Merge remote-tracking branch 'upstream/development' into development

master
croadfeldt 10 years ago
commit 06f767d608

@ -263,8 +263,6 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE_VAR(i, dummy);
} }
int storageSize = i;
char ver2[4] = EEPROM_VERSION; char ver2[4] = EEPROM_VERSION;
int j = EEPROM_OFFSET; int j = EEPROM_OFFSET;
EEPROM_WRITE_VAR(j, ver2); // validate data EEPROM_WRITE_VAR(j, ver2); // validate data
@ -446,7 +444,7 @@ void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE; float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (int i = 0; i < NUM_AXIS; i++) { for (uint16_t i = 0; i < NUM_AXIS; i++) {
axis_steps_per_unit[i] = tmp1[i]; axis_steps_per_unit[i] = tmp1[i];
max_feedrate[i] = tmp2[i]; max_feedrate[i] = tmp2[i];
max_acceleration_units_per_sq_second[i] = tmp3[i]; max_acceleration_units_per_sq_second[i] = tmp3[i];

@ -211,72 +211,37 @@ bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2 int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply; int saved_feedmultiply;
int extrudemultiply = 100; //100->1 200->2 int extrudemultiply = 100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = { 100 int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#if EXTRUDERS > 3
, 100
#endif
#endif
#endif
};
bool volumetric_enabled = false; bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
#if EXTRUDERS > 1 float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
, DEFAULT_NOMINAL_FILAMENT_DIA float current_position[NUM_AXIS] = { 0.0 };
#if EXTRUDERS > 2 float home_offset[3] = { 0 };
, DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 3
, DEFAULT_NOMINAL_FILAMENT_DIA
#endif
#endif
#endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#if EXTRUDERS > 3
, 1.0
#endif
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float home_offset[3] = { 0, 0, 0 };
#ifdef DELTA #ifdef DELTA
float endstop_adj[3] = { 0, 0, 0 }; float endstop_adj[3] = { 0 };
#elif defined(Z_DUAL_ENDSTOPS) #elif defined(Z_DUAL_ENDSTOPS)
float z_endstop_adj = 0; float z_endstop_adj = 0;
#endif #endif
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = { false, false, false }; bool axis_known_position[3] = { false };
// Extruder offset // Extruder offset
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#ifndef EXTRUDER_OFFSET_X
#define EXTRUDER_OFFSET_X 0
#endif
#ifndef EXTRUDER_OFFSET_Y
#define EXTRUDER_OFFSET_Y 0
#endif
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
#else #else
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif #endif
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = { #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
#if defined(EXTRUDER_OFFSET_X) float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
EXTRUDER_OFFSET_X
#else
0
#endif
,
#if defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_Y
#else
0
#endif
};
#endif #endif
uint8_t active_extruder = 0; uint8_t active_extruder = 0;
@ -295,28 +260,8 @@ int fanSpeed = 0;
#ifdef FWRETRACT #ifdef FWRETRACT
bool autoretract_enabled = false; bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false bool retracted[EXTRUDERS] = { false };
#if EXTRUDERS > 1 bool retracted_swap[EXTRUDERS] = { false };
, false
#if EXTRUDERS > 2
, false
#if EXTRUDERS > 3
, false
#endif
#endif
#endif
};
bool retracted_swap[EXTRUDERS] = { false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#if EXTRUDERS > 3
, false
#endif
#endif
#endif
};
float retract_length = RETRACT_LENGTH; float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_length_swap = RETRACT_LENGTH_SWAP;
@ -385,10 +330,14 @@ const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:"; const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0, 0, 0, 0 }; static float destination[NUM_AXIS] = { 0 };
static float offset[3] = { 0, 0, 0 }; static float offset[3] = { 0 };
#ifndef DELTA
static bool home_all_axis = true; static bool home_all_axis = true;
#endif
static float feedrate = 1500.0, next_feedrate, saved_feedrate; static float feedrate = 1500.0, next_feedrate, saved_feedrate;
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
@ -397,7 +346,7 @@ static bool relative_mode = false; //Determines Absolute or Relative Coordinate
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
#ifdef SDSUPPORT #ifdef SDSUPPORT
static bool fromsd[BUFSIZE]; static bool fromsd[BUFSIZE];
#endif //!SDSUPPORT #endif
static int bufindr = 0; static int bufindr = 0;
static int bufindw = 0; static int bufindw = 0;
static int buflen = 0; static int buflen = 0;
@ -933,24 +882,22 @@ void get_command()
} }
float code_value() {
float code_value()
{
float ret; float ret;
char *e = strchr(strchr_pointer, 'E'); char *e = strchr(strchr_pointer, 'E');
if (e != NULL) *e = 0; if (e) {
*e = 0;
ret = strtod(strchr_pointer+1, NULL);
*e = 'E';
}
else
ret = strtod(strchr_pointer+1, NULL); ret = strtod(strchr_pointer+1, NULL);
if (e != NULL) *e = 'E';
return ret; return ret;
} }
long code_value_long() long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
{
return (strtol(strchr_pointer + 1, NULL, 10));
}
bool code_seen(char code) bool code_seen(char code) {
{
strchr_pointer = strchr(cmdbuffer[bufindr], code); strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found return (strchr_pointer != NULL); //Return True if a character was found
} }
@ -991,7 +938,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
// second X-carriage offset when homed - otherwise X2_HOME_POS is used. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash // This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command). // (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS; return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
} }
static int x_home_dir(int extruder) { static int x_home_dir(int extruder) {
@ -1009,34 +956,32 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#endif //DUAL_X_CARRIAGE #endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) { static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) { if (axis == X_AXIS) {
if (active_extruder != 0) { if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS; min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS); max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS]; min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS], max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
} }
#endif #endif
#ifdef SCARA #ifdef SCARA
float homeposition[3]; float homeposition[3];
char i;
if (axis < 2) if (axis < 2) {
{
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
for (i=0; i<3; i++)
{
homeposition[i] = base_home_pos(i);
}
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics, // Works out real Homeposition angles using inverse kinematics,
@ -1046,10 +991,7 @@ static void axis_is_at_home(int axis) {
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (i=0; i<2; i++) for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
{
delta[i] -= home_offset[i];
}
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]); // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
@ -1068,8 +1010,7 @@ static void axis_is_at_home(int axis) {
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
} }
else else {
{
current_position[axis] = base_home_pos(axis) + home_offset[axis]; current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + home_offset[axis]; min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + home_offset[axis]; max_pos[axis] = base_max_pos(axis) + home_offset[axis];
@ -1081,12 +1022,18 @@ static void axis_is_at_home(int axis) {
#endif #endif
} }
/**
* Shorthand to tell the planner our current position (in mm).
*/
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA #ifndef DELTA
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal"); planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
@ -1100,9 +1047,9 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
//corrected_position.debug("position after"); //corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x; current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y; current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z; current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif #endif
@ -1128,9 +1075,9 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
vector_3 corrected_position = plan_get_position(); vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x; current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y; current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z; current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif // AUTO_BED_LEVELING_GRID #endif // AUTO_BED_LEVELING_GRID
@ -1176,18 +1123,14 @@ static void run_z_probe() {
endstops_hit_on_purpose(); endstops_hit_on_purpose();
// move back down slowly to find bed // move back down slowly to find bed
if (homing_bump_divisor[Z_AXIS] >= 1) {
if (homing_bump_divisor[Z_AXIS] >= 1)
{
feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
} }
else else {
{
feedrate = homing_feedrate[Z_AXIS]/10; feedrate = homing_feedrate[Z_AXIS]/10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1"); SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
} }
zPosition -= home_retract_mm(Z_AXIS) * 2; zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1195,7 +1138,7 @@ static void run_z_probe() {
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to // make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
} }
@ -1233,10 +1176,6 @@ static void do_blocking_move_to(float x, float y, float z) {
feedrate = oldFeedRate; feedrate = oldFeedRate;
} }
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}
static void setup_for_endstop_move() { static void setup_for_endstop_move() {
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
@ -1489,7 +1428,7 @@ static void homeaxis(int axis) {
#endif #endif
