/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
* planner . h
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*/
# ifndef PLANNER_H
# define PLANNER_H
# include "types.h"
# include "enum.h"
# include "Marlin.h"
# if HAS_ABL
# include "vector_3.h"
# endif
enum BlockFlagBit {
// Recalculate trapezoids on entry junction. For optimization.
BLOCK_BIT_RECALCULATE ,
// Nominal speed always reached.
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH ,
// Start from a halt at the start of this block, respecting the maximum allowed jerk.
BLOCK_BIT_START_FROM_FULL_HALT ,
// The block is busy
BLOCK_BIT_BUSY
} ;
enum BlockFlag {
BLOCK_FLAG_RECALCULATE = _BV ( BLOCK_BIT_RECALCULATE ) ,
BLOCK_FLAG_NOMINAL_LENGTH = _BV ( BLOCK_BIT_NOMINAL_LENGTH ) ,
BLOCK_FLAG_START_FROM_FULL_HALT = _BV ( BLOCK_BIT_START_FROM_FULL_HALT ) ,
BLOCK_FLAG_BUSY = _BV ( BLOCK_BIT_BUSY )
} ;
/**
* struct block_t
*
* A single entry in the planner buffer .
* Tracks linear movement over multiple axes .
*
* The " nominal " values are as - specified by gcode , and
* may never actually be reached due to acceleration limits .
*/
typedef struct {
uint8_t flag ; // Block flags (See BlockFlag enum above)
unsigned char active_extruder ; // The extruder to move (if E move)
// Fields used by the Bresenham algorithm for tracing the line
int32_t steps [ NUM_AXIS ] ; // Step count along each axis
uint32_t step_event_count ; // The number of step events required to complete this block
# if ENABLED(MIXING_EXTRUDER)
uint32_t mix_event_count [ MIXING_STEPPERS ] ; // Scaled step_event_count for the mixing steppers
# endif
int32_t accelerate_until , // The index of the step event on which to stop acceleration
decelerate_after , // The index of the step event on which to start decelerating
acceleration_rate ; // The acceleration rate used for acceleration calculation
uint8_t direction_bits ; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Advance extrusion
# if ENABLED(LIN_ADVANCE)
bool use_advance_lead ;
uint32_t abs_adv_steps_multiplier8 ; // Factorised by 2^8 to avoid float
# endif
// Fields used by the motion planner to manage acceleration
float nominal_speed , // The nominal speed for this block in mm/sec
entry_speed , // Entry speed at previous-current junction in mm/sec
max_entry_speed , // Maximum allowable junction entry speed in mm/sec
millimeters , // The total travel of this block in mm
acceleration ; // acceleration mm/sec^2
// Settings for the trapezoid generator
uint32_t nominal_rate , // The nominal step rate for this block in step_events/sec
initial_rate , // The jerk-adjusted step rate at start of block
final_rate , // The minimal rate at exit
acceleration_steps_per_s2 ; // acceleration steps/sec^2
# if FAN_COUNT > 0
uint16_t fan_speed [ FAN_COUNT ] ;
# endif
# if ENABLED(BARICUDA)
uint8_t valve_pressure , e_to_p_pressure ;
# endif
uint32_t segment_time_us ;
} block_t ;
# define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner {
public :
/**
* A ring buffer of moves described in steps
*/
static block_t block_buffer [ BLOCK_BUFFER_SIZE ] ;
static volatile uint8_t block_buffer_head , // Index of the next block to be pushed
block_buffer_tail ;
# if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder ; // Respond to extruder change
# endif
static int16_t flow_percentage [ EXTRUDERS ] ; // Extrusion factor for each extruder
static float e_factor [ EXTRUDERS ] , // The flow percentage and volumetric multiplier combine to scale E movement
filament_size [ EXTRUDERS ] , // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_area_nominal , // Nominal cross-sectional area
volumetric_multiplier [ EXTRUDERS ] ; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor
static float max_feedrate_mm_s [ XYZE_N ] , // Max speeds in mm per second
