|  |  |  | /*
 | 
					
						
							|  |  |  |   stepper.c - stepper motor driver: executes motion plans using stepper motors | 
					
						
							|  |  |  |   Part of Grbl | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Copyright (c) 2009-2011 Simen Svale Skogsrud | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Grbl is free software: you can redistribute it and/or modify | 
					
						
							|  |  |  |   it under the terms of the GNU General Public License as published by | 
					
						
							|  |  |  |   the Free Software Foundation, either version 3 of the License, or | 
					
						
							|  |  |  |   (at your option) any later version. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Grbl is distributed in the hope that it will be useful, | 
					
						
							|  |  |  |   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
					
						
							|  |  |  |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
					
						
							|  |  |  |   GNU General Public License for more details. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   You should have received a copy of the GNU General Public License | 
					
						
							|  |  |  |   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | 
					
						
							|  |  |  |    and Philipp Tiefenbacher. */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "Marlin.h"
 | 
					
						
							|  |  |  | #include "stepper.h"
 | 
					
						
							|  |  |  | #include "planner.h"
 | 
					
						
							|  |  |  | #include "temperature.h"
 | 
					
						
							|  |  |  | #include "ultralcd.h"
 | 
					
						
							|  |  |  | #include "language.h"
 | 
					
						
							|  |  |  | #include "speed_lookuptable.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | //=============================public variables  ============================
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | block_t *current_block;  // A pointer to the block currently being traced
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | //=============================private variables ============================
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | //static makes it inpossible to be called from outside of this file by extern.!
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Variables used by The Stepper Driver Interrupt
 | 
					
						
							|  |  |  | static unsigned char out_bits;        // The next stepping-bits to be output
 | 
					
						
							|  |  |  | static long counter_x,       // Counter variables for the bresenham line tracer
 | 
					
						
							|  |  |  |             counter_y,  | 
					
						
							|  |  |  |             counter_z,        | 
					
						
							|  |  |  |             counter_e; | 
					
						
							|  |  |  | volatile static unsigned long step_events_completed; // The number of step events executed in the current block
 | 
					
						
							|  |  |  | #ifdef ADVANCE
 | 
					
						
							|  |  |  |   static long advance_rate, advance, final_advance = 0; | 
					
						
							|  |  |  |   static long old_advance = 0; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | static long e_steps[3]; | 
					
						
							|  |  |  | static long acceleration_time, deceleration_time; | 
					
						
							|  |  |  | //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 | 
					
						
							|  |  |  | static unsigned short acc_step_rate; // needed for deccelaration start point
 | 
					
						
							|  |  |  | static char step_loops; | 
					
						
							|  |  |  | static unsigned short OCR1A_nominal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long endstops_trigsteps[3]={0,0,0}; | 
					
						
							|  |  |  | volatile long endstops_stepsTotal,endstops_stepsDone; | 
					
						
							|  |  |  | static volatile bool endstop_x_hit=false; | 
					
						
							|  |  |  | static volatile bool endstop_y_hit=false; | 
					
						
							|  |  |  | static volatile bool endstop_z_hit=false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static bool old_x_min_endstop=false; | 
					
						
							|  |  |  | static bool old_x_max_endstop=false; | 
					
						
							|  |  |  | static bool old_y_min_endstop=false; | 
					
						
							|  |  |  | static bool old_y_max_endstop=false; | 
					
						
							|  |  |  | static bool old_z_min_endstop=false; | 
					
						
							|  |  |  | static bool old_z_max_endstop=false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static bool check_endstops = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; | 
					
						
							|  |  |  | volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | //=============================functions         ============================
 | 
					
						
							|  |  |  | //===========================================================================
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define CHECK_ENDSTOPS  if(check_endstops)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // intRes = intIn1 * intIn2 >> 16
 | 
					
						
							|  |  |  | // uses:
 | 
					
						
							|  |  |  | // r26 to store 0
 | 
					
						
							|  |  |  | // r27 to store the byte 1 of the 24 bit result
 | 
					
						
							|  |  |  | #define MultiU16X8toH16(intRes, charIn1, intIn2) \
 | 
					
						
							|  |  |  | asm volatile ( \ | 
					
						
							|  |  |  | "clr r26 \n\t" \ | 
					
						
							|  |  |  | "mul %A1, %B2 \n\t" \ | 
					
						
							|  |  |  | "movw %A0, r0 \n\t" \ | 
					
						
							|  |  |  | "mul %A1, %A2 \n\t" \ | 
					
						
							|  |  |  | "add %A0, r1 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "lsr r0 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "clr r1 \n\t" \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "=&r" (intRes) \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "d" (charIn1), \ | 
					
