You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					7539 lines
				
				245 KiB
			
		
		
			
		
	
	
					7539 lines
				
				245 KiB
			|   
											11 years ago
										 | /* ----------------------------------------------------------------------
 | ||
|  | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. | ||
|  | * | ||
|  | * $Date:        12. March 2014 | ||
|  | * $Revision: 	V1.4.4 | ||
|  | * | ||
|  | * Project: 	    CMSIS DSP Library | ||
|  | * Title:	    arm_math.h | ||
|  | * | ||
|  | * Description:	Public header file for CMSIS DSP Library | ||
|  | * | ||
|  | * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 | ||
|  | * | ||
|  | * Redistribution and use in source and binary forms, with or without | ||
|  | * modification, are permitted provided that the following conditions | ||
|  | * are met: | ||
|  | *   - Redistributions of source code must retain the above copyright | ||
|  | *     notice, this list of conditions and the following disclaimer. | ||
|  | *   - Redistributions in binary form must reproduce the above copyright | ||
|  | *     notice, this list of conditions and the following disclaimer in | ||
|  | *     the documentation and/or other materials provided with the | ||
|  | *     distribution. | ||
|  | *   - Neither the name of ARM LIMITED nor the names of its contributors | ||
|  | *     may be used to endorse or promote products derived from this | ||
|  | *     software without specific prior written permission. | ||
|  | * | ||
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | ||
|  | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | ||
|  | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | ||
|  | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | ||
|  | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
|  | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | ||
|  | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
|  | * POSSIBILITY OF SUCH DAMAGE. | ||
|  |  * -------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |    \mainpage CMSIS DSP Software Library | ||
|  |    * | ||
|  |    * Introduction | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * This user manual describes the CMSIS DSP software library, | ||
|  |    * a suite of common signal processing functions for use on Cortex-M processor based devices. | ||
|  |    * | ||
|  |    * The library is divided into a number of functions each covering a specific category: | ||
|  |    * - Basic math functions | ||
|  |    * - Fast math functions | ||
|  |    * - Complex math functions | ||
|  |    * - Filters | ||
|  |    * - Matrix functions | ||
|  |    * - Transforms | ||
|  |    * - Motor control functions | ||
|  |    * - Statistical functions | ||
|  |    * - Support functions | ||
|  |    * - Interpolation functions | ||
|  |    * | ||
|  |    * The library has separate functions for operating on 8-bit integers, 16-bit integers, | ||
|  |    * 32-bit integer and 32-bit floating-point values. | ||
|  |    * | ||
|  |    * Using the Library | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | ||
|  |    * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | ||
|  |    * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | ||
|  |    * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | ||
|  |    * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | ||
|  |    * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | ||
|  |    * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | ||
|  |    * - arm_cortexM0l_math.lib (Little endian on Cortex-M0) | ||
|  |    * - arm_cortexM0b_math.lib (Big endian on Cortex-M3) | ||
|  |    * | ||
|  |    * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | ||
|  |    * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | ||
|  |    * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | ||
|  |    * Define the appropriate pre processor MACRO ARM_MATH_CM4 or  ARM_MATH_CM3 or | ||
|  |    * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. | ||
|  |    * | ||
|  |    * Examples | ||
|  |    * -------- | ||
|  |    * | ||
|  |    * The library ships with a number of examples which demonstrate how to use the library functions. | ||
|  |    * | ||
|  |    * Toolchain Support | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * The library has been developed and tested with MDK-ARM version 4.60. | ||
|  |    * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | ||
|  |    * | ||
|  |    * Building the Library | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. | ||
|  |    * - arm_cortexM_math.uvproj | ||
|  |    * | ||
|  |    * | ||
|  |    * The libraries can be built by opening the arm_cortexM_math.uvproj project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. | ||
|  |    * | ||
|  |    * Pre-processor Macros | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * Each library project have differant pre-processor macros. | ||
|  |    * | ||
|  |    * - UNALIGNED_SUPPORT_DISABLE: | ||
|  |    * | ||
|  |    * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access | ||
|  |    * | ||
|  |    * - ARM_MATH_BIG_ENDIAN: | ||
|  |    * | ||
|  |    * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | ||
|  |    * | ||
|  |    * - ARM_MATH_MATRIX_CHECK: | ||
|  |    * | ||
|  |    * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices | ||
|  |    * | ||
|  |    * - ARM_MATH_ROUNDING: | ||
|  |    * | ||
|  |    * Define macro ARM_MATH_ROUNDING for rounding on support functions | ||
|  |    * | ||
|  |    * - ARM_MATH_CMx: | ||
|  |    * | ||
|  |    * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | ||
|  |    * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target. | ||
|  |    * | ||
|  |    * - __FPU_PRESENT: | ||
|  |    * | ||
|  |    * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | ||
|  |    * | ||
|  |    * <hr> | ||
|  |    * CMSIS-DSP in ARM::CMSIS Pack | ||
|  |    * ----------------------------- | ||
|  |    *  | ||
|  |    * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: | ||
|  |    * |File/Folder                   |Content                                                                 | | ||
|  |    * |------------------------------|------------------------------------------------------------------------| | ||
|  |    * |\b CMSIS\\Documentation\\DSP  | This documentation                                                     | | ||
|  |    * |\b CMSIS\\DSP_Lib             | Software license agreement (license.txt)                               | | ||
|  |    * |\b CMSIS\\DSP_Lib\\Examples   | Example projects demonstrating the usage of the library functions      | | ||
|  |    * |\b CMSIS\\DSP_Lib\\Source     | Source files for rebuilding the library                                | | ||
|  |    *  | ||
|  |    * <hr> | ||
|  |    * Revision History of CMSIS-DSP | ||
|  |    * ------------ | ||
|  |    * Please refer to \ref ChangeLog_pg. | ||
|  |    * | ||
|  |    * Copyright Notice | ||
|  |    * ------------ | ||
|  |    * | ||
|  |    * Copyright (C) 2010-2014 ARM Limited. All rights reserved. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupMath Basic Math Functions | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupFastMath Fast Math Functions | ||
|  |  * This set of functions provides a fast approximation to sine, cosine, and square root. | ||
|  |  * As compared to most of the other functions in the CMSIS math library, the fast math functions | ||
|  |  * operate on individual values and not arrays. | ||
|  |  * There are separate functions for Q15, Q31, and floating-point data. | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupCmplxMath Complex Math Functions | ||
|  |  * This set of functions operates on complex data vectors. | ||
|  |  * The data in the complex arrays is stored in an interleaved fashion | ||
|  |  * (real, imag, real, imag, ...). | ||
|  |  * In the API functions, the number of samples in a complex array refers | ||
|  |  * to the number of complex values; the array contains twice this number of | ||
|  |  * real values. | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupFilters Filtering Functions | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupMatrix Matrix Functions | ||
|  |  * | ||
|  |  * This set of functions provides basic matrix math operations. | ||
|  |  * The functions operate on matrix data structures.  For example, | ||
|  |  * the type | ||
|  |  * definition for the floating-point matrix structure is shown | ||
|  |  * below: | ||
|  |  * <pre> | ||
|  |  *     typedef struct | ||
|  |  *     { | ||
|  |  *       uint16_t numRows;     // number of rows of the matrix.
 | ||
|  |  *       uint16_t numCols;     // number of columns of the matrix.
 | ||
|  |  *       float32_t *pData;     // points to the data of the matrix.
 | ||
|  |  *     } arm_matrix_instance_f32; | ||
|  |  * </pre> | ||
|  |  * There are similar definitions for Q15 and Q31 data types. | ||
|  |  * | ||
|  |  * The structure specifies the size of the matrix and then points to | ||
|  |  * an array of data.  The array is of size <code>numRows X numCols</code> | ||
|  |  * and the values are arranged in row order.  That is, the | ||
|  |  * matrix element (i, j) is stored at: | ||
|  |  * <pre> | ||
|  |  *     pData[i*numCols + j] | ||
|  |  * </pre> | ||
|  |  * | ||
|  |  * \par Init Functions | ||
|  |  * There is an associated initialization function for each type of matrix | ||
|  |  * data structure. | ||
|  |  * The initialization function sets the values of the internal structure fields. | ||
|  |  * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | ||
|  |  * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively. | ||
|  |  * | ||
|  |  * \par | ||
|  |  * Use of the initialization function is optional. However, if initialization function is used | ||
|  |  * then the instance structure cannot be placed into a const data section. | ||
|  |  * To place the instance structure in a const data | ||
|  |  * section, manually initialize the data structure.  For example: | ||
|  |  * <pre> | ||
|  |  * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | ||
|  |  * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | ||
|  |  * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | ||
|  |  * </pre> | ||
|  |  * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | ||
|  |  * specifies the number of columns, and <code>pData</code> points to the | ||
|  |  * data array. | ||
|  |  * | ||
|  |  * \par Size Checking | ||
|  |  * By default all of the matrix functions perform size checking on the input and | ||
|  |  * output matrices.  For example, the matrix addition function verifies that the | ||
|  |  * two input matrices and the output matrix all have the same number of rows and | ||
|  |  * columns.  If the size check fails the functions return: | ||
|  |  * <pre> | ||
|  |  *     ARM_MATH_SIZE_MISMATCH | ||
|  |  * </pre> | ||
|  |  * Otherwise the functions return | ||
|  |  * <pre> | ||
|  |  *     ARM_MATH_SUCCESS | ||
|  |  * </pre> | ||
|  |  * There is some overhead associated with this matrix size checking. | ||
|  |  * The matrix size checking is enabled via the \#define | ||
|  |  * <pre> | ||
|  |  *     ARM_MATH_MATRIX_CHECK | ||
|  |  * </pre> | ||
|  |  * within the library project settings.  By default this macro is defined | ||
|  |  * and size checking is enabled.  By changing the project settings and | ||
|  |  * undefining this macro size checking is eliminated and the functions | ||
|  |  * run a bit faster.  With size checking disabled the functions always | ||
|  |  * return <code>ARM_MATH_SUCCESS</code>. | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupTransforms Transform Functions | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupController Controller Functions | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupStats Statistics Functions | ||
|  |  */ | ||
|  | /**
 | ||
|  |  * @defgroup groupSupport Support Functions | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupInterpolation Interpolation Functions | ||
|  |  * These functions perform 1- and 2-dimensional interpolation of data. | ||
|  |  * Linear interpolation is used for 1-dimensional data and | ||
|  |  * bilinear interpolation is used for 2-dimensional data. | ||
|  |  */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @defgroup groupExamples Examples | ||
|  |  */ | ||
|  | #ifndef _ARM_MATH_H
 | ||
|  | #define _ARM_MATH_H
 | ||
|  | 
 | ||
|  | #define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
 | ||
|  | 
 | ||
|  | #if defined(ARM_MATH_CM7)
 | ||
|  |   #include "core_cm7.h"
 | ||
|  | #elif defined (ARM_MATH_CM4)
 | ||
|  |   #include "core_cm4.h"
 | ||
|  | #elif defined (ARM_MATH_CM3)
 | ||
|  |   #include "core_cm3.h"
 | ||
|  | #elif defined (ARM_MATH_CM0)
 | ||
|  |   #include "core_cm0.h"
 | ||
|  | #define ARM_MATH_CM0_FAMILY
 | ||
|  |   #elif defined (ARM_MATH_CM0PLUS)
 | ||
|  | #include "core_cm0plus.h"
 | ||
|  |   #define ARM_MATH_CM0_FAMILY
 | ||
|  | #else
 | ||
|  |   #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
 | ||
|  | #include "string.h"
 | ||
|  | #include "math.h"
 | ||
|  | #ifdef	__cplusplus
 | ||
|  | extern "C" | ||
|  | { | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Macros required for reciprocal calculation in Normalized LMS | ||
|  |    */ | ||
|  | 
 | ||
|  | #define DELTA_Q31 			(0x100)
 | ||
|  | #define DELTA_Q15 			0x5
 | ||
|  | #define INDEX_MASK 			0x0000003F
 | ||
|  | #ifndef PI
 | ||
|  | #define PI					3.14159265358979f
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Macros required for SINE and COSINE Fast math approximations | ||
|  |    */ | ||
|  | 
 | ||
|  | #define FAST_MATH_TABLE_SIZE  512
 | ||
|  | #define FAST_MATH_Q31_SHIFT   (32 - 10)
 | ||
|  | #define FAST_MATH_Q15_SHIFT   (16 - 10)
 | ||
|  | #define CONTROLLER_Q31_SHIFT  (32 - 9)
 | ||
|  | #define TABLE_SIZE  256
 | ||
|  | #define TABLE_SPACING_Q31	   0x400000
 | ||
|  | #define TABLE_SPACING_Q15	   0x80
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Macros required for SINE and COSINE Controller functions | ||
|  |    */ | ||
|  |   /* 1.31(q31) Fixed value of 2/360 */ | ||
|  |   /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | ||
|  | #define INPUT_SPACING			0xB60B61
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Macro for Unaligned Support | ||
|  |    */ | ||
|  | #ifndef UNALIGNED_SUPPORT_DISABLE
 | ||
|  |     #define ALIGN4
 | ||
|  | #else
 | ||
|  |   #if defined  (__GNUC__)
 | ||
|  |     #define ALIGN4 __attribute__((aligned(4)))
 | ||
|  |   #else
 | ||
|  |     #define ALIGN4 __align(4)
 | ||
|  |   #endif
 | ||
|  | #endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Error status returned by some functions in the library. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef enum | ||
|  |   { | ||
|  |     ARM_MATH_SUCCESS = 0,                /**< No error */ | ||
|  |     ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */ | ||
|  |     ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */ | ||
|  |     ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */ | ||
|  |     ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */ | ||
|  |     ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | ||
|  |     ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */ | ||
|  |   } arm_status; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 8-bit fractional data type in 1.7 format. | ||
|  |    */ | ||
|  |   typedef int8_t q7_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 16-bit fractional data type in 1.15 format. | ||
|  |    */ | ||
|  |   typedef int16_t q15_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 32-bit fractional data type in 1.31 format. | ||
|  |    */ | ||
|  |   typedef int32_t q31_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 64-bit fractional data type in 1.63 format. | ||
|  |    */ | ||
|  |   typedef int64_t q63_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 32-bit floating-point type definition. | ||
|  |    */ | ||
|  |   typedef float float32_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief 64-bit floating-point type definition. | ||
|  |    */ | ||
|  |   typedef double float64_t; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief definition to read/write two 16 bit values. | ||
|  |    */ | ||
|  | #if defined __CC_ARM
 | ||
|  | #define __SIMD32_TYPE int32_t __packed
 | ||
|  | #define CMSIS_UNUSED __attribute__((unused))
 | ||
|  | #elif defined __ICCARM__
 | ||
|  | #define CMSIS_UNUSED
 | ||
|  | #define __SIMD32_TYPE int32_t __packed
 | ||
|  | #elif defined __GNUC__
 | ||
|  | #define __SIMD32_TYPE int32_t
 | ||
|  | #define CMSIS_UNUSED __attribute__((unused))
 | ||
|  | #elif defined __CSMC__			/* Cosmic */
 | ||
|  | #define CMSIS_UNUSED
 | ||
|  | #define __SIMD32_TYPE int32_t
 | ||
|  | #else
 | ||
|  | #error Unknown compiler
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define __SIMD32(addr)  (*(__SIMD32_TYPE **) & (addr))
 | ||
|  | #define __SIMD32_CONST(addr)  ((__SIMD32_TYPE *)(addr))
 | ||
|  | 
 | ||
|  | #define _SIMD32_OFFSET(addr)  (*(__SIMD32_TYPE *)  (addr))
 | ||
|  | 
 | ||
|  | #define __SIMD64(addr)  (*(int64_t **) & (addr))
 | ||
|  | 
 | ||
|  | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
 | ||
|  |   /**
 | ||
|  |    * @brief definition to pack two 16 bit values. | ||
|  |    */ | ||
|  | #define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
 | ||
|  |                                          (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  ) | ||
|  | #define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
 | ||
|  |                                          (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  ) | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief definition to pack four 8 bit values. | ||
|  |    */ | ||
|  | #ifndef ARM_MATH_BIG_ENDIAN
 | ||
|  | 
 | ||
|  | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) |	\
 | ||
|  |                                 (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) |	\ | ||
|  | 							    (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) |	\ | ||
|  | 							    (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  ) | ||
|  | #else
 | ||
|  | 
 | ||
|  | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) |	\
 | ||
|  |                                 (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) |	\ | ||
|  | 							    (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) |	\ | ||
|  | 							    (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  ) | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Clips Q63 to Q31 values. | ||
|  |    */ | ||
|  |   static __INLINE q31_t clip_q63_to_q31( | ||
|  |   q63_t x) | ||
|  |   { | ||
|  |     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | ||
|  |       ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Clips Q63 to Q15 values. | ||
|  |    */ | ||
|  |   static __INLINE q15_t clip_q63_to_q15( | ||
|  |   q63_t x) | ||
|  |   { | ||
|  |     return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | ||
|  |       ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Clips Q31 to Q7 values. | ||
|  |    */ | ||
|  |   static __INLINE q7_t clip_q31_to_q7( | ||
|  |   q31_t x) | ||
|  |   { | ||
|  |     return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | ||
|  |       ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Clips Q31 to Q15 values. | ||
|  |    */ | ||
|  |   static __INLINE q15_t clip_q31_to_q15( | ||
|  |   q31_t x) | ||
|  |   { | ||
|  |     return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | ||
|  |       ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE q63_t mult32x64( | ||
|  |   q63_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  |     return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | ||
|  |             (((q63_t) (x >> 32) * y))); | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  | #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM   )
 | ||
|  | #define __CLZ __clz
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
 | ||
|  | 
 | ||
|  |   static __INLINE uint32_t __CLZ( | ||
|  |   q31_t data); | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE uint32_t __CLZ( | ||
|  |   q31_t data) | ||
|  |   { | ||
|  |     uint32_t count = 0; | ||
|  |     uint32_t mask = 0x80000000; | ||
|  | 
 | ||
|  |     while((data & mask) == 0) | ||
|  |     { | ||
|  |       count += 1u; | ||
|  |       mask = mask >> 1u; | ||
|  |     } | ||
|  | 
 | ||
|  |     return (count); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE uint32_t arm_recip_q31( | ||
|  |   q31_t in, | ||
|  |   q31_t * dst, | ||
|  |   q31_t * pRecipTable) | ||
|  |   { | ||
|  | 
 | ||
|  |     uint32_t out, tempVal; | ||
|  |     uint32_t index, i; | ||
|  |     uint32_t signBits; | ||
|  | 
 | ||
|  |     if(in > 0) | ||
|  |     { | ||
|  |       signBits = __CLZ(in) - 1; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       signBits = __CLZ(-in) - 1; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Convert input sample to 1.31 format */ | ||
|  |     in = in << signBits; | ||
|  | 
 | ||
|  |     /* calculation of index for initial approximated Val */ | ||
|  |     index = (uint32_t) (in >> 24u); | ||
|  |     index = (index & INDEX_MASK); | ||
|  | 
 | ||
|  |     /* 1.31 with exp 1 */ | ||
|  |     out = pRecipTable[index]; | ||
|  | 
 | ||
|  |     /* calculation of reciprocal value */ | ||
|  |     /* running approximation for two iterations */ | ||
|  |     for (i = 0u; i < 2u; i++) | ||
|  |     { | ||
|  |       tempVal = (q31_t) (((q63_t) in * out) >> 31u); | ||
|  |       tempVal = 0x7FFFFFFF - tempVal; | ||
|  |       /*      1.31 with exp 1 */ | ||
|  |       //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
 | ||
|  |       out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* write output */ | ||
|  |     *dst = out; | ||
|  | 
 | ||
|  |     /* return num of signbits of out = 1/in value */ | ||
|  |     return (signBits + 1u); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. | ||
|  |    */ | ||
|  |   static __INLINE uint32_t arm_recip_q15( | ||
|  |   q15_t in, | ||
|  |   q15_t * dst, | ||
|  |   q15_t * pRecipTable) | ||
|  |   { | ||
|  | 
 | ||
|  |     uint32_t out = 0, tempVal = 0; | ||
|  |     uint32_t index = 0, i = 0; | ||
|  |     uint32_t signBits = 0; | ||
|  | 
 | ||
|  |     if(in > 0) | ||
|  |     { | ||
|  |       signBits = __CLZ(in) - 17; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       signBits = __CLZ(-in) - 17; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Convert input sample to 1.15 format */ | ||
|  |     in = in << signBits; | ||
|  | 
 | ||
|  |     /* calculation of index for initial approximated Val */ | ||
|  |     index = in >> 8; | ||
|  |     index = (index & INDEX_MASK); | ||
|  | 
 | ||
|  |     /*      1.15 with exp 1  */ | ||
|  |     out = pRecipTable[index]; | ||
|  | 
 | ||
|  |     /* calculation of reciprocal value */ | ||
|  |     /* running approximation for two iterations */ | ||
|  |     for (i = 0; i < 2; i++) | ||
|  |     { | ||
|  |       tempVal = (q15_t) (((q31_t) in * out) >> 15); | ||
|  |       tempVal = 0x7FFF - tempVal; | ||
|  |       /*      1.15 with exp 1 */ | ||
|  |       out = (q15_t) (((q31_t) out * tempVal) >> 14); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* write output */ | ||
|  |     *dst = out; | ||
|  | 
 | ||
|  |     /* return num of signbits of out = 1/in value */ | ||
|  |     return (signBits + 1); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined intrinisic function for only M0 processors | ||
|  |    */ | ||
|  | #if defined(ARM_MATH_CM0_FAMILY)
 | ||
|  | 
 | ||
|  |   static __INLINE q31_t __SSAT( | ||
|  |   q31_t x, | ||
|  |   uint32_t y) | ||
|  |   { | ||
|  |     int32_t posMax, negMin; | ||
|  |     uint32_t i; | ||
|  | 
 | ||
|  |     posMax = 1; | ||
|  |     for (i = 0; i < (y - 1); i++) | ||
|  |     { | ||
|  |       posMax = posMax * 2; | ||
|  |     } | ||
|  | 
 | ||
|  |     if(x > 0) | ||
|  |     { | ||
|  |       posMax = (posMax - 1); | ||
|  | 
 | ||
|  |       if(x > posMax) | ||
|  |       { | ||
|  |         x = posMax; | ||
|  |       } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       negMin = -posMax; | ||
|  | 
 | ||
|  |       if(x < negMin) | ||
|  |       { | ||
|  |         x = negMin; | ||
|  |       } | ||
|  |     } | ||
|  |     return (x); | ||
|  | 
 | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  | #endif /* end of ARM_MATH_CM0_FAMILY */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined intrinsic function for M3 and M0 processors | ||
|  |    */ | ||
|  | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QADD8 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QADD8( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q7_t r, s, t, u; | ||
|  | 
 | ||
|  |     r = (q7_t) x; | ||
|  |     s = (q7_t) y; | ||
|  | 
 | ||
|  |     r = __SSAT((q31_t) (r + s), 8); | ||
|  |     s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); | ||
|  |     t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); | ||
|  |     u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); | ||
|  | 
 | ||
|  |     sum = | ||
|  |       (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | | ||
|  |       (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QSUB8 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QSUB8( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s, t, u; | ||
|  | 
 | ||
|  |     r = (q7_t) x; | ||
|  |     s = (q7_t) y; | ||
|  | 
 | ||
|  |     r = __SSAT((r - s), 8); | ||
|  |     s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; | ||
|  |     t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; | ||
|  |     u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; | ||
|  | 
 | ||
|  |     sum = | ||
|  |       (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & | ||
|  |                                                                 0x000000FF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QADD16 for M3 and M0 processors | ||
|  |    */ | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QADD16 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QADD16( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = __SSAT(r + s, 16); | ||
|  |     s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; | ||
|  | 
 | ||
|  |     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SHADD16 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SHADD16( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = ((r >> 1) + (s >> 1)); | ||