current_position[axis] = 0; current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
@ -1515,7 +1454,7 @@ static void homeaxis(int axis) {
st_synchronize(); st_synchronize();
current_position[axis] = 0; current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[axis] = -home_retract_mm(axis) * axis_home_dir; destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1538,7 +1477,7 @@ static void homeaxis(int axis) {
if (axis==Z_AXIS) if (axis==Z_AXIS)
{ {
feedrate = homing_feedrate[axis]; feedrate = homing_feedrate[axis];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
if (axis_home_dir > 0) if (axis_home_dir > 0)
{ {
destination[axis] = (-1) * fabs(z_endstop_adj); destination[axis] = (-1) * fabs(z_endstop_adj);
@ -1558,7 +1497,7 @@ static void homeaxis(int axis) {
#ifdef DELTA #ifdef DELTA
// retrace by the amount specified in endstop_adj // retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) { if (endstop_adj[axis] * axis_home_dir < 0) {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[axis] = endstop_adj[axis]; destination[axis] = endstop_adj[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1614,7 +1553,7 @@ void refresh_cmd_timeout(void)
calculate_delta(current_position); // change cartesian kinematic to delta kinematic; calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
prepare_move(); prepare_move();
} }
@ -1630,7 +1569,7 @@ void refresh_cmd_timeout(void)
calculate_delta(current_position); // change cartesian kinematic to delta kinematic; calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
//prepare_move(); //prepare_move();
} }
@ -1774,7 +1713,25 @@ inline void gcode_G4() {
#endif //FWRETRACT #endif //FWRETRACT
/** /**
* G28: Home all axes, one at a time * G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
* If numbers are included with XYZ set the position as with G92
* Currently adds the home_offset, which may be wrong and removed soon.
*
* Xn Home X, setting X to n + home_offset[X_AXIS]
* Yn Home Y, setting Y to n + home_offset[Y_AXIS]
* Zn Home Z, setting Z to n + home_offset[Z_AXIS]
*/ */
inline void gcode_G28() { inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
@ -1797,7 +1754,7 @@ inline void gcode_G28() {
enable_endstops(true); enable_endstops(true);
for (int i = X_AXIS; i < NUM_AXIS; i++) destination[i] = current_position[i]; for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
feedrate = 0.0; feedrate = 0.0;
@ -1807,7 +1764,7 @@ inline void gcode_G28() {
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH; for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS]; feedrate = 1.732 * homing_feedrate[X_AXIS];
@ -1828,26 +1785,28 @@ inline void gcode_G28() {
#else // NOT DELTA #else // NOT DELTA
home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS])); bool homeX = code_seen(axis_codes[X_AXIS]),
homeY = code_seen(axis_codes[Y_AXIS]),
homeZ = code_seen(axis_codes[Z_AXIS]);
home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
#if Z_HOME_DIR > 0 // If homing away from BED do Z first #if Z_HOME_DIR > 0 // If homing away from BED do Z first
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) { if (home_all_axis || homeZ) HOMEAXIS(Z);
HOMEAXIS(Z);
}
#endif #endif
#ifdef QUICK_HOME #ifdef QUICK_HOME
if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move if (home_all_axis || (homeX && homeY)) { //first diagonal move
current_position[X_AXIS] = current_position[Y_AXIS] = 0; current_position[X_AXIS] = current_position[Y_AXIS] = 0;
#ifndef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
int x_axis_home_dir = home_dir(X_AXIS);
#else
int x_axis_home_dir = x_home_dir(active_extruder); int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
#else
int x_axis_home_dir = home_dir(X_AXIS);
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir; destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
@ -1862,7 +1821,7 @@ inline void gcode_G28() {
axis_is_at_home(X_AXIS); axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS); axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[X_AXIS] = current_position[X_AXIS]; destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -1878,7 +1837,8 @@ inline void gcode_G28() {
} }
#endif //QUICK_HOME #endif //QUICK_HOME
if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) { // Home X
if (home_all_axis || homeX) {
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder; int tmp_extruder = active_extruder;
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
@ -1896,31 +1856,38 @@ inline void gcode_G28() {
#endif #endif
} }
if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y); // Home Y
if (home_all_axis || homeY) HOMEAXIS(Y);
// Set the X position, if included
// Adds the home_offset as well, which may be wrong
if (code_seen(axis_codes[X_AXIS])) { if (code_seen(axis_codes[X_AXIS])) {
if (code_value_long() != 0) { float v = code_value();
current_position[X_AXIS] = code_value() if (v) current_position[X_AXIS] = v
#ifndef SCARA #ifndef SCARA
+ home_offset[X_AXIS] + home_offset[X_AXIS]
#endif #endif
; ;
} }
}
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) { // Set the Y position, if included
current_position[Y_AXIS] = code_value() // Adds the home_offset as well, which may be wrong
if (code_seen(axis_codes[Y_AXIS])) {
float v = code_value();
if (v) current_position[Y_AXIS] = v
#ifndef SCARA #ifndef SCARA
+ home_offset[Y_AXIS] + home_offset[Y_AXIS]
#endif #endif
; ;
} }
#if Z_HOME_DIR < 0 // If homing towards BED do Z last // Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
#ifndef Z_SAFE_HOMING #ifndef Z_SAFE_HOMING
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) { if (home_all_axis || homeZ) {
// Raise Z before homing Z? Shouldn't this happen before homing X or Y?
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0 #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
#ifndef Z_PROBE_AND_ENDSTOP #ifndef Z_PROBE_AND_ENDSTOP
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
@ -1941,7 +1908,7 @@ inline void gcode_G28() {
feedrate = XY_TRAVEL_SPEED / 60; feedrate = XY_TRAVEL_SPEED / 60;
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[X_AXIS] = destination[X_AXIS]; current_position[X_AXIS] = destination[X_AXIS];
@ -1951,7 +1918,7 @@ inline void gcode_G28() {
} }
// Let's see if X and Y are homed and probe is inside bed area. // Let's see if X and Y are homed and probe is inside bed area.
if (code_seen(axis_codes[Z_AXIS])) { if (homeZ) {
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) { if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
@ -1985,15 +1952,17 @@ inline void gcode_G28() {
#endif // Z_HOME_DIR < 0 #endif // Z_HOME_DIR < 0
// Set the Z position, if included
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0) // Adds the home_offset as well, which may be wrong
current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS]; if (code_seen(axis_codes[Z_AXIS])) {
float v = code_value();
if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
}
#if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0) #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif // else DELTA #endif // else DELTA
@ -2018,7 +1987,7 @@ inline void gcode_G28() {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
mbl.active = 1; mbl.active = 1;
} }
#endif #endif
@ -2089,7 +2058,7 @@ inline void gcode_G28() {
int ix, iy; int ix, iy;
if (probe_point == 0) { if (probe_point == 0) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} else { } else {
ix = (probe_point-1) % MESH_NUM_X_POINTS; ix = (probe_point-1) % MESH_NUM_X_POINTS;
iy = (probe_point-1) / MESH_NUM_X_POINTS; iy = (probe_point-1) / MESH_NUM_X_POINTS;
@ -2151,8 +2120,8 @@ inline void gcode_G28() {
* *
* Global Parameters: * Global Parameters:
* *
* E/e By default G29 engages / disengages the probe for each point. * E/e By default G29 will engages the probe, test the bed, then disengage.
* Include "E" to engage and disengage the probe just once. * Include "E" to engage/disengage the probe for each sample.
* There's no extra effect if you have a fixed probe. * There's no extra effect if you have a fixed probe.
* Usage: "G29 E" or "G29 e" * Usage: "G29 E" or "G29 e"
* *
@ -2168,7 +2137,6 @@ inline void gcode_G28() {
} }
int verbose_level = 1; int verbose_level = 1;
float x_tmp, y_tmp, z_tmp, real_z;
if (code_seen('V') || code_seen('v')) { if (code_seen('V') || code_seen('v')) {
verbose_level = code_value_long(); verbose_level = code_value_long();
@ -2179,7 +2147,7 @@ inline void gcode_G28() {
} }
bool dryrun = code_seen('D') || code_seen('d'); bool dryrun = code_seen('D') || code_seen('d');
bool enhanced_g29 = code_seen('E') || code_seen('e'); bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
@ -2263,7 +2231,7 @@ inline void gcode_G28() {
current_position[X_AXIS] = uncorrected_position.x; current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y; current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z; current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
} }
@ -2337,16 +2305,14 @@ inline void gcode_G28() {
// Enhanced G29 - Do not retract servo between probes // Enhanced G29 - Do not retract servo between probes
ProbeAction act; ProbeAction act;
if (enhanced_g29) { if (engage_probe_for_each_reading)
if (yProbe == front_probe_bed_position && xCount == 0) act = ProbeEngageAndRetract;
else if (yProbe == front_probe_bed_position && xCount == 0)
act = ProbeEngage; act = ProbeEngage;
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1) else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
act = ProbeRetract; act = ProbeRetract;
else else
act = ProbeStay; act = ProbeStay;
}
else
act = ProbeEngageAndRetract;
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level); measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
@ -2428,20 +2394,17 @@ inline void gcode_G28() {