axis_steps_per_mm [ XYZE_N ] ,
steps_to_mm [ XYZE_N ] ;
static uint32_t max_acceleration_steps_per_s2 [ XYZE_N ] ,
max_acceleration_mm_per_s2 [ XYZE_N ] ; // Use M201 to override
static uint32_t min_segment_time_us ; // Use 'M205 B<µs>' to override
static float min_feedrate_mm_s ,
acceleration , // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
retract_acceleration , // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
travel_acceleration , // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
max_jerk [ XYZE ] , // The largest speed change requiring no acceleration
min_travel_feedrate_mm_s ;
# if HAS_LEVELING
static bool leveling_active ; // Flag that bed leveling is enabled
# if ABL_PLANAR
static matrix_3x3 bed_level_matrix ; // Transform to compensate for bed level
# endif
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_height , inverse_z_fade_height ;
# endif
# endif
# if ENABLED(LIN_ADVANCE)
static float extruder_advance_k , advance_ed_ratio ;
# endif
# if ENABLED(SKEW_CORRECTION)
# if ENABLED(SKEW_CORRECTION_GCODE)
static float xy_skew_factor ;
# else
static constexpr float xy_skew_factor = XY_SKEW_FACTOR ;
# endif
# if ENABLED(SKEW_CORRECTION_FOR_Z)
# if ENABLED(SKEW_CORRECTION_GCODE)
static float xz_skew_factor , yz_skew_factor ;
# else
static constexpr float xz_skew_factor = XZ_SKEW_FACTOR , yz_skew_factor = YZ_SKEW_FACTOR ;
# endif
# else
static constexpr float xz_skew_factor = 0 , yz_skew_factor = 0 ;
# endif
# endif
private :
/**
* The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode
*/
static int32_t position [ NUM_AXIS ] ;
/**
* Speed of previous path line segment
*/
static float previous_speed [ NUM_AXIS ] ;
/**
* Nominal speed of previous path line segment
*/
static float previous_nominal_speed ;
/**
* Limit where 64 bit math is necessary for acceleration calculation
*/
static uint32_t cutoff_long ;
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float last_fade_z ;
# endif
# if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
static uint8_t g_uc_extruder_last_move [ EXTRUDERS ] ;
# endif // DISABLE_INACTIVE_EXTRUDER
# ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
# define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits ;
// Segment times (in µs). Used for speed calculations
static uint32_t axis_segment_time_us [ 2 ] [ 3 ] ;
# endif
# if ENABLED(ULTRA_LCD)
volatile static uint32_t block_buffer_runtime_us ; //Theoretical block buffer runtime in µs
# endif
public :
/**
* Instance Methods
*/
Planner ( ) ;
void init ( ) ;
/**
* Static ( class ) Methods
*/
static void reset_acceleration_rates ( ) ;
static void refresh_positioning ( ) ;
FORCE_INLINE static void refresh_e_factor ( const uint8_t e ) {
e_factor [ e ] = volumetric_multiplier [ e ] * flow_percentage [ e ] * 0.01 ;
}
// Manage fans, paste pressure, etc.
static void check_axes_activity ( ) ;
/**
* Number of moves currently in the planner
*/
static uint8_t movesplanned ( ) { return BLOCK_MOD ( block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE ) ; }
static bool is_full ( ) { return ( block_buffer_tail = = BLOCK_MOD ( block_buffer_head + 1 ) ) ; }
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers ( ) ;
FORCE_INLINE static void set_filament_size ( const uint8_t e , const float & v ) {
filament_size [ e ] = v ;
// make sure all extruders have some sane value for the filament size
for ( uint8_t i = 0 ; i < COUNT ( filament_size ) ; i + + )
if ( ! filament_size [ i ] ) filament_size [ i ] = DEFAULT_NOMINAL_FILAMENT_DIA ;
}
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/**
* Get the Z leveling fade factor based on the given Z height ,
* re - calculating only when needed .
*
* Returns 1.0 if planner . z_fade_height is 0.0 .
* Returns 0.0 if Z is past the specified ' Fade Height ' .
