You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

439 lines
17 KiB

# ULX3S Manual
# Connectors
US1 Main micro-USB for power, program and communication.
All onboard hardware can be programmed or reconfigured
over US1: FPGA, FLASH, WiFi, RTC.
US2 Auxiliary micro-USB connected directly to FPGA pins
for experimenting with user-defined USB cores or to
connect PS/2 keyboard or mouse using USB-OTG and
USB-PS/2 adapters.
Board provides power to US2.
Board v1.7 can't be powered from US2 by default.
Board v2.0 and higher can be powered from US2.
If you want to power board v1.7 from US2, reverse diode
D9 near US2 connector or short D9 with a wire.
GPDI Plug for cable to digital monitor or TV,
4 TMDS+- video
1 HEAC+- ethernet and audio return
SDA,SCL I2C (DDS EDID)
CEC remote control
+5V supply to enable plug-in detection
AUDIO 3.5 mm jack with 3 channels for earphones
and digital audio or composite video (analog TV)
Suitable cables are 3.5mm to 3-RCA (cinch)
Red-White-Yellow for iPhone/iBook/NOKIA.
Sony cables are the most popular and look identical
but are not suitable, they have GND at Ring2!
Tip: Left analog audio
Ring1: Right analog audio
Ring2: Digital audio SPDIF
Sleeve: GND
OLED 7-pin 2.54 mm header OLED1 for SSD1331 SPI color OLED
pinout: CS DC RES SDA SCL VCC GND
JTAG 6-pin 2.54 mm header J4 for external JTAG programmer
pinout: 3V3 GND
TCK TDI
TDO TMS
GPIO 40-pin 2.54 mm double-row connectors J1 and J2 for GPIO
at 3.3V logical level with 56 pins from which are:
J1 GP,GN 0-7 are single-ended pins.
J1 GP,GN 8-13 are differential bidirectional pairs.
J2 GP,GN 14-21 are differential bidirectional pairs.
J2 GP,GN 22-27 are single-ended pins.
Differential pairs can be used also as single-ended pins.
J1 GP,GN 12 is differential primary clock capable.
J1 GP,GN 0,1 are single-ended primary clock capable.
J1 GP 13 and J2 GN 17 are general routing (non-primary)
clock capable.
J1 pins GP,GN 9-13 are shared with ESP32 WiFi on PCB v1.7.
J1 pins GP,GN 11-13 are shared with ESP32 WiFi on PCB >v2.0.
J2 pins GP,GN 14-17 are shared with ADC.
4 PMOD connectors can be made out of it
(GND and 3.3V power are on the right place)
J1-J2 distance is suitable to be plugged into triple
protoboard using a single row of J1/J2.
J2 has also 5V IN/OUT (be careful, GPIO pins are not
5V tolerant).
SD Micro SD card, all signal pins are routed to FPGA and
shared with ESP-32
ESP32 Placeholder to solder ESP-32 WROOM module.
ESP-32 can provide standalone web interface for uploading
bitstream into FPGA and its config FLASH.
# Constraints (board pinout)
For [PCB v1.7 patched for ESP32 to work](/doc/constraints/ulx3s_v17patch.lpf)
For [PCB v2.x.x and v3.0.x](/doc/constraints/ulx3s_v20.lpf)
# Power
Plug US1 into PC or USB charger and board should power up.
Initial voltage rise at USB 5V line will trigger board powering
up and holding the power.
USB-serial chip FT231X will always be powered from 5V USB
on PCB v1.7. The board has switching voltage regulators
which can be turned off to reduce power consumption.
Green LED D18 behaviour is the "Power LED". Green LED ON will keep
board powered up. By factory default, when USB-serial chip
is enumerated by PC, Green LED will turn ON.
Normally when board is plugged into USB charger Green LED may shortly
blink and stay OFF, but board will keep being powered.
Board PCB v1.7 must be hardware patched to be able to reliably
enter shutdown mode. (It will keep waking up).
RTC without battery will keep powering up the board as factory default.
3V battery CR1225 and configured RTC chip is required for the board to
enter shutdown mode. There are several ways to wake up the board:
1) Press BTN0
2) Re-plug US1 micro-USB cable
3) RTC ALARM (using MCP7940N or PCF8523 arduino example)
4) Turn on Green LED D18 (using ftx_prog or libftdi)
Just a short pulse at RTC (ALARM INT1 shorly pull down) or
Green LED shortly going HIGH is enough to wake up the board.