|  |     s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; | ||
|  | 
 | ||
|  |     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QSUB16 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QSUB16( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = __SSAT(r - s, 16); | ||
|  |     s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; | ||
|  | 
 | ||
|  |     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SHSUB16 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SHSUB16( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t diff; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = ((r >> 1) - (s >> 1)); | ||
|  |     s = (((x >> 17) - (y >> 17)) << 16); | ||
|  | 
 | ||
|  |     diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return diff; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QASX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QASX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum = 0; | ||
|  | 
 | ||
|  |     sum = | ||
|  |       ((sum + | ||
|  |         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) + | ||
|  |       clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16))); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SHASX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SHASX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = ((r >> 1) - (y >> 17)); | ||
|  |     s = (((x >> 17) + (s >> 1)) << 16); | ||
|  | 
 | ||
|  |     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QSAX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QSAX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum = 0; | ||
|  | 
 | ||
|  |     sum = | ||
|  |       ((sum + | ||
|  |         clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) + | ||
|  |       clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16))); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SHSAX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SHSAX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     q31_t sum; | ||
|  |     q31_t r, s; | ||
|  | 
 | ||
|  |     r = (q15_t) x; | ||
|  |     s = (q15_t) y; | ||
|  | 
 | ||
|  |     r = ((r >> 1) + (y >> 17)); | ||
|  |     s = (((x >> 17) - (s >> 1)) << 16); | ||
|  | 
 | ||
|  |     sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); | ||
|  | 
 | ||
|  |     return sum; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMUSDX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMUSDX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) - | ||
|  |                      ((q15_t) (x >> 16) * (q15_t) y))); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMUADX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMUADX( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) + | ||
|  |                      ((q15_t) (x >> 16) * (q15_t) y))); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QADD for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QADD( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  |     return clip_q63_to_q31((q63_t) x + y); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined QSUB for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __QSUB( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  |     return clip_q63_to_q31((q63_t) x - y); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMLAD for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMLAD( | ||
|  |   q31_t x, | ||
|  |   q31_t y, | ||
|  |   q31_t sum) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + | ||
|  |             ((q15_t) x * (q15_t) y)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMLADX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMLADX( | ||
|  |   q31_t x, | ||
|  |   q31_t y, | ||
|  |   q31_t sum) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) + | ||
|  |             ((q15_t) x * (q15_t) (y >> 16))); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMLSDX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMLSDX( | ||
|  |   q31_t x, | ||
|  |   q31_t y, | ||
|  |   q31_t sum) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) + | ||
|  |             ((q15_t) x * (q15_t) (y >> 16))); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMLALD for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q63_t __SMLALD( | ||
|  |   q31_t x, | ||
|  |   q31_t y, | ||
|  |   q63_t sum) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + | ||
|  |             ((q15_t) x * (q15_t) y)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMLALDX for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q63_t __SMLALDX( | ||
|  |   q31_t x, | ||
|  |   q31_t y, | ||
|  |   q63_t sum) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + | ||
|  |       ((q15_t) x * (q15_t) (y >> 16)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMUAD for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMUAD( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (((x >> 16) * (y >> 16)) + | ||
|  |             (((x << 16) >> 16) * ((y << 16) >> 16))); | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SMUSD for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SMUSD( | ||
|  |   q31_t x, | ||
|  |   q31_t y) | ||
|  |   { | ||
|  | 
 | ||
|  |     return (-((x >> 16) * (y >> 16)) + | ||
|  |             (((x << 16) >> 16) * ((y << 16) >> 16))); | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief C custom defined SXTB16 for M3 and M0 processors | ||
|  |    */ | ||
|  |   static __INLINE q31_t __SXTB16( | ||
|  |   q31_t x) | ||
|  |   { | ||
|  | 
 | ||
|  |     return ((((x << 24) >> 24) & 0x0000FFFF) | | ||
|  |             (((x << 8) >> 8) & 0xFFFF0000)); | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q7 FIR filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;        /**< number of filter coefficients in the filter. */ | ||
|  |     q7_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q7_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |   } arm_fir_instance_q7; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 FIR filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;         /**< number of filter coefficients in the filter. */ | ||
|  |     q15_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q15_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |   } arm_fir_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 FIR filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;         /**< number of filter coefficients in the filter. */ | ||
|  |     q31_t *pState;            /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q31_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |   } arm_fir_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point FIR filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;     /**< number of filter coefficients in the filter. */ | ||
|  |     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |   } arm_fir_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q7 FIR filter. | ||
|  |    * @param[in] *S points to an instance of the Q7 FIR filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_q7( | ||
|  |   const arm_fir_instance_q7 * S, | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q7 FIR filter. | ||
|  |    * @param[in,out] *S points to an instance of the Q7 FIR structure. | ||
|  |    * @param[in] numTaps  Number of filter coefficients in the filter. | ||
|  |    * @param[in] *pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] blockSize number of samples that are processed. | ||
|  |    * @return none | ||
|  |    */ | ||
|  |   void arm_fir_init_q7( | ||
|  |   arm_fir_instance_q7 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q7_t * pCoeffs, | ||
|  |   q7_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 FIR filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_q15( | ||
|  |   const arm_fir_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_fast_q15( | ||
|  |   const arm_fir_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 FIR filter. | ||
|  |    * @param[in,out] *S points to an instance of the Q15 FIR filter structure. | ||
|  |    * @param[in] numTaps  Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | ||
|  |    * @param[in] *pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] blockSize number of samples that are processed at a time. | ||
|  |    * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | ||
|  |    * <code>numTaps</code> is not a supported value. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_init_q15( | ||
|  |   arm_fir_instance_q15 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 FIR filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 FIR filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_q31( | ||
|  |   const arm_fir_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *S points to an instance of the Q31 FIR structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_fast_q31( | ||
|  |   const arm_fir_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 FIR filter. | ||
|  |    * @param[in,out] *S points to an instance of the Q31 FIR structure. | ||
|  |    * @param[in] 	numTaps  Number of filter coefficients in the filter. | ||
|  |    * @param[in] 	*pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] 	*pState points to the state buffer. | ||
|  |    * @param[in] 	blockSize number of samples that are processed at a time. | ||
|  |    * @return 		none. | ||
|  |    */ | ||
|  |   void arm_fir_init_q31( | ||
|  |   arm_fir_instance_q31 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point FIR filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point FIR structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_f32( | ||
|  |   const arm_fir_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point FIR filter. | ||
|  |    * @param[in,out] *S points to an instance of the floating-point FIR filter structure. | ||
|  |    * @param[in] 	numTaps  Number of filter coefficients in the filter. | ||
|  |    * @param[in] 	*pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] 	*pState points to the state buffer. | ||
|  |    * @param[in] 	blockSize number of samples that are processed at a time. | ||
|  |    * @return    	none. | ||
|  |    */ | ||
|  |   void arm_fir_init_f32( | ||
|  |   arm_fir_instance_f32 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 Biquad cascade filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     int8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     q15_t *pState;            /**< Points to the array of state coefficients.  The array is of length 4*numStages. */ | ||
|  |     q15_t *pCoeffs;           /**< Points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |     int8_t postShift;         /**< Additional shift, in bits, applied to each output sample. */ | ||
|  | 
 | ||
|  |   } arm_biquad_casd_df1_inst_q15; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 Biquad cascade filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t numStages;      /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     q31_t *pState;           /**< Points to the array of state coefficients.  The array is of length 4*numStages. */ | ||
|  |     q31_t *pCoeffs;          /**< Points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |     uint8_t postShift;       /**< Additional shift, in bits, applied to each output sample. */ | ||
|  | 
 | ||
|  |   } arm_biquad_casd_df1_inst_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point Biquad cascade filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     float32_t *pState;          /**< Points to the array of state coefficients.  The array is of length 4*numStages. */ | ||
|  |     float32_t *pCoeffs;         /**< Points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   } arm_biquad_casd_df1_inst_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 Biquad cascade filter. | ||
|  |    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure. | ||
|  |    * @param[in]  *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_q15( | ||
|  |   const arm_biquad_casd_df1_inst_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the Q15 Biquad cascade structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_init_q15( | ||
|  |   arm_biquad_casd_df1_inst_q15 * S, | ||
|  |   uint8_t numStages, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   int8_t postShift); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in]  *S points to an instance of the Q15 Biquad cascade structure. | ||
|  |    * @param[in]  *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_fast_q15( | ||
|  |   const arm_biquad_casd_df1_inst_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 Biquad cascade filter | ||
|  |    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure. | ||
|  |    * @param[in]  *pSrc      points to the block of input data. | ||
|  |    * @param[out] *pDst      points to the block of output data. | ||
|  |    * @param[in]  blockSize  number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_q31( | ||
|  |   const arm_biquad_casd_df1_inst_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in]  *S         points to an instance of the Q31 Biquad cascade structure. | ||
|  |    * @param[in]  *pSrc      points to the block of input data. | ||
|  |    * @param[out] *pDst      points to the block of output data. | ||
|  |    * @param[in]  blockSize  number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_fast_q31( | ||
|  |   const arm_biquad_casd_df1_inst_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the Q31 Biquad cascade structure. | ||
|  |    * @param[in]     numStages      number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @param[in]     postShift    Shift to be applied to the output. Varies according to the coefficients format | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_init_q31( | ||
|  |   arm_biquad_casd_df1_inst_q31 * S, | ||
|  |   uint8_t numStages, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   int8_t postShift); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point Biquad cascade filter. | ||
|  |    * @param[in]  *S         points to an instance of the floating-point Biquad cascade structure. | ||
|  |    * @param[in]  *pSrc      points to the block of input data. | ||
|  |    * @param[out] *pDst      points to the block of output data. | ||
|  |    * @param[in]  blockSize  number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_f32( | ||
|  |   const arm_biquad_casd_df1_inst_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the floating-point Biquad cascade structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df1_init_f32( | ||
|  |   arm_biquad_casd_df1_inst_f32 * S, | ||
|  |   uint8_t numStages, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point matrix structure. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;     /**< number of rows of the matrix.     */ | ||
|  |     uint16_t numCols;     /**< number of columns of the matrix.  */ | ||
|  |     float32_t *pData;     /**< points to the data of the matrix. */ | ||
|  |   } arm_matrix_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point matrix structure. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;     /**< number of rows of the matrix.     */ | ||
|  |     uint16_t numCols;     /**< number of columns of the matrix.  */ | ||
|  |     float64_t *pData;     /**< points to the data of the matrix. */ | ||
|  |   } arm_matrix_instance_f64; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 matrix structure. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;     /**< number of rows of the matrix.     */ | ||
|  |     uint16_t numCols;     /**< number of columns of the matrix.  */ | ||
|  |     q15_t *pData;         /**< points to the data of the matrix. */ | ||
|  | 
 | ||
|  |   } arm_matrix_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 matrix structure. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;     /**< number of rows of the matrix.     */ | ||
|  |     uint16_t numCols;     /**< number of columns of the matrix.  */ | ||
|  |     q31_t *pData;         /**< points to the data of the matrix. */ | ||
|  | 
 | ||
|  |   } arm_matrix_instance_q31; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix addition. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_add_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrcA, | ||
|  |   const arm_matrix_instance_f32 * pSrcB, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix addition. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_add_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrcA, | ||
|  |   const arm_matrix_instance_q15 * pSrcB, | ||
|  |   arm_matrix_instance_q15 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix addition. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_add_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrcA, | ||
|  |   const arm_matrix_instance_q31 * pSrcB, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point, complex, matrix multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_cmplx_mult_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrcA, | ||
|  |   const arm_matrix_instance_f32 * pSrcB, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15, complex,  matrix multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_cmplx_mult_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrcA, | ||
|  |   const arm_matrix_instance_q15 * pSrcB, | ||
|  |   arm_matrix_instance_q15 * pDst, | ||
|  |   q15_t * pScratch); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31, complex, matrix multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_cmplx_mult_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrcA, | ||
|  |   const arm_matrix_instance_q31 * pSrcB, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix transpose. | ||
|  |    * @param[in]  *pSrc points to the input matrix | ||
|  |    * @param[out] *pDst points to the output matrix | ||
|  |    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code> | ||
|  |    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_trans_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrc, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix transpose. | ||
|  |    * @param[in]  *pSrc points to the input matrix | ||
|  |    * @param[out] *pDst points to the output matrix | ||
|  |    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code> | ||
|  |    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_trans_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrc, | ||
|  |   arm_matrix_instance_q15 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix transpose. | ||
|  |    * @param[in]  *pSrc points to the input matrix | ||
|  |    * @param[out] *pDst points to the output matrix | ||
|  |    * @return 	The function returns either  <code>ARM_MATH_SIZE_MISMATCH</code> | ||
|  |    * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_trans_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrc, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix multiplication | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_mult_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrcA, | ||
|  |   const arm_matrix_instance_f32 * pSrcB, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix multiplication | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @param[in]		 *pState points to the array for storing intermediate results | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_mult_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrcA, | ||
|  |   const arm_matrix_instance_q15 * pSrcB, | ||
|  |   arm_matrix_instance_q15 * pDst, | ||
|  |   q15_t * pState); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in]       *pSrcA  points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB  points to the second input matrix structure | ||
|  |    * @param[out]      *pDst   points to output matrix structure | ||
|  |    * @param[in]		  *pState points to the array for storing intermediate results | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_mult_fast_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrcA, | ||
|  |   const arm_matrix_instance_q15 * pSrcB, | ||
|  |   arm_matrix_instance_q15 * pDst, | ||
|  |   q15_t * pState); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix multiplication | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_mult_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrcA, | ||
|  |   const arm_matrix_instance_q31 * pSrcB, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_mult_fast_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrcA, | ||
|  |   const arm_matrix_instance_q31 * pSrcB, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix subtraction | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_sub_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrcA, | ||
|  |   const arm_matrix_instance_f32 * pSrcB, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix subtraction | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_sub_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrcA, | ||
|  |   const arm_matrix_instance_q15 * pSrcB, | ||
|  |   arm_matrix_instance_q15 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix subtraction | ||
|  |    * @param[in]       *pSrcA points to the first input matrix structure | ||
|  |    * @param[in]       *pSrcB points to the second input matrix structure | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_sub_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrcA, | ||
|  |   const arm_matrix_instance_q31 * pSrcB, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix scaling. | ||
|  |    * @param[in]  *pSrc points to the input matrix | ||
|  |    * @param[in]  scale scale factor | ||
|  |    * @param[out] *pDst points to the output matrix | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_scale_f32( | ||
|  |   const arm_matrix_instance_f32 * pSrc, | ||
|  |   float32_t scale, | ||
|  |   arm_matrix_instance_f32 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 matrix scaling. | ||
|  |    * @param[in]       *pSrc points to input matrix | ||
|  |    * @param[in]       scaleFract fractional portion of the scale factor | ||
|  |    * @param[in]       shift number of bits to shift the result by | ||
|  |    * @param[out]      *pDst points to output matrix | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_scale_q15( | ||
|  |   const arm_matrix_instance_q15 * pSrc, | ||
|  |   q15_t scaleFract, | ||
|  |   int32_t shift, | ||
|  |   arm_matrix_instance_q15 * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 matrix scaling. | ||
|  |    * @param[in]       *pSrc points to input matrix | ||
|  |    * @param[in]       scaleFract fractional portion of the scale factor | ||
|  |    * @param[in]       shift number of bits to shift the result by | ||
|  |    * @param[out]      *pDst points to output matrix structure | ||
|  |    * @return     The function returns either | ||
|  |    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_scale_q31( | ||
|  |   const arm_matrix_instance_q31 * pSrc, | ||
|  |   q31_t scaleFract, | ||
|  |   int32_t shift, | ||
|  |   arm_matrix_instance_q31 * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 matrix initialization. | ||
|  |    * @param[in,out] *S             points to an instance of the floating-point matrix structure. | ||
|  |    * @param[in]     nRows          number of rows in the matrix. | ||
|  |    * @param[in]     nColumns       number of columns in the matrix. | ||
|  |    * @param[in]     *pData	       points to the matrix data array. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mat_init_q31( | ||
|  |   arm_matrix_instance_q31 * S, | ||
|  |   uint16_t nRows, | ||
|  |   uint16_t nColumns, | ||
|  |   q31_t * pData); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 matrix initialization. | ||
|  |    * @param[in,out] *S             points to an instance of the floating-point matrix structure. | ||
|  |    * @param[in]     nRows          number of rows in the matrix. | ||
|  |    * @param[in]     nColumns       number of columns in the matrix. | ||
|  |    * @param[in]     *pData	       points to the matrix data array. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mat_init_q15( | ||
|  |   arm_matrix_instance_q15 * S, | ||
|  |   uint16_t nRows, | ||
|  |   uint16_t nColumns, | ||
|  |   q15_t * pData); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point matrix initialization. | ||
|  |    * @param[in,out] *S             points to an instance of the floating-point matrix structure. | ||
|  |    * @param[in]     nRows          number of rows in the matrix. | ||
|  |    * @param[in]     nColumns       number of columns in the matrix. | ||
|  |    * @param[in]     *pData	       points to the matrix data array. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mat_init_f32( | ||
|  |   arm_matrix_instance_f32 * S, | ||
|  |   uint16_t nRows, | ||
|  |   uint16_t nColumns, | ||
|  |   float32_t * pData); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 PID Control. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     q15_t A0;    /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||
|  | #ifdef ARM_MATH_CM0_FAMILY
 | ||
|  |     q15_t A1; | ||
|  |     q15_t A2; | ||
|  | #else
 | ||
|  |     q31_t A1;           /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | ||
|  | #endif
 | ||
|  |     q15_t state[3];       /**< The state array of length 3. */ | ||
|  |     q15_t Kp;           /**< The proportional gain. */ | ||
|  |     q15_t Ki;           /**< The integral gain. */ | ||
|  |     q15_t Kd;           /**< The derivative gain. */ | ||
|  |   } arm_pid_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 PID Control. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     q31_t A0;            /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||
|  |     q31_t A1;            /**< The derived gain, A1 = -Kp - 2Kd. */ | ||
|  |     q31_t A2;            /**< The derived gain, A2 = Kd . */ | ||
|  |     q31_t state[3];      /**< The state array of length 3. */ | ||
|  |     q31_t Kp;            /**< The proportional gain. */ | ||
|  |     q31_t Ki;            /**< The integral gain. */ | ||
|  |     q31_t Kd;            /**< The derivative gain. */ | ||
|  | 
 | ||
|  |   } arm_pid_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point PID Control. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     float32_t A0;          /**< The derived gain, A0 = Kp + Ki + Kd . */ | ||
|  |     float32_t A1;          /**< The derived gain, A1 = -Kp - 2Kd. */ | ||
|  |     float32_t A2;          /**< The derived gain, A2 = Kd . */ | ||