#else // !AUTO_BED_LEVELING_GRID #else // !AUTO_BED_LEVELING_GRID
// Probe at 3 arbitrary points // Actions for each probe
float z_at_pt_1, z_at_pt_2, z_at_pt_3; ProbeAction p1, p2, p3;
if (engage_probe_for_each_reading)
p1 = p2 = p3 = ProbeEngageAndRetract;
else
p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
if (enhanced_g29) { // Probe at 3 arbitrary points
// Basic Enhanced G29 float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level); z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
}
else {
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
}
clean_up_after_endstop_move(); clean_up_after_endstop_move();
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
@ -2456,6 +2419,7 @@ inline void gcode_G28() {
// When the bed is uneven, this height must be corrected. // When the bed is uneven, this height must be corrected.
if (!dryrun) if (!dryrun)
{ {
float x_tmp, y_tmp, z_tmp, real_z;
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
@ -2463,7 +2427,7 @@ inline void gcode_G28() {
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif // !DELTA #endif // !DELTA
@ -2514,15 +2478,17 @@ inline void gcode_G92() {
if (!code_seen(axis_codes[E_AXIS])) if (!code_seen(axis_codes[E_AXIS]))
st_synchronize(); st_synchronize();
bool didXYZ = false;
for (int i = 0; i < NUM_AXIS; i++) { for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
current_position[i] = code_value(); float v = current_position[i] = code_value();
if (i == E_AXIS) if (i == E_AXIS)
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(v);
else else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); didXYZ = true;
} }
} }
if (didXYZ) sync_plan_position();
} }
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -2805,14 +2771,14 @@ inline void gcode_M42() {
* *
* Usage: * Usage:
* M48 <n#> <X#> <Y#> <V#> <E> <L#> * M48 <n#> <X#> <Y#> <V#> <E> <L#>
* n = Number of samples (4-50, default 10) * P = Number of sampled points (4-50, default 10)
* X = Sample X position * X = Sample X position
* Y = Sample Y position * Y = Sample Y position
* V = Verbose level (0-4, default=1) * V = Verbose level (0-4, default=1)
* E = Engage probe for each reading * E = Engage probe for each reading
* L = Number of legs of movement before probe * L = Number of legs of movement before probe
* *
* This function assumes the bed has been homed. Specificaly, that a G28 command * This function assumes the bed has been homed. Specifically, that a G28 command
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be * Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated. * regenerated.
@ -2839,10 +2805,10 @@ inline void gcode_M42() {
if (verbose_level > 0) if (verbose_level > 0)
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n"); SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
if (code_seen('n')) { if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
n_samples = code_value(); n_samples = code_value();
if (n_samples < 4 || n_samples > 50) { if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n"); SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
return; return;
} }
} }
@ -2859,7 +2825,7 @@ inline void gcode_M42() {
if (code_seen('X') || code_seen('x')) { if (code_seen('X') || code_seen('x')) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) { if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); SERIAL_PROTOCOLPGM("?X position out of range.\n");
return; return;
} }
} }
@ -2867,7 +2833,7 @@ inline void gcode_M42() {
if (code_seen('Y') || code_seen('y')) { if (code_seen('Y') || code_seen('y')) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) { if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); SERIAL_PROTOCOLPGM("?Y position out of range.\n");
return; return;
} }
} }
@ -2876,7 +2842,7 @@ inline void gcode_M42() {
n_legs = code_value(); n_legs = code_value();
if (n_legs == 1) n_legs = 2; if (n_legs == 1) n_legs = 2;
if (n_legs < 0 || n_legs > 15) { if (n_legs < 0 || n_legs > 15) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n"); SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
return; return;
} }
} }
@ -2899,7 +2865,7 @@ inline void gcode_M42() {
// use that as a starting point for each probe. // use that as a starting point for each probe.
// //
if (verbose_level > 2) if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n"); SERIAL_PROTOCOL("Positioning the probe...\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position, ext_position,
@ -2948,7 +2914,7 @@ inline void gcode_M42() {
//SERIAL_ECHOPAIR("starting radius: ",radius); //SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta); //SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction); //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM(""); //SERIAL_EOL;
float dir = rotational_direction ? 1 : -1; float dir = rotational_direction ? 1 : -1;
for (l = 0; l < n_legs - 1; l++) { for (l = 0; l < n_legs - 1; l++) {
@ -2967,7 +2933,7 @@ inline void gcode_M42() {
if (verbose_level > 3) { if (verbose_level > 3) {
SERIAL_ECHOPAIR("x: ", X_current); SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current); SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM(""); SERIAL_EOL;
} }
do_blocking_move_to( X_current, Y_current, Z_current ); do_blocking_move_to( X_current, Y_current, Z_current );
@ -3783,23 +3749,23 @@ inline void gcode_M206() {
inline void gcode_M218() { inline void gcode_M218() {
if (setTargetedHotend(218)) return; if (setTargetedHotend(218)) return;
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value(); if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value(); if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value(); if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
#endif #endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) { for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
#endif #endif
} }
SERIAL_EOL; SERIAL_EOL;
@ -4490,13 +4456,13 @@ inline void gcode_M503() {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][0]); SERIAL_ECHO(extruder_offset[0][X_AXIS]);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][0]); SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]); SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
break; break;
case DXC_FULL_CONTROL_MODE: case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE: case DXC_AUTO_PARK_MODE:
@ -4605,7 +4571,6 @@ inline void gcode_T() {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
bool make_move = false; bool make_move = false;
#endif #endif
if (code_seen('F')) { if (code_seen('F')) {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
make_move = true; make_move = true;
@ -4632,11 +4597,11 @@ inline void gcode_T() {
// apply Y & Z extruder offset (x offset is already used in determining home pos) // apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] - current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] + extruder_offset[active_extruder][Y_AXIS] +
extruder_offset[Y_AXIS][tmp_extruder]; extruder_offset[tmp_extruder][Y_AXIS];
current_position[Z_AXIS] = current_position[Z_AXIS] - current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] + extruder_offset[active_extruder][Z_AXIS] +
extruder_offset[Z_AXIS][tmp_extruder]; extruder_offset[tmp_extruder][Z_AXIS];
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
@ -4666,7 +4631,7 @@ inline void gcode_T() {
#else // !DUAL_X_CARRIAGE #else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY) // Offset extruder (only by XY)
for (int i=X_AXIS; i<=Y_AXIS; i++) for (int i=X_AXIS; i<=Y_AXIS; i++)
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder]; current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
// Set the new active extruder and position // Set the new active extruder and position
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE #endif // !DUAL_X_CARRIAGE
@ -4675,7 +4640,7 @@ inline void gcode_T() {
//sent position to plan_set_position(); //sent position to plan_set_position();
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
// Move to the old position if 'F' was in the parameters // Move to the old position if 'F' was in the parameters
if (make_move && !Stopped) prepare_move(); if (make_move && !Stopped) prepare_move();
@ -4978,14 +4943,13 @@ void process_commands() {
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec> case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665(); gcode_M665();
break; break;
case 666: // M666 set delta endstop adjustment #endif
gcode_M666();
break; #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
#elif defined(Z_DUAL_ENDSTOPS) case 666: // M666 set delta / dual endstop adjustment
case 666: // M666 set delta endstop adjustment
gcode_M666(); gcode_M666();
break; break;
#endif // DELTA #endif
#ifdef FWRETRACT #ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
@ -5208,16 +5172,10 @@ void ClearToSend()
void get_coordinates() { void get_coordinates() {
for (int i = 0; i < NUM_AXIS; i++) { for (int i = 0; i < NUM_AXIS; i++) {
float dest; if (code_seen(axis_codes[i]))
if (code_seen(axis_codes[i])) { destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
dest = code_value();
if (axis_relative_modes[i] || relative_mode)
dest += current_position[i];
}
else else
dest = current_position[i]; destination[i] = current_position[i];
destination[i] = dest;
} }
if (code_seen('F')) { if (code_seen('F')) {
next_feedrate = code_value(); next_feedrate = code_value();
@ -5522,7 +5480,7 @@ for (int s = 1; s <= steps; s++) {
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1); current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
st_synchronize(); st_synchronize();
extruder_duplication_enabled = true; extruder_duplication_enabled = true;
active_extruder_parked = false; active_extruder_parked = false;