There is SHUTDOWN pin where FPGA can turn OFF the board.
This pin is not correctly routed on PCB v1.7 and needs
hardware upgrade to make it work.
On J2 connector there are 2 pins for 5V external power input
and output. They are located on top right, near pin labeled 27
and US2 connector. Power is unidirectionaly routed using schottky
diodes.
Powering only from 3.3V is not possible because switching regulators
need 5V to generate 2.5V and 1.1V.
Switching regulators use ferrite core coils L1,L2,L3 which can saturate
at magnetic fields above 0.3T. Never approach neodymium magnets
near powered board.
# Programming over USB port "US1"
Use ftx_prog to allow max USB power consumption of 500mA
and change product/manufacturer name of FT231X chip:
ftx_prog --max-bus-power 500
ftx_prog --manufacturer "FER-RADIONA-EMARD"
ftx_prog --product "ULX3S FPGA 12K v3.0.3"
ftx_prog --new-serial-number 120001
ftx_prog --cbus 2 TxRxLED
ftx_prog --cbus 3 SLEEP
Optionally you can change "45K" to "25K" or "12K" in regard with FPGA chip size.
Re-plug the USB and it will appear as new name which can be autodetected
with USB-serial JTAG tool.
To program ULX3S there are many programming options:
[ujprog](https://github.com/f32c/tools)
Emard's fork of Xark's [FleaFPGA-JTAG](https://github.com/emard/FleaFPGA-JTAG) tool
ft232r driver in latest [OpenOCD soruce](https://sourceforge.net/p/openocd/code/ci/master/tree)
[OpenOCD binaries 2019 or later](https://github.com/gnu-mcu-eclipse/openocd/releases)
onboard ESP32 wifi web interface
external USB-JTAG programmer connected to JTAG header.
Most external JTAGs should work with OpenOCD but FT2232 or FT4232 based JTAGs like
lattice original JTAG cables
or [FT2232 breakout board from DangerousPrototypes](http://dangerousprototypes.com/docs/FT2232_breakout_board) are
recommended. FT2232 based JTAG is very fast, compatible and works with Lattice
Diamond native programmer.
"ujprog" tool acceps BIT or SVF files for uploading to the FPGA SRAM.
Upload to onboard FLASH can't be yet done by "ujprog"
ujprog bitstream-sram.bit
ujprog bitstream-sram.svf
"FleaFPGA-JTAG" tool accepts VME files for uploading to the FPGA SRAM or onboard
SPI FLASH chip. SRAM VME file is simple to make, but when generating
FLASH VME file, follow the Lattice
TN02050 document:
"Programming External SPI Flash through JTAG for ECP5/ECP5-5G"
section:
"6. Programming the SPI Flash with bitstream file using Diamond Programmer"
and select FLASH chip type:
Family: SPI Serial Flash
Vendor: Micron
Device: SPI-M25F32
Package. 8-pin VDFPN8
Verify: No
When it creates VME file, pass it to FleaFPGA-JTAG argument.
Disabled "verify" will make flashing fast, but if enabled, expect to wait
5-15 minutes. You don't need verify because bitstream always checks
its own CRC and it will just not load if FLASHed with errors.
FleaFPGA-JTAG bitstream-flash.vme
"OpenOCD" tool accepts SVF files and can upload to SRAM or onboard FLASH.
For details see their ft232r driver documentation. In short, this
config file should help to get started, modified to set actual
CHIP_ID and bitstream.svf:
file "ft231x.ocd"
# file: ft231x.ocd
interface ft232r
ft232r_vid_pid 0x0403 0x6015
# ft232r_serial_desc 123456
ft232r_tck_num DSR
ft232r_tms_num DCD
ft232r_tdi_num RI
ft232r_tdo_num CTS
ft232r_trst_num RTS
ft232r_srst_num DTR
ft232r_restore_serial 0x15
adapter_khz 1000
file "ecp5.ocd"
# file: ecp5.ocd
telnet_port 4444
gdb_port 3333
# JTAG TAPs
jtag newtap lfe5 tap -expected-id 0x21111043 -irlen 8 -irmask 0xFF -ircapture 0x5
# -expected-id should match ECP5 CHIP_ID:
# 12F: 0x21111043
# 25F: 0x41111043
# 45F: 0x41112043
# 85F: 0x41113043
init
scan_chain
svf -tap lfe5.tap -quiet -progress bitstream.svf
shutdown
commandline
openocd --file=ft231x.ocd --file=ecp5.ocd
# Programming over USB port "US2"
There is possibility to program ULX3S SPI config FLASH thru
US2 connector and
a [fork of tinyfpga bootloader](https://github.com/tinyfpga/TinyFPGA-Bootloader) loaded
to FPGA, either loaded from US1 temporary to FPGA SRAM or permanently
to SPI config FLASH. Bootloader uses multiboot feature of ECP5 FPGA.
