module top (input CLK, output LED1, LED2, LED3, LED4, LED5, input SCL, inout SDA, /*output ACK,*/ output INTERRUPT, input COM_RX, output COM_TX, COM_DCD, COM_DSR, COM_RTS, input [7:0] KBD_COLUMNS, inout [15:0] KBD_ROWS); parameter INTERRUPT_TMR_REFLESH = 14; // 14 - 2^14=16384 tacts or 1.37 ms, 19 - 2^19=524288 tacts or 43.7 ms, 23 - 2^23=8388608 tacts or 0.7 s // 23 - 1119 LCs, 14 - 1081 LCs (in commit 1b6fc60221b595c2a0f69509d29b6e5c3110feb0) wire RESET; reg [3:0] rststate = 0; assign RESET = &rststate; wire [7:0] I2C_TX; wire [7:0] I2C_TX_DESC; wire [7:0] I2C_RX; // RECEIVED FROM MASTER wire I2C_TRANS, I2C_READ, I2C_ACK, /*I2C_ACK_MSTR_CTRL,*/ I2C_WR; //wire [7:0] I2C_COUNTER; i2c_slave I2C (CLK, RESET, SCL, SDA, I2C_TRANS, I2C_READ, I2C_ACK, I2C_WR, //I2C_ACK_MSTR_CTRL, I2C_RX, I2C_TX);//, I2C_COUNTER); reg UART_WR, UART_DTR, UART_RTS, UART_DCD;//, UART_WR2; reg [7:0] UART_TX_DATA; wire UART_ACTIVE, UART_TX_LINE; /*initial begin UART_WR = 0; UART_RTS = 1; UART_DTR = 0; UART_DCD = 0; end*/ uart UART (CLK, RESET, UART_WR, UART_TX_DATA, UART_ACTIVE, UART_TX_LINE); //wire [7:0] kbd_report [6:0]; wire [7:0] report_byte; wire ISR; reg INT = 1; // INTERRUPT LINE TO HOST reg [INTERRUPT_TMR_REFLESH:0] int_tmr; reg KBD_FREEZE = 1; // LOGIC REG FOR BLOCK KBD ACTIVITY WHEN I2C IS WORKING matrix_kbd KEYBOARD (CLK, RESET, IS_RAM_INIT /*KBD_FREEZE*/, KBD_ROWS, KBD_COLUMNS, wr_cnt, report_data_wr, ISR);//kbd_report[0], kbd_report[1], kbd_report[2], kbd_report[3], kbd_report[4], kbd_report[5], kbd_report[6], ISR); descriptors I2C_HID_DESC (CLK, /*RESET, I2C_WR,*/ I2C_OUTPUT_TYPE[/*1:*/0], I2C_COUNTER, I2C_TX_DESC/*, kbd_report*/); reg [3:0] ring_wr, ring_rd; reg [3:0] wr_cnt; reg report_wr_en; //reg [7:0] /*report_data_wadr,*/ /*report_data_radr,*/ //report_data_wr; wire [7:0] report_data_radr, report_data_wadr, report_data_wr; assign report_data_radr[7:4] = ring_rd; assign report_data_radr[3:0] = I2C_COUNTER; assign report_data_wadr[7:4] = ring_wr; assign report_data_wadr[3:0] = wr_cnt; wire [7:0] report_data_rd; ram REPORT_DATA ((1^CLK), report_wr_en, report_data_wadr, report_data_wr, report_data_radr, report_data_rd); assign I2C_TX = (I2C_TX_DESC & I2C_OUT_DESC_MASK) | (/*I2C_TX_REPORT*/report_data_rd & (~I2C_OUT_DESC_MASK)); reg [2:0] temp_output_report; reg [3:0] i2c_input_data_type; // 0 - UNKNOWN, 1 - I2C_HID_DESC_REQUEST, 2 - HID_REPORT_DESC_REQUEST, 3 - INPUT_REPORT_REQUEST, 4 - OUTPUT_REPORT_SET // 5 - RESET, 6 - GET_INPUT_REPORT, 7 - SET_OUTPUT_REPORT reg [/*7*/6:0] I2C_COUNTER = 0; reg [2:0] I2C_OUTPUT_TYPE = 0; // 0 - I2C HID DESCR, 1 - HID REPORT DESC, 2 - INPUT REPORT reg [7:0] I2C_OUT_DESC_MASK = 0; reg [2:0] KBD_LED_STATUS = 0; reg last_wr = 0, last_trans = 0, last_isr = 0; reg IS_RAM_INIT = 0; always @(posedge CLK) begin // RESET LOGIC rststate <= rststate + !RESET; if (RESET == 0) begin I2C_OUTPUT_TYPE = 2;//3;//0; I2C_OUT_DESC_MASK = 0; UART_WR = 0; KBD_LED_STATUS = 0; // BIT 0 - NUM LOCK, BIT 1 - CAPS LOCK, BIT 2 - SCROOL LOCK last_trans = 0; last_isr = 0; last_wr = 0; I2C_COUNTER = 0; INT = 1; int_tmr = 0; ring_wr = 0; ring_rd = 15; wr_cnt = 0; IS_RAM_INIT = 1; //report_data_wadr = 245; // FIRST 10 TACTS ARE EMPTY report_wr_en = 0; end // NOT RESET MODE LOGIC else begin if (IS_RAM_INIT) begin //report_wr_en = 1; //report_data_wadr = report_data_wadr + 1; //report_data_wr = 0; wr_cnt = wr_cnt + 1; if ((wr_cnt == 0) && (report_wr_en == 0)) report_wr_en = 1; else if ((wr_cnt == 0) && (report_wr_en == 1)) begin report_wr_en = 0; IS_RAM_INIT = 0; end /*if (report_data_wadr == 17) begin report_wr_en = 0; IS_RAM_INIT = 0; end*/ end else begin // START OF NON RESET AND NON INIT LOGIC // ------------------------- KBD INTERRUPT ------------------------ // if ((last_isr == 1/*0*/) && (ISR == 0/*1*/)) begin // INTERRUPT FROM KEYBOARD if ((ring_wr + 1) != ring_rd) ring_wr = ring_wr + 1; report_wr_en = 1; //report_data_wadr = ring_wr * 16 + 1; //report_data_wr = 10;//kbd_report [0]; wr_cnt = 1; //INT = 0; //I2C_OUTPUT_TYPE = 2;//3; //I2C_OUT_DESC_MASK = 8'h00; end else if (wr_cnt != 0) begin // WRITING TO RAM REPORT FROM KEYBOARD if (wr_cnt == 11) begin wr_cnt = 0; report_wr_en = 0; end else begin //report_data_wadr = ring_wr * 16 + wr_cnt + 1; /*if ((wr_cnt == 1) || (wr_cnt == 3)) report_data_wr = 0; else if (wr_cnt == 2) report_data_wr = kbd_report [wr_cnt - 2]; else report_data_wr = kbd_report [wr_cnt - 3];*/ wr_cnt = wr_cnt + 1; end end // ---------------------------- I2C NEW BYTE TX/RX RISING/FALLING EDGE, RISING - ALL LOGIC, FALLING - UART TX -------------- // if ((last_wr == 0) && (I2C_WR == 1)) begin // I2C NEW BYTE TX/RX //I2C_COUNTER = I2C_COUNTER - 1; if (I2C_READ == 0) begin // I2C_FROM_HOST if (I2C_COUNTER == 0) begin if ((I2C_RX > 5) || (I2C_RX < 1)) i2c_input_data_type = 0; else i2c_input_data_type = I2C_RX; end else if (I2C_COUNTER == 1) begin if (I2C_RX != 0) i2c_input_data_type = 0; end else if (I2C_COUNTER == 2) begin if (i2c_input_data_type == 5) begin case (I2C_RX) 0: i2c_input_data_type = 5; 16: i2c_input_data_type = 6; 32: i2c_input_data_type = 7; default: i2c_input_data_type = 0; endcase end end else if (I2C_COUNTER == 3) begin if (((i2c_input_data_type == 5) && (I2C_RX != 1)) || ((i2c_input_data_type == 6) && (I2C_RX != 2)) || ((i2c_input_data_type == 7) && (I2C_RX != 3))) i2c_input_data_type = 0; end else if (I2C_COUNTER == 4) begin if (i2c_input_data_type == 4) temp_output_report = I2C_RX[2:0]; else if (((i2c_input_data_type == 6) || (i2c_input_data_type == 7)) && (I2C_RX != 6)) i2c_input_data_type = 0; end else if (I2C_COUNTER == 5) begin if (((i2c_input_data_type == 6) || (i2c_input_data_type == 7)) && (I2C_RX != 0)) i2c_input_data_type = 0; end else if (I2C_COUNTER == 8) begin if (i2c_input_data_type == 7) temp_output_report = I2C_RX[2:0]; end end else begin // I2C_TO_HOST if (I2C_OUTPUT_TYPE == 2/*3*/) begin if (I2C_COUNTER == 0) begin if (ring_rd != ring_wr) ring_rd = ring_rd + 1; //report_data_radr = ring_rd * 10; end //else // report_data_radr = report_data_radr + 1; end end UART_WR <= 0; if (I2C_COUNTER != 127) I2C_COUNTER = I2C_COUNTER + 1; end // I2C NEW BYTE TX/RX - END else if ((last_wr == 1) && (I2C_WR == 0)) begin // I2C_NEW_BYTE_NEGEDGE_FOR_UART UART_WR = 1; if (I2C_READ == 0) UART_TX_DATA = I2C_RX; else UART_TX_DATA = I2C_TX; //UART_TX_DATA = I2C_COUNTER; end // I2C_NEW_BYTE_NEGEDGE_FOR_UART - END // ---------------------- I2C START/STOP CONDITIONS, START - ONLY UART FF TX, STOP - ALL LOGIC ----------------- // if ((last_trans == 0) && (I2C_TRANS == 1)) begin // I2C_START_CONDITION OR REPEAT START (UART FF) i2c_input_data_type = 0; // UNKNOWN DATA IN UART_TX_DATA = 8'hFF; UART_WR = 1; I2C_COUNTER = 0; end // I2C_START_CONDITION (UART FF) - END else if ((last_trans == 1) && (I2C_TRANS == 0)) begin // I2C_STOP CONDITION (OR REPEAT START DETECTED) //KBD_FREEZE <= 0; if (I2C_READ == 0) begin // DECODING PACKET RECEIVED FROM HOST if (((i2c_input_data_type < 4) && (I2C_COUNTER != 2)) || ((i2c_input_data_type == 4) && (I2C_COUNTER != 5)) || ((i2c_input_data_type == 5) && (I2C_COUNTER != 4)) || ((i2c_input_data_type == 6) && (I2C_COUNTER != 6)) || ((i2c_input_data_type == 7) && (I2C_COUNTER != 9))) i2c_input_data_type = 0; if ((i2c_input_data_type == 1) || (i2c_input_data_type == 2) || (i2c_input_data_type == 3)) I2C_OUTPUT_TYPE = i2c_input_data_type - 1; else if ((i2c_input_data_type == 4) || (i2c_input_data_type == 7)) KBD_LED_STATUS = temp_output_report; else if (i2c_input_data_type == 6) I2C_OUTPUT_TYPE = 2;//3; else if (i2c_input_data_type == 5) rststate <= 4'h0; // RESET COMMAND if ((I2C_OUTPUT_TYPE == 1) || (I2C_OUTPUT_TYPE == 0))//2)) I2C_OUT_DESC_MASK = 8'hFF; else I2C_OUT_DESC_MASK = 8'h00; end // END OF I2C_READ == 0 else begin if ((I2C_OUTPUT_TYPE == 2/*3*/) && (I2C_COUNTER > 1)) begin // DEACTIVATING INTERRRUPT IF HOST READ INPUT REPORT (LEN 10) AFTER INTERRUPT OR EMPTY DATA (>=2 BYTES) AFTER RESET INT = 1; int_tmr = 0; end I2C_OUTPUT_TYPE = 2;//3; I2C_OUT_DESC_MASK = 0; end UART_WR <= 0; //last_trans = I2C_TRANS; end // I2C_STOP CONDITION (OR REPEAT START DETECTED) - END // ---------------- INTERRUPT TO HOST GENERATING LOGIC: DELAY AND INTERRUPT GENERATING (IF NEED) --------------- // //if (int_tmr != ((1<<(INTERRUPT_TMR_REFLESH+1))-1)) if (int_tmr[INTERRUPT_TMR_REFLESH] != 1) int_tmr = int_tmr + 1; else if ((I2C_OUTPUT_TYPE == 2/*3*/) && (I2C_TRANS == 0)) begin if (ring_rd != ring_wr) INT = 0; end last_trans <= I2C_TRANS; last_wr <= I2C_WR; last_isr <= ISR; end // END OF NON RESET AND NON INIT LOGIC end end assign LED5 = I2C_TRANS; //assign LED5 = COM_RX; assign LED1 = INT ^ 1;//KBD_COLUMNS[0];//I2C_OUTPUT_TYPE[0];//I2C_RX[0]; //assign LED2 = I2C_OUTPUT_TYPE[0]; //assign LED3 = I2C_OUTPUT_TYPE[1]; assign LED2 = KBD_LED_STATUS[0]; assign LED3 = KBD_LED_STATUS[1]; assign LED4 = KBD_LED_STATUS[2];//KBD_FREEZE;//UART_ACTIVE; //assign LED3 = UART_ACTIVE; //assign LED4 = uart_double_ff; //assign ACK = I2C_READ;//I2C_WR; //I2C_ACK; assign COM_TX = UART_TX_LINE;//COM_RX; assign INTERRUPT = INT; assign COM_RTS = I2C_READ;//UART_RTS; assign COM_DSR = KBD_FREEZE;//UART_DTR; assign COM_DCD = INT; endmodule //top