						
							|  |  |  | "d" (intIn2) \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "r26" \ | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // intRes = longIn1 * longIn2 >> 24
 | 
					
						
							|  |  |  | // uses:
 | 
					
						
							|  |  |  | // r26 to store 0
 | 
					
						
							|  |  |  | // r27 to store the byte 1 of the 48bit result
 | 
					
						
							|  |  |  | #define MultiU24X24toH16(intRes, longIn1, longIn2) \
 | 
					
						
							|  |  |  | asm volatile ( \ | 
					
						
							|  |  |  | "clr r26 \n\t" \ | 
					
						
							|  |  |  | "mul %A1, %B2 \n\t" \ | 
					
						
							|  |  |  | "mov r27, r1 \n\t" \ | 
					
						
							|  |  |  | "mul %B1, %C2 \n\t" \ | 
					
						
							|  |  |  | "movw %A0, r0 \n\t" \ | 
					
						
							|  |  |  | "mul %C1, %C2 \n\t" \ | 
					
						
							|  |  |  | "add %B0, r0 \n\t" \ | 
					
						
							|  |  |  | "mul %C1, %B2 \n\t" \ | 
					
						
							|  |  |  | "add %A0, r0 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r1 \n\t" \ | 
					
						
							|  |  |  | "mul %A1, %C2 \n\t" \ | 
					
						
							|  |  |  | "add r27, r0 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "mul %B1, %B2 \n\t" \ | 
					
						
							|  |  |  | "add r27, r0 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "mul %C1, %A2 \n\t" \ | 
					
						
							|  |  |  | "add r27, r0 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r1 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "mul %B1, %A2 \n\t" \ | 
					
						
							|  |  |  | "add r27, r1 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "lsr r27 \n\t" \ | 
					
						
							|  |  |  | "adc %A0, r26 \n\t" \ | 
					
						
							|  |  |  | "adc %B0, r26 \n\t" \ | 
					
						
							|  |  |  | "clr r1 \n\t" \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "=&r" (intRes) \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "d" (longIn1), \ | 
					
						
							|  |  |  | "d" (longIn2) \ | 
					
						
							|  |  |  | : \ | 
					
						
							|  |  |  | "r26" , "r27" \ | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Some useful constants
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
 | 
					
						
							|  |  |  | #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void checkHitEndstops() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |  if( endstop_x_hit || endstop_y_hit || endstop_z_hit) { | 
					
						
							|  |  |  |    SERIAL_ECHO_START; | 
					
						
							|  |  |  |    SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); | 
					
						
							|  |  |  |    if(endstop_x_hit) { | 
					
						
							|  |  |  |      SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if(endstop_y_hit) { | 
					
						
							|  |  |  |      SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if(endstop_z_hit) { | 
					
						
							|  |  |  |      SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    SERIAL_ECHOLN(""); | 
					
						
							|  |  |  |    endstop_x_hit=false; | 
					
						
							|  |  |  |    endstop_y_hit=false; | 
					
						
							|  |  |  |    endstop_z_hit=false; | 
					
						
							|  |  |  |  } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void endstops_hit_on_purpose() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   endstop_x_hit=false; | 
					
						
							|  |  |  |   endstop_y_hit=false; | 
					
						
							|  |  |  |   endstop_z_hit=false; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void enable_endstops(bool check) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   check_endstops = check; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //         __________________________
 | 
					
						
							|  |  |  | //        /|                        |\     _________________         ^
 | 
					
						
							|  |  |  | //       / |                        | \   /|               |\        |
 | 
					
						
							|  |  |  | //      /  |                        |  \ / |               | \       s
 | 
					
						
							|  |  |  | //     /   |                        |   |  |               |  \      p
 | 
					
						
							|  |  |  | //    /    |                        |   |  |               |   \     e
 | 
					
						
							|  |  |  | //   +-----+------------------------+---+--+---------------+----+    e
 | 
					
						
							|  |  |  | //   |               BLOCK 1            |      BLOCK 2          |    d
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //                           time ----->
 | 
					
						
							|  |  |  | // 
 | 
					
						
							|  |  |  | //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates 
 | 
					
						
							|  |  |  | //  first block->accelerate_until step_events_completed, then keeps going at constant speed until 
 | 
					
						
							|  |  |  | //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | 
					
						
							|  |  |  | //  The slope of acceleration is calculated with the leib ramp alghorithm.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void st_wake_up() { | 
					
						
							|  |  |  |   //  TCNT1 = 0;
 | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT();   | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void step_wait(){ | 
					
