define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_ ## sym, #define _RGBM_SINGLE_DYNAMIC(sym) #define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_ ## sym, #define _RGBM_MULTI_DYNAMIC(sym) #define _RGBM_TMP_STATIC(sym) RGBLIGHT_MODE_ ## sym, #define _RGBM_TMP_DYNAMIC(sym) static uint8_t static_effect_table [] = { #include "rgblight.h" }; static inline int is_static_effect(uint8_t mode) { return memchr(static_effect_table, mode, sizeof(static_effect_table)) != NULL; } #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT __attribute__ ((weak)) const uint16_t RGBLED_GRADIENT_RANGES[] PROGMEM = {360, 240, 180, 120, 90}; #endif rgblight_config_t rgblight_config; LED_TYPE led[RGBLED_NUM]; bool rgblight_timer_enabled = false; void sethsv(uint16_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) { uint8_t r = 0, g = 0, b = 0, base, color; if (val > RGBLIGHT_LIMIT_VAL) { val=RGBLIGHT_LIMIT_VAL; // limit the val } if (sat == 0) { // Acromatic color (gray). Hue doesn't mind. r = val; g = val; b = val; } else { base = ((255 - sat) * val) >> 8; color = (val - base) * (hue % 60) / 60; switch (hue / 60) { case 0: r = val; g = base + color; b = base; break; case 1: r = val - color; g = val; b = base; break; case 2: r = base; g = val; b = base + color; break; case 3: r = base; g = val - color; b = val; break; case 4: r = base + color; g = base; b = val; break; case 5: r = val; g = base; b = val - color; break; } } r = pgm_read_byte(&CIE1931_CURVE[r]); g = pgm_read_byte(&CIE1931_CURVE[g]); b = pgm_read_byte(&CIE1931_CURVE[b]); setrgb(r, g, b, led1); } void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) { (*led1).r = r; (*led1).g = g; (*led1).b = b; } uint32_t eeconfig_read_rgblight(void) { #ifdef __AVR__ return eeprom_read_dword(EECONFIG_RGBLIGHT); #else return 0; #endif } void eeconfig_update_rgblight(uint32_t val) { #ifdef __AVR__ eeprom_update_dword(EECONFIG_RGBLIGHT, val); #endif } void eeconfig_update_rgblight_default(void) { //dprintf("eeconfig_update_rgblight_default\n"); rgblight_config.enable = 1; rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT; rgblight_config.hue = 0; rgblight_config.sat = 255; rgblight_config.val = RGBLIGHT_LIMIT_VAL; rgblight_config.speed = 0; eeconfig_update_rgblight(rgblight_config.raw); } void eeconfig_debug_rgblight(void) { dprintf("rgblight_config eprom\n"); dprintf("rgblight_config.enable = %d\n", rgblight_config.enable); dprintf("rghlight_config.mode = %d\n", rgblight_config.mode); dprintf("rgblight_config.hue = %d\n", rgblight_config.hue); dprintf("rgblight_config.sat = %d\n", rgblight_config.sat); dprintf("rgblight_config.val = %d\n", rgblight_config.val); dprintf("rgblight_config.speed = %d\n", rgblight_config.speed); } void rgblight_init(void) { debug_enable = 1; // Debug ON! dprintf("rgblight_init called.\n"); dprintf("rgblight_init start!\n"); if (!eeconfig_is_enabled()) { dprintf("rgblight_init eeconfig is not enabled.\n"); eeconfig_init(); eeconfig_update_rgblight_default(); } rgblight_config.raw = eeconfig_read_rgblight(); if (!rgblight_config.mode) { dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n"); eeconfig_update_rgblight_default(); rgblight_config.raw = eeconfig_read_rgblight(); } eeconfig_debug_rgblight(); // display current eeprom values #ifdef RGBLIGHT_USE_TIMER rgblight_timer_init(); // setup the timer #endif if (rgblight_config.enable) { rgblight_mode_noeeprom(rgblight_config.mode); } } void rgblight_update_dword(uint32_t dword) { rgblight_config.raw = dword; eeconfig_update_rgblight(rgblight_config.raw); if (rgblight_config.enable) rgblight_mode(rgblight_config.mode); else { #ifdef RGBLIGHT_USE_TIMER rgblight_timer_disable(); #endif rgblight_set(); } } void rgblight_increase(void) { uint8_t mode = 0; if (rgblight_config.mode < RGBLIGHT_MODES) { mode = rgblight_config.mode + 1; } rgblight_mode(mode); } void rgblight_decrease(void) { uint8_t mode = 0; // Mode will never be < 1. If it ever is, eeprom needs to be initialized. if (rgblight_config.mode > RGBLIGHT_MODE_STATIC_LIGHT) { mode = rgblight_config.mode - 