|  |     float32_t state[3];    /**< The state array of length 3. */ | ||
|  |     float32_t Kp;               /**< The proportional gain. */ | ||
|  |     float32_t Ki;               /**< The integral gain. */ | ||
|  |     float32_t Kd;               /**< The derivative gain. */ | ||
|  |   } arm_pid_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point PID Control. | ||
|  |    * @param[in,out] *S      points to an instance of the PID structure. | ||
|  |    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_pid_init_f32( | ||
|  |   arm_pid_instance_f32 * S, | ||
|  |   int32_t resetStateFlag); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Reset function for the floating-point PID Control. | ||
|  |    * @param[in,out] *S is an instance of the floating-point PID Control structure | ||
|  |    * @return none | ||
|  |    */ | ||
|  |   void arm_pid_reset_f32( | ||
|  |   arm_pid_instance_f32 * S); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the Q15 PID structure. | ||
|  |    * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_pid_init_q31( | ||
|  |   arm_pid_instance_q31 * S, | ||
|  |   int32_t resetStateFlag); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Reset function for the Q31 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the Q31 PID Control structure | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_pid_reset_q31( | ||
|  |   arm_pid_instance_q31 * S); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the Q15 PID structure. | ||
|  |    * @param[in] resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_pid_init_q15( | ||
|  |   arm_pid_instance_q15 * S, | ||
|  |   int32_t resetStateFlag); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Reset function for the Q15 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the q15 PID Control structure | ||
|  |    * @return none | ||
|  |    */ | ||
|  |   void arm_pid_reset_q15( | ||
|  |   arm_pid_instance_q15 * S); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point Linear Interpolate function. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t nValues;           /**< nValues */ | ||
|  |     float32_t x1;               /**< x1 */ | ||
|  |     float32_t xSpacing;         /**< xSpacing */ | ||
|  |     float32_t *pYData;          /**< pointer to the table of Y values */ | ||
|  |   } arm_linear_interp_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point bilinear interpolation function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;   /**< number of rows in the data table. */ | ||
|  |     uint16_t numCols;   /**< number of columns in the data table. */ | ||
|  |     float32_t *pData;   /**< points to the data table. */ | ||
|  |   } arm_bilinear_interp_instance_f32; | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief Instance structure for the Q31 bilinear interpolation function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;   /**< number of rows in the data table. */ | ||
|  |     uint16_t numCols;   /**< number of columns in the data table. */ | ||
|  |     q31_t *pData;       /**< points to the data table. */ | ||
|  |   } arm_bilinear_interp_instance_q31; | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief Instance structure for the Q15 bilinear interpolation function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;   /**< number of rows in the data table. */ | ||
|  |     uint16_t numCols;   /**< number of columns in the data table. */ | ||
|  |     q15_t *pData;       /**< points to the data table. */ | ||
|  |   } arm_bilinear_interp_instance_q15; | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief Instance structure for the Q15 bilinear interpolation function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numRows;   /**< number of rows in the data table. */ | ||
|  |     uint16_t numCols;   /**< number of columns in the data table. */ | ||
|  |     q7_t *pData;                /**< points to the data table. */ | ||
|  |   } arm_bilinear_interp_instance_q7; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 vector multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst  points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mult_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   q7_t * pSrcB, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 vector multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst  points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mult_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 vector multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mult_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point vector multiplication. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mult_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                 /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     q15_t *pTwiddle;                     /**< points to the Sin twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |   } arm_cfft_radix2_instance_q15; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix2_init_q15( | ||
|  |   arm_cfft_radix2_instance_q15 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix2_q15( | ||
|  |   const arm_cfft_radix2_instance_q15 * S, | ||
|  |   q15_t * pSrc); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                 /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     q15_t *pTwiddle;                 /**< points to the twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |   } arm_cfft_radix4_instance_q15; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix4_init_q15( | ||
|  |   arm_cfft_radix4_instance_q15 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix4_q15( | ||
|  |   const arm_cfft_radix4_instance_q15 * S, | ||
|  |   q15_t * pSrc); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                 /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     q31_t *pTwiddle;                     /**< points to the Twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |   } arm_cfft_radix2_instance_q31; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix2_init_q31( | ||
|  |   arm_cfft_radix2_instance_q31 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix2_q31( | ||
|  |   const arm_cfft_radix2_instance_q31 * S, | ||
|  |   q31_t * pSrc); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                 /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;          /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     q31_t *pTwiddle;                 /**< points to the twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;          /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;       /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;           /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |   } arm_cfft_radix4_instance_q31; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix4_q31( | ||
|  |   const arm_cfft_radix4_instance_q31 * S, | ||
|  |   q31_t * pSrc); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix4_init_q31( | ||
|  |   arm_cfft_radix4_instance_q31 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                   /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |     float32_t onebyfftLen;                 /**< value of 1/fftLen. */ | ||
|  |   } arm_cfft_radix2_instance_f32; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix2_init_f32( | ||
|  |   arm_cfft_radix2_instance_f32 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix2_f32( | ||
|  |   const arm_cfft_radix2_instance_f32 * S, | ||
|  |   float32_t * pSrc); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                   /**< length of the FFT. */ | ||
|  |     uint8_t ifftFlag;                  /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | ||
|  |     uint8_t bitReverseFlag;            /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | ||
|  |     float32_t *pTwiddle;               /**< points to the Twiddle factor table. */ | ||
|  |     uint16_t *pBitRevTable;            /**< points to the bit reversal table. */ | ||
|  |     uint16_t twidCoefModifier;         /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     uint16_t bitRevFactor;             /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | ||
|  |     float32_t onebyfftLen;                 /**< value of 1/fftLen. */ | ||
|  |   } arm_cfft_radix4_instance_f32; | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   arm_status arm_cfft_radix4_init_f32( | ||
|  |   arm_cfft_radix4_instance_f32 * S, | ||
|  |   uint16_t fftLen, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  | /* Deprecated */ | ||
|  |   void arm_cfft_radix4_f32( | ||
|  |   const arm_cfft_radix4_instance_f32 * S, | ||
|  |   float32_t * pSrc); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the fixed-point CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                   /**< length of the FFT. */ | ||
|  |     const q15_t *pTwiddle;             /**< points to the Twiddle factor table. */ | ||
|  |     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */ | ||
|  |     uint16_t bitRevLength;             /**< bit reversal table length. */ | ||
|  |   } arm_cfft_instance_q15; | ||
|  | 
 | ||
|  | void arm_cfft_q15(  | ||
|  |     const arm_cfft_instance_q15 * S,  | ||
|  |     q15_t * p1, | ||
|  |     uint8_t ifftFlag, | ||
|  |     uint8_t bitReverseFlag);   | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the fixed-point CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                   /**< length of the FFT. */ | ||
|  |     const q31_t *pTwiddle;             /**< points to the Twiddle factor table. */ | ||
|  |     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */ | ||
|  |     uint16_t bitRevLength;             /**< bit reversal table length. */ | ||
|  |   } arm_cfft_instance_q31; | ||
|  | 
 | ||
|  | void arm_cfft_q31(  | ||
|  |     const arm_cfft_instance_q31 * S,  | ||
|  |     q31_t * p1, | ||
|  |     uint8_t ifftFlag, | ||
|  |     uint8_t bitReverseFlag);   | ||
|  |    | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point CFFT/CIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t fftLen;                   /**< length of the FFT. */ | ||
|  |     const float32_t *pTwiddle;         /**< points to the Twiddle factor table. */ | ||
|  |     const uint16_t *pBitRevTable;      /**< points to the bit reversal table. */ | ||
|  |     uint16_t bitRevLength;             /**< bit reversal table length. */ | ||
|  |   } arm_cfft_instance_f32; | ||
|  | 
 | ||
|  |   void arm_cfft_f32( | ||
|  |   const arm_cfft_instance_f32 * S, | ||
|  |   float32_t * p1, | ||
|  |   uint8_t ifftFlag, | ||
|  |   uint8_t bitReverseFlag); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 RFFT/RIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t fftLenReal;                      /**< length of the real FFT. */ | ||
|  |     uint8_t ifftFlagR;                        /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||
|  |     uint8_t bitReverseFlagR;                  /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||
|  |     uint32_t twidCoefRModifier;               /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     q15_t *pTwiddleAReal;                     /**< points to the real twiddle factor table. */ | ||
|  |     q15_t *pTwiddleBReal;                     /**< points to the imag twiddle factor table. */ | ||
|  |     const arm_cfft_instance_q15 *pCfft;       /**< points to the complex FFT instance. */ | ||
|  |   } arm_rfft_instance_q15; | ||
|  | 
 | ||
|  |   arm_status arm_rfft_init_q15( | ||
|  |   arm_rfft_instance_q15 * S, | ||
|  |   uint32_t fftLenReal, | ||
|  |   uint32_t ifftFlagR, | ||
|  |   uint32_t bitReverseFlag); | ||
|  | 
 | ||
|  |   void arm_rfft_q15( | ||
|  |   const arm_rfft_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 RFFT/RIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t fftLenReal;                        /**< length of the real FFT. */ | ||
|  |     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||
|  |     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||
|  |     uint32_t twidCoefRModifier;                 /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     q31_t *pTwiddleAReal;                       /**< points to the real twiddle factor table. */ | ||
|  |     q31_t *pTwiddleBReal;                       /**< points to the imag twiddle factor table. */ | ||
|  |     const arm_cfft_instance_q31 *pCfft;         /**< points to the complex FFT instance. */ | ||
|  |   } arm_rfft_instance_q31; | ||
|  | 
 | ||
|  |   arm_status arm_rfft_init_q31( | ||
|  |   arm_rfft_instance_q31 * S, | ||
|  |   uint32_t fftLenReal, | ||
|  |   uint32_t ifftFlagR, | ||
|  |   uint32_t bitReverseFlag); | ||
|  | 
 | ||
|  |   void arm_rfft_q31( | ||
|  |   const arm_rfft_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point RFFT/RIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint32_t fftLenReal;                        /**< length of the real FFT. */ | ||
|  |     uint16_t fftLenBy2;                         /**< length of the complex FFT. */ | ||
|  |     uint8_t ifftFlagR;                          /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | ||
|  |     uint8_t bitReverseFlagR;                    /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | ||
|  |     uint32_t twidCoefRModifier;                     /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | ||
|  |     float32_t *pTwiddleAReal;                   /**< points to the real twiddle factor table. */ | ||
|  |     float32_t *pTwiddleBReal;                   /**< points to the imag twiddle factor table. */ | ||
|  |     arm_cfft_radix4_instance_f32 *pCfft;        /**< points to the complex FFT instance. */ | ||
|  |   } arm_rfft_instance_f32; | ||
|  | 
 | ||
|  |   arm_status arm_rfft_init_f32( | ||
|  |   arm_rfft_instance_f32 * S, | ||
|  |   arm_cfft_radix4_instance_f32 * S_CFFT, | ||
|  |   uint32_t fftLenReal, | ||
|  |   uint32_t ifftFlagR, | ||
|  |   uint32_t bitReverseFlag); | ||
|  | 
 | ||
|  |   void arm_rfft_f32( | ||
|  |   const arm_rfft_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point RFFT/RIFFT function. | ||
|  |    */ | ||
|  | 
 | ||
|  | typedef struct | ||
|  |   { | ||
|  |     arm_cfft_instance_f32 Sint;      /**< Internal CFFT structure. */ | ||
|  |     uint16_t fftLenRFFT;                        /**< length of the real sequence */ | ||
|  | 	float32_t * pTwiddleRFFT;					/**< Twiddle factors real stage  */ | ||
|  |   } arm_rfft_fast_instance_f32 ; | ||
|  | 
 | ||
|  | arm_status arm_rfft_fast_init_f32 ( | ||
|  | 	arm_rfft_fast_instance_f32 * S, | ||
|  | 	uint16_t fftLen); | ||
|  | 
 | ||
|  | void arm_rfft_fast_f32( | ||
|  |   arm_rfft_fast_instance_f32 * S, | ||
|  |   float32_t * p, float32_t * pOut, | ||
|  |   uint8_t ifftFlag); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point DCT4/IDCT4 function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t N;                         /**< length of the DCT4. */ | ||
|  |     uint16_t Nby2;                      /**< half of the length of the DCT4. */ | ||
|  |     float32_t normalize;                /**< normalizing factor. */ | ||
|  |     float32_t *pTwiddle;                /**< points to the twiddle factor table. */ | ||
|  |     float32_t *pCosFactor;              /**< points to the cosFactor table. */ | ||
|  |     arm_rfft_instance_f32 *pRfft;        /**< points to the real FFT instance. */ | ||
|  |     arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | ||
|  |   } arm_dct4_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point DCT4/IDCT4. | ||
|  |    * @param[in,out] *S         points to an instance of floating-point DCT4/IDCT4 structure. | ||
|  |    * @param[in]     *S_RFFT    points to an instance of floating-point RFFT/RIFFT structure. | ||
|  |    * @param[in]     *S_CFFT    points to an instance of floating-point CFFT/CIFFT structure. | ||
|  |    * @param[in]     N          length of the DCT4. | ||
|  |    * @param[in]     Nby2       half of the length of the DCT4. | ||
|  |    * @param[in]     normalize  normalizing factor. | ||
|  |    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_dct4_init_f32( | ||
|  |   arm_dct4_instance_f32 * S, | ||
|  |   arm_rfft_instance_f32 * S_RFFT, | ||
|  |   arm_cfft_radix4_instance_f32 * S_CFFT, | ||
|  |   uint16_t N, | ||
|  |   uint16_t Nby2, | ||
|  |   float32_t normalize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point DCT4/IDCT4. | ||
|  |    * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure. | ||
|  |    * @param[in]       *pState        points to state buffer. | ||
|  |    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dct4_f32( | ||
|  |   const arm_dct4_instance_f32 * S, | ||
|  |   float32_t * pState, | ||
|  |   float32_t * pInlineBuffer); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 DCT4/IDCT4 function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t N;                         /**< length of the DCT4. */ | ||
|  |     uint16_t Nby2;                      /**< half of the length of the DCT4. */ | ||
|  |     q31_t normalize;                    /**< normalizing factor. */ | ||
|  |     q31_t *pTwiddle;                    /**< points to the twiddle factor table. */ | ||
|  |     q31_t *pCosFactor;                  /**< points to the cosFactor table. */ | ||
|  |     arm_rfft_instance_q31 *pRfft;        /**< points to the real FFT instance. */ | ||
|  |     arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | ||
|  |   } arm_dct4_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 DCT4/IDCT4. | ||
|  |    * @param[in,out] *S         points to an instance of Q31 DCT4/IDCT4 structure. | ||
|  |    * @param[in]     *S_RFFT    points to an instance of Q31 RFFT/RIFFT structure | ||
|  |    * @param[in]     *S_CFFT    points to an instance of Q31 CFFT/CIFFT structure | ||
|  |    * @param[in]     N          length of the DCT4. | ||
|  |    * @param[in]     Nby2       half of the length of the DCT4. | ||
|  |    * @param[in]     normalize  normalizing factor. | ||
|  |    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_dct4_init_q31( | ||
|  |   arm_dct4_instance_q31 * S, | ||
|  |   arm_rfft_instance_q31 * S_RFFT, | ||
|  |   arm_cfft_radix4_instance_q31 * S_CFFT, | ||
|  |   uint16_t N, | ||
|  |   uint16_t Nby2, | ||
|  |   q31_t normalize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 DCT4/IDCT4. | ||
|  |    * @param[in]       *S             points to an instance of the Q31 DCT4 structure. | ||
|  |    * @param[in]       *pState        points to state buffer. | ||
|  |    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dct4_q31( | ||
|  |   const arm_dct4_instance_q31 * S, | ||
|  |   q31_t * pState, | ||
|  |   q31_t * pInlineBuffer); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 DCT4/IDCT4 function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t N;                         /**< length of the DCT4. */ | ||
|  |     uint16_t Nby2;                      /**< half of the length of the DCT4. */ | ||
|  |     q15_t normalize;                    /**< normalizing factor. */ | ||
|  |     q15_t *pTwiddle;                    /**< points to the twiddle factor table. */ | ||
|  |     q15_t *pCosFactor;                  /**< points to the cosFactor table. */ | ||
|  |     arm_rfft_instance_q15 *pRfft;        /**< points to the real FFT instance. */ | ||
|  |     arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | ||
|  |   } arm_dct4_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 DCT4/IDCT4. | ||
|  |    * @param[in,out] *S         points to an instance of Q15 DCT4/IDCT4 structure. | ||
|  |    * @param[in]     *S_RFFT    points to an instance of Q15 RFFT/RIFFT structure. | ||
|  |    * @param[in]     *S_CFFT    points to an instance of Q15 CFFT/CIFFT structure. | ||
|  |    * @param[in]     N          length of the DCT4. | ||
|  |    * @param[in]     Nby2       half of the length of the DCT4. | ||
|  |    * @param[in]     normalize  normalizing factor. | ||
|  |    * @return		arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_dct4_init_q15( | ||
|  |   arm_dct4_instance_q15 * S, | ||
|  |   arm_rfft_instance_q15 * S_RFFT, | ||
|  |   arm_cfft_radix4_instance_q15 * S_CFFT, | ||
|  |   uint16_t N, | ||
|  |   uint16_t Nby2, | ||
|  |   q15_t normalize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 DCT4/IDCT4. | ||
|  |    * @param[in]       *S             points to an instance of the Q15 DCT4 structure. | ||
|  |    * @param[in]       *pState        points to state buffer. | ||
|  |    * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dct4_q15( | ||
|  |   const arm_dct4_instance_q15 * S, | ||
|  |   q15_t * pState, | ||
|  |   q15_t * pInlineBuffer); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point vector addition. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_add_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 vector addition. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_add_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   q7_t * pSrcB, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 vector addition. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_add_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 vector addition. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_add_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point vector subtraction. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sub_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 vector subtraction. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sub_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   q7_t * pSrcB, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 vector subtraction. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sub_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 vector subtraction. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sub_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Multiplies a floating-point vector by a scalar. | ||
|  |    * @param[in]       *pSrc points to the input vector | ||
|  |    * @param[in]       scale scale factor to be applied | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_scale_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t scale, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Multiplies a Q7 vector by a scalar. | ||
|  |    * @param[in]       *pSrc points to the input vector | ||
|  |    * @param[in]       scaleFract fractional portion of the scale value | ||
|  |    * @param[in]       shift number of bits to shift the result by | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_scale_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t scaleFract, | ||
|  |   int8_t shift, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Multiplies a Q15 vector by a scalar. | ||
|  |    * @param[in]       *pSrc points to the input vector | ||
|  |    * @param[in]       scaleFract fractional portion of the scale value | ||
|  |    * @param[in]       shift number of bits to shift the result by | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_scale_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t scaleFract, | ||
|  |   int8_t shift, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Multiplies a Q31 vector by a scalar. | ||
|  |    * @param[in]       *pSrc points to the input vector | ||
|  |    * @param[in]       scaleFract fractional portion of the scale value | ||
|  |    * @param[in]       shift number of bits to shift the result by | ||
|  |    * @param[out]      *pDst points to the output vector | ||
|  |    * @param[in]       blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_scale_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t scaleFract, | ||
|  |   int8_t shift, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 vector absolute value. | ||
|  |    * @param[in]       *pSrc points to the input buffer | ||
|  |    * @param[out]      *pDst points to the output buffer | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_abs_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point vector absolute value. | ||
|  |    * @param[in]       *pSrc points to the input buffer | ||
|  |    * @param[out]      *pDst points to the output buffer | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_abs_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 vector absolute value. | ||
|  |    * @param[in]       *pSrc points to the input buffer | ||
|  |    * @param[out]      *pDst points to the output buffer | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_abs_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 vector absolute value. | ||
|  |    * @param[in]       *pSrc points to the input buffer | ||
|  |    * @param[out]      *pDst points to the output buffer | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_abs_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Dot product of floating-point vectors. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @param[out]      *result output result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dot_prod_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * result); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Dot product of Q7 vectors. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @param[out]      *result output result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dot_prod_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * result); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Dot product of Q15 vectors. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @param[out]      *result output result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dot_prod_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t blockSize, | ||
|  |   q63_t * result); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Dot product of Q31 vectors. | ||
|  |    * @param[in]       *pSrcA points to the first input vector | ||
|  |    * @param[in]       *pSrcB points to the second input vector | ||
|  |    * @param[in]       blockSize number of samples in each vector | ||
|  |    * @param[out]      *result output result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_dot_prod_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t blockSize, | ||