						
							|  |  |  |     for(int8_t i=0; i < 6; i++){ | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { | 
					
						
							|  |  |  |   unsigned short timer; | 
					
						
							|  |  |  |   if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 | 
					
						
							|  |  |  |     step_rate = (step_rate >> 2)&0x3fff; | 
					
						
							|  |  |  |     step_loops = 4; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 | 
					
						
							|  |  |  |     step_rate = (step_rate >> 1)&0x7fff; | 
					
						
							|  |  |  |     step_loops = 2; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else { | 
					
						
							|  |  |  |     step_loops = 1; | 
					
						
							|  |  |  |   }  | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); | 
					
						
							|  |  |  |   step_rate -= (F_CPU/500000); // Correct for minimal speed
 | 
					
						
							|  |  |  |   if(step_rate >= (8*256)){ // higher step rate 
 | 
					
						
							|  |  |  |     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; | 
					
						
							|  |  |  |     unsigned char tmp_step_rate = (step_rate & 0x00ff); | 
					
						
							|  |  |  |     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); | 
					
						
							|  |  |  |     MultiU16X8toH16(timer, tmp_step_rate, gain); | 
					
						
							|  |  |  |     timer = (unsigned short)pgm_read_word_near(table_address) - timer; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   else { // lower step rates
 | 
					
						
							|  |  |  |     unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; | 
					
						
							|  |  |  |     table_address += ((step_rate)>>1) & 0xfffc; | 
					
						
							|  |  |  |     timer = (unsigned short)pgm_read_word_near(table_address); | 
					
						
							|  |  |  |     timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
 | 
					
						
							|  |  |  |   return timer; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Initializes the trapezoid generator from the current block. Called whenever a new 
 | 
					
						
							|  |  |  | // block begins.
 | 
					
						
							|  |  |  | FORCE_INLINE void trapezoid_generator_reset() { | 
					
						
							|  |  |  |   #ifdef ADVANCE
 | 
					
						
							|  |  |  |     advance = current_block->initial_advance; | 
					
						
							|  |  |  |     final_advance = current_block->final_advance; | 
					
						
							|  |  |  |     // Do E steps + advance steps
 | 
					
						
							|  |  |  |     e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | 
					
						
							|  |  |  |     old_advance = advance >>8;   | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   deceleration_time = 0; | 
					
						
							|  |  |  |   // step_rate to timer interval
 | 
					
						
							|  |  |  |   OCR1A_nominal = calc_timer(current_block->nominal_rate); | 
					
						
							|  |  |  |   acc_step_rate = current_block->initial_rate; | 
					
						
							|  |  |  |   acceleration_time = calc_timer(acc_step_rate); | 
					
						
							|  |  |  |   OCR1A = acceleration_time; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  | //    SERIAL_ECHO_START;
 | 
					
						
							|  |  |  | //    SERIAL_ECHOPGM("advance :");
 | 
					
						
							|  |  |  | //    SERIAL_ECHO(current_block->advance/256.0);
 | 
					
						
							|  |  |  | //    SERIAL_ECHOPGM("advance rate :");
 | 
					
						
							|  |  |  | //    SERIAL_ECHO(current_block->advance_rate/256.0);
 | 
					
						
							|  |  |  | //    SERIAL_ECHOPGM("initial advance :");
 | 
					
						
							|  |  |  | //  SERIAL_ECHO(current_block->initial_advance/256.0);
 | 
					
						
							|  |  |  | //    SERIAL_ECHOPGM("final advance :");
 | 
					
						
							|  |  |  | //    SERIAL_ECHOLN(current_block->final_advance/256.0);
 | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.  
 | 
					
						
							|  |  |  | // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. 
 | 
					
						
							|  |  |  | ISR(TIMER1_COMPA_vect) | 
					
						
							|  |  |  | {     | 
					
						
							|  |  |  |   // If there is no current block, attempt to pop one from the buffer
 | 
					
						
							|  |  |  |   if (current_block == NULL) { | 
					
						
							|  |  |  |     // Anything in the buffer?
 | 
					
						
							|  |  |  |     current_block = plan_get_current_block(); | 
					
						
							|  |  |  |     if (current_block != NULL) { | 
					
						
							|  |  |  |       current_block->busy = true; | 
					
						
							|  |  |  |       trapezoid_generator_reset(); | 
					
						
							|  |  |  |       counter_x = -(current_block->step_event_count >> 1); | 
					
						
							|  |  |  |       counter_y = counter_x; | 
					
						
							|  |  |  |       counter_z = counter_x; | 
					
						
							|  |  |  |       counter_e = counter_x; | 
					
						
							|  |  |  |       step_events_completed = 0;  | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       #ifdef Z_LATE_ENABLE 
 | 
					