1; } rgblight_mode(mode); } void rgblight_step(void) { uint8_t mode = 0; mode = rgblight_config.mode + 1; if (mode > RGBLIGHT_MODES) { mode = 1; } rgblight_mode(mode); } void rgblight_step_reverse(void) { uint8_t mode = 0; mode = rgblight_config.mode - 1; if (mode < 1) { mode = RGBLIGHT_MODES; } rgblight_mode(mode); } uint32_t rgblight_get_mode(void) { if (!rgblight_config.enable) { return false; } return rgblight_config.mode; } void rgblight_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) { if (!rgblight_config.enable) { return; } if (mode < RGBLIGHT_MODE_STATIC_LIGHT) { rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT; } else if (mode > RGBLIGHT_MODES) { rgblight_config.mode = RGBLIGHT_MODES; } else { rgblight_config.mode = mode; } if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight mode [EEPROM]: %u\n", rgblight_config.mode); } else { xprintf("rgblight mode [NOEEPROM]: %u\n", rgblight_config.mode); } if( is_static_effect(rgblight_config.mode) ) { #ifdef RGBLIGHT_USE_TIMER rgblight_timer_disable(); #endif } else { #ifdef RGBLIGHT_USE_TIMER rgblight_timer_enable(); #endif } rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } void rgblight_mode(uint8_t mode) { rgblight_mode_eeprom_helper(mode, true); } void rgblight_mode_noeeprom(uint8_t mode) { rgblight_mode_eeprom_helper(mode, false); } void rgblight_toggle(void) { xprintf("rgblight toggle [EEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable); if (rgblight_config.enable) { rgblight_disable(); } else { rgblight_enable(); } } void rgblight_toggle_noeeprom(void) { xprintf("rgblight toggle [NOEEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable); if (rgblight_config.enable) { rgblight_disable_noeeprom(); } else { rgblight_enable_noeeprom(); } } void rgblight_enable(void) { rgblight_config.enable = 1; // No need to update EEPROM here. rgblight_mode() will do that, actually //eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight enable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_mode(rgblight_config.mode); } void rgblight_enable_noeeprom(void) { rgblight_config.enable = 1; xprintf("rgblight enable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); rgblight_mode_noeeprom(rgblight_config.mode); } void rgblight_disable(void) { rgblight_config.enable = 0; eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight disable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); #ifdef RGBLIGHT_USE_TIMER rgblight_timer_disable(); #endif wait_ms(50); rgblight_set(); } void rgblight_disable_noeeprom(void) { rgblight_config.enable = 0; xprintf("rgblight disable [noEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable); #ifdef RGBLIGHT_USE_TIMER rgblight_timer_disable(); #endif _delay_ms(50); rgblight_set(); } // Deals with the messy details of incrementing an integer uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) { int16_t new_value = value; new_value += step; return MIN( MAX( new_value, min ), max ); } uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) { int16_t new_value = value; new_value -= step; return MIN( MAX( new_value, min ), max ); } void rgblight_increase_hue(void) { uint16_t hue; hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360; rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_decrease_hue(void) { uint16_t hue; if (rgblight_config.hue-RGBLIGHT_HUE_STEP < 0) { hue = (rgblight_config.hue + 360 - RGBLIGHT_HUE_STEP) % 360; } else { hue = (rgblight_config.hue - RGBLIGHT_HUE_STEP) % 360; } rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_increase_sat(void) { uint8_t sat; if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) { sat = 255; } else { sat = rgblight_config.sat + RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_decrease_sat(void) { uint8_t sat; if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) { sat = 0; } else { sat = rgblight_config.sat - RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_increase_val(void) { uint8_t val; if (rgblight_config.val + RGBLIGHT_VAL_STEP > RGBLIGHT_LIMIT_VAL) { val = RGBLIGHT_LIMIT_VAL; } else { val = rgblight_config.val + RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_decrease_val(void) { uint8_t val; if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) { val = 0; } else { val = rgblight_config.val - RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_increase_speed(void) { rgblight_config.speed = increment( rgblight_config.speed, 1, 0, 3 ); eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this } void rgblight_decrease_speed(void) { rgblight_config.speed = decrement( rgblight_config.speed, 1, 0, 3 ); eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this } void rgblight_sethsv_noeeprom_old(uint16_t hue, uint8_t sat, uint8_t val) { if (rgblight_config.enable) { LED_TYPE tmp_led; sethsv(hue, sat, val, &tmp_led); // dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } } void rgblight_sethsv_eeprom_helper(uint16_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) { if (rgblight_config.enable) { if (rgblight_config.mode == RGBLIGHT_MODE_STATIC_LIGHT) { // same static color LED_TYPE tmp_led; sethsv(hue, sat, val, &tmp_led); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } else { // all LEDs in same color if ( 1 == 0 ) { //dummy } #ifdef RGBLIGHT_EFFECT_BREATHING else if (rgblight_config.mode >= RGBLIGHT_MODE_BREATHING && rgblight_config.mode <= RGBLIGHT_MODE_BREATHING_end) { // breathing mode, ignore the change of val, use in memory value instead val = rgblight_config.val; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_MOOD && rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_MOOD_end) { // rainbow mood, ignore the change of hue hue = rgblight_config.hue; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_SWIRL && rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_SWIRL_end) { // rainbow swirl, ignore the change of hue hue = rgblight_config.hue; } #endif #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT else if (rgblight_config.mode >= RGBLIGHT_MODE_STATIC_GRADIENT && rgblight_config.mode <= RGBLIGHT_MODE_STATIC_GRADIENT_end) { // static gradient uint16_t _hue; int8_t direction = ((rgblight_config.mode - RGBLIGHT_MODE_STATIC_GRADIENT) % 2) ? -1 : 1; uint16_t range = pgm_read_word(&RGBLED_GRADIENT_RANGES[(rgblight_config.mode - RGBLIGHT_MODE_STATIC_GRADIENT) / 2]); for (uint8_t i = 0; i < RGBLED_NUM; i++) { _hue = (range / RGBLED_NUM * i * direction + hue + 360) % 360; dprintf("rgblight rainbow set hsv: %u,%u,%d,%u\n", i, _hue, direction, range); sethsv(_hue, sat, val, (LED_TYPE *)&led[i]); } rgblight_set(); } #endif } rgblight_config.hue = hue; rgblight_config.sat = sat; rgblight_config.val = val; if (write_to_eeprom) { eeconfig_update_rgblight(rgblight_config.raw); xprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } else { xprintf("rgblight set hsv [NOEEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } } } void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, true); } void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) { rgblight_sethsv_eeprom_helper(hue, sat, val, false); } uint16_t rgblight_get_hue(void) { return rgblight_config.hue; } uint8_t rgblight_get_sat(void) { return rgblight_config.sat; } uint8_t rgblight_get_val(void) { return rgblight_config.val; } void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) { if (!rgblight_config.enable) { return; } for (uint8_t i = 0; i < RGBLED_NUM; i++) { led[i].r = r; led[i].g = g; led[i].b = b; } rgblight_set(); } void rgblight_setrgb_at(uint8_t r, uint8_t g, uint8_t b, uint8_t index) { if (!rgblight_config.enable || index >= RGBLED_NUM) { return; } led[index].r = r; led[index].g = g; led[index].b = b; rgblight_set(); } void rgblight_sethsv_at(uint16_t hue, uint8_t sat, uint8_t val, uint8_t index) { if (!rgblight_config.enable) { return; } LED_TYPE tmp_led; sethsv(hue, sat, val, &tmp_led); rgblight_setrgb_at(tmp_led.r, tmp_led.g, tmp_led.b, index); } #ifndef RGBLIGHT_CUSTOM_DRIVER void rgblight_set(void) { if (rgblight_config.enable) { #ifdef RGBW ws2812_setleds_rgbw(led, RGBLED_NUM); #else ws2812_setleds(led, RGBLED_NUM); #endif } else { for (uint8_t i = 0; i < RGBLED_NUM; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; } #ifdef