|  |   q63_t * result); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Shifts the elements of a Q7 vector a specified number of bits. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right. | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_shift_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   int8_t shiftBits, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Shifts the elements of a Q15 vector a specified number of bits. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right. | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_shift_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   int8_t shiftBits, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Shifts the elements of a Q31 vector a specified number of bits. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  shiftBits number of bits to shift.  A positive value shifts left; a negative value shifts right. | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_shift_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   int8_t shiftBits, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Adds a constant offset to a floating-point vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  offset is the offset to be added | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_offset_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t offset, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Adds a constant offset to a Q7 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  offset is the offset to be added | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_offset_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t offset, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Adds a constant offset to a Q15 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  offset is the offset to be added | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_offset_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t offset, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Adds a constant offset to a Q31 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[in]  offset is the offset to be added | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_offset_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t offset, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Negates the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_negate_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Negates the elements of a Q7 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_negate_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Negates the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_negate_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Negates the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  blockSize number of samples in the vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_negate_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  |   /**
 | ||
|  |    * @brief  Copies the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc input pointer | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_copy_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Copies the elements of a Q7 vector. | ||
|  |    * @param[in]  *pSrc input pointer | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_copy_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Copies the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc input pointer | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_copy_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Copies the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc input pointer | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_copy_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  |   /**
 | ||
|  |    * @brief  Fills a constant value into a floating-point vector. | ||
|  |    * @param[in]  value input value to be filled | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fill_f32( | ||
|  |   float32_t value, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fills a constant value into a Q7 vector. | ||
|  |    * @param[in]  value input value to be filled | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fill_q7( | ||
|  |   q7_t value, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fills a constant value into a Q15 vector. | ||
|  |    * @param[in]  value input value to be filled | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fill_q15( | ||
|  |   q15_t value, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fills a constant value into a Q31 vector. | ||
|  |    * @param[in]  value input value to be filled | ||
|  |    * @param[out]  *pDst output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fill_q31( | ||
|  |   q31_t value, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Convolution of floating-point sequences. | ||
|  |  * @param[in] *pSrcA points to the first input sequence. | ||
|  |  * @param[in] srcALen length of the first input sequence. | ||
|  |  * @param[in] *pSrcB points to the second input sequence. | ||
|  |  * @param[in] srcBLen length of the second input sequence. | ||
|  |  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1. | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_conv_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   float32_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   float32_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q15 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   void arm_conv_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Convolution of Q15 sequences. | ||
|  |  * @param[in] *pSrcA points to the first input sequence. | ||
|  |  * @param[in] srcALen length of the first input sequence. | ||
|  |  * @param[in] *pSrcB points to the second input sequence. | ||
|  |  * @param[in] srcBLen length of the second input sequence. | ||
|  |  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1. | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_conv_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_fast_q15( | ||
|  | 			  q15_t * pSrcA, | ||
|  | 			 uint32_t srcALen, | ||
|  | 			  q15_t * pSrcB, | ||
|  | 			 uint32_t srcBLen, | ||
|  | 			 q15_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @param[in]  *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]  *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_fast_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q31 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_fast_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |     /**
 | ||
|  |    * @brief Convolution of Q7 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_opt_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Convolution of Q7 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length srcALen+srcBLen-1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_conv_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of floating-point sequences. | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   float32_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints); | ||
|  | 
 | ||
|  |     /**
 | ||
|  |    * @brief Partial convolution of Q15 sequences. | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |    * @brief Partial convolution of Q15 sequences. | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_fast_q15( | ||
|  | 				        q15_t * pSrcA, | ||
|  | 				       uint32_t srcALen, | ||
|  | 				        q15_t * pSrcB, | ||
|  | 				       uint32_t srcBLen, | ||
|  | 				       q15_t * pDst, | ||
|  | 				       uint32_t firstIndex, | ||
|  | 				       uint32_t numPoints); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @param[in]       * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]       * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_fast_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of Q31 sequences. | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_fast_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Partial convolution of Q7 sequences | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_opt_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |    * @brief Partial convolution of Q7 sequences. | ||
|  |    * @param[in]       *pSrcA points to the first input sequence. | ||
|  |    * @param[in]       srcALen length of the first input sequence. | ||
|  |    * @param[in]       *pSrcB points to the second input sequence. | ||
|  |    * @param[in]       srcBLen length of the second input sequence. | ||
|  |    * @param[out]      *pDst points to the block of output data | ||
|  |    * @param[in]       firstIndex is the first output sample to start with. | ||
|  |    * @param[in]       numPoints is the number of output points to be computed. | ||
|  |    * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_conv_partial_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t firstIndex, | ||
|  |   uint32_t numPoints); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 FIR decimator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t M;                      /**< decimation factor. */ | ||
|  |     uint16_t numTaps;               /**< number of coefficients in the filter. */ | ||
|  |     q15_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     q15_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |   } arm_fir_decimate_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 FIR decimator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t M;                  /**< decimation factor. */ | ||
|  |     uint16_t numTaps;           /**< number of coefficients in the filter. */ | ||
|  |     q31_t *pCoeffs;              /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     q31_t *pState;               /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  | 
 | ||
|  |   } arm_fir_decimate_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point FIR decimator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t M;                          /**< decimation factor. */ | ||
|  |     uint16_t numTaps;                   /**< number of coefficients in the filter. */ | ||
|  |     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     float32_t *pState;                   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  | 
 | ||
|  |   } arm_fir_decimate_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point FIR decimator. | ||
|  |    * @param[in] *S points to an instance of the floating-point FIR decimator structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_decimate_f32( | ||
|  |   const arm_fir_decimate_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point FIR decimator. | ||
|  |    * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. | ||
|  |    * @param[in] numTaps  number of coefficients in the filter. | ||
|  |    * @param[in] M  decimation factor. | ||
|  |    * @param[in] *pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * <code>blockSize</code> is not a multiple of <code>M</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_decimate_init_f32( | ||
|  |   arm_fir_decimate_instance_f32 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   uint8_t M, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 FIR decimator. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR decimator structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_decimate_q15( | ||
|  |   const arm_fir_decimate_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR decimator structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_decimate_fast_q15( | ||
|  |   const arm_fir_decimate_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 FIR decimator. | ||
|  |    * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. | ||
|  |    * @param[in] numTaps  number of coefficients in the filter. | ||
|  |    * @param[in] M  decimation factor. | ||
|  |    * @param[in] *pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * <code>blockSize</code> is not a multiple of <code>M</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_decimate_init_q15( | ||
|  |   arm_fir_decimate_instance_q15 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   uint8_t M, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 FIR decimator. | ||
|  |    * @param[in] *S points to an instance of the Q31 FIR decimator structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_decimate_q31( | ||
|  |   const arm_fir_decimate_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *S points to an instance of the Q31 FIR decimator structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_decimate_fast_q31( | ||
|  |   arm_fir_decimate_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 FIR decimator. | ||
|  |    * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. | ||
|  |    * @param[in] numTaps  number of coefficients in the filter. | ||
|  |    * @param[in] M  decimation factor. | ||
|  |    * @param[in] *pCoeffs points to the filter coefficients. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return    The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * <code>blockSize</code> is not a multiple of <code>M</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_decimate_init_q31( | ||
|  |   arm_fir_decimate_instance_q31 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   uint8_t M, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 FIR interpolator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t L;                      /**< upsample factor. */ | ||
|  |     uint16_t phaseLength;           /**< length of each polyphase filter component. */ | ||
|  |     q15_t *pCoeffs;                 /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||
|  |     q15_t *pState;                  /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | ||
|  |   } arm_fir_interpolate_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 FIR interpolator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t L;                      /**< upsample factor. */ | ||
|  |     uint16_t phaseLength;           /**< length of each polyphase filter component. */ | ||
|  |     q31_t *pCoeffs;                  /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||
|  |     q31_t *pState;                   /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | ||
|  |   } arm_fir_interpolate_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point FIR interpolator. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t L;                     /**< upsample factor. */ | ||
|  |     uint16_t phaseLength;          /**< length of each polyphase filter component. */ | ||
|  |     float32_t *pCoeffs;             /**< points to the coefficient array. The array is of length L*phaseLength. */ | ||
|  |     float32_t *pState;              /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | ||
|  |   } arm_fir_interpolate_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 FIR interpolator. | ||
|  |    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure. | ||
|  |    * @param[in] *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst    points to the block of output data. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_interpolate_q15( | ||
|  |   const arm_fir_interpolate_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 FIR interpolator. | ||
|  |    * @param[in,out] *S        points to an instance of the Q15 FIR interpolator structure. | ||
|  |    * @param[in]     L         upsample factor. | ||
|  |    * @param[in]     numTaps   number of filter coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs  points to the filter coefficient buffer. | ||
|  |    * @param[in]     *pState   points to the state buffer. | ||
|  |    * @param[in]     blockSize number of input samples to process per call. | ||
|  |    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_interpolate_init_q15( | ||
|  |   arm_fir_interpolate_instance_q15 * S, | ||
|  |   uint8_t L, | ||
|  |   uint16_t numTaps, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 FIR interpolator. | ||
|  |    * @param[in] *S        points to an instance of the Q15 FIR interpolator structure. | ||
|  |    * @param[in] *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst    points to the block of output data. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_interpolate_q31( | ||
|  |   const arm_fir_interpolate_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 FIR interpolator. | ||
|  |    * @param[in,out] *S        points to an instance of the Q31 FIR interpolator structure. | ||
|  |    * @param[in]     L         upsample factor. | ||
|  |    * @param[in]     numTaps   number of filter coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs  points to the filter coefficient buffer. | ||
|  |    * @param[in]     *pState   points to the state buffer. | ||
|  |    * @param[in]     blockSize number of input samples to process per call. | ||
|  |    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_interpolate_init_q31( | ||
|  |   arm_fir_interpolate_instance_q31 * S, | ||
|  |   uint8_t L, | ||
|  |   uint16_t numTaps, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point FIR interpolator. | ||
|  |    * @param[in] *S        points to an instance of the floating-point FIR interpolator structure. | ||
|  |    * @param[in] *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst    points to the block of output data. | ||
|  |    * @param[in] blockSize number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_interpolate_f32( | ||
|  |   const arm_fir_interpolate_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point FIR interpolator. | ||
|  |    * @param[in,out] *S        points to an instance of the floating-point FIR interpolator structure. | ||
|  |    * @param[in]     L         upsample factor. | ||
|  |    * @param[in]     numTaps   number of filter coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs  points to the filter coefficient buffer. | ||
|  |    * @param[in]     *pState   points to the state buffer. | ||
|  |    * @param[in]     blockSize number of input samples to process per call. | ||
|  |    * @return        The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | ||
|  |    * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_fir_interpolate_init_f32( | ||
|  |   arm_fir_interpolate_instance_f32 * S, | ||
|  |   uint8_t L, | ||
|  |   uint16_t numTaps, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the high precision Q31 Biquad cascade filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t numStages;       /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     q63_t *pState;           /**< points to the array of state coefficients.  The array is of length 4*numStages. */ | ||
|  |     q31_t *pCoeffs;          /**< points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |     uint8_t postShift;       /**< additional shift, in bits, applied to each output sample. */ | ||
|  | 
 | ||
|  |   } arm_biquad_cas_df1_32x64_ins_q31; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @param[in]  *S        points to an instance of the high precision Q31 Biquad cascade filter structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cas_df1_32x64_q31( | ||
|  |   const arm_biquad_cas_df1_32x64_ins_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @param[in,out] *S           points to an instance of the high precision Q31 Biquad cascade filter structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @param[in]     postShift    shift to be applied to the output. Varies according to the coefficients format | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cas_df1_32x64_init_q31( | ||
|  |   arm_biquad_cas_df1_32x64_ins_q31 * S, | ||
|  |   uint8_t numStages, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q63_t * pState, | ||
|  |   uint8_t postShift); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */ | ||
|  |     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |   } arm_biquad_cascade_df2T_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     float32_t *pState;         /**< points to the array of state coefficients.  The array is of length 4*numStages. */ | ||
|  |     float32_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |   } arm_biquad_cascade_stereo_df2T_instance_f32; | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint8_t numStages;         /**< number of 2nd order stages in the filter.  Overall order is 2*numStages. */ | ||
|  |     float64_t *pState;         /**< points to the array of state coefficients.  The array is of length 2*numStages. */ | ||
|  |     float64_t *pCoeffs;        /**< points to the array of coefficients.  The array is of length 5*numStages. */ | ||
|  |   } arm_biquad_cascade_df2T_instance_f64; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    * @param[in]  *S        points to an instance of the filter data structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df2T_f32( | ||
|  |   const arm_biquad_cascade_df2T_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels | ||
|  |    * @param[in]  *S        points to an instance of the filter data structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_stereo_df2T_f32( | ||
|  |   const arm_biquad_cascade_stereo_df2T_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    * @param[in]  *S        points to an instance of the filter data structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df2T_f64( | ||
|  |   const arm_biquad_cascade_df2T_instance_f64 * S, | ||
|  |   float64_t * pSrc, | ||
|  |   float64_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the filter data structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df2T_init_f32( | ||
|  |   arm_biquad_cascade_df2T_instance_f32 * S, | ||
|  |   uint8_t numStages, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the filter data structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_stereo_df2T_init_f32( | ||
|  |   arm_biquad_cascade_stereo_df2T_instance_f32 * S, | ||
|  |   uint8_t numStages, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point transposed direct form II Biquad cascade filter. | ||
|  |    * @param[in,out] *S           points to an instance of the filter data structure. | ||
|  |    * @param[in]     numStages    number of 2nd order stages in the filter. | ||
|  |    * @param[in]     *pCoeffs     points to the filter coefficients. | ||
|  |    * @param[in]     *pState      points to the state buffer. | ||
|  |    * @return        none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_biquad_cascade_df2T_init_f64( | ||
|  |   arm_biquad_cascade_df2T_instance_f64 * S, | ||
|  |   uint8_t numStages, | ||
|  |   float64_t * pCoeffs, | ||
|  |   float64_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 FIR lattice filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                          /**< number of filter stages. */ | ||
|  |     q15_t *pState;                               /**< points to the state variable array. The array is of length numStages. */ | ||
|  |     q15_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */ | ||
|  |   } arm_fir_lattice_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 FIR lattice filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                          /**< number of filter stages. */ | ||
|  |     q31_t *pState;                               /**< points to the state variable array. The array is of length numStages. */ | ||
|  |     q31_t *pCoeffs;                              /**< points to the coefficient array. The array is of length numStages. */ | ||
|  |   } arm_fir_lattice_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point FIR lattice filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                  /**< number of filter stages. */ | ||
|  |     float32_t *pState;                   /**< points to the state variable array. The array is of length numStages. */ | ||
|  |     float32_t *pCoeffs;                  /**< points to the coefficient array. The array is of length numStages. */ | ||
|  |   } arm_fir_lattice_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for the Q15 FIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR lattice structure. | ||
|  |    * @param[in] numStages  number of filter stages. | ||
|  |    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages. | ||
|  |    * @param[in] *pState points to the state buffer.  The array is of length numStages. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_lattice_init_q15( | ||
|  |   arm_fir_lattice_instance_q15 * S, | ||
|  |   uint16_t numStages, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 FIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 FIR lattice structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_fir_lattice_q15( | ||
|  |   const arm_fir_lattice_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for the Q31 FIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 FIR lattice structure. | ||
|  |    * @param[in] numStages  number of filter stages. | ||
|  |    * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages. | ||
|  |    * @param[in] *pState points to the state buffer.   The array is of length numStages. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_lattice_init_q31( | ||
|  |   arm_fir_lattice_instance_q31 * S, | ||
|  |   uint16_t numStages, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 FIR lattice filter. | ||
|  |    * @param[in]  *S        points to an instance of the Q31 FIR lattice structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_lattice_q31( | ||
|  |   const arm_fir_lattice_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Initialization function for the floating-point FIR lattice filter. | ||
|  |  * @param[in] *S points to an instance of the floating-point FIR lattice structure. | ||
|  |  * @param[in] numStages  number of filter stages. | ||
|  |  * @param[in] *pCoeffs points to the coefficient buffer.  The array is of length numStages. | ||
|  |  * @param[in] *pState points to the state buffer.  The array is of length numStages. | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_fir_lattice_init_f32( | ||
|  |   arm_fir_lattice_instance_f32 * S, | ||
|  |   uint16_t numStages, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point FIR lattice filter. | ||
|  |    * @param[in]  *S        points to an instance of the floating-point FIR lattice structure. | ||
|  |    * @param[in]  *pSrc     points to the block of input data. | ||
|  |    * @param[out] *pDst     points to the block of output data | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_lattice_f32( | ||
|  |   const arm_fir_lattice_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 IIR lattice filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                         /**< number of stages in the filter. */ | ||
|  |     q15_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||
|  |     q15_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */ | ||
|  |     q15_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||