@ -489,7 +489,7 @@ void CardReader::updir() {
if (workDirDepth > 0) { if (workDirDepth > 0) {
--workDirDepth; --workDirDepth;
workDir = workDirParents[0]; workDir = workDirParents[0];
for (int d = 0; d < workDirDepth; d++) for (uint16_t d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1]; workDirParents[d] = workDirParents[d+1];
} }
} }

@ -34,7 +34,6 @@
#endif #endif
#define PROTOCOL_VERSION "1.0" #define PROTOCOL_VERSION "1.0"
#define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin"
#if MB(ULTIMAKER)|| MB(ULTIMAKER_OLD)|| MB(ULTIMAIN_2) #if MB(ULTIMAKER)|| MB(ULTIMAKER_OLD)|| MB(ULTIMAIN_2)
#define MACHINE_NAME "Ultimaker" #define MACHINE_NAME "Ultimaker"
@ -59,9 +58,11 @@
#define FIRMWARE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html" #define FIRMWARE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html"
#else // Default firmware set to Mendel #else // Default firmware set to Mendel
#define MACHINE_NAME "Mendel" #define MACHINE_NAME "Mendel"
#define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin"
#endif #endif
#ifdef CUSTOM_MENDEL_NAME #ifdef CUSTOM_MENDEL_NAME
#undef MACHINE_NAME
#define MACHINE_NAME CUSTOM_MENDEL_NAME #define MACHINE_NAME CUSTOM_MENDEL_NAME
#endif #endif