						
							|  |  |  |         if(current_block->steps_z > 0) { | 
					
						
							|  |  |  |           enable_z(); | 
					
						
							|  |  |  |           OCR1A = 2000; //1ms wait
 | 
					
						
							|  |  |  |           return; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  | //      #ifdef ADVANCE
 | 
					
						
							|  |  |  | //      e_steps[current_block->active_extruder] = 0;
 | 
					
						
							|  |  |  | //      #endif
 | 
					
						
							|  |  |  |     }  | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |         OCR1A=2000; // 1kHz.
 | 
					
						
							|  |  |  |     }     | 
					
						
							|  |  |  |   }  | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if (current_block != NULL) { | 
					
						
							|  |  |  |     // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
 | 
					
						
							|  |  |  |     out_bits = current_block->direction_bits; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Set direction en check limit switches
 | 
					
						
							|  |  |  |     if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis
 | 
					
						
							|  |  |  |       #if !defined COREXY  //NOT COREXY
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN, INVERT_X_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       count_direction[X_AXIS]=-1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if X_MIN_PIN > -1
 | 
					
						
							|  |  |  |           bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { | 
					
						
							|  |  |  |             endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | 
					
						
							|  |  |  |             endstop_x_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_x_min_endstop = x_min_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { // +direction
 | 
					
						
							|  |  |  |       #if !defined COREXY  //NOT COREXY
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN,!INVERT_X_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       count_direction[X_AXIS]=1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if X_MAX_PIN > -1
 | 
					
						
							|  |  |  |           bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ | 
					
						
							|  |  |  |             endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | 
					
						
							|  |  |  |             endstop_x_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_x_max_endstop = x_max_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
 | 
					
						
							|  |  |  |       #if !defined COREXY  //NOT COREXY
 | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN,INVERT_Y_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       count_direction[Y_AXIS]=-1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if Y_MIN_PIN > -1
 | 
					
						
							|  |  |  |           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { | 
					
						
							|  |  |  |             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; | 
					
						
							|  |  |  |             endstop_y_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_y_min_endstop = y_min_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { // +direction
 | 
					
						
							|  |  |  |       #if !defined COREXY  //NOT COREXY
 | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN,!INVERT_Y_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |       count_direction[Y_AXIS]=1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if Y_MAX_PIN > -1
 | 
					
						
							|  |  |  |           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ | 
					
						
							|  |  |  |             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; | 
					
						
							|  |  |  |             endstop_y_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_y_max_endstop = y_max_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     #ifdef COREXY  //coreXY kinematics defined
 | 
					
						
							|  |  |  |       if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) == 0)){  //+X is major axis
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN, !INVERT_X_DIR); | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN, !INVERT_Y_DIR); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) != 0)){  //-X is major axis
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN, INVERT_X_DIR); | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN, INVERT_Y_DIR); | 
					
						
							|  |  |  |       }       | 
					
						
							|  |  |  |       if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) == 0)){  //+Y is major axis
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN, !INVERT_X_DIR); | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN, INVERT_Y_DIR); | 
					
						
							|  |  |  |       }         | 
					
						
							|  |  |  |       if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) != 0)){  //-Y is major axis
 | 
					
						
							|  |  |  |         WRITE(X_DIR_PIN, INVERT_X_DIR); | 
					
						
							|  |  |  |         WRITE(Y_DIR_PIN, !INVERT_Y_DIR); | 
					
						
							|  |  |  |       }   | 
					
						
							|  |  |  |     #endif //coreXY
 | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
 | 
					
						
							|  |  |  |       WRITE(Z_DIR_PIN,INVERT_Z_DIR); | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  | 	  #ifdef Z_DUAL_STEPPER_DRIVERS
 | 
					
						
							|  |  |  |         WRITE(Z2_DIR_PIN,INVERT_Z_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       count_direction[Z_AXIS]=-1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if Z_MIN_PIN > -1
 | 
					
						
							|  |  |  |           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { | 
					
						
							|  |  |  |             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; | 
					
						
							|  |  |  |             endstop_z_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_z_min_endstop = z_min_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { // +direction
 | 
					
						
							|  |  |  |       WRITE(Z_DIR_PIN,!INVERT_Z_DIR); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	  #ifdef Z_DUAL_STEPPER_DRIVERS
 | 
					
						
							|  |  |  |         WRITE(Z2_DIR_PIN,!INVERT_Z_DIR); | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       count_direction[Z_AXIS]=1; | 
					