RGBW ws2812_setleds_rgbw(led, RGBLED_NUM); #else ws2812_setleds(led, RGBLED_NUM); #endif } } #endif #ifdef RGBLIGHT_USE_TIMER // Animation timer -- AVR Timer3 void rgblight_timer_init(void) { // static uint8_t rgblight_timer_is_init = 0; // if (rgblight_timer_is_init) { // return; // } // rgblight_timer_is_init = 1; // /* Timer 3 setup */ // TCCR3B = _BV(WGM32) // CTC mode OCR3A as TOP // | _BV(CS30); // Clock selelct: clk/1 // /* Set TOP value */ // uint8_t sreg = SREG; // cli(); // OCR3AH = (RGBLED_TIMER_TOP >> 8) & 0xff; // OCR3AL = RGBLED_TIMER_TOP & 0xff; // SREG = sreg; rgblight_timer_enabled = true; } void rgblight_timer_enable(void) { rgblight_timer_enabled = true; dprintf("TIMER3 enabled.\n"); } void rgblight_timer_disable(void) { rgblight_timer_enabled = false; dprintf("TIMER3 disabled.\n"); } void rgblight_timer_toggle(void) { rgblight_timer_enabled ^= rgblight_timer_enabled; dprintf("TIMER3 toggled.\n"); } void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) { rgblight_enable(); rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT); rgblight_setrgb(r, g, b); } void rgblight_task(void) { if (rgblight_timer_enabled) { // mode = 1, static light, do nothing here if (rgblight_config.mode >= RGBLIGHT_MODE_BREATHING && rgblight_config.mode <= RGBLIGHT_MODE_BREATHING_end) { // mode = 2 to 5, breathing mode rgblight_effect_breathing(rgblight_config.mode - RGBLIGHT_MODE_BREATHING ); } else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_MOOD && rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_MOOD_end) { // mode = 6 to 8, rainbow mood mod rgblight_effect_rainbow_mood(rgblight_config.mode - RGBLIGHT_MODE_RAINBOW_MOOD); } else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_SWIRL && rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_SWIRL_end) { // mode = 9 to 14, rainbow swirl mode rgblight_effect_rainbow_swirl(rgblight_config.mode - RGBLIGHT_MODE_RAINBOW_SWIRL); } else if (rgblight_config.mode >= RGBLIGHT_MODE_SNAKE && rgblight_config.mode <= RGBLIGHT_MODE_SNAKE_end) { // mode = 15 to 20, snake mode rgblight_effect_snake(rgblight_config.mode - RGBLIGHT_MODE_SNAKE); } else if (rgblight_config.mode >= RGBLIGHT_MODE_KNIGHT && rgblight_config.mode <= RGBLIGHT_MODE_KNIGHT_end) { // mode = 21 to 23, knight mode rgblight_effect_knight(rgblight_config.mode - RGBLIGHT_MODE_KNIGHT); } else if (rgblight_config.mode == RGBLIGHT_MODE_CHRISTMAS) { // mode = 24, christmas mode rgblight_effect_christmas(); } else if (rgblight_config.mode == RGBLIGHT_MODE_RGB_TEST) { // mode = 35, RGB test rgblight_effect_rgbtest(); } else if (rgblight_config.mode == RGBLIGHT_MODE_ALTERNATING){ rgblight_effect_alternating(); } } } #endif /* RGBLIGHT_USE_TIMER */ // Effects #ifdef RGBLIGHT_EFFECT_BREATHING __attribute__ ((weak)) const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5}; void rgblight_effect_breathing(uint8_t interval) { static uint8_t pos = 0; static uint16_t last_timer = 0; float val; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) { return; } last_timer = timer_read(); // http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/ val = (exp(sin((pos/255.0)*M_PI)) - RGBLIGHT_EFFECT_BREATHE_CENTER/M_E)*(RGBLIGHT_EFFECT_BREATHE_MAX/(M_E-1/M_E)); rgblight_sethsv_noeeprom_old(rgblight_config.hue, rgblight_config.sat, val); pos = (pos + 1) % 256; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD __attribute__ ((weak)) const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30}; void rgblight_effect_rainbow_mood(uint8_t interval) { static uint16_t current_hue = 0; static uint16_t last_timer = 0; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) { return; } last_timer = timer_read(); rgblight_sethsv_noeeprom_old(current_hue, rgblight_config.sat, rgblight_config.val); current_hue = (current_hue + 1) % 360; } #endif #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL __attribute__ ((weak)) const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20}; void rgblight_effect_rainbow_swirl(uint8_t interval) { static uint16_t current_hue = 0; static