*/
inline static float fade_scaling_factor_for_z ( const float & rz ) {
static float z_fade_factor = 1.0 ;
if ( z_fade_height ) {
if ( rz > = z_fade_height ) return 0.0 ;
if ( last_fade_z ! = rz ) {
last_fade_z = rz ;
z_fade_factor = 1.0 - rz * inverse_z_fade_height ;
}
return z_fade_factor ;
}
return 1.0 ;
}
FORCE_INLINE static void force_fade_recalc ( ) { last_fade_z = - 999.999 ; }
FORCE_INLINE static void set_z_fade_height ( const float & zfh ) {
z_fade_height = zfh > 0 ? zfh : 0 ;
inverse_z_fade_height = RECIPROCAL ( z_fade_height ) ;
force_fade_recalc ( ) ;
}
FORCE_INLINE static bool leveling_active_at_z ( const float & rz ) {
return ! z_fade_height | | rz < z_fade_height ;
}
# else
FORCE_INLINE static float fade_scaling_factor_for_z ( const float & rz ) {
UNUSED ( rz ) ;
return 1.0 ;
}
FORCE_INLINE static bool leveling_active_at_z ( const float & rz ) { UNUSED ( rz ) ; return true ; }
# endif
# if PLANNER_LEVELING
# define ARG_X float rx
# define ARG_Y float ry
# define ARG_Z float rz
/**
* Apply leveling to transform a cartesian position
* as it will be given to the planner and steppers .
*/
static void apply_leveling ( float & rx , float & ry , float & rz ) ;
static void apply_leveling ( float raw [ XYZ ] ) { apply_leveling ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
static void unapply_leveling ( float raw [ XYZ ] ) ;
# else
# define ARG_X const float &rx
# define ARG_Y const float &ry
# define ARG_Z const float &rz
# endif
/**
* Planner : : _buffer_line
*
* Add a new direct linear movement to the buffer .
*
* Leveling and kinematics should be applied ahead of this .
*
* a , b , c , e - target position in mm or degrees
* fr_mm_s - ( target ) speed of the move ( mm / s )
* extruder - target extruder
*/
static void _buffer_line ( const float & a , const float & b , const float & c , const float & e , float fr_mm_s , const uint8_t extruder ) ;
static void _set_position_mm ( const float & a , const float & b , const float & c , const float & e ) ;
/**
* Add a new linear movement to the buffer .
* The target is NOT translated to delta / scara
*
* Leveling will be applied to input on cartesians .
* Kinematic machines should call buffer_line_kinematic ( for leveled moves ) .
* ( Cartesians may also call buffer_line_kinematic . )
*
* rx , ry , rz , e - target position in mm or degrees
* fr_mm_s - ( target ) speed of the move ( mm / s )
* extruder - target extruder
*/
static FORCE_INLINE void buffer_line ( ARG_X , ARG_Y , ARG_Z , const float & e , const float & fr_mm_s , const uint8_t extruder ) {
# if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling ( rx , ry , rz ) ;
# endif
_buffer_line ( rx , ry , rz , e , fr_mm_s , extruder ) ;
}
/**
* Add a new linear movement to the buffer .
* The target is cartesian , it ' s translated to delta / scara if
* needed .
*
* cart - x , y , z , e CARTESIAN target in mm
* fr_mm_s - ( target ) speed of the move ( mm / s )
* extruder - target extruder
*/
static FORCE_INLINE void buffer_line_kinematic ( const float cart [ XYZE ] , const float & fr_mm_s , const uint8_t extruder ) {
# if PLANNER_LEVELING
float raw [ XYZ ] = { cart [ X_AXIS ] , cart [ Y_AXIS ] , cart [ Z_AXIS ] } ;
apply_leveling ( raw ) ;
# else
const float * const raw = cart ;
# endif
# if IS_KINEMATIC
inverse_kinematics ( raw ) ;
_buffer_line ( delta [ A_AXIS ] , delta [ B_AXIS ] , delta [ C_AXIS ] , cart [ E_AXIS ] , fr_mm_s , extruder ) ;
# else
_buffer_line ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] , cart [ E_AXIS ] , fr_mm_s , extruder ) ;
# endif
}
/**
* Set the planner . position and individual stepper positions .
* Used by G92 , G28 , G29 , and other procedures .
*
* Multiplies by axis_steps_per_mm [ ] and does necessary conversion
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions .
*
* Clears previous speed values .
*/
static FORCE_INLINE void set_position_mm ( ARG_X , ARG_Y , ARG_Z , const float & e ) {
# if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling ( rx , ry , rz ) ;
# endif
_set_position_mm ( rx , ry , rz , e ) ;
}
static void set_position_mm_kinematic ( const float position [ NUM_AXIS ] ) ;
static void set_position_mm ( const AxisEnum axis , const float & v ) ;
static FORCE_INLINE void set_z_position_mm ( const float & z ) { set_position_mm ( Z_AXIS , z ) ; }
static FORCE_INLINE void set_e_position_mm ( const float & e ) { set_position_mm ( AxisEnum ( E_AXIS ) , e ) ; }
/**
* Sync from the stepper positions . ( e . g . , after an interrupted move )
*/
static void sync_from_steppers ( ) ;
/**
* Does the buffer have any blocks queued ?