						
							|  |  |  |       CHECK_ENDSTOPS | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         #if Z_MAX_PIN > -1
 | 
					
						
							|  |  |  |           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); | 
					
						
							|  |  |  |           if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { | 
					
						
							|  |  |  |             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; | 
					
						
							|  |  |  |             endstop_z_hit=true; | 
					
						
							|  |  |  |             step_events_completed = current_block->step_event_count; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           old_z_max_endstop = z_max_endstop; | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #ifndef ADVANCE
 | 
					
						
							|  |  |  |       if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
 | 
					
						
							|  |  |  |         REV_E_DIR(); | 
					
						
							|  |  |  |         count_direction[E_AXIS]=-1; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else { // +direction
 | 
					
						
							|  |  |  |         NORM_E_DIR(); | 
					
						
							|  |  |  |         count_direction[E_AXIS]=1; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     #endif //!ADVANCE
 | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) 
 | 
					
						
							|  |  |  |       #if MOTHERBOARD != 8 // !teensylu
 | 
					
						
							|  |  |  |       MSerial.checkRx(); // Check for serial chars.
 | 
					
						
							|  |  |  |       #endif 
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       #ifdef ADVANCE
 | 
					
						
							|  |  |  |       counter_e += current_block->steps_e; | 
					
						
							|  |  |  |       if (counter_e > 0) { | 
					
						
							|  |  |  |         counter_e -= current_block->step_event_count; | 
					
						
							|  |  |  |         if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
 | 
					
						
							|  |  |  |           e_steps[current_block->active_extruder]--; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         else { | 
					
						
							|  |  |  |           e_steps[current_block->active_extruder]++; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       }     | 
					
						
							|  |  |  |       #endif //ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #if !defined COREXY      
 | 
					
						
							|  |  |  |         counter_x += current_block->steps_x; | 
					
						
							|  |  |  |         if (counter_x > 0) { | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           counter_x -= current_block->step_event_count; | 
					
						
							|  |  |  |           count_position[X_AXIS]+=count_direction[X_AXIS];    | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |         counter_y += current_block->steps_y; | 
					
						
							|  |  |  |         if (counter_y > 0) { | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           counter_y -= current_block->step_event_count;  | 
					
						
							|  |  |  |           count_position[Y_AXIS]+=count_direction[Y_AXIS];  | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |       #ifdef COREXY
 | 
					
						
							|  |  |  |         counter_x += current_block->steps_x;         | 
					
						
							|  |  |  |         counter_y += current_block->steps_y; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         if ((counter_x > 0)&&!(counter_y>0)){  //X step only
 | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           counter_x -= current_block->step_event_count;  | 
					
						
							|  |  |  |           count_position[X_AXIS]+=count_direction[X_AXIS];          | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         if (!(counter_x > 0)&&(counter_y>0)){  //Y step only
 | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           counter_y -= current_block->step_event_count;  | 
					
						
							|  |  |  |           count_position[Y_AXIS]+=count_direction[Y_AXIS]; | 
					
						
							|  |  |  |           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |         }         | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         if ((counter_x > 0)&&(counter_y>0)){  //step in both axes
 | 
					
						
							|  |  |  |           if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){  //X and Y in different directions
 | 
					
						
							|  |  |  |             WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |             counter_x -= current_block->step_event_count;              | 
					
						
							|  |  |  |             WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |             step_wait(); | 
					
						
							|  |  |  |             count_position[X_AXIS]+=count_direction[X_AXIS]; | 
					
						
							|  |  |  |             count_position[Y_AXIS]+=count_direction[Y_AXIS]; | 
					
						
							|  |  |  |             WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |             counter_y -= current_block->step_event_count; | 
					
						
							|  |  |  |             WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           else{  //X and Y in same direction
 | 
					
						
							|  |  |  |             WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |             counter_x -= current_block->step_event_count;              | 
					
						
							|  |  |  |             WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ; | 
					
						
							|  |  |  |             step_wait(); | 
					
						
							|  |  |  |             count_position[X_AXIS]+=count_direction[X_AXIS]; | 
					
						
							|  |  |  |             count_position[Y_AXIS]+=count_direction[Y_AXIS]; | 
					
						
							|  |  |  |             WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);  | 
					
						
							|  |  |  |             counter_y -= current_block->step_event_count;     | 
					
						
							|  |  |  |             WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);         | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif //corexy
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       counter_z += current_block->steps_z; | 
					
						
							|  |  |  |       if (counter_z > 0) { | 
					
						
							|  |  |  |         WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  | 		#ifdef Z_DUAL_STEPPER_DRIVERS
 | 
					
						
							|  |  |  |           WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         counter_z -= current_block->step_event_count; | 
					