This programming option is experimental and not recommended for
regular use.
ULX3S with fully functional US2 bootloader can be used to program
FPGA config FLASH without use of USB-serial chip FT231X.
For bootloader convenience, it is recommended to solder D28 diode
at empty placeholder located on back side near OLED and JTAG header.
Observe diode polarity, see how other similar diodes are soldered on ULX3S.
Any general purpose or schottky diode in SOD-323 package will fit
like 1N914 1N4148 BAT54W etc. This diode will convert BTN0 function
to unconditionally switch to next multiboot image by pulling down
FPGA PROGRAMN pin.
USB bootloader is in hacky state of development, you need hi quality
USB cable, a compatible PC and selected USB port and too much luck (try
all). I think bootloader's USB bus error recovery handling is wrong
but sometimes it just works.
US2 port should enumerate as some vendor specific USB-HID USB device
and "tinyfpgasp" application can be used to write or read arbitrary
image to FPGA SPI config FLASH.
User bitstream should be uploaded to byte address 0x200000 of SPI config
FLASH at 12/25/45F (I'm not sure for 85F).
Bootloader in multiboot mode resides in multiple copies on SPI config
FLASH chip. "primary"
bootloader image is at byte address 0 of SPI config FLASH, "golden"
bootloader image is at 0x140000 address on 45F chip but its location
varies on various sizes of FPGA 12/25/45/85F. At the last 256 bytes of
FLASH are some special FPGA lattice boot state machine commands
(detailed meaning and format not yet known, it's like some primitive CPU
assembly) that setups and controls multiboot function.
Try not to overwrite any of boot related areas with something
else otherwise US1 or JTAG recovery will be required.
# Programming over JTAG header
Any openocd compatible JTAG like FT2232 can be connected to JTAG header
and it will program SRAM and FLASH at maximum speed possible.
Even Diamond programmer can use any FT2232 module as a native programmer,
with a little help - it will work after first bitstream is programmed
over FT2232 with openocd. If FT2232 is equipped with EEPROM you can use
original "FT_PROG" for windows or this linux tool to read/write the EEPROM
and confgure it:
apt-get install ftdi-eeprom
man ftdi_eeprom
Openocd accepts SVF files, everything applies the same as for VME files
ddtcmd -oft -svfsingle -revd -if ulx3s_flash.xcf -of bitstream.svf
For FT2232 generic cable, this openocd config file can be used with above
file "ecp5.ocd" to program "bitstream.svf":
file "ft2232.ocd"
# file: ft2232.ocd
interface ftdi
# ftdi_device_desc "Dual RS232-HS"
ftdi_vid_pid 0x0403 0x6010
ftdi_layout_init 0x3088 0x1f8b
# default is port A if unspecified
# pinout ADBUS 0-TCK 1-TDI 2-TDO 3-TMS
#ftdi_channel 0
# uncomment this to use port B
# pinout BDBUS 0-TCK 1-TDI 2-TDO 3-TMS
#ftdi_channel 1
adapter_khz 25000
commandline
openocd --file=ft2232.ocd --file=ecp5.ocd
# Programming over WiFi
ESP-32 provides standalone JTAG SVF player over web HTTP and TCP interface for
programming and flashing in convenient and OS independent way. Web interface
requires no client software installed but web browser. It is much faster than
FT231X but still not as fast as FT2232. It accepts SVF files but you need to limit
SVF command size to max 8 kilobits "-maxdata 8", effectively it will split
upload into many shorter SVF commands because ESP-32 doesn't have enough
memory to buffer entire bitstream delivered in a long single SVF command.
ddtcmd -oft -svfsingle -revd -maxdata 8 -if ulx3s_flash.xcf -of bitstream.svf
To start using ESP-32 first you need to compile
[ULX3S passthru](https://github.com/emard/ulx3s-passthru)
and upload it using FleaFPGA-JTAG or external JTAG programmer.