@ -124,8 +124,6 @@
// Maximum here is 0x1f because 0x20 is ' ' (space) and the normal charsets begin. // Maximum here is 0x1f because 0x20 is ' ' (space) and the normal charsets begin.
// Better stay below 0x10 because DISPLAY_CHARSET_HD44780_WESTERN begins here. // Better stay below 0x10 because DISPLAY_CHARSET_HD44780_WESTERN begins here.
int lcd_contrast;
// LCD selection // LCD selection
#ifdef U8GLIB_ST7920 #ifdef U8GLIB_ST7920
//U8GLIB_ST7920_128X64_RRD u8g(0,0,0); //U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
@ -143,7 +141,9 @@ U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
#include "utf_mapper.h" #include "utf_mapper.h"
char currentfont = 0; int lcd_contrast;
static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD
static char currentfont = 0;
static void lcd_setFont(char font_nr) { static void lcd_setFont(char font_nr) {
switch(font_nr) { switch(font_nr) {
@ -256,9 +256,6 @@ static void _draw_heater_status(int x, int heater) {
} }
static void lcd_implementation_status_screen() { static void lcd_implementation_status_screen() {
static unsigned char fan_rot = 0;
u8g.setColorIndex(1); // black on white u8g.setColorIndex(1); // black on white
// Symbols menu graphics, animated fan // Symbols menu graphics, animated fan
@ -485,7 +482,7 @@ static void _drawmenu_sd(bool isSelected, uint8_t row, const char* pstr, const c
lcd_implementation_mark_as_selected(row, isSelected); lcd_implementation_mark_as_selected(row, isSelected);
if (isDir) lcd_print(LCD_STR_FOLDER[0]); if (isDir) lcd_print(LCD_STR_FOLDER[0]);
while (c = *filename) { while ((c = *filename)) {
n -= lcd_print(c); n -= lcd_print(c);
filename++; filename++;
} }