|  |   } arm_iir_lattice_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 IIR lattice filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                         /**< number of stages in the filter. */ | ||
|  |     q31_t *pState;                              /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||
|  |     q31_t *pkCoeffs;                            /**< points to the reflection coefficient array. The array is of length numStages. */ | ||
|  |     q31_t *pvCoeffs;                            /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||
|  |   } arm_iir_lattice_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point IIR lattice filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numStages;                         /**< number of stages in the filter. */ | ||
|  |     float32_t *pState;                          /**< points to the state variable array. The array is of length numStages+blockSize. */ | ||
|  |     float32_t *pkCoeffs;                        /**< points to the reflection coefficient array. The array is of length numStages. */ | ||
|  |     float32_t *pvCoeffs;                        /**< points to the ladder coefficient array. The array is of length numStages+1. */ | ||
|  |   } arm_iir_lattice_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point IIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point IIR lattice structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_f32( | ||
|  |   const arm_iir_lattice_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for the floating-point IIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point IIR lattice structure. | ||
|  |    * @param[in] numStages number of stages in the filter. | ||
|  |    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages. | ||
|  |    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1. | ||
|  |    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize-1. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_init_f32( | ||
|  |   arm_iir_lattice_instance_f32 * S, | ||
|  |   uint16_t numStages, | ||
|  |   float32_t * pkCoeffs, | ||
|  |   float32_t * pvCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 IIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 IIR lattice structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_q31( | ||
|  |   const arm_iir_lattice_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for the Q31 IIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 IIR lattice structure. | ||
|  |    * @param[in] numStages number of stages in the filter. | ||
|  |    * @param[in] *pkCoeffs points to the reflection coefficient buffer.  The array is of length numStages. | ||
|  |    * @param[in] *pvCoeffs points to the ladder coefficient buffer.  The array is of length numStages+1. | ||
|  |    * @param[in] *pState points to the state buffer.  The array is of length numStages+blockSize. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_init_q31( | ||
|  |   arm_iir_lattice_instance_q31 * S, | ||
|  |   uint16_t numStages, | ||
|  |   q31_t * pkCoeffs, | ||
|  |   q31_t * pvCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 IIR lattice filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 IIR lattice structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[out] *pDst points to the block of output data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_q15( | ||
|  |   const arm_iir_lattice_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Initialization function for the Q15 IIR lattice filter. | ||
|  |  * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. | ||
|  |  * @param[in] numStages  number of stages in the filter. | ||
|  |  * @param[in] *pkCoeffs points to reflection coefficient buffer.  The array is of length numStages. | ||
|  |  * @param[in] *pvCoeffs points to ladder coefficient buffer.  The array is of length numStages+1. | ||
|  |  * @param[in] *pState points to state buffer.  The array is of length numStages+blockSize. | ||
|  |  * @param[in] blockSize number of samples to process per call. | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_iir_lattice_init_q15( | ||
|  |   arm_iir_lattice_instance_q15 * S, | ||
|  |   uint16_t numStages, | ||
|  |   q15_t * pkCoeffs, | ||
|  |   q15_t * pvCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point LMS filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;    /**< number of coefficients in the filter. */ | ||
|  |     float32_t *pState;   /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     float32_t *pCoeffs;  /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     float32_t mu;        /**< step size that controls filter coefficient updates. */ | ||
|  |   } arm_lms_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for floating-point LMS filter. | ||
|  |    * @param[in]  *S points to an instance of the floating-point LMS filter structure. | ||
|  |    * @param[in]  *pSrc points to the block of input data. | ||
|  |    * @param[in]  *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_f32( | ||
|  |   const arm_lms_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pRef, | ||
|  |   float32_t * pOut, | ||
|  |   float32_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for floating-point LMS filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to the coefficient buffer. | ||
|  |    * @param[in] *pState points to state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_init_f32( | ||
|  |   arm_lms_instance_f32 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   float32_t mu, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 LMS filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;    /**< number of coefficients in the filter. */ | ||
|  |     q15_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q15_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     q15_t mu;            /**< step size that controls filter coefficient updates. */ | ||
|  |     uint32_t postShift;  /**< bit shift applied to coefficients. */ | ||
|  |   } arm_lms_instance_q15; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for the Q15 LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to the coefficient buffer. | ||
|  |    * @param[in] *pState points to the state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @param[in] postShift bit shift applied to coefficients. | ||
|  |    * @return    none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_init_q15( | ||
|  |   arm_lms_instance_q15 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   q15_t mu, | ||
|  |   uint32_t blockSize, | ||
|  |   uint32_t postShift); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for Q15 LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 LMS filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[in] *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_q15( | ||
|  |   const arm_lms_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pRef, | ||
|  |   q15_t * pOut, | ||
|  |   q15_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 LMS filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;    /**< number of coefficients in the filter. */ | ||
|  |     q31_t *pState;       /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q31_t *pCoeffs;      /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     q31_t mu;            /**< step size that controls filter coefficient updates. */ | ||
|  |     uint32_t postShift;  /**< bit shift applied to coefficients. */ | ||
|  | 
 | ||
|  |   } arm_lms_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for Q31 LMS filter. | ||
|  |    * @param[in]  *S points to an instance of the Q15 LMS filter structure. | ||
|  |    * @param[in]  *pSrc points to the block of input data. | ||
|  |    * @param[in]  *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in]  blockSize number of samples to process. | ||
|  |    * @return     none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_q31( | ||
|  |   const arm_lms_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pRef, | ||
|  |   q31_t * pOut, | ||
|  |   q31_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for Q31 LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to coefficient buffer. | ||
|  |    * @param[in] *pState points to state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @param[in] postShift bit shift applied to coefficients. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_init_q31( | ||
|  |   arm_lms_instance_q31 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   q31_t mu, | ||
|  |   uint32_t blockSize, | ||
|  |   uint32_t postShift); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point normalized LMS filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;     /**< number of coefficients in the filter. */ | ||
|  |     float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     float32_t *pCoeffs;   /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     float32_t mu;        /**< step size that control filter coefficient updates. */ | ||
|  |     float32_t energy;    /**< saves previous frame energy. */ | ||
|  |     float32_t x0;        /**< saves previous input sample. */ | ||
|  |   } arm_lms_norm_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for floating-point normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[in] *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_f32( | ||
|  |   arm_lms_norm_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pRef, | ||
|  |   float32_t * pOut, | ||
|  |   float32_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for floating-point normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the floating-point LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to coefficient buffer. | ||
|  |    * @param[in] *pState points to state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_init_f32( | ||
|  |   arm_lms_norm_instance_f32 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   float32_t mu, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 normalized LMS filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;     /**< number of coefficients in the filter. */ | ||
|  |     q31_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q31_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     q31_t mu;             /**< step size that controls filter coefficient updates. */ | ||
|  |     uint8_t postShift;    /**< bit shift applied to coefficients. */ | ||
|  |     q31_t *recipTable;    /**< points to the reciprocal initial value table. */ | ||
|  |     q31_t energy;         /**< saves previous frame energy. */ | ||
|  |     q31_t x0;             /**< saves previous input sample. */ | ||
|  |   } arm_lms_norm_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for Q31 normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[in] *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_q31( | ||
|  |   arm_lms_norm_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pRef, | ||
|  |   q31_t * pOut, | ||
|  |   q31_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for Q31 normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to coefficient buffer. | ||
|  |    * @param[in] *pState points to state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @param[in] postShift bit shift applied to coefficients. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_init_q31( | ||
|  |   arm_lms_norm_instance_q31 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   q31_t mu, | ||
|  |   uint32_t blockSize, | ||
|  |   uint8_t postShift); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 normalized LMS filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;    /**< Number of coefficients in the filter. */ | ||
|  |     q15_t *pState;        /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | ||
|  |     q15_t *pCoeffs;       /**< points to the coefficient array. The array is of length numTaps. */ | ||
|  |     q15_t mu;            /**< step size that controls filter coefficient updates. */ | ||
|  |     uint8_t postShift;   /**< bit shift applied to coefficients. */ | ||
|  |     q15_t *recipTable;   /**< Points to the reciprocal initial value table. */ | ||
|  |     q15_t energy;        /**< saves previous frame energy. */ | ||
|  |     q15_t x0;            /**< saves previous input sample. */ | ||
|  |   } arm_lms_norm_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for Q15 normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | ||
|  |    * @param[in] *pSrc points to the block of input data. | ||
|  |    * @param[in] *pRef points to the block of reference data. | ||
|  |    * @param[out] *pOut points to the block of output data. | ||
|  |    * @param[out] *pErr points to the block of error data. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_q15( | ||
|  |   arm_lms_norm_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pRef, | ||
|  |   q15_t * pOut, | ||
|  |   q15_t * pErr, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Initialization function for Q15 normalized LMS filter. | ||
|  |    * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. | ||
|  |    * @param[in] numTaps  number of filter coefficients. | ||
|  |    * @param[in] *pCoeffs points to coefficient buffer. | ||
|  |    * @param[in] *pState points to state buffer. | ||
|  |    * @param[in] mu step size that controls filter coefficient updates. | ||
|  |    * @param[in] blockSize number of samples to process. | ||
|  |    * @param[in] postShift bit shift applied to coefficients. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_lms_norm_init_q15( | ||
|  |   arm_lms_norm_instance_q15 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   q15_t mu, | ||
|  |   uint32_t blockSize, | ||
|  |   uint8_t postShift); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of floating-point sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   float32_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   float32_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief Correlation of Q15 sequences | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_correlate_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   q15_t * pScratch); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q15 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_fast_q15( | ||
|  | 			       q15_t * pSrcA, | ||
|  | 			      uint32_t srcALen, | ||
|  | 			       q15_t * pSrcB, | ||
|  | 			      uint32_t srcBLen, | ||
|  | 			      q15_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_fast_opt_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q15_t * pDst, | ||
|  |   q15_t * pScratch); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q31 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_fast_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q31_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |  /**
 | ||
|  |    * @brief Correlation of Q7 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | ||
|  |    * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_opt_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst, | ||
|  |   q15_t * pScratch1, | ||
|  |   q15_t * pScratch2); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Correlation of Q7 sequences. | ||
|  |    * @param[in] *pSrcA points to the first input sequence. | ||
|  |    * @param[in] srcALen length of the first input sequence. | ||
|  |    * @param[in] *pSrcB points to the second input sequence. | ||
|  |    * @param[in] srcBLen length of the second input sequence. | ||
|  |    * @param[out] *pDst points to the block of output data  Length 2 * max(srcALen, srcBLen) - 1. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_correlate_q7( | ||
|  |   q7_t * pSrcA, | ||
|  |   uint32_t srcALen, | ||
|  |   q7_t * pSrcB, | ||
|  |   uint32_t srcBLen, | ||
|  |   q7_t * pDst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the floating-point sparse FIR filter. | ||
|  |    */ | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;             /**< number of coefficients in the filter. */ | ||
|  |     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */ | ||
|  |     float32_t *pState;            /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||
|  |     float32_t *pCoeffs;           /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */ | ||
|  |     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */ | ||
|  |   } arm_fir_sparse_instance_f32; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q31 sparse FIR filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;             /**< number of coefficients in the filter. */ | ||
|  |     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */ | ||
|  |     q31_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||
|  |     q31_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */ | ||
|  |     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */ | ||
|  |   } arm_fir_sparse_instance_q31; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q15 sparse FIR filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;             /**< number of coefficients in the filter. */ | ||
|  |     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */ | ||
|  |     q15_t *pState;                /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||
|  |     q15_t *pCoeffs;               /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */ | ||
|  |     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */ | ||
|  |   } arm_fir_sparse_instance_q15; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Instance structure for the Q7 sparse FIR filter. | ||
|  |    */ | ||
|  | 
 | ||
|  |   typedef struct | ||
|  |   { | ||
|  |     uint16_t numTaps;             /**< number of coefficients in the filter. */ | ||
|  |     uint16_t stateIndex;          /**< state buffer index.  Points to the oldest sample in the state buffer. */ | ||
|  |     q7_t *pState;                 /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | ||
|  |     q7_t *pCoeffs;                /**< points to the coefficient array. The array is of length numTaps.*/ | ||
|  |     uint16_t maxDelay;            /**< maximum offset specified by the pTapDelay array. */ | ||
|  |     int32_t *pTapDelay;           /**< points to the array of delay values.  The array is of length numTaps. */ | ||
|  |   } arm_fir_sparse_instance_q7; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the floating-point sparse FIR filter. | ||
|  |    * @param[in]  *S          points to an instance of the floating-point sparse FIR structure. | ||
|  |    * @param[in]  *pSrc       points to the block of input data. | ||
|  |    * @param[out] *pDst       points to the block of output data | ||
|  |    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  blockSize   number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_f32( | ||
|  |   arm_fir_sparse_instance_f32 * S, | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   float32_t * pScratchIn, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the floating-point sparse FIR filter. | ||
|  |    * @param[in,out] *S         points to an instance of the floating-point sparse FIR structure. | ||
|  |    * @param[in]     numTaps    number of nonzero coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs   points to the array of filter coefficients. | ||
|  |    * @param[in]     *pState    points to the state buffer. | ||
|  |    * @param[in]     *pTapDelay points to the array of offset times. | ||
|  |    * @param[in]     maxDelay   maximum offset time supported. | ||
|  |    * @param[in]     blockSize  number of samples that will be processed per block. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_init_f32( | ||
|  |   arm_fir_sparse_instance_f32 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   float32_t * pCoeffs, | ||
|  |   float32_t * pState, | ||
|  |   int32_t * pTapDelay, | ||
|  |   uint16_t maxDelay, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q31 sparse FIR filter. | ||
|  |    * @param[in]  *S          points to an instance of the Q31 sparse FIR structure. | ||
|  |    * @param[in]  *pSrc       points to the block of input data. | ||
|  |    * @param[out] *pDst       points to the block of output data | ||
|  |    * @param[in]  *pScratchIn points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  blockSize   number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_q31( | ||
|  |   arm_fir_sparse_instance_q31 * S, | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   q31_t * pScratchIn, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q31 sparse FIR filter. | ||
|  |    * @param[in,out] *S         points to an instance of the Q31 sparse FIR structure. | ||
|  |    * @param[in]     numTaps    number of nonzero coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs   points to the array of filter coefficients. | ||
|  |    * @param[in]     *pState    points to the state buffer. | ||
|  |    * @param[in]     *pTapDelay points to the array of offset times. | ||
|  |    * @param[in]     maxDelay   maximum offset time supported. | ||
|  |    * @param[in]     blockSize  number of samples that will be processed per block. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_init_q31( | ||
|  |   arm_fir_sparse_instance_q31 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q31_t * pCoeffs, | ||
|  |   q31_t * pState, | ||
|  |   int32_t * pTapDelay, | ||
|  |   uint16_t maxDelay, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q15 sparse FIR filter. | ||
|  |    * @param[in]  *S           points to an instance of the Q15 sparse FIR structure. | ||
|  |    * @param[in]  *pSrc        points to the block of input data. | ||
|  |    * @param[out] *pDst        points to the block of output data | ||
|  |    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  blockSize    number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_q15( | ||
|  |   arm_fir_sparse_instance_q15 * S, | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   q15_t * pScratchIn, | ||
|  |   q31_t * pScratchOut, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q15 sparse FIR filter. | ||
|  |    * @param[in,out] *S         points to an instance of the Q15 sparse FIR structure. | ||
|  |    * @param[in]     numTaps    number of nonzero coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs   points to the array of filter coefficients. | ||
|  |    * @param[in]     *pState    points to the state buffer. | ||
|  |    * @param[in]     *pTapDelay points to the array of offset times. | ||
|  |    * @param[in]     maxDelay   maximum offset time supported. | ||
|  |    * @param[in]     blockSize  number of samples that will be processed per block. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_init_q15( | ||
|  |   arm_fir_sparse_instance_q15 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q15_t * pCoeffs, | ||
|  |   q15_t * pState, | ||
|  |   int32_t * pTapDelay, | ||
|  |   uint16_t maxDelay, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Processing function for the Q7 sparse FIR filter. | ||
|  |    * @param[in]  *S           points to an instance of the Q7 sparse FIR structure. | ||
|  |    * @param[in]  *pSrc        points to the block of input data. | ||
|  |    * @param[out] *pDst        points to the block of output data | ||
|  |    * @param[in]  *pScratchIn  points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  *pScratchOut points to a temporary buffer of size blockSize. | ||
|  |    * @param[in]  blockSize    number of input samples to process per call. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_q7( | ||
|  |   arm_fir_sparse_instance_q7 * S, | ||
|  |   q7_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   q7_t * pScratchIn, | ||
|  |   q31_t * pScratchOut, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Initialization function for the Q7 sparse FIR filter. | ||
|  |    * @param[in,out] *S         points to an instance of the Q7 sparse FIR structure. | ||
|  |    * @param[in]     numTaps    number of nonzero coefficients in the filter. | ||
|  |    * @param[in]     *pCoeffs   points to the array of filter coefficients. | ||
|  |    * @param[in]     *pState    points to the state buffer. | ||
|  |    * @param[in]     *pTapDelay points to the array of offset times. | ||
|  |    * @param[in]     maxDelay   maximum offset time supported. | ||
|  |    * @param[in]     blockSize  number of samples that will be processed per block. | ||
|  |    * @return none | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_fir_sparse_init_q7( | ||
|  |   arm_fir_sparse_instance_q7 * S, | ||
|  |   uint16_t numTaps, | ||
|  |   q7_t * pCoeffs, | ||
|  |   q7_t * pState, | ||
|  |   int32_t * pTapDelay, | ||
|  |   uint16_t maxDelay, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief  Floating-point sin_cos function. | ||
|  |    * @param[in]  theta    input value in degrees | ||
|  |    * @param[out] *pSinVal points to the processed sine output. | ||
|  |    * @param[out] *pCosVal points to the processed cos output. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sin_cos_f32( | ||
|  |   float32_t theta, | ||
|  |   float32_t * pSinVal, | ||
|  |   float32_t * pCcosVal); | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * @brief  Q31 sin_cos function. | ||
|  |    * @param[in]  theta    scaled input value in degrees | ||
|  |    * @param[out] *pSinVal points to the processed sine output. | ||
|  |    * @param[out] *pCosVal points to the processed cosine output. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_sin_cos_q31( | ||
|  |   q31_t theta, | ||
|  |   q31_t * pSinVal, | ||
|  |   q31_t * pCosVal); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex conjugate. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_conj_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex conjugate. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_conj_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex conjugate. | ||
|  |    * @param[in]  *pSrc points to the input vector | ||
|  |    * @param[out]  *pDst points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_conj_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex magnitude squared | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_squared_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex magnitude squared | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_squared_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex magnitude squared | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_squared_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  | 
 | ||
|  |  /**
 | ||