*/
static bool blocks_queued ( ) { return ( block_buffer_head ! = block_buffer_tail ) ; }
/**
* " Discards " the block and " releases " the memory .
* Called when the current block is no longer needed .
*/
static void discard_current_block ( ) {
if ( blocks_queued ( ) )
block_buffer_tail = BLOCK_MOD ( block_buffer_tail + 1 ) ;
}
/**
* The current block . NULL if the buffer is empty .
* This also marks the block as busy .
*/
static block_t * get_current_block ( ) {
if ( blocks_queued ( ) ) {
block_t * block = & block_buffer [ block_buffer_tail ] ;
# if ENABLED(ULTRA_LCD)
block_buffer_runtime_us - = block - > segment_time_us ; // We can't be sure how long an active block will take, so don't count it.
# endif
SBI ( block - > flag , BLOCK_BIT_BUSY ) ;
return block ;
}
else {
# if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime ( ) ; // paranoia. Buffer is empty now - so reset accumulated time to zero.
# endif
return NULL ;
}
}
# if ENABLED(ULTRA_LCD)
static uint16_t block_buffer_runtime ( ) {
CRITICAL_SECTION_START
millis_t bbru = block_buffer_runtime_us ;
CRITICAL_SECTION_END
// To translate µs to ms a division by 1000 would be required.
// We introduce 2.4% error here by dividing by 1024.
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
bbru > > = 10 ;
// limit to about a minute.
NOMORE ( bbru , 0xFFFFul ) ;
return bbru ;
}
static void clear_block_buffer_runtime ( ) {
CRITICAL_SECTION_START
block_buffer_runtime_us = 0 ;
CRITICAL_SECTION_END
}
# endif
# if ENABLED(AUTOTEMP)
static float autotemp_min , autotemp_max , autotemp_factor ;
static bool autotemp_enabled ;
static void getHighESpeed ( ) ;
static void autotemp_M104_M109 ( ) ;
# endif
private :
/**
* Get the index of the next / previous block in the ring buffer
*/
static int8_t next_block_index ( int8_t block_index ) { return BLOCK_MOD ( block_index + 1 ) ; }
static int8_t prev_block_index ( int8_t block_index ) { return BLOCK_MOD ( block_index - 1 ) ; }
/**
* Calculate the distance ( not time ) it takes to accelerate
* from initial_rate to target_rate using the given acceleration :
*/
static float estimate_acceleration_distance ( const float & initial_rate , const float & target_rate , const float & accel ) {
if ( accel = = 0 ) return 0 ; // accel was 0, set acceleration distance to 0
return ( sq ( target_rate ) - sq ( initial_rate ) ) / ( accel * 2 ) ;
}
/**
* Return the point at which you must start braking ( at the rate of - ' acceleration ' ) if
* you start at ' initial_rate ' , accelerate ( until reaching the point ) , and want to end at
* ' final_rate ' after traveling ' distance ' .
*
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the " trapezoid " has no plateau ( i . e . , never reaches maximum speed )
*/
static float intersection_distance ( const float & initial_rate , const float & final_rate , const float & accel , const float & distance ) {
if ( accel = = 0 ) return 0 ; // accel was 0, set intersection distance to 0
return ( accel * 2 * distance - sq ( initial_rate ) + sq ( final_rate ) ) / ( accel * 4 ) ;
}
/**
* Calculate the maximum allowable speed at this point , in order
* to reach ' target_velocity ' using ' acceleration ' within a given
* ' distance ' .
*/
static float max_allowable_speed ( const float & accel , const float & target_velocity , const float & distance ) {
return SQRT ( sq ( target_velocity ) - 2 * accel * distance ) ;
}
static void calculate_trapezoid_for_block ( block_t * const block , const float & entry_factor , const float & exit_factor ) ;
static void reverse_pass_kernel ( block_t * const current , const block_t * next ) ;
static void forward_pass_kernel ( const block_t * previous , block_t * const current ) ;
static void reverse_pass ( ) ;
static void forward_pass ( ) ;
static void recalculate_trapezoids ( ) ;
static void recalculate ( ) ;
} ;
# define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
extern Planner planner ;
# endif // PLANNER_H