@ -275,13 +275,9 @@
#ifdef ADVANCE #ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .0 #define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75 #define D_FILAMENT 1.75
#define STEPS_MM_E 1000 #define STEPS_MM_E 1000
#define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #endif
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUSION_AREA)
#endif // ADVANCE
// Arc interpretation settings: // Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1

@ -107,11 +107,11 @@ Here are some standard links for getting your machine calibrated:
// Horizontal offset of the universal joints on the carriages. // Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 18.0 // mm #define DELTA_CARRIAGE_OFFSET 18.0 // mm
// Effective horizontal distance bridged by diagonal push rods. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 90 #define DELTA_PRINTABLE_RADIUS 140
//=========================================================================== //===========================================================================
@ -391,10 +391,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below. #define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing (units are in mm) // Travel limits after homing (units are in mm)
#define X_MAX_POS 90 #define X_MAX_POS DELTA_PRINTABLE_RADIUS
#define X_MIN_POS -90 #define X_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Y_MAX_POS 90 #define Y_MAX_POS DELTA_PRINTABLE_RADIUS
#define Y_MIN_POS -90 #define Y_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Z_MAX_POS MANUAL_Z_HOME_POS #define Z_MAX_POS MANUAL_Z_HOME_POS
#define Z_MIN_POS 0 #define Z_MIN_POS 0
@ -443,6 +443,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS #define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS #define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Non-linear bed leveling will be used. // Non-linear bed leveling will be used.
// Compensate by interpolating between the nearest four Z probe values for each point. // Compensate by interpolating between the nearest four Z probe values for each point.
// Useful for deltas where the print surface may appear like a bowl or dome shape. // Useful for deltas where the print surface may appear like a bowl or dome shape.
@ -532,7 +534,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts #define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves #define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder). // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend. // For the other hotends it is their distance from the extruder 0 hotend.
@ -652,7 +653,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// #define DELTA_CALIBRATION_MENU // #define DELTA_CALIBRATION_MENU
/** /**
* I2C PANELS * I2C Panels
*/ */
//#define LCD_I2C_SAINSMART_YWROBOT //#define LCD_I2C_SAINSMART_YWROBOT

@ -107,7 +107,6 @@ Here are some standard links for getting your machine calibrated:
// Horizontal offset of the universal joints on the carriages. // Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 19.5 // mm #define DELTA_CARRIAGE_OFFSET 19.5 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
@ -531,8 +530,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define DEFAULT_MAX_FEEDRATE {500, 500, 500, 25} // (mm/sec) #define DEFAULT_MAX_FEEDRATE {500, 500, 500, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,9000,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. #define DEFAULT_MAX_ACCELERATION {9000,9000,9000,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts #define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves #define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).

@ -40,12 +40,14 @@
#define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin" #define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin"
#if MB(ULTIMAKER)|| MB(ULTIMAKER_OLD)|| MB(ULTIMAIN_2) #if MB(ULTIMAKER)|| MB(ULTIMAKER_OLD)|| MB(ULTIMAIN_2)
#undef FIRMWARE_URL
#define MACHINE_NAME "Ultimaker" #define MACHINE_NAME "Ultimaker"
#define FIRMWARE_URL "http://firmware.ultimaker.com" #define FIRMWARE_URL "http://firmware.ultimaker.com"
#elif MB(RUMBA) #elif MB(RUMBA)
#define MACHINE_NAME "Rumba" #define MACHINE_NAME "Rumba"
#elif MB(3DRAG) #elif MB(3DRAG)
#define MACHINE_NAME "3Drag" #define MACHINE_NAME "3Drag"
#undef FIRMWARE_URL
#define FIRMWARE_URL "http://3dprint.elettronicain.it/" #define FIRMWARE_URL "http://3dprint.elettronicain.it/"
#elif MB(K8200) #elif MB(K8200)
#define MACHINE_NAME "K8200" #define MACHINE_NAME "K8200"
@ -53,18 +55,22 @@
#define MACHINE_NAME "Makibox" #define MACHINE_NAME "Makibox"
#elif MB(SAV_MKI) #elif MB(SAV_MKI)
#define MACHINE_NAME "SAV MkI" #define MACHINE_NAME "SAV MkI"
#undef FIRMWARE_URL
#define FIRMWARE_URL "https://github.com/fmalpartida/Marlin/tree/SAV-MkI-config" #define FIRMWARE_URL "https://github.com/fmalpartida/Marlin/tree/SAV-MkI-config"
#elif MB(WITBOX) #elif MB(WITBOX)
#define MACHINE_NAME "WITBOX" #define MACHINE_NAME "WITBOX"
#undef FIRMWARE_URL
#define FIRMWARE_URL "http://www.bq.com/gb/downloads-witbox.html" #define FIRMWARE_URL "http://www.bq.com/gb/downloads-witbox.html"
#elif MB(HEPHESTOS) #elif MB(HEPHESTOS)
#define MACHINE_NAME "HEPHESTOS" #define MACHINE_NAME "HEPHESTOS"
#undef FIRMWARE_URL
#define FIRMWARE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html" #define FIRMWARE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html"
#else // Default firmware set to Mendel #else // Default firmware set to Mendel
#define MACHINE_NAME "Mendel" #define MACHINE_NAME "Mendel"
#endif #endif
#ifdef CUSTOM_MENDEL_NAME #ifdef CUSTOM_MENDEL_NAME
#undef MACHINE_NAME
#define MACHINE_NAME CUSTOM_MENDEL_NAME #define MACHINE_NAME CUSTOM_MENDEL_NAME
#endif #endif

