qmk_firmware/quantum/dynamic_keymap.c

239 lines
6.8 KiB

/* Copyright 2017 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "keymap.h" // to get keymaps[][][]
#include "tmk_core/common/eeprom.h"
#include "progmem.h" // to read default from flash
#include "quantum.h" // for send_string()
#include "dynamic_keymap.h"
#ifdef DYNAMIC_KEYMAP_ENABLE
#ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
#error DYNAMIC_KEYMAP_EEPROM_ADDR not defined
#endif
#ifndef DYNAMIC_KEYMAP_LAYER_COUNT
#error DYNAMIC_KEYMAP_LAYER_COUNT not defined
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_COUNT
#error DYNAMIC_KEYMAP_MACRO_COUNT not defined
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
#error DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR not defined
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
#error DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE not defined
#endif
uint8_t dynamic_keymap_get_layer_count(void)
{
return DYNAMIC_KEYMAP_LAYER_COUNT;
}
void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column)
{
// TODO: optimize this with some left shifts
return ((void*)DYNAMIC_KEYMAP_EEPROM_ADDR) + ( layer * MATRIX_ROWS * MATRIX_COLS * 2 ) +
( row * MATRIX_COLS * 2 ) + ( column * 2 );
}
uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column)
{
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
uint16_t keycode = eeprom_read_byte(address) << 8;
keycode |= eeprom_read_byte(address + 1);
return keycode;
}
void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode)
{
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
eeprom_update_byte(address, (uint8_t)(keycode >> 8));
eeprom_update_byte(address+1, (uint8_t)(keycode & 0xFF));
}
void dynamic_keymap_reset(void)
{
// Reset the keymaps in EEPROM to what is in flash.
// All keyboards using dynamic keymaps should define a layout
// for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT.
for ( int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++ ) {
for ( int row = 0; row < MATRIX_ROWS; row++ ) {
for ( int column = 0; column < MATRIX_COLS; column++ ) {
dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
}
}
}
}
void dynamic_keymap_get_buffer( uint16_t offset, uint16_t size, uint8_t *data )
{
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void *source = (void*)(DYNAMIC_KEYMAP_EEPROM_ADDR+offset);
uint8_t *target = data;
for ( uint16_t i = 0; i < size; i++ ) {
if ( offset + i < dynamic_keymap_eeprom_size ) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_set_buffer( uint16_t offset, uint16_t size, uint8_t *data )
{
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void *target = (void*)(DYNAMIC_KEYMAP_EEPROM_ADDR+offset);
uint8_t *source = data;
for ( uint16_t i = 0; i < size; i++ ) {
if ( offset + i < dynamic_keymap_eeprom_size ) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
// This overrides the one in quantum/keymap_common.c
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key)
{
if ( layer < DYNAMIC_KEYMAP_LAYER_COUNT &&
key.row < MATRIX_ROWS &&
key.col < MATRIX_COLS ) {
return dynamic_keymap_get_keycode(layer, key.row, key.col);
} else {
return KC_NO;
}
}
uint8_t dynamic_keymap_macro_get_count(void)
{
return DYNAMIC_KEYMAP_MACRO_COUNT;
}
uint16_t dynamic_keymap_macro_get_buffer_size(void)
{
return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE;
}
void dynamic_keymap_macro_get_buffer( uint16_t offset, uint16_t size, uint8_t *data )
{
void *source = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR+offset);
uint8_t *target = data;
for ( uint16_t i = 0; i < size; i++ ) {
if ( offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE ) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_macro_set_buffer( uint16_t offset, uint16_t size, uint8_t *data )
{
void *target = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR+offset);
uint8_t *source = data;
for ( uint16_t i = 0; i < size; i++ ) {
if ( offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE ) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
void dynamic_keymap_macro_reset(void)
{
void *p = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR+DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while ( p != end ) {
eeprom_update_byte(p, 0);
++p;
}
}
void dynamic_keymap_macro_send( uint8_t id )
{
if ( id >= DYNAMIC_KEYMAP_MACRO_COUNT ) {
return;
}
// Check the last byte of the buffer.
// If it's not zero, then we are in the middle
// of buffer writing, possibly an aborted buffer
// write. So do nothing.
void *p = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR+DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE-1);
if ( eeprom_read_byte(p) != 0 ) {
return;
}
// Skip N null characters
// p will then point to the Nth macro
p = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void*)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR+DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while ( id > 0 ) {
// If we are past the end of the buffer, then the buffer
// contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
// nulls in the buffer.
if ( p == end ) {
return;
}
if ( eeprom_read_byte(p) == 0 ) {
--id;
}
++p;
}
// Send the macro string one or two chars at a time
// by making temporary 1 or 2 char strings
char data[3] = { 0, 0, 0 };
// We already checked there was a null at the end of
// the buffer, so this cannot go past the end
while ( 1 ) {
data[0] = eeprom_read_byte(p++);
data[1] = 0;
// Stop at the null terminator of this macro string
if ( data[0] == 0 ) {
break;
}
// If the char is magic (tap, down, up),
// add the next char (key to use) and send a 2 char string.
if ( data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE ) {
data[1] = eeprom_read_byte(p++);
if ( data[1] == 0 ) {
break;
}
}
send_string(data);
}
}
#endif // DYNAMIC_KEYMAP_ENABLE