|  |    * @ingroup groupController | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup PID PID Motor Control | ||
|  |    * | ||
|  |    * A Proportional Integral Derivative (PID) controller is a generic feedback control | ||
|  |    * loop mechanism widely used in industrial control systems. | ||
|  |    * A PID controller is the most commonly used type of feedback controller. | ||
|  |    * | ||
|  |    * This set of functions implements (PID) controllers | ||
|  |    * for Q15, Q31, and floating-point data types.  The functions operate on a single sample | ||
|  |    * of data and each call to the function returns a single processed value. | ||
|  |    * <code>S</code> points to an instance of the PID control data structure.  <code>in</code> | ||
|  |    * is the input sample value. The functions return the output value. | ||
|  |    * | ||
|  |    * \par Algorithm: | ||
|  |    * <pre> | ||
|  |    *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | ||
|  |    *    A0 = Kp + Ki + Kd | ||
|  |    *    A1 = (-Kp ) - (2 * Kd ) | ||
|  |    *    A2 = Kd  </pre> | ||
|  |    * | ||
|  |    * \par | ||
|  |    * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | ||
|  |    * | ||
|  |    * \par | ||
|  |    * \image html PID.gif "Proportional Integral Derivative Controller" | ||
|  |    * | ||
|  |    * \par | ||
|  |    * The PID controller calculates an "error" value as the difference between | ||
|  |    * the measured output and the reference input. | ||
|  |    * The controller attempts to minimize the error by adjusting the process control inputs. | ||
|  |    * The proportional value determines the reaction to the current error, | ||
|  |    * the integral value determines the reaction based on the sum of recent errors, | ||
|  |    * and the derivative value determines the reaction based on the rate at which the error has been changing. | ||
|  |    * | ||
|  |    * \par Instance Structure | ||
|  |    * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | ||
|  |    * A separate instance structure must be defined for each PID Controller. | ||
|  |    * There are separate instance structure declarations for each of the 3 supported data types. | ||
|  |    * | ||
|  |    * \par Reset Functions | ||
|  |    * There is also an associated reset function for each data type which clears the state array. | ||
|  |    * | ||
|  |    * \par Initialization Functions | ||
|  |    * There is also an associated initialization function for each data type. | ||
|  |    * The initialization function performs the following operations: | ||
|  |    * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | ||
|  |    * - Zeros out the values in the state buffer. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | ||
|  |    * | ||
|  |    * \par Fixed-Point Behavior | ||
|  |    * Care must be taken when using the fixed-point versions of the PID Controller functions. | ||
|  |    * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | ||
|  |    * Refer to the function specific documentation below for usage guidelines. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup PID | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Process function for the floating-point PID Control. | ||
|  |    * @param[in,out] *S is an instance of the floating-point PID Control structure | ||
|  |    * @param[in] in input sample to process | ||
|  |    * @return out processed output sample. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE float32_t arm_pid_f32( | ||
|  |   arm_pid_instance_f32 * S, | ||
|  |   float32_t in) | ||
|  |   { | ||
|  |     float32_t out; | ||
|  | 
 | ||
|  |     /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]  */ | ||
|  |     out = (S->A0 * in) + | ||
|  |       (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | ||
|  | 
 | ||
|  |     /* Update state */ | ||
|  |     S->state[1] = S->state[0]; | ||
|  |     S->state[0] = in; | ||
|  |     S->state[2] = out; | ||
|  | 
 | ||
|  |     /* return to application */ | ||
|  |     return (out); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Process function for the Q31 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the Q31 PID Control structure | ||
|  |    * @param[in] in input sample to process | ||
|  |    * @return out processed output sample. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using an internal 64-bit accumulator. | ||
|  |    * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | ||
|  |    * Thus, if the accumulator result overflows it wraps around rather than clip. | ||
|  |    * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | ||
|  |    * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE q31_t arm_pid_q31( | ||
|  |   arm_pid_instance_q31 * S, | ||
|  |   q31_t in) | ||
|  |   { | ||
|  |     q63_t acc; | ||
|  |     q31_t out; | ||
|  | 
 | ||
|  |     /* acc = A0 * x[n]  */ | ||
|  |     acc = (q63_t) S->A0 * in; | ||
|  | 
 | ||
|  |     /* acc += A1 * x[n-1] */ | ||
|  |     acc += (q63_t) S->A1 * S->state[0]; | ||
|  | 
 | ||
|  |     /* acc += A2 * x[n-2]  */ | ||
|  |     acc += (q63_t) S->A2 * S->state[1]; | ||
|  | 
 | ||
|  |     /* convert output to 1.31 format to add y[n-1] */ | ||
|  |     out = (q31_t) (acc >> 31u); | ||
|  | 
 | ||
|  |     /* out += y[n-1] */ | ||
|  |     out += S->state[2]; | ||
|  | 
 | ||
|  |     /* Update state */ | ||
|  |     S->state[1] = S->state[0]; | ||
|  |     S->state[0] = in; | ||
|  |     S->state[2] = out; | ||
|  | 
 | ||
|  |     /* return to application */ | ||
|  |     return (out); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Process function for the Q15 PID Control. | ||
|  |    * @param[in,out] *S points to an instance of the Q15 PID Control structure | ||
|  |    * @param[in] in input sample to process | ||
|  |    * @return out processed output sample. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using a 64-bit internal accumulator. | ||
|  |    * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | ||
|  |    * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | ||
|  |    * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | ||
|  |    * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | ||
|  |    * Lastly, the accumulator is saturated to yield a result in 1.15 format. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE q15_t arm_pid_q15( | ||
|  |   arm_pid_instance_q15 * S, | ||
|  |   q15_t in) | ||
|  |   { | ||
|  |     q63_t acc; | ||
|  |     q15_t out; | ||
|  | 
 | ||
|  | #ifndef ARM_MATH_CM0_FAMILY
 | ||
|  |     __SIMD32_TYPE *vstate; | ||
|  | 
 | ||
|  |     /* Implementation of PID controller */ | ||
|  | 
 | ||
|  |     /* acc = A0 * x[n]  */ | ||
|  |     acc = (q31_t) __SMUAD(S->A0, in); | ||
|  | 
 | ||
|  |     /* acc += A1 * x[n-1] + A2 * x[n-2]  */ | ||
|  |     vstate = __SIMD32_CONST(S->state); | ||
|  |     acc = __SMLALD(S->A1, (q31_t) *vstate, acc); | ||
|  | 
 | ||
|  | #else
 | ||
|  |     /* acc = A0 * x[n]  */ | ||
|  |     acc = ((q31_t) S->A0) * in; | ||
|  | 
 | ||
|  |     /* acc += A1 * x[n-1] + A2 * x[n-2]  */ | ||
|  |     acc += (q31_t) S->A1 * S->state[0]; | ||
|  |     acc += (q31_t) S->A2 * S->state[1]; | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     /* acc += y[n-1] */ | ||
|  |     acc += (q31_t) S->state[2] << 15; | ||
|  | 
 | ||
|  |     /* saturate the output */ | ||
|  |     out = (q15_t) (__SSAT((acc >> 15), 16)); | ||
|  | 
 | ||
|  |     /* Update state */ | ||
|  |     S->state[1] = S->state[0]; | ||
|  |     S->state[0] = in; | ||
|  |     S->state[2] = out; | ||
|  | 
 | ||
|  |     /* return to application */ | ||
|  |     return (out); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of PID group | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix inverse. | ||
|  |    * @param[in]  *src points to the instance of the input floating-point matrix structure. | ||
|  |    * @param[out] *dst points to the instance of the output floating-point matrix structure. | ||
|  |    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | ||
|  |    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_inverse_f32( | ||
|  |   const arm_matrix_instance_f32 * src, | ||
|  |   arm_matrix_instance_f32 * dst); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point matrix inverse. | ||
|  |    * @param[in]  *src points to the instance of the input floating-point matrix structure. | ||
|  |    * @param[out] *dst points to the instance of the output floating-point matrix structure. | ||
|  |    * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | ||
|  |    * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | ||
|  |    */ | ||
|  | 
 | ||
|  |   arm_status arm_mat_inverse_f64( | ||
|  |   const arm_matrix_instance_f64 * src, | ||
|  |   arm_matrix_instance_f64 * dst); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupController | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup clarke Vector Clarke Transform | ||
|  |    * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | ||
|  |    * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | ||
|  |    * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | ||
|  |    * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | ||
|  |    * \image html clarke.gif Stator current space vector and its components in (a,b). | ||
|  |    * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | ||
|  |    * can be calculated using only <code>Ia</code> and <code>Ib</code>. | ||
|  |    * | ||
|  |    * The function operates on a single sample of data and each call to the function returns the processed output. | ||
|  |    * The library provides separate functions for Q31 and floating-point data types. | ||
|  |    * \par Algorithm | ||
|  |    * \image html clarkeFormula.gif | ||
|  |    * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | ||
|  |    * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | ||
|  |    * \par Fixed-Point Behavior | ||
|  |    * Care must be taken when using the Q31 version of the Clarke transform. | ||
|  |    * In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||
|  |    * Refer to the function specific documentation below for usage guidelines. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup clarke | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * | ||
|  |    * @brief  Floating-point Clarke transform | ||
|  |    * @param[in]       Ia       input three-phase coordinate <code>a</code> | ||
|  |    * @param[in]       Ib       input three-phase coordinate <code>b</code> | ||
|  |    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha | ||
|  |    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_clarke_f32( | ||
|  |   float32_t Ia, | ||
|  |   float32_t Ib, | ||
|  |   float32_t * pIalpha, | ||
|  |   float32_t * pIbeta) | ||
|  |   { | ||
|  |     /* Calculate pIalpha using the equation, pIalpha = Ia */ | ||
|  |     *pIalpha = Ia; | ||
|  | 
 | ||
|  |     /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | ||
|  |     *pIbeta = | ||
|  |       ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Clarke transform for Q31 version | ||
|  |    * @param[in]       Ia       input three-phase coordinate <code>a</code> | ||
|  |    * @param[in]       Ib       input three-phase coordinate <code>b</code> | ||
|  |    * @param[out]      *pIalpha points to output two-phase orthogonal vector axis alpha | ||
|  |    * @param[out]      *pIbeta  points to output two-phase orthogonal vector axis beta | ||
|  |    * @return none. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using an internal 32-bit accumulator. | ||
|  |    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||
|  |    * There is saturation on the addition, hence there is no risk of overflow. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_clarke_q31( | ||
|  |   q31_t Ia, | ||
|  |   q31_t Ib, | ||
|  |   q31_t * pIalpha, | ||
|  |   q31_t * pIbeta) | ||
|  |   { | ||
|  |     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */ | ||
|  | 
 | ||
|  |     /* Calculating pIalpha from Ia by equation pIalpha = Ia */ | ||
|  |     *pIalpha = Ia; | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | ||
|  |     product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | ||
|  |     product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | ||
|  | 
 | ||
|  |     /* pIbeta is calculated by adding the intermediate products */ | ||
|  |     *pIbeta = __QADD(product1, product2); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of clarke group | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q7 vector to Q31 vector. | ||
|  |    * @param[in]  *pSrc     input pointer | ||
|  |    * @param[out]  *pDst    output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q7_to_q31( | ||
|  |   q7_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupController | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup inv_clarke Vector Inverse Clarke Transform | ||
|  |    * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | ||
|  |    * | ||
|  |    * The function operates on a single sample of data and each call to the function returns the processed output. | ||
|  |    * The library provides separate functions for Q31 and floating-point data types. | ||
|  |    * \par Algorithm | ||
|  |    * \image html clarkeInvFormula.gif | ||
|  |    * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | ||
|  |    * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | ||
|  |    * \par Fixed-Point Behavior | ||
|  |    * Care must be taken when using the Q31 version of the Clarke transform. | ||
|  |    * In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||
|  |    * Refer to the function specific documentation below for usage guidelines. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup inv_clarke | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief  Floating-point Inverse Clarke transform | ||
|  |    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha | ||
|  |    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta | ||
|  |    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code> | ||
|  |    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code> | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE void arm_inv_clarke_f32( | ||
|  |   float32_t Ialpha, | ||
|  |   float32_t Ibeta, | ||
|  |   float32_t * pIa, | ||
|  |   float32_t * pIb) | ||
|  |   { | ||
|  |     /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | ||
|  |     *pIa = Ialpha; | ||
|  | 
 | ||
|  |     /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | ||
|  |     *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Inverse Clarke transform for Q31 version | ||
|  |    * @param[in]       Ialpha  input two-phase orthogonal vector axis alpha | ||
|  |    * @param[in]       Ibeta   input two-phase orthogonal vector axis beta | ||
|  |    * @param[out]      *pIa    points to output three-phase coordinate <code>a</code> | ||
|  |    * @param[out]      *pIb    points to output three-phase coordinate <code>b</code> | ||
|  |    * @return none. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using an internal 32-bit accumulator. | ||
|  |    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||
|  |    * There is saturation on the subtraction, hence there is no risk of overflow. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_inv_clarke_q31( | ||
|  |   q31_t Ialpha, | ||
|  |   q31_t Ibeta, | ||
|  |   q31_t * pIa, | ||
|  |   q31_t * pIb) | ||
|  |   { | ||
|  |     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */ | ||
|  | 
 | ||
|  |     /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | ||
|  |     *pIa = Ialpha; | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | ||
|  |     product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | ||
|  |     product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | ||
|  | 
 | ||
|  |     /* pIb is calculated by subtracting the products */ | ||
|  |     *pIb = __QSUB(product2, product1); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of inv_clarke group | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q7 vector to Q15 vector. | ||
|  |    * @param[in]  *pSrc     input pointer | ||
|  |    * @param[out] *pDst     output pointer | ||
|  |    * @param[in]  blockSize number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q7_to_q15( | ||
|  |   q7_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupController | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup park Vector Park Transform | ||
|  |    * | ||
|  |    * Forward Park transform converts the input two-coordinate vector to flux and torque components. | ||
|  |    * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | ||
|  |    * from the stationary to the moving reference frame and control the spatial relationship between | ||
|  |    * the stator vector current and rotor flux vector. | ||
|  |    * If we consider the d axis aligned with the rotor flux, the diagram below shows the | ||
|  |    * current vector and the relationship from the two reference frames: | ||
|  |    * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | ||
|  |    * | ||
|  |    * The function operates on a single sample of data and each call to the function returns the processed output. | ||
|  |    * The library provides separate functions for Q31 and floating-point data types. | ||
|  |    * \par Algorithm | ||
|  |    * \image html parkFormula.gif | ||
|  |    * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | ||
|  |    * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | ||
|  |    * cosine and sine values of theta (rotor flux position). | ||
|  |    * \par Fixed-Point Behavior | ||
|  |    * Care must be taken when using the Q31 version of the Park transform. | ||
|  |    * In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||
|  |    * Refer to the function specific documentation below for usage guidelines. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup park | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Floating-point Park transform | ||
|  |    * @param[in]       Ialpha input two-phase vector coordinate alpha | ||
|  |    * @param[in]       Ibeta  input two-phase vector coordinate beta | ||
|  |    * @param[out]      *pId   points to output	rotor reference frame d | ||
|  |    * @param[out]      *pIq   points to output	rotor reference frame q | ||
|  |    * @param[in]       sinVal sine value of rotation angle theta | ||
|  |    * @param[in]       cosVal cosine value of rotation angle theta | ||
|  |    * @return none. | ||
|  |    * | ||
|  |    * The function implements the forward Park transform. | ||
|  |    * | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_park_f32( | ||
|  |   float32_t Ialpha, | ||
|  |   float32_t Ibeta, | ||
|  |   float32_t * pId, | ||
|  |   float32_t * pIq, | ||
|  |   float32_t sinVal, | ||
|  |   float32_t cosVal) | ||
|  |   { | ||
|  |     /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | ||
|  |     *pId = Ialpha * cosVal + Ibeta * sinVal; | ||
|  | 
 | ||
|  |     /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | ||
|  |     *pIq = -Ialpha * sinVal + Ibeta * cosVal; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Park transform for Q31 version | ||
|  |    * @param[in]       Ialpha input two-phase vector coordinate alpha | ||
|  |    * @param[in]       Ibeta  input two-phase vector coordinate beta | ||
|  |    * @param[out]      *pId   points to output rotor reference frame d | ||
|  |    * @param[out]      *pIq   points to output rotor reference frame q | ||
|  |    * @param[in]       sinVal sine value of rotation angle theta | ||
|  |    * @param[in]       cosVal cosine value of rotation angle theta | ||
|  |    * @return none. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using an internal 32-bit accumulator. | ||
|  |    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||
|  |    * There is saturation on the addition and subtraction, hence there is no risk of overflow. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE void arm_park_q31( | ||
|  |   q31_t Ialpha, | ||
|  |   q31_t Ibeta, | ||
|  |   q31_t * pId, | ||
|  |   q31_t * pIq, | ||
|  |   q31_t sinVal, | ||
|  |   q31_t cosVal) | ||
|  |   { | ||
|  |     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */ | ||
|  |     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */ | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Ialpha * cosVal) */ | ||
|  |     product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Ibeta * sinVal) */ | ||
|  |     product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Ialpha * sinVal) */ | ||
|  |     product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Ibeta * cosVal) */ | ||
|  |     product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Calculate pId by adding the two intermediate products 1 and 2 */ | ||
|  |     *pId = __QADD(product1, product2); | ||
|  | 
 | ||
|  |     /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | ||
|  |     *pIq = __QSUB(product4, product3); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of park group | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q7 vector to floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q7_to_float( | ||
|  |   q7_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupController | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup inv_park Vector Inverse Park transform | ||
|  |    * Inverse Park transform converts the input flux and torque components to two-coordinate vector. | ||
|  |    * | ||
|  |    * The function operates on a single sample of data and each call to the function returns the processed output. | ||
|  |    * The library provides separate functions for Q31 and floating-point data types. | ||
|  |    * \par Algorithm | ||
|  |    * \image html parkInvFormula.gif | ||
|  |    * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | ||
|  |    * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | ||
|  |    * cosine and sine values of theta (rotor flux position). | ||
|  |    * \par Fixed-Point Behavior | ||
|  |    * Care must be taken when using the Q31 version of the Park transform. | ||
|  |    * In particular, the overflow and saturation behavior of the accumulator used must be considered. | ||
|  |    * Refer to the function specific documentation below for usage guidelines. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup inv_park | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * @brief  Floating-point Inverse Park transform | ||
|  |    * @param[in]       Id        input coordinate of rotor reference frame d | ||
|  |    * @param[in]       Iq        input coordinate of rotor reference frame q | ||
|  |    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha | ||
|  |    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta | ||
|  |    * @param[in]       sinVal    sine value of rotation angle theta | ||
|  |    * @param[in]       cosVal    cosine value of rotation angle theta | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_inv_park_f32( | ||
|  |   float32_t Id, | ||
|  |   float32_t Iq, | ||
|  |   float32_t * pIalpha, | ||
|  |   float32_t * pIbeta, | ||
|  |   float32_t sinVal, | ||
|  |   float32_t cosVal) | ||
|  |   { | ||
|  |     /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | ||
|  |     *pIalpha = Id * cosVal - Iq * sinVal; | ||
|  | 
 | ||
|  |     /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | ||
|  |     *pIbeta = Id * sinVal + Iq * cosVal; | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Inverse Park transform for	Q31 version | ||
|  |    * @param[in]       Id        input coordinate of rotor reference frame d | ||
|  |    * @param[in]       Iq        input coordinate of rotor reference frame q | ||
|  |    * @param[out]      *pIalpha  points to output two-phase orthogonal vector axis alpha | ||
|  |    * @param[out]      *pIbeta   points to output two-phase orthogonal vector axis beta | ||
|  |    * @param[in]       sinVal    sine value of rotation angle theta | ||
|  |    * @param[in]       cosVal    cosine value of rotation angle theta | ||
|  |    * @return none. | ||
|  |    * | ||
|  |    * <b>Scaling and Overflow Behavior:</b> | ||
|  |    * \par | ||
|  |    * The function is implemented using an internal 32-bit accumulator. | ||
|  |    * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | ||
|  |    * There is saturation on the addition, hence there is no risk of overflow. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE void arm_inv_park_q31( | ||
|  |   q31_t Id, | ||
|  |   q31_t Iq, | ||
|  |   q31_t * pIalpha, | ||
|  |   q31_t * pIbeta, | ||
|  |   q31_t sinVal, | ||
|  |   q31_t cosVal) | ||
|  |   { | ||
|  |     q31_t product1, product2;                    /* Temporary variables used to store intermediate results */ | ||
|  |     q31_t product3, product4;                    /* Temporary variables used to store intermediate results */ | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Id * cosVal) */ | ||
|  |     product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Iq * sinVal) */ | ||
|  |     product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Id * sinVal) */ | ||
|  |     product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Intermediate product is calculated by (Iq * cosVal) */ | ||
|  |     product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | ||
|  | 
 | ||
|  |     /* Calculate pIalpha by using the two intermediate products 1 and 2 */ | ||
|  |     *pIalpha = __QSUB(product1, product2); | ||
|  | 
 | ||
|  |     /* Calculate pIbeta by using the two intermediate products 3 and 4 */ | ||
|  |     *pIbeta = __QADD(product4, product3); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of Inverse park group | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q31 vector to floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q31_to_float( | ||
|  |   q31_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupInterpolation | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup LinearInterpolate Linear Interpolation | ||
|  |    * | ||
|  |    * Linear interpolation is a method of curve fitting using linear polynomials. | ||
|  |    * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | ||
|  |    * | ||
|  |    * \par | ||
|  |    * \image html LinearInterp.gif "Linear interpolation" | ||
|  |    * | ||
|  |    * \par | ||
|  |    * A  Linear Interpolate function calculates an output value(y), for the input(x) | ||
|  |    * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | ||
|  |    * | ||
|  |    * \par Algorithm: | ||
|  |    * <pre> | ||
|  |    *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | ||