						
							|  |  |  |         count_position[Z_AXIS]+=count_direction[Z_AXIS]; | 
					
						
							|  |  |  |         WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  | 		#ifdef Z_DUAL_STEPPER_DRIVERS
 | 
					
						
							|  |  |  |           WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |         #endif
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       #ifndef ADVANCE
 | 
					
						
							|  |  |  |         counter_e += current_block->steps_e; | 
					
						
							|  |  |  |         if (counter_e > 0) { | 
					
						
							|  |  |  |           WRITE_E_STEP(!INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |           counter_e -= current_block->step_event_count; | 
					
						
							|  |  |  |           count_position[E_AXIS]+=count_direction[E_AXIS]; | 
					
						
							|  |  |  |           WRITE_E_STEP(INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       #endif //!ADVANCE
 | 
					
						
							|  |  |  |       step_events_completed += 1;   | 
					
						
							|  |  |  |       if(step_events_completed >= current_block->step_event_count) break; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     // Calculare new timer value
 | 
					
						
							|  |  |  |     unsigned short timer; | 
					
						
							|  |  |  |     unsigned short step_rate; | 
					
						
							|  |  |  |     if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  |       acc_step_rate += current_block->initial_rate; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       // upper limit
 | 
					
						
							|  |  |  |       if(acc_step_rate > current_block->nominal_rate) | 
					
						
							|  |  |  |         acc_step_rate = current_block->nominal_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // step_rate to timer interval
 | 
					
						
							|  |  |  |       timer = calc_timer(acc_step_rate); | 
					
						
							|  |  |  |       OCR1A = timer; | 
					
						
							|  |  |  |       acceleration_time += timer; | 
					
						
							|  |  |  |       #ifdef ADVANCE
 | 
					
						
							|  |  |  |         for(int8_t i=0; i < step_loops; i++) { | 
					
						
							|  |  |  |           advance += advance_rate; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         //if(advance > current_block->advance) advance = current_block->advance;
 | 
					
						
							|  |  |  |         // Do E steps + advance steps
 | 
					
						
							|  |  |  |         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | 
					
						
							|  |  |  |         old_advance = advance >>8;   | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |       #endif
 | 
					
						
							|  |  |  |     }  | 
					
						
							|  |  |  |     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {    | 
					
						
							|  |  |  |       MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       if(step_rate > acc_step_rate) { // Check step_rate stays positive
 | 
					
						
							|  |  |  |         step_rate = current_block->final_rate; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else { | 
					
						
							|  |  |  |         step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // lower limit
 | 
					
						
							|  |  |  |       if(step_rate < current_block->final_rate) | 
					
						
							|  |  |  |         step_rate = current_block->final_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // step_rate to timer interval
 | 
					
						
							|  |  |  |       timer = calc_timer(step_rate); | 
					
						
							|  |  |  |       OCR1A = timer; | 
					
						
							|  |  |  |       deceleration_time += timer; | 
					
						
							|  |  |  |       #ifdef ADVANCE
 | 
					
						
							|  |  |  |         for(int8_t i=0; i < step_loops; i++) { | 
					
						
							|  |  |  |           advance -= advance_rate; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if(advance < final_advance) advance = final_advance; | 
					
						
							|  |  |  |         // Do E steps + advance steps
 | 
					
						
							|  |  |  |         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | 
					
						
							|  |  |  |         old_advance = advance >>8;   | 
					
						
							|  |  |  |       #endif //ADVANCE
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else { | 
					
						
							|  |  |  |       OCR1A = OCR1A_nominal; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // If current block is finished, reset pointer 
 | 
					
						
							|  |  |  |     if (step_events_completed >= current_block->step_event_count) { | 
					
						
							|  |  |  |       current_block = NULL; | 
					
						
							|  |  |  |       plan_discard_current_block(); | 
					
						
							|  |  |  |     }    | 
					
						
							|  |  |  |   }  | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef ADVANCE
 | 
					
						
							|  |  |  |   unsigned char old_OCR0A; | 
					
						
							|  |  |  |   // Timer interrupt for E. e_steps is set in the main routine;
 | 
					
						
							|  |  |  |   // Timer 0 is shared with millies
 | 
					
						
							|  |  |  |   ISR(TIMER0_COMPA_vect) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
 | 
					
						
							|  |  |  |     OCR0A = old_OCR0A; | 
					
						
							|  |  |  |     // Set E direction (Depends on E direction + advance)
 | 
					
						
							|  |  |  |     for(unsigned char i=0; i<4;i++) { | 
					
						
							|  |  |  |       if (e_steps[0] != 0) { | 
					
						
							|  |  |  |         WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         if (e_steps[0] < 0) { | 
					