@ -127,10 +127,13 @@
#define _E3_PINS #define _E3_PINS
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#undef _E1_PINS
#define _E1_PINS E1_STEP_PIN, E1_DIR_PIN, E1_ENABLE_PIN, HEATER_1_PIN, analogInputToDigitalPin(TEMP_1_PIN), #define _E1_PINS E1_STEP_PIN, E1_DIR_PIN, E1_ENABLE_PIN, HEATER_1_PIN, analogInputToDigitalPin(TEMP_1_PIN),
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#undef _E2_PINS
#define _E2_PINS E2_STEP_PIN, E2_DIR_PIN, E2_ENABLE_PIN, HEATER_2_PIN, analogInputToDigitalPin(TEMP_2_PIN), #define _E2_PINS E2_STEP_PIN, E2_DIR_PIN, E2_ENABLE_PIN, HEATER_2_PIN, analogInputToDigitalPin(TEMP_2_PIN),
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#undef _E3_PINS
#define _E3_PINS E3_STEP_PIN, E3_DIR_PIN, E3_ENABLE_PIN, HEATER_3_PIN, analogInputToDigitalPin(TEMP_3_PIN), #define _E3_PINS E3_STEP_PIN, E3_DIR_PIN, E3_ENABLE_PIN, HEATER_3_PIN, analogInputToDigitalPin(TEMP_3_PIN),
#endif #endif
#endif #endif
@ -167,12 +170,18 @@
#endif #endif
#ifdef DISABLE_MAX_ENDSTOPS #ifdef DISABLE_MAX_ENDSTOPS
#undef X_MAX_PIN
#undef Y_MAX_PIN
#undef Z_MAX_PIN
#define X_MAX_PIN -1 #define X_MAX_PIN -1
#define Y_MAX_PIN -1 #define Y_MAX_PIN -1
#define Z_MAX_PIN -1 #define Z_MAX_PIN -1
#endif #endif
#ifdef DISABLE_MIN_ENDSTOPS #ifdef DISABLE_MIN_ENDSTOPS
#undef X_MIN_PIN
#undef Y_MIN_PIN
#undef Z_MIN_PIN
#define X_MIN_PIN -1 #define X_MIN_PIN -1
#define Y_MIN_PIN -1 #define Y_MIN_PIN -1
#define Z_MIN_PIN -1 #define Z_MIN_PIN -1

@ -4,18 +4,25 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#undef Z_ENABLE_PIN
#define Z_ENABLE_PIN 63 #define Z_ENABLE_PIN 63
#undef X_MAX_PIN
#undef Y_MAX_PIN
#undef Z_MAX_PIN
#define X_MAX_PIN 2 #define X_MAX_PIN 2
#define Y_MAX_PIN 15 #define Y_MAX_PIN 15
#define Z_MAX_PIN -1 #define Z_MAX_PIN -1
#undef SDSS
#define SDSS 25//53 #define SDSS 25//53
#define BEEPER 33 #undef FAN_PIN
#define FAN_PIN 8 #define FAN_PIN 8
#undef HEATER_1_PIN
#undef HEATER_2_PIN
#undef HEATER_BED_PIN
#define HEATER_0_PIN 10 #define HEATER_0_PIN 10
#define HEATER_1_PIN 12 #define HEATER_1_PIN 12
#define HEATER_2_PIN 6 #define HEATER_2_PIN 6
@ -23,8 +30,15 @@
#define HEATER_BED_PIN 9 // BED #define HEATER_BED_PIN 9 // BED
#if defined(ULTRA_LCD) && defined(NEWPANEL) #if defined(ULTRA_LCD) && defined(NEWPANEL)
#undef BEEPER
#define BEEPER -1 #define BEEPER -1
#undef LCD_PINS_RS
#undef LCD_PINS_ENABLE
#undef LCD_PINS_D4
#undef LCD_PINS_D5
#undef LCD_PINS_D6
#undef LCD_PINS_D7
#define LCD_PINS_RS 27 #define LCD_PINS_RS 27
#define LCD_PINS_ENABLE 29 #define LCD_PINS_ENABLE 29
#define LCD_PINS_D4 37 #define LCD_PINS_D4 37
@ -33,7 +47,15 @@
#define LCD_PINS_D7 31 #define LCD_PINS_D7 31
// Buttons // Buttons
#undef BTN_EN1
#undef BTN_EN2
#undef BTN_ENC
#define BTN_EN1 16 #define BTN_EN1 16
#define BTN_EN2 17 #define BTN_EN2 17
#define BTN_ENC 23 //the click #define BTN_ENC 23 //the click
#else
#define BEEPER 33
#endif // ULTRA_LCD && NEWPANEL #endif // ULTRA_LCD && NEWPANEL

@ -64,6 +64,15 @@
// Microstepping pins // Microstepping pins
// Note that the pin mapping is not from fastio.h // Note that the pin mapping is not from fastio.h
// See Sd2PinMap.h for the pin configurations // See Sd2PinMap.h for the pin configurations
#undef X_MS1_PIN
#undef X_MS2_PIN
#undef Y_MS1_PIN
#undef Y_MS2_PIN
#undef Z_MS1_PIN
#undef Z_MS2_PIN
#undef E0_MS1_PIN
#undef E0_MS2_PIN
#define X_MS1_PIN 25 #define X_MS1_PIN 25
#define X_MS2_PIN 26 #define X_MS2_PIN 26
#define Y_MS1_PIN 9 #define Y_MS1_PIN 9