|  |    *       where x0, x1 are nearest values of input x | ||
|  |    *             y0, y1 are nearest values to output y | ||
|  |    * </pre> | ||
|  |    * | ||
|  |    * \par | ||
|  |    * This set of functions implements Linear interpolation process | ||
|  |    * for Q7, Q15, Q31, and floating-point data types.  The functions operate on a single | ||
|  |    * sample of data and each call to the function returns a single processed value. | ||
|  |    * <code>S</code> points to an instance of the Linear Interpolate function data structure. | ||
|  |    * <code>x</code> is the input sample value. The functions returns the output value. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * if x is outside of the table boundary, Linear interpolation returns first value of the table | ||
|  |    * if x is below input range and returns last value of table if x is above range. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup LinearInterpolate | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Process function for the floating-point Linear Interpolation Function. | ||
|  |    * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure | ||
|  |    * @param[in] x input sample to process | ||
|  |    * @return y processed output sample. | ||
|  |    * | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE float32_t arm_linear_interp_f32( | ||
|  |   arm_linear_interp_instance_f32 * S, | ||
|  |   float32_t x) | ||
|  |   { | ||
|  | 
 | ||
|  |     float32_t y; | ||
|  |     float32_t x0, x1;                            /* Nearest input values */ | ||
|  |     float32_t y0, y1;                            /* Nearest output values */ | ||
|  |     float32_t xSpacing = S->xSpacing;            /* spacing between input values */ | ||
|  |     int32_t i;                                   /* Index variable */ | ||
|  |     float32_t *pYData = S->pYData;               /* pointer to output table */ | ||
|  | 
 | ||
|  |     /* Calculation of index */ | ||
|  |     i = (int32_t) ((x - S->x1) / xSpacing); | ||
|  | 
 | ||
|  |     if(i < 0) | ||
|  |     { | ||
|  |       /* Iniatilize output for below specified range as least output value of table */ | ||
|  |       y = pYData[0]; | ||
|  |     } | ||
|  |     else if((uint32_t)i >= S->nValues) | ||
|  |     { | ||
|  |       /* Iniatilize output for above specified range as last output value of table */ | ||
|  |       y = pYData[S->nValues - 1]; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       /* Calculation of nearest input values */ | ||
|  |       x0 = S->x1 + i * xSpacing; | ||
|  |       x1 = S->x1 + (i + 1) * xSpacing; | ||
|  | 
 | ||
|  |       /* Read of nearest output values */ | ||
|  |       y0 = pYData[i]; | ||
|  |       y1 = pYData[i + 1]; | ||
|  | 
 | ||
|  |       /* Calculation of output */ | ||
|  |       y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  |     /* returns output value */ | ||
|  |     return (y); | ||
|  |   } | ||
|  | 
 | ||
|  |    /**
 | ||
|  |    * | ||
|  |    * @brief  Process function for the Q31 Linear Interpolation Function. | ||
|  |    * @param[in] *pYData  pointer to Q31 Linear Interpolation table | ||
|  |    * @param[in] x input sample to process | ||
|  |    * @param[in] nValues number of table values | ||
|  |    * @return y processed output sample. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||
|  |    * This function can support maximum of table size 2^12. | ||
|  |    * | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE q31_t arm_linear_interp_q31( | ||
|  |   q31_t * pYData, | ||
|  |   q31_t x, | ||
|  |   uint32_t nValues) | ||
|  |   { | ||
|  |     q31_t y;                                     /* output */ | ||
|  |     q31_t y0, y1;                                /* Nearest output values */ | ||
|  |     q31_t fract;                                 /* fractional part */ | ||
|  |     int32_t index;                               /* Index to read nearest output values */ | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     index = ((x & 0xFFF00000) >> 20); | ||
|  | 
 | ||
|  |     if(index >= (int32_t)(nValues - 1)) | ||
|  |     { | ||
|  |       return (pYData[nValues - 1]); | ||
|  |     } | ||
|  |     else if(index < 0) | ||
|  |     { | ||
|  |       return (pYData[0]); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  | 
 | ||
|  |       /* 20 bits for the fractional part */ | ||
|  |       /* shift left by 11 to keep fract in 1.31 format */ | ||
|  |       fract = (x & 0x000FFFFF) << 11; | ||
|  | 
 | ||
|  |       /* Read two nearest output values from the index in 1.31(q31) format */ | ||
|  |       y0 = pYData[index]; | ||
|  |       y1 = pYData[index + 1u]; | ||
|  | 
 | ||
|  |       /* Calculation of y0 * (1-fract) and y is in 2.30 format */ | ||
|  |       y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | ||
|  | 
 | ||
|  |       /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | ||
|  |       y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | ||
|  | 
 | ||
|  |       /* Convert y to 1.31 format */ | ||
|  |       return (y << 1u); | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * | ||
|  |    * @brief  Process function for the Q15 Linear Interpolation Function. | ||
|  |    * @param[in] *pYData  pointer to Q15 Linear Interpolation table | ||
|  |    * @param[in] x input sample to process | ||
|  |    * @param[in] nValues number of table values | ||
|  |    * @return y processed output sample. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||
|  |    * This function can support maximum of table size 2^12. | ||
|  |    * | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE q15_t arm_linear_interp_q15( | ||
|  |   q15_t * pYData, | ||
|  |   q31_t x, | ||
|  |   uint32_t nValues) | ||
|  |   { | ||
|  |     q63_t y;                                     /* output */ | ||
|  |     q15_t y0, y1;                                /* Nearest output values */ | ||
|  |     q31_t fract;                                 /* fractional part */ | ||
|  |     int32_t index;                               /* Index to read nearest output values */ | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     index = ((x & 0xFFF00000) >> 20u); | ||
|  | 
 | ||
|  |     if(index >= (int32_t)(nValues - 1)) | ||
|  |     { | ||
|  |       return (pYData[nValues - 1]); | ||
|  |     } | ||
|  |     else if(index < 0) | ||
|  |     { | ||
|  |       return (pYData[0]); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       /* 20 bits for the fractional part */ | ||
|  |       /* fract is in 12.20 format */ | ||
|  |       fract = (x & 0x000FFFFF); | ||
|  | 
 | ||
|  |       /* Read two nearest output values from the index */ | ||
|  |       y0 = pYData[index]; | ||
|  |       y1 = pYData[index + 1u]; | ||
|  | 
 | ||
|  |       /* Calculation of y0 * (1-fract) and y is in 13.35 format */ | ||
|  |       y = ((q63_t) y0 * (0xFFFFF - fract)); | ||
|  | 
 | ||
|  |       /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | ||
|  |       y += ((q63_t) y1 * (fract)); | ||
|  | 
 | ||
|  |       /* convert y to 1.15 format */ | ||
|  |       return (y >> 20); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * | ||
|  |    * @brief  Process function for the Q7 Linear Interpolation Function. | ||
|  |    * @param[in] *pYData  pointer to Q7 Linear Interpolation table | ||
|  |    * @param[in] x input sample to process | ||
|  |    * @param[in] nValues number of table values | ||
|  |    * @return y processed output sample. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | ||
|  |    * This function can support maximum of table size 2^12. | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE q7_t arm_linear_interp_q7( | ||
|  |   q7_t * pYData, | ||
|  |   q31_t x, | ||
|  |   uint32_t nValues) | ||
|  |   { | ||
|  |     q31_t y;                                     /* output */ | ||
|  |     q7_t y0, y1;                                 /* Nearest output values */ | ||
|  |     q31_t fract;                                 /* fractional part */ | ||
|  |     uint32_t index;                              /* Index to read nearest output values */ | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     if (x < 0) | ||
|  |     { | ||
|  |       return (pYData[0]); | ||
|  |     } | ||
|  |     index = (x >> 20) & 0xfff; | ||
|  | 
 | ||
|  | 
 | ||
|  |     if(index >= (nValues - 1)) | ||
|  |     { | ||
|  |       return (pYData[nValues - 1]); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  | 
 | ||
|  |       /* 20 bits for the fractional part */ | ||
|  |       /* fract is in 12.20 format */ | ||
|  |       fract = (x & 0x000FFFFF); | ||
|  | 
 | ||
|  |       /* Read two nearest output values from the index and are in 1.7(q7) format */ | ||
|  |       y0 = pYData[index]; | ||
|  |       y1 = pYData[index + 1u]; | ||
|  | 
 | ||
|  |       /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | ||
|  |       y = ((y0 * (0xFFFFF - fract))); | ||
|  | 
 | ||
|  |       /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | ||
|  |       y += (y1 * fract); | ||
|  | 
 | ||
|  |       /* convert y to 1.7(q7) format */ | ||
|  |       return (y >> 20u); | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  |   } | ||
|  |   /**
 | ||
|  |    * @} end of LinearInterpolate group | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fast approximation to the trigonometric sine function for floating-point data. | ||
|  |    * @param[in] x input value in radians. | ||
|  |    * @return  sin(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   float32_t arm_sin_f32( | ||
|  |   float32_t x); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fast approximation to the trigonometric sine function for Q31 data. | ||
|  |    * @param[in] x Scaled input value in radians. | ||
|  |    * @return  sin(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   q31_t arm_sin_q31( | ||
|  |   q31_t x); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fast approximation to the trigonometric sine function for Q15 data. | ||
|  |    * @param[in] x Scaled input value in radians. | ||
|  |    * @return  sin(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   q15_t arm_sin_q15( | ||
|  |   q15_t x); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fast approximation to the trigonometric cosine function for floating-point data. | ||
|  |    * @param[in] x input value in radians. | ||
|  |    * @return  cos(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   float32_t arm_cos_f32( | ||
|  |   float32_t x); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Fast approximation to the trigonometric cosine function for Q31 data. | ||
|  |    * @param[in] x Scaled input value in radians. | ||
|  |    * @return  cos(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   q31_t arm_cos_q31( | ||
|  |   q31_t x); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Fast approximation to the trigonometric cosine function for Q15 data. | ||
|  |    * @param[in] x Scaled input value in radians. | ||
|  |    * @return  cos(x). | ||
|  |    */ | ||
|  | 
 | ||
|  |   q15_t arm_cos_q15( | ||
|  |   q15_t x); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupFastMath | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup SQRT Square Root | ||
|  |    * | ||
|  |    * Computes the square root of a number. | ||
|  |    * There are separate functions for Q15, Q31, and floating-point data types. | ||
|  |    * The square root function is computed using the Newton-Raphson algorithm. | ||
|  |    * This is an iterative algorithm of the form: | ||
|  |    * <pre> | ||
|  |    *      x1 = x0 - f(x0)/f'(x0) | ||
|  |    * </pre> | ||
|  |    * where <code>x1</code> is the current estimate, | ||
|  |    * <code>x0</code> is the previous estimate, and | ||
|  |    * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | ||
|  |    * For the square root function, the algorithm reduces to: | ||
|  |    * <pre> | ||
|  |    *     x0 = in/2                         [initial guess] | ||
|  |    *     x1 = 1/2 * ( x0 + in / x0)        [each iteration] | ||
|  |    * </pre> | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup SQRT | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point square root function. | ||
|  |    * @param[in]  in     input value. | ||
|  |    * @param[out] *pOut  square root of input value. | ||
|  |    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||
|  |    * <code>in</code> is negative value and returns zero output for negative values. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE arm_status arm_sqrt_f32( | ||
|  |   float32_t in, | ||
|  |   float32_t * pOut) | ||
|  |   { | ||
|  |     if(in > 0) | ||
|  |     { | ||
|  | 
 | ||
|  | //      #if __FPU_USED
 | ||
|  | #if (__FPU_USED == 1) && defined ( __CC_ARM   )
 | ||
|  |       *pOut = __sqrtf(in); | ||
|  | #else
 | ||
|  |       *pOut = sqrtf(in); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |       return (ARM_MATH_SUCCESS); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       *pOut = 0.0f; | ||
|  |       return (ARM_MATH_ARGUMENT_ERROR); | ||
|  |     } | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q31 square root function. | ||
|  |    * @param[in]   in    input value.  The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | ||
|  |    * @param[out]  *pOut square root of input value. | ||
|  |    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||
|  |    * <code>in</code> is negative value and returns zero output for negative values. | ||
|  |    */ | ||
|  |   arm_status arm_sqrt_q31( | ||
|  |   q31_t in, | ||
|  |   q31_t * pOut); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 square root function. | ||
|  |    * @param[in]   in     input value.  The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | ||
|  |    * @param[out]  *pOut  square root of input value. | ||
|  |    * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | ||
|  |    * <code>in</code> is negative value and returns zero output for negative values. | ||
|  |    */ | ||
|  |   arm_status arm_sqrt_q15( | ||
|  |   q15_t in, | ||
|  |   q15_t * pOut); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of SQRT group | ||
|  |    */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief floating-point Circular write function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_circularWrite_f32( | ||
|  |   int32_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   uint16_t * writeOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   const int32_t * src, | ||
|  |   int32_t srcInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0u; | ||
|  |     int32_t wOffset; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location where the input samples to be copied */ | ||
|  |     wOffset = *writeOffset; | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the input sample to the circular buffer */ | ||
|  |       circBuffer[wOffset] = *src; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       src += srcInc; | ||
|  | 
 | ||
|  |       /* Circularly update wOffset.  Watch out for positive and negative value */ | ||
|  |       wOffset += bufferInc; | ||
|  |       if(wOffset >= L) | ||
|  |         wOffset -= L; | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *writeOffset = wOffset; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief floating-point Circular Read function. | ||
|  |    */ | ||
|  |   static __INLINE void arm_circularRead_f32( | ||
|  |   int32_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   int32_t * readOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   int32_t * dst, | ||
|  |   int32_t * dst_base, | ||
|  |   int32_t dst_length, | ||
|  |   int32_t dstInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0u; | ||
|  |     int32_t rOffset, dst_end; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location from where the input samples to be read */ | ||
|  |     rOffset = *readOffset; | ||
|  |     dst_end = (int32_t) (dst_base + dst_length); | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the sample from the circular buffer to the destination buffer */ | ||
|  |       *dst = circBuffer[rOffset]; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       dst += dstInc; | ||
|  | 
 | ||
|  |       if(dst == (int32_t *) dst_end) | ||
|  |       { | ||
|  |         dst = dst_base; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Circularly update rOffset.  Watch out for positive and negative value  */ | ||
|  |       rOffset += bufferInc; | ||
|  | 
 | ||
|  |       if(rOffset >= L) | ||
|  |       { | ||
|  |         rOffset -= L; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *readOffset = rOffset; | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 Circular write function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_circularWrite_q15( | ||
|  |   q15_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   uint16_t * writeOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   const q15_t * src, | ||
|  |   int32_t srcInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0u; | ||
|  |     int32_t wOffset; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location where the input samples to be copied */ | ||
|  |     wOffset = *writeOffset; | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the input sample to the circular buffer */ | ||
|  |       circBuffer[wOffset] = *src; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       src += srcInc; | ||
|  | 
 | ||
|  |       /* Circularly update wOffset.  Watch out for positive and negative value */ | ||
|  |       wOffset += bufferInc; | ||
|  |       if(wOffset >= L) | ||
|  |         wOffset -= L; | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *writeOffset = wOffset; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q15 Circular Read function. | ||
|  |    */ | ||
|  |   static __INLINE void arm_circularRead_q15( | ||
|  |   q15_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   int32_t * readOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   q15_t * dst, | ||
|  |   q15_t * dst_base, | ||
|  |   int32_t dst_length, | ||
|  |   int32_t dstInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0; | ||
|  |     int32_t rOffset, dst_end; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location from where the input samples to be read */ | ||
|  |     rOffset = *readOffset; | ||
|  | 
 | ||
|  |     dst_end = (int32_t) (dst_base + dst_length); | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the sample from the circular buffer to the destination buffer */ | ||
|  |       *dst = circBuffer[rOffset]; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       dst += dstInc; | ||
|  | 
 | ||
|  |       if(dst == (q15_t *) dst_end) | ||
|  |       { | ||
|  |         dst = dst_base; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Circularly update wOffset.  Watch out for positive and negative value */ | ||
|  |       rOffset += bufferInc; | ||
|  | 
 | ||
|  |       if(rOffset >= L) | ||
|  |       { | ||
|  |         rOffset -= L; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *readOffset = rOffset; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 Circular write function. | ||
|  |    */ | ||
|  | 
 | ||
|  |   static __INLINE void arm_circularWrite_q7( | ||
|  |   q7_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   uint16_t * writeOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   const q7_t * src, | ||
|  |   int32_t srcInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0u; | ||
|  |     int32_t wOffset; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location where the input samples to be copied */ | ||
|  |     wOffset = *writeOffset; | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the input sample to the circular buffer */ | ||
|  |       circBuffer[wOffset] = *src; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       src += srcInc; | ||
|  | 
 | ||
|  |       /* Circularly update wOffset.  Watch out for positive and negative value */ | ||
|  |       wOffset += bufferInc; | ||
|  |       if(wOffset >= L) | ||
|  |         wOffset -= L; | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *writeOffset = wOffset; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Q7 Circular Read function. | ||
|  |    */ | ||
|  |   static __INLINE void arm_circularRead_q7( | ||
|  |   q7_t * circBuffer, | ||
|  |   int32_t L, | ||
|  |   int32_t * readOffset, | ||
|  |   int32_t bufferInc, | ||
|  |   q7_t * dst, | ||
|  |   q7_t * dst_base, | ||
|  |   int32_t dst_length, | ||
|  |   int32_t dstInc, | ||
|  |   uint32_t blockSize) | ||
|  |   { | ||
|  |     uint32_t i = 0; | ||
|  |     int32_t rOffset, dst_end; | ||
|  | 
 | ||
|  |     /* Copy the value of Index pointer that points
 | ||
|  |      * to the current location from where the input samples to be read */ | ||
|  |     rOffset = *readOffset; | ||
|  | 
 | ||
|  |     dst_end = (int32_t) (dst_base + dst_length); | ||
|  | 
 | ||
|  |     /* Loop over the blockSize */ | ||
|  |     i = blockSize; | ||
|  | 
 | ||
|  |     while(i > 0u) | ||
|  |     { | ||
|  |       /* copy the sample from the circular buffer to the destination buffer */ | ||
|  |       *dst = circBuffer[rOffset]; | ||
|  | 
 | ||
|  |       /* Update the input pointer */ | ||
|  |       dst += dstInc; | ||
|  | 
 | ||
|  |       if(dst == (q7_t *) dst_end) | ||
|  |       { | ||
|  |         dst = dst_base; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Circularly update rOffset.  Watch out for positive and negative value */ | ||
|  |       rOffset += bufferInc; | ||
|  | 
 | ||
|  |       if(rOffset >= L) | ||
|  |       { | ||
|  |         rOffset -= L; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* Decrement the loop counter */ | ||
|  |       i--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Update the index pointer */ | ||
|  |     *readOffset = rOffset; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Sum of the squares of the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_power_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q63_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Sum of the squares of the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_power_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Sum of the squares of the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_power_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q63_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Sum of the squares of the elements of a Q7 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_power_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Mean value of a Q7 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_mean_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q7_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Mean value of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_mean_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Mean value of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_mean_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Mean value of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_mean_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Variance of the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_var_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Variance of the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_var_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Variance of the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_var_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Root Mean Square of the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_rms_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Root Mean Square of the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_rms_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Root Mean Square of the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_rms_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Standard deviation of the elements of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_std_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Standard deviation of the elements of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_std_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Standard deviation of the elements of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output value. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_std_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex magnitude | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex magnitude | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex magnitude | ||
|  |    * @param[in]  *pSrc points to the complex input vector | ||
|  |    * @param[out]  *pDst points to the real output vector | ||
|  |    * @param[in]  numSamples number of complex samples in the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mag_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex dot product | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @param[out]  *realResult real part of the result returned here | ||
|  |    * @param[out]  *imagResult imaginary part of the result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_dot_prod_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   uint32_t numSamples, | ||
|  |   q31_t * realResult, | ||
|  |   q31_t * imagResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex dot product | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @param[out]  *realResult real part of the result returned here | ||
|  |    * @param[out]  *imagResult imaginary part of the result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_dot_prod_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   uint32_t numSamples, | ||
|  |   q63_t * realResult, | ||
|  |   q63_t * imagResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex dot product | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @param[out]  *realResult real part of the result returned here | ||
|  |    * @param[out]  *imagResult imaginary part of the result returned here | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_dot_prod_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   uint32_t numSamples, | ||
|  |   float32_t * realResult, | ||
|  |   float32_t * imagResult); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex-by-real multiplication | ||
|  |    * @param[in]  *pSrcCmplx points to the complex input vector | ||
|  |    * @param[in]  *pSrcReal points to the real input vector | ||
|  |    * @param[out]  *pCmplxDst points to the complex output vector | ||