uint16_t last_timer = 0; uint16_t hue; uint8_t i; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_SWIRL_INTERVALS[interval / 2])) { return; } last_timer = timer_read(); for (i = 0; i < RGBLED_NUM; i++) { hue = (360 / RGBLED_NUM * i + current_hue) % 360; sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]); } rgblight_set(); if (interval % 2) { current_hue = (current_hue + 1) % 360; } else { if (current_hue - 1 < 0) { current_hue = 359; } else { current_hue = current_hue - 1; } } } #endif #ifdef RGBLIGHT_EFFECT_SNAKE __attribute__ ((weak)) const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20}; void rgblight_effect_snake(uint8_t interval) { static uint8_t pos = 0; static uint16_t last_timer = 0; uint8_t i, j; int8_t k; int8_t increment = 1; if (interval % 2) { increment = -1; } if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval / 2])) { return; } last_timer = timer_read(); for (i = 0; i < RGBLED_NUM; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) { k = pos + j * increment; if (k < 0) { k = k + RGBLED_NUM; } if (i == k) { sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), (LED_TYPE *)&led[i]); } } } rgblight_set(); if (increment == 1) { if (pos - 1 < 0) { pos = RGBLED_NUM - 1; } else { pos -= 1; } } else { pos = (pos + 1) % RGBLED_NUM; } } #endif #ifdef RGBLIGHT_EFFECT_KNIGHT __attribute__ ((weak)) const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31}; void rgblight_effect_knight(uint8_t interval) { static uint16_t last_timer = 0; if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) { return; } last_timer = timer_read(); static int8_t low_bound = 0; static int8_t high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1; static int8_t increment = 1; uint8_t i, cur; // Set all the LEDs to 0 for (i = 0; i < RGBLED_NUM; i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; } // Determine which LEDs should be lit up for (i = 0; i < RGBLIGHT_EFFECT_KNIGHT_LED_NUM; i++) { cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM; if (i >= low_bound && i <= high_bound) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[cur]); } else { led[cur].r = 0; led[cur].g = 0; led[cur].b = 0; } } rgblight_set(); // Move from low_bound to high_bound changing the direction we increment each // time a boundary is hit. low_bound += increment; high_bound += increment; if (high_bound <= 0 || low_bound >= RGBLIGHT_EFFECT_KNIGHT_LED_NUM - 1) { increment = -increment; } } #endif #ifdef RGBLIGHT_EFFECT_CHRISTMAS void rgblight_effect_christmas(void) { static uint16_t current_offset = 0; static uint16_t last_timer = 0; uint16_t hue; uint8_t i; if (timer_elapsed(last_timer) < RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL) { return; } last_timer = timer_read(); current_offset = (current_offset + 1) % 2; for (i = 0; i < RGBLED_NUM; i++) { hue = 0 + ((i/RGBLIGHT_EFFECT_CHRISTMAS_STEP + current_offset) % 2) * 120; sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]); } rgblight_set(); } #endif #ifdef RGBLIGHT_EFFECT_RGB_TEST __attribute__ ((weak)) const uint16_t RGBLED_RGBTEST_INTERVALS[] PROGMEM = {1024}; void rgblight_effect_rgbtest(void) { static uint8_t pos = 0; static uint16_t last_timer = 0; static uint8_t maxval = 0; uint8_t g; uint8_t r; uint8_t b; if (timer_elapsed(last_timer) < pgm_read_word(&RGBLED_RGBTEST_INTERVALS[0])) { return; } if( maxval == 0 ) { LED_TYPE tmp_led; sethsv(0, 255, RGBLIGHT_LIMIT_VAL, &tmp_led); maxval = tmp_led.r; } last_timer = timer_read(); g = r = b = 0; switch( pos ) { case 0: r = maxval; break; case 1: g = maxval; break; case 2: b = maxval; break; } rgblight_setrgb(r, g, b); pos = (pos + 1) % 3; } #endif #ifdef RGBLIGHT_EFFECT_ALTERNATING void rgblight_effect_alternating(void){ static uint16_t last_timer = 0; static uint16_t pos = 0; if (timer_elapsed(last_timer) < 500) { return; } last_timer = timer_read(); for(int i = 0; i=RGBLED_NUM/2 && !pos){ rgblight_sethsv_at(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, i); }else{ rgblight_sethsv_at(rgblight_config.hue, rgblight_config.sat, 0, i); } } rgblight_set(); pos = (pos + 1) % 2; } #endif