"Passthru" bitstream configures FPGA to route lines from USB-serial to ESP-32.
Then you need to install Arduino and its ESP-32 support, and
install Emard's library [LibXSVF-ESP](https://github.com/emard/LibXSVF-ESP),
required library dependencies and
[ESP-32 SPIFFS uploader](https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/tag/v0.1)
Version "ESP32FS-v0.1.zip" worked for me.
In Arduino boards manager select this ESP-32 board:
DOIT ESP32 DEVKIT V1
Select "Examples->LibXSVF->websvf" and optionally change
its default ssid/password. Compile and upload the code by
clicking "Sketch->Upload", check reports on lower terminal
window, successfull upload will finish with this:
Hash of data verified.
Leaving...
Hard resetting...
Then upload the web page content to ESP-32 FLASH filesystem,
at websvf window click "Tools->ESP32 Sketch Data Upload".
successful upload will finish with same as above.
ESP32 will try to connect to your local WiFi as client with
default ssid=websvf password=12345678
Insert SD card with file "ulx3s-wifi.conf" in SD root directory:
{
"host_name": "ulx3s",
"ssid": "ulx3s",
"password": "testpass",
"http_username": "user",
"http_password": "pass"
}
By editing this file you can set
ssid and password for connection
to your local WiFi access point.
If client connection is unsuccessful ESP-32 it will become
access point with the same ssid and password, but so far many people
reported unsuccessful connection attempts from PC to ESP-32 in AP mode.
If you want to try, AP mode ESP-32 web address is "http://192.168.4.1"
and internet should not to work in this case :).
If ESP-32 connected as a client, IP address will vary depending
on local network. Discover it by using WiFi access
point web interface, ARP, NMAP, or by sniffing it.
On the ESP-32 page something like this will appear:
Select SVF File or use minimal or svfupload.py
[File] File not selected
[Upload]
[0% ]
Navigate file selector to bitstream.svf file, it will show
its size in KB. Then click "Upload", progress bar will run
from 0% to 100% in few seconds (if it's SRAM upload) and
bitstream will be started. FLASH can also be written from
web iterface it takes 2-3 minutes. Also on the web interface
there's available for download a small python commandline
upload tool.
Note that FPGA can enable or disable ESP-32 module. If ESP-32
is disabled by newly uploaded bistream, some alert window will
pop-up after otherwise successful upload because ESP-32 cannot
close HTTP session properly.
To make it go smooth, in the bitstream make FPGA pin "wifi_en"
as input (HIGH-impedance, pull up).
Technically, ESP-32 can be loaded with such a code that
permanently holds JTAG lines while FPGA can at the same time
have in FLASH a bitstream that permanenly enables ESP-32.
Such combination will preventing JTAG from working so
ULX3S board may become "Bricked". There is jumper J3 to disable
ESP-32, its left of SD card slot. Note boards PCB v1.7 need
upgrade for this jumper to work correctly.
# Board Versions
This project is open source, freely downloadable so there can be
as many versions as here are git commits.
v3.0.3 is currently the only version which is officially being sold
at [skriptarnica](http://skriptarnica.hr/vijest.aspx?newsID=1466).
Other versions are either prototypes or independently produced.
Up to our knowledge those versions are currently circulating around.
All listed versions should work if all parts (notably BGA) are properly
soldered.
PCB assembly quantity constraints
version facility produced date compatibility note
------- ------------ -------- ---------- ------------- --------
v1.7 PCBWay 8 dec 2017 v17patch prototype
v1.7 lemilica.com 1 jan 2018 v17patch handwork
v1.8 PCBWay 10 may 2018 v18 prototype
v2.0.3 q3k 1 aug 2018 v20 handwork
v2.1.2 INEM-KONČAR 35 sep 2018 v20 prototype
v3.0.3 INEM-KONČAR 220 oct 2018 v20 for sale
v2.0.5 Marvin 1 nov 2018 v20 handwork
v3.0.3 INEM-KONČAR 35 jan 2019 v20 for sale