|  |    * @param[in]  numSamples number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_real_q15( | ||
|  |   q15_t * pSrcCmplx, | ||
|  |   q15_t * pSrcReal, | ||
|  |   q15_t * pCmplxDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex-by-real multiplication | ||
|  |    * @param[in]  *pSrcCmplx points to the complex input vector | ||
|  |    * @param[in]  *pSrcReal points to the real input vector | ||
|  |    * @param[out]  *pCmplxDst points to the complex output vector | ||
|  |    * @param[in]  numSamples number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_real_q31( | ||
|  |   q31_t * pSrcCmplx, | ||
|  |   q31_t * pSrcReal, | ||
|  |   q31_t * pCmplxDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex-by-real multiplication | ||
|  |    * @param[in]  *pSrcCmplx points to the complex input vector | ||
|  |    * @param[in]  *pSrcReal points to the real input vector | ||
|  |    * @param[out]  *pCmplxDst points to the complex output vector | ||
|  |    * @param[in]  numSamples number of samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_real_f32( | ||
|  |   float32_t * pSrcCmplx, | ||
|  |   float32_t * pSrcReal, | ||
|  |   float32_t * pCmplxDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Minimum value of a Q7 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *result is output pointer | ||
|  |    * @param[in]  index is the array index of the minimum value in the input buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_min_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q7_t * result, | ||
|  |   uint32_t * index); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Minimum value of a Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output pointer | ||
|  |    * @param[in]  *pIndex is the array index of the minimum value in the input buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_min_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Minimum value of a Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output pointer | ||
|  |    * @param[out]  *pIndex is the array index of the minimum value in the input buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_min_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Minimum value of a floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @param[out]  *pResult is output pointer | ||
|  |    * @param[out]  *pIndex is the array index of the minimum value in the input buffer. | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_min_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Maximum value of a Q7 vector. | ||
|  |  * @param[in]       *pSrc points to the input buffer | ||
|  |  * @param[in]       blockSize length of the input vector | ||
|  |  * @param[out]      *pResult maximum value returned here | ||
|  |  * @param[out]      *pIndex index of maximum value returned here | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_max_q7( | ||
|  |   q7_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q7_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Maximum value of a Q15 vector. | ||
|  |  * @param[in]       *pSrc points to the input buffer | ||
|  |  * @param[in]       blockSize length of the input vector | ||
|  |  * @param[out]      *pResult maximum value returned here | ||
|  |  * @param[out]      *pIndex index of maximum value returned here | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_max_q15( | ||
|  |   q15_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q15_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Maximum value of a Q31 vector. | ||
|  |  * @param[in]       *pSrc points to the input buffer | ||
|  |  * @param[in]       blockSize length of the input vector | ||
|  |  * @param[out]      *pResult maximum value returned here | ||
|  |  * @param[out]      *pIndex index of maximum value returned here | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_max_q31( | ||
|  |   q31_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   q31_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @brief Maximum value of a floating-point vector. | ||
|  |  * @param[in]       *pSrc points to the input buffer | ||
|  |  * @param[in]       blockSize length of the input vector | ||
|  |  * @param[out]      *pResult maximum value returned here | ||
|  |  * @param[out]      *pIndex index of maximum value returned here | ||
|  |  * @return none. | ||
|  |  */ | ||
|  | 
 | ||
|  |   void arm_max_f32( | ||
|  |   float32_t * pSrc, | ||
|  |   uint32_t blockSize, | ||
|  |   float32_t * pResult, | ||
|  |   uint32_t * pIndex); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q15 complex-by-complex multiplication | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[out]  *pDst  points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_cmplx_q15( | ||
|  |   q15_t * pSrcA, | ||
|  |   q15_t * pSrcB, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Q31 complex-by-complex multiplication | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[out]  *pDst  points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_cmplx_q31( | ||
|  |   q31_t * pSrcA, | ||
|  |   q31_t * pSrcB, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Floating-point complex-by-complex multiplication | ||
|  |    * @param[in]  *pSrcA points to the first input vector | ||
|  |    * @param[in]  *pSrcB points to the second input vector | ||
|  |    * @param[out]  *pDst  points to the output vector | ||
|  |    * @param[in]  numSamples number of complex samples in each vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  | 
 | ||
|  |   void arm_cmplx_mult_cmplx_f32( | ||
|  |   float32_t * pSrcA, | ||
|  |   float32_t * pSrcB, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t numSamples); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Converts the elements of the floating-point vector to Q31 vector. | ||
|  |    * @param[in]       *pSrc points to the floating-point input vector | ||
|  |    * @param[out]      *pDst points to the Q31 output vector | ||
|  |    * @param[in]       blockSize length of the input vector | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_float_to_q31( | ||
|  |   float32_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Converts the elements of the floating-point vector to Q15 vector. | ||
|  |    * @param[in]       *pSrc points to the floating-point input vector | ||
|  |    * @param[out]      *pDst points to the Q15 output vector | ||
|  |    * @param[in]       blockSize length of the input vector | ||
|  |    * @return          none | ||
|  |    */ | ||
|  |   void arm_float_to_q15( | ||
|  |   float32_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief Converts the elements of the floating-point vector to Q7 vector. | ||
|  |    * @param[in]       *pSrc points to the floating-point input vector | ||
|  |    * @param[out]      *pDst points to the Q7 output vector | ||
|  |    * @param[in]       blockSize length of the input vector | ||
|  |    * @return          none | ||
|  |    */ | ||
|  |   void arm_float_to_q7( | ||
|  |   float32_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q31 vector to Q15 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q31_to_q15( | ||
|  |   q31_t * pSrc, | ||
|  |   q15_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q31 vector to Q7 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q31_to_q7( | ||
|  |   q31_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q15 vector to floating-point vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q15_to_float( | ||
|  |   q15_t * pSrc, | ||
|  |   float32_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q15 vector to Q31 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q15_to_q31( | ||
|  |   q15_t * pSrc, | ||
|  |   q31_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @brief  Converts the elements of the Q15 vector to Q7 vector. | ||
|  |    * @param[in]  *pSrc is input pointer | ||
|  |    * @param[out]  *pDst is output pointer | ||
|  |    * @param[in]  blockSize is the number of samples to process | ||
|  |    * @return none. | ||
|  |    */ | ||
|  |   void arm_q15_to_q7( | ||
|  |   q15_t * pSrc, | ||
|  |   q7_t * pDst, | ||
|  |   uint32_t blockSize); | ||
|  | 
 | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @ingroup groupInterpolation | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @defgroup BilinearInterpolate Bilinear Interpolation | ||
|  |    * | ||
|  |    * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | ||
|  |    * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | ||
|  |    * determines values between the grid points. | ||
|  |    * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | ||
|  |    * Bilinear interpolation is often used in image processing to rescale images. | ||
|  |    * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | ||
|  |    * | ||
|  |    * <b>Algorithm</b> | ||
|  |    * \par | ||
|  |    * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | ||
|  |    * For floating-point, the instance structure is defined as: | ||
|  |    * <pre> | ||
|  |    *   typedef struct | ||
|  |    *   { | ||
|  |    *     uint16_t numRows; | ||
|  |    *     uint16_t numCols; | ||
|  |    *     float32_t *pData; | ||
|  |    * } arm_bilinear_interp_instance_f32; | ||
|  |    * </pre> | ||
|  |    * | ||
|  |    * \par | ||
|  |    * where <code>numRows</code> specifies the number of rows in the table; | ||
|  |    * <code>numCols</code> specifies the number of columns in the table; | ||
|  |    * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | ||
|  |    * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | ||
|  |    * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * Let <code>(x, y)</code> specify the desired interpolation point.  Then define: | ||
|  |    * <pre> | ||
|  |    *     XF = floor(x) | ||
|  |    *     YF = floor(y) | ||
|  |    * </pre> | ||
|  |    * \par | ||
|  |    * The interpolated output point is computed as: | ||
|  |    * <pre> | ||
|  |    *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | ||
|  |    *           + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | ||
|  |    *           + f(XF, YF+1) * (1-(x-XF))*(y-YF) | ||
|  |    *           + f(XF+1, YF+1) * (x-XF)*(y-YF) | ||
|  |    * </pre> | ||
|  |    * Note that the coordinates (x, y) contain integer and fractional components. | ||
|  |    * The integer components specify which portion of the table to use while the | ||
|  |    * fractional components control the interpolation processor. | ||
|  |    * | ||
|  |    * \par | ||
|  |    * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @addtogroup BilinearInterpolate | ||
|  |    * @{ | ||
|  |    */ | ||
|  | 
 | ||
|  |   /**
 | ||
|  |   * | ||
|  |   * @brief  Floating-point bilinear interpolation. | ||
|  |   * @param[in,out] *S points to an instance of the interpolation structure. | ||
|  |   * @param[in] X interpolation coordinate. | ||
|  |   * @param[in] Y interpolation coordinate. | ||
|  |   * @return out interpolated value. | ||
|  |   */ | ||
|  | 
 | ||
|  | 
 | ||
|  |   static __INLINE float32_t arm_bilinear_interp_f32( | ||
|  |   const arm_bilinear_interp_instance_f32 * S, | ||
|  |   float32_t X, | ||
|  |   float32_t Y) | ||
|  |   { | ||
|  |     float32_t out; | ||
|  |     float32_t f00, f01, f10, f11; | ||
|  |     float32_t *pData = S->pData; | ||
|  |     int32_t xIndex, yIndex, index; | ||
|  |     float32_t xdiff, ydiff; | ||
|  |     float32_t b1, b2, b3, b4; | ||
|  | 
 | ||
|  |     xIndex = (int32_t) X; | ||
|  |     yIndex = (int32_t) Y; | ||
|  | 
 | ||
|  |     /* Care taken for table outside boundary */ | ||
|  |     /* Returns zero output when values are outside table boundary */ | ||
|  |     if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 | ||
|  |        || yIndex > (S->numCols - 1)) | ||
|  |     { | ||
|  |       return (0); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Calculation of index for two nearest points in X-direction */ | ||
|  |     index = (xIndex - 1) + (yIndex - 1) * S->numCols; | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Read two nearest points in X-direction */ | ||
|  |     f00 = pData[index]; | ||
|  |     f01 = pData[index + 1]; | ||
|  | 
 | ||
|  |     /* Calculation of index for two nearest points in Y-direction */ | ||
|  |     index = (xIndex - 1) + (yIndex) * S->numCols; | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Read two nearest points in Y-direction */ | ||
|  |     f10 = pData[index]; | ||
|  |     f11 = pData[index + 1]; | ||
|  | 
 | ||
|  |     /* Calculation of intermediate values */ | ||
|  |     b1 = f00; | ||
|  |     b2 = f01 - f00; | ||
|  |     b3 = f10 - f00; | ||
|  |     b4 = f00 - f01 - f10 + f11; | ||
|  | 
 | ||
|  |     /* Calculation of fractional part in X */ | ||
|  |     xdiff = X - xIndex; | ||
|  | 
 | ||
|  |     /* Calculation of fractional part in Y */ | ||
|  |     ydiff = Y - yIndex; | ||
|  | 
 | ||
|  |     /* Calculation of bi-linear interpolated output */ | ||
|  |     out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | ||
|  | 
 | ||
|  |     /* return to application */ | ||
|  |     return (out); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |   * | ||
|  |   * @brief  Q31 bilinear interpolation. | ||
|  |   * @param[in,out] *S points to an instance of the interpolation structure. | ||
|  |   * @param[in] X interpolation coordinate in 12.20 format. | ||
|  |   * @param[in] Y interpolation coordinate in 12.20 format. | ||
|  |   * @return out interpolated value. | ||
|  |   */ | ||
|  | 
 | ||
|  |   static __INLINE q31_t arm_bilinear_interp_q31( | ||
|  |   arm_bilinear_interp_instance_q31 * S, | ||
|  |   q31_t X, | ||
|  |   q31_t Y) | ||
|  |   { | ||
|  |     q31_t out;                                   /* Temporary output */ | ||
|  |     q31_t acc = 0;                               /* output */ | ||
|  |     q31_t xfract, yfract;                        /* X, Y fractional parts */ | ||
|  |     q31_t x1, x2, y1, y2;                        /* Nearest output values */ | ||
|  |     int32_t rI, cI;                              /* Row and column indices */ | ||
|  |     q31_t *pYData = S->pData;                    /* pointer to output table values */ | ||
|  |     uint32_t nCols = S->numCols;                 /* num of rows */ | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     rI = ((X & 0xFFF00000) >> 20u); | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     cI = ((Y & 0xFFF00000) >> 20u); | ||
|  | 
 | ||
|  |     /* Care taken for table outside boundary */ | ||
|  |     /* Returns zero output when values are outside table boundary */ | ||
|  |     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | ||
|  |     { | ||
|  |       return (0); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* shift left xfract by 11 to keep 1.31 format */ | ||
|  |     xfract = (X & 0x000FFFFF) << 11u; | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     x1 = pYData[(rI) + nCols * (cI)]; | ||
|  |     x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* shift left yfract by 11 to keep 1.31 format */ | ||
|  |     yfract = (Y & 0x000FFFFF) << 11u; | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     y1 = pYData[(rI) + nCols * (cI + 1)]; | ||
|  |     y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||
|  | 
 | ||
|  |     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | ||
|  |     out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | ||
|  |     acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | ||
|  | 
 | ||
|  |     /* x2 * (xfract) * (1-yfract)  in 3.29(q29) and adding to acc */ | ||
|  |     out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | ||
|  |     acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | ||
|  | 
 | ||
|  |     /* y1 * (1 - xfract) * (yfract)  in 3.29(q29) and adding to acc */ | ||
|  |     out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | ||
|  |     acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | ||
|  | 
 | ||
|  |     /* y2 * (xfract) * (yfract)  in 3.29(q29) and adding to acc */ | ||
|  |     out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | ||
|  |     acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | ||
|  | 
 | ||
|  |     /* Convert acc to 1.31(q31) format */ | ||
|  |     return (acc << 2u); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |   * @brief  Q15 bilinear interpolation. | ||
|  |   * @param[in,out] *S points to an instance of the interpolation structure. | ||
|  |   * @param[in] X interpolation coordinate in 12.20 format. | ||
|  |   * @param[in] Y interpolation coordinate in 12.20 format. | ||
|  |   * @return out interpolated value. | ||
|  |   */ | ||
|  | 
 | ||
|  |   static __INLINE q15_t arm_bilinear_interp_q15( | ||
|  |   arm_bilinear_interp_instance_q15 * S, | ||
|  |   q31_t X, | ||
|  |   q31_t Y) | ||
|  |   { | ||
|  |     q63_t acc = 0;                               /* output */ | ||
|  |     q31_t out;                                   /* Temporary output */ | ||
|  |     q15_t x1, x2, y1, y2;                        /* Nearest output values */ | ||
|  |     q31_t xfract, yfract;                        /* X, Y fractional parts */ | ||
|  |     int32_t rI, cI;                              /* Row and column indices */ | ||
|  |     q15_t *pYData = S->pData;                    /* pointer to output table values */ | ||
|  |     uint32_t nCols = S->numCols;                 /* num of rows */ | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     rI = ((X & 0xFFF00000) >> 20); | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     cI = ((Y & 0xFFF00000) >> 20); | ||
|  | 
 | ||
|  |     /* Care taken for table outside boundary */ | ||
|  |     /* Returns zero output when values are outside table boundary */ | ||
|  |     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | ||
|  |     { | ||
|  |       return (0); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* xfract should be in 12.20 format */ | ||
|  |     xfract = (X & 0x000FFFFF); | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     x1 = pYData[(rI) + nCols * (cI)]; | ||
|  |     x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* yfract should be in 12.20 format */ | ||
|  |     yfract = (Y & 0x000FFFFF); | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     y1 = pYData[(rI) + nCols * (cI + 1)]; | ||
|  |     y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||
|  | 
 | ||
|  |     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | ||
|  | 
 | ||
|  |     /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | ||
|  |     /* convert 13.35 to 13.31 by right shifting  and out is in 1.31 */ | ||
|  |     out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | ||
|  |     acc = ((q63_t) out * (0xFFFFF - yfract)); | ||
|  | 
 | ||
|  |     /* x2 * (xfract) * (1-yfract)  in 1.51 and adding to acc */ | ||
|  |     out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | ||
|  |     acc += ((q63_t) out * (xfract)); | ||
|  | 
 | ||
|  |     /* y1 * (1 - xfract) * (yfract)  in 1.51 and adding to acc */ | ||
|  |     out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | ||
|  |     acc += ((q63_t) out * (yfract)); | ||
|  | 
 | ||
|  |     /* y2 * (xfract) * (yfract)  in 1.51 and adding to acc */ | ||
|  |     out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | ||
|  |     acc += ((q63_t) out * (yfract)); | ||
|  | 
 | ||
|  |     /* acc is in 13.51 format and down shift acc by 36 times */ | ||
|  |     /* Convert out to 1.15 format */ | ||
|  |     return (acc >> 36); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |   * @brief  Q7 bilinear interpolation. | ||
|  |   * @param[in,out] *S points to an instance of the interpolation structure. | ||
|  |   * @param[in] X interpolation coordinate in 12.20 format. | ||
|  |   * @param[in] Y interpolation coordinate in 12.20 format. | ||
|  |   * @return out interpolated value. | ||
|  |   */ | ||
|  | 
 | ||
|  |   static __INLINE q7_t arm_bilinear_interp_q7( | ||
|  |   arm_bilinear_interp_instance_q7 * S, | ||
|  |   q31_t X, | ||
|  |   q31_t Y) | ||
|  |   { | ||
|  |     q63_t acc = 0;                               /* output */ | ||
|  |     q31_t out;                                   /* Temporary output */ | ||
|  |     q31_t xfract, yfract;                        /* X, Y fractional parts */ | ||
|  |     q7_t x1, x2, y1, y2;                         /* Nearest output values */ | ||
|  |     int32_t rI, cI;                              /* Row and column indices */ | ||
|  |     q7_t *pYData = S->pData;                     /* pointer to output table values */ | ||
|  |     uint32_t nCols = S->numCols;                 /* num of rows */ | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     rI = ((X & 0xFFF00000) >> 20); | ||
|  | 
 | ||
|  |     /* Input is in 12.20 format */ | ||
|  |     /* 12 bits for the table index */ | ||
|  |     /* Index value calculation */ | ||
|  |     cI = ((Y & 0xFFF00000) >> 20); | ||
|  | 
 | ||
|  |     /* Care taken for table outside boundary */ | ||
|  |     /* Returns zero output when values are outside table boundary */ | ||
|  |     if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | ||
|  |     { | ||
|  |       return (0); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* xfract should be in 12.20 format */ | ||
|  |     xfract = (X & 0x000FFFFF); | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     x1 = pYData[(rI) + nCols * (cI)]; | ||
|  |     x2 = pYData[(rI) + nCols * (cI) + 1u]; | ||
|  | 
 | ||
|  | 
 | ||
|  |     /* 20 bits for the fractional part */ | ||
|  |     /* yfract should be in 12.20 format */ | ||
|  |     yfract = (Y & 0x000FFFFF); | ||
|  | 
 | ||
|  |     /* Read two nearest output values from the index */ | ||
|  |     y1 = pYData[(rI) + nCols * (cI + 1)]; | ||
|  |     y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; | ||
|  | 
 | ||
|  |     /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | ||
|  |     out = ((x1 * (0xFFFFF - xfract))); | ||
|  |     acc = (((q63_t) out * (0xFFFFF - yfract))); | ||
|  | 
 | ||
|  |     /* x2 * (xfract) * (1-yfract)  in 2.22 and adding to acc */ | ||
|  |     out = ((x2 * (0xFFFFF - yfract))); | ||
|  |     acc += (((q63_t) out * (xfract))); | ||
|  | 
 | ||
|  |     /* y1 * (1 - xfract) * (yfract)  in 2.22 and adding to acc */ | ||
|  |     out = ((y1 * (0xFFFFF - xfract))); | ||
|  |     acc += (((q63_t) out * (yfract))); | ||
|  | 
 | ||
|  |     /* y2 * (xfract) * (yfract)  in 2.22 and adding to acc */ | ||
|  |     out = ((y2 * (yfract))); | ||
|  |     acc += (((q63_t) out * (xfract))); | ||
|  | 
 | ||
|  |     /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | ||
|  |     return (acc >> 40); | ||
|  | 
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * @} end of BilinearInterpolate group | ||
|  |    */ | ||
|  |     | ||
|  | 
 | ||
|  | //SMMLAR
 | ||
|  | #define multAcc_32x32_keep32_R(a, x, y) \
 | ||
|  |     a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) | ||
|  | 
 | ||
|  | //SMMLSR
 | ||
|  | #define multSub_32x32_keep32_R(a, x, y) \
 | ||
|  |     a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) | ||
|  | 
 | ||
|  | //SMMULR
 | ||
|  | #define mult_32x32_keep32_R(a, x, y) \
 | ||
|  |     a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) | ||
|  | 
 | ||
|  | //SMMLA
 | ||
|  | #define multAcc_32x32_keep32(a, x, y) \
 | ||
|  |     a += (q31_t) (((q63_t) x * y) >> 32) | ||
|  | 
 | ||
|  | //SMMLS
 | ||
|  | #define multSub_32x32_keep32(a, x, y) \
 | ||
|  |     a -= (q31_t) (((q63_t) x * y) >> 32) | ||
|  | 
 | ||
|  | //SMMUL
 | ||
|  | #define mult_32x32_keep32(a, x, y) \
 | ||
|  |     a = (q31_t) (((q63_t) x * y ) >> 32) | ||
|  | 
 | ||
|  | 
 | ||
|  | #if defined ( __CC_ARM ) //Keil
 | ||
|  | 
 | ||
|  | //Enter low optimization region - place directly above function definition
 | ||
|  |     #ifdef ARM_MATH_CM4
 | ||
|  |       #define LOW_OPTIMIZATION_ENTER \
 | ||
|  |          _Pragma ("push")         \ | ||
|  |          _Pragma ("O1") | ||
|  |     #else
 | ||
|  |       #define LOW_OPTIMIZATION_ENTER 
 | ||
|  |     #endif
 | ||
|  | 
 | ||
|  | //Exit low optimization region - place directly after end of function definition
 | ||
|  |     #ifdef ARM_MATH_CM4
 | ||
|  |       #define LOW_OPTIMIZATION_EXIT \
 | ||
|  |          _Pragma ("pop") | ||
|  |     #else
 | ||
|  |       #define LOW_OPTIMIZATION_EXIT  
 | ||
|  |     #endif
 | ||
|  | 
 | ||
|  | //Enter low optimization region - place directly above function definition
 | ||
|  |   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
 | ||
|  | 
 | ||
|  | //Exit low optimization region - place directly after end of function definition
 | ||
|  |   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  | #elif defined(__ICCARM__) //IAR
 | ||
|  | 
 | ||
|  | //Enter low optimization region - place directly above function definition
 | ||
|  |     #ifdef ARM_MATH_CM4
 | ||
|  |       #define LOW_OPTIMIZATION_ENTER \
 | ||
|  |          _Pragma ("optimize=low") | ||
|  |     #else
 | ||
|  |       #define LOW_OPTIMIZATION_ENTER   
 | ||
|  |     #endif
 | ||
|  | 
 | ||
|  | //Exit low optimization region - place directly after end of function definition
 | ||
|  |   #define LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  | //Enter low optimization region - place directly above function definition
 | ||
|  |     #ifdef ARM_MATH_CM4
 | ||
|  |       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
 | ||
|  |          _Pragma ("optimize=low") | ||
|  |     #else
 | ||
|  |       #define IAR_ONLY_LOW_OPTIMIZATION_ENTER   
 | ||
|  |     #endif
 | ||
|  | 
 | ||
|  | //Exit low optimization region - place directly after end of function definition
 | ||
|  |   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  | #elif defined(__GNUC__)
 | ||
|  | 
 | ||
|  |   #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
 | ||
|  | 
 | ||
|  |   #define LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  |   #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
 | ||
|  | 
 | ||
|  |   #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  | #elif defined(__CSMC__)		// Cosmic
 | ||
|  | 
 | ||
|  | #define LOW_OPTIMIZATION_ENTER
 | ||
|  | #define LOW_OPTIMIZATION_EXIT
 | ||
|  | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
 | ||
|  | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef	__cplusplus
 | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif /* _ARM_MATH_H */
 | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * | ||
|  |  * End of file. | ||
|  |  */ |