						
							|  |  |  |           WRITE(E0_DIR_PIN, INVERT_E0_DIR); | 
					
						
							|  |  |  |           e_steps[0]++; | 
					
						
							|  |  |  |           WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         }  | 
					
						
							|  |  |  |         else if (e_steps[0] > 0) { | 
					
						
							|  |  |  |           WRITE(E0_DIR_PIN, !INVERT_E0_DIR); | 
					
						
							|  |  |  |           e_steps[0]--; | 
					
						
							|  |  |  |           WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |  #if EXTRUDERS > 1
 | 
					
						
							|  |  |  |       if (e_steps[1] != 0) { | 
					
						
							|  |  |  |         WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         if (e_steps[1] < 0) { | 
					
						
							|  |  |  |           WRITE(E1_DIR_PIN, INVERT_E1_DIR); | 
					
						
							|  |  |  |           e_steps[1]++; | 
					
						
							|  |  |  |           WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         }  | 
					
						
							|  |  |  |         else if (e_steps[1] > 0) { | 
					
						
							|  |  |  |           WRITE(E1_DIR_PIN, !INVERT_E1_DIR); | 
					
						
							|  |  |  |           e_steps[1]--; | 
					
						
							|  |  |  |           WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |  #endif
 | 
					
						
							|  |  |  |  #if EXTRUDERS > 2
 | 
					
						
							|  |  |  |       if (e_steps[2] != 0) { | 
					
						
							|  |  |  |         WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         if (e_steps[2] < 0) { | 
					
						
							|  |  |  |           WRITE(E2_DIR_PIN, INVERT_E2_DIR); | 
					
						
							|  |  |  |           e_steps[2]++; | 
					
						
							|  |  |  |           WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         }  | 
					
						
							|  |  |  |         else if (e_steps[2] > 0) { | 
					
						
							|  |  |  |           WRITE(E2_DIR_PIN, !INVERT_E2_DIR); | 
					
						
							|  |  |  |           e_steps[2]--; | 
					
						
							|  |  |  |           WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |  #endif
 | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | #endif // ADVANCE
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void st_init() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   //Initialize Dir Pins
 | 
					
						
							|  |  |  |   #if X_DIR_PIN > -1
 | 
					
						
							|  |  |  |     SET_OUTPUT(X_DIR_PIN); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if Y_DIR_PIN > -1 
 | 
					
						
							|  |  |  |     SET_OUTPUT(Y_DIR_PIN); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if Z_DIR_PIN > -1 
 | 
					
						
							|  |  |  |     SET_OUTPUT(Z_DIR_PIN); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_DIR_PIN > -1)
 | 
					
						
							|  |  |  |       SET_OUTPUT(Z2_DIR_PIN); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if E0_DIR_PIN > -1 
 | 
					
						
							|  |  |  |     SET_OUTPUT(E0_DIR_PIN); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(E1_DIR_PIN); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(E2_DIR_PIN); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Initialize Enable Pins - steppers default to disabled.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #if (X_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(X_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if (Y_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(Y_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if (Z_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(Z_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |       SET_OUTPUT(Z2_ENABLE_PIN); | 
					
						
							|  |  |  |       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if (E0_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(E0_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(E1_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
 | 
					
						
							|  |  |  |     SET_OUTPUT(E2_ENABLE_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //endstops and pullups
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   #if X_MIN_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(X_MIN_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_XMIN
 | 
					
						
							|  |  |  |       WRITE(X_MIN_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |   #if Y_MIN_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(Y_MIN_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_YMIN
 | 
					
						
							|  |  |  |       WRITE(Y_MIN_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   #if Z_MIN_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(Z_MIN_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_ZMIN
 | 
					
						
							|  |  |  |       WRITE(Z_MIN_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |   #if X_MAX_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(X_MAX_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_XMAX
 | 
					
						
							|  |  |  |       WRITE(X_MAX_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |   #if Y_MAX_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(Y_MAX_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_YMAX
 | 
					
						
							|  |  |  |       WRITE(Y_MAX_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   #if Z_MAX_PIN > -1
 | 
					
						
							|  |  |  |     SET_INPUT(Z_MAX_PIN);  | 
					
						
							|  |  |  |     #ifdef ENDSTOPPULLUP_ZMAX
 | 
					
						
							|  |  |  |       WRITE(Z_MAX_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Initialize Step Pins
 | 
					
						
							|  |  |  |   #if (X_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(X_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); | 
					
						
							|  |  |  |     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |   #if (Y_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(Y_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); | 
					
						
							|  |  |  |     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |   #if (Z_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(Z_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     #if defined(Z_DUAL_STEPPER_DRIVERS) && (Z2_STEP_PIN > -1)
 | 
					
						
							|  |  |  |       SET_OUTPUT(Z2_STEP_PIN); | 
					
						
							|  |  |  |       WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); | 
					
						
							|  |  |  |       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |     #endif
 | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |   #if (E0_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(E0_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(E1_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) 
 | 
					
						
							|  |  |  |     SET_OUTPUT(E2_STEP_PIN); | 
					
						
							|  |  |  |     WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); | 
					
						
							|  |  |  |     if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #ifdef CONTROLLERFAN_PIN
 | 
					
						
							|  |  |  |     SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
 | 
					
						
							|  |  |  |   #endif
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   // waveform generation = 0100 = CTC
 | 
					
						
							|  |  |  |   TCCR1B &= ~(1<<WGM13); | 
					
						
							|  |  |  |   TCCR1B |=  (1<<WGM12); | 
					
						
							|  |  |  |   TCCR1A &= ~(1<<WGM11);  | 
					
						
							|  |  |  |   TCCR1A &= ~(1<<WGM10); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // output mode = 00 (disconnected)
 | 
					
						
							|  |  |  |   TCCR1A &= ~(3<<COM1A0);  | 
					
						
							|  |  |  |   TCCR1A &= ~(3<<COM1B0);  | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   // Set the timer pre-scaler
 | 
					
						
							|  |  |  |   // Generally we use a divider of 8, resulting in a 2MHz timer
 | 
					
						
							|  |  |  |   // frequency on a 16MHz MCU. If you are going to change this, be
 | 
					
						
							|  |  |  |   // sure to regenerate speed_lookuptable.h with
 | 
					
						
							|  |  |  |   // create_speed_lookuptable.py
 | 
					
						
							|  |  |  |   TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   OCR1A = 0x4000; | 
					
						
							|  |  |  |   TCNT1 = 0; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT();   | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   #ifdef ADVANCE
 | 
					
						
							|  |  |  |   #if defined(TCCR0A) && defined(WGM01)
 | 
					
						
							|  |  |  |     TCCR0A &= ~(1<<WGM01); | 
					
						
							|  |  |  |     TCCR0A &= ~(1<<WGM00); | 
					
						
							|  |  |  |   #endif  
 | 
					
						
							|  |  |  |     e_steps[0] = 0; | 
					
						
							|  |  |  |     e_steps[1] = 0; | 
					
						
							|  |  |  |     e_steps[2] = 0; | 
					
						
							|  |  |  |     TIMSK0 |= (1<<OCIE0A); | 
					
						
							|  |  |  |   #endif //ADVANCE
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   enable_endstops(true); // Start with endstops active. After homing they can be disabled
 | 
					
						
							|  |  |  |   sei(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Block until all buffered steps are executed
 | 
					
						
							|  |  |  | void st_synchronize() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     while( blocks_queued()) { | 
					
						
							|  |  |  |     manage_heater(); | 
					
						
							|  |  |  |     manage_inactivity(); | 
					
						
							|  |  |  |     LCD_STATUS; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void st_set_position(const long &x, const long &y, const long &z, const long &e) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_position[X_AXIS] = x; | 
					
						
							|  |  |  |   count_position[Y_AXIS] = y; | 
					
						
							|  |  |  |   count_position[Z_AXIS] = z; | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void st_set_e_position(const long &e) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_position[E_AXIS] = e; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | long st_get_position(uint8_t axis) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   long count_pos; | 
					
						
							|  |  |  |   CRITICAL_SECTION_START; | 
					
						
							|  |  |  |   count_pos = count_position[axis]; | 
					
						
							|  |  |  |   CRITICAL_SECTION_END; | 
					
						
							|  |  |  |   return count_pos; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void finishAndDisableSteppers() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   st_synchronize();  | 
					
						
							|  |  |  |   LCD_MESSAGEPGM(MSG_STEPPER_RELEASED); | 
					
						
							|  |  |  |   disable_x();  | 
					
						
							|  |  |  |   disable_y();  | 
					
						
							|  |  |  |   disable_z();  | 
					
						
							|  |  |  |   disable_e0();  | 
					
						
							|  |  |  |   disable_e1();  | 
					
						
							|  |  |  |   disable_e2();  | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void quickStop() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  |   while(blocks_queued()) | 
					
						
							|  |  |  |     plan_discard_current_block(); | 
					
						
							|  |  |  |   current_block = NULL; | 
					
						
							|  |  |  |   ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 |