@ -7,7 +7,30 @@
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1
//LCD Pins//
#if defined(VIKI2) || defined(miniVIKI)
#define BEEPER 33
// Pins for DOGM SPI LCD Support
#define DOGLCD_A0 31
#define DOGLCD_CS 32
#define LCD_SCREEN_ROT_180
//The encoder and click button
#define BTN_EN1 22
#define BTN_EN2 7
#define BTN_ENC 12 //the click switch
#define SDSS 53
#define SDCARDDETECT -1 // Pin 49 if using display sd interface
#ifdef TEMP_STAT_LEDS #ifdef TEMP_STAT_LEDS
#define STAT_LED_RED 64
#define STAT_LED_BLUE 63
#endif
#endif
#elif define TEMP_STAT_LEDS
#define STAT_LED_RED 6 #define STAT_LED_RED 6
#define STAT_LED_BLUE 11 #define STAT_LED_BLUE 11
#endif #endif

@ -4,8 +4,36 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config) #undef FAN_PIN
#define FAN_PIN 6 //Part Cooling System
#define BEEPER 33 #define BEEPER 33
#define CONTROLLERFAN_PIN 4 //Pin used for the fan to cool motherboard (-1 to disable)
//Fans/Water Pump to cool the hotend cool side.
#define EXTRUDER_0_AUTO_FAN_PIN 5
#define EXTRUDER_1_AUTO_FAN_PIN 5
#define EXTRUDER_2_AUTO_FAN_PIN 5
#define EXTRUDER_3_AUTO_FAN_PIN 5
//
//This section is to swap the MIN and MAX pins because the X3 Pro comes with only
//MIN endstops soldered onto the board. Delta code wants the homing endstops to be
//the MAX so I swapped them here.
//
#ifdef DELTA
#undef X_MIN_PIN
#undef X_MAX_PIN
#undef Y_MIN_PIN
#undef Y_MAX_PIN
#undef Z_MIN_PIN
#undef Z_MAX_PIN
#define X_MIN_PIN 2
#define X_MAX_PIN 3
#define Y_MIN_PIN 15
#define Y_MAX_PIN 14
#define Z_MIN_PIN 19
#define Z_MAX_PIN 18
#endif
//
#define E2_STEP_PIN 23 #define E2_STEP_PIN 23
#define E2_DIR_PIN 25 #define E2_DIR_PIN 25
@ -19,7 +47,10 @@
#define E4_DIR_PIN 37 #define E4_DIR_PIN 37
#define E4_ENABLE_PIN 42 #define E4_ENABLE_PIN 42
#define HEATER_1_PIN -1 #undef HEATER_1_PIN
#undef HEATER_2_PIN
#undef HEATER_3_PIN
#define HEATER_1_PIN 9
#define HEATER_2_PIN 16 #define HEATER_2_PIN 16
#define HEATER_3_PIN 17 #define HEATER_3_PIN 17
#define HEATER_4_PIN 4 #define HEATER_4_PIN 4
@ -27,8 +58,56 @@
#define HEATER_6_PIN 6 #define HEATER_6_PIN 6
#define HEATER_7_PIN 11 #define HEATER_7_PIN 11
#undef TEMP_2_PIN
#undef TEMP_3_PIN
#define TEMP_2_PIN 12 // ANALOG NUMBERING #define TEMP_2_PIN 12 // ANALOG NUMBERING
#define TEMP_3_PIN 11 // ANALOG NUMBERING #define TEMP_3_PIN 11 // ANALOG NUMBERING
#define TEMP_4_PIN 10 // ANALOG NUMBERING #define TEMP_4_PIN 10 // ANALOG NUMBERING
#define TC1 4 // ANALOG NUMBERING Thermo couple on Azteeg X3Pro #define TC1 4 // ANALOG NUMBERING Thermo couple on Azteeg X3Pro
#define TC2 5 // ANALOG NUMBERING Thermo couple on Azteeg X3Pro #define TC2 5 // ANALOG NUMBERING Thermo couple on Azteeg X3Pro
//
//These Servo pins are for when they are defined. Tested for usage with bed leveling
//on a Delta with 1 servo. Running through the Z servo endstop in code.
//Physical wire attachment was done on EXT1 on the GND, 5V, and D47 pins.
//
#undef SERVO0_PIN
#undef SERVO1_PIN
#undef SERVO2_PIN
#undef SERVO3_PIN
#ifdef NUM_SERVOS
#define SERVO0_PIN -1
#if NUM_SERVOS > 1
#define SERVO1_PIN -1
#if NUM_SERVOS > 2
#define SERVO2_PIN 47
#if NUM_SERVOS > 3
#define SERVO3_PIN -1
#endif
#endif
#endif
#endif
//LCD Pins//
#if defined(VIKI2) || defined(miniVIKI)
#define BEEPER 33
// Pins for DOGM SPI LCD Support
#define DOGLCD_A0 44
#define DOGLCD_CS 45
#define LCD_SCREEN_ROT_180
//The encoder and click button
#define BTN_EN1 22
#define BTN_EN2 7
#define BTN_ENC 39 //the click switch
#define SDSS 53
#define SDCARDDETECT 49
#define KILL_PIN 31
#define STAT_LED_RED 32
#define STAT_LED_BLUE 35
#endif

@ -4,8 +4,13 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#undef FAN_PIN
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#undef HEATER_1_PIN
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1
#undef TEMP_0_PIN
#undef TEMP_1_PIN
#define TEMP_0_PIN 9 // ANALOG NUMBERING #define TEMP_0_PIN 9 // ANALOG NUMBERING
#define TEMP_1_PIN 11 // ANALOG NUMBERING #define TEMP_1_PIN 11 // ANALOG NUMBERING

@ -4,13 +4,23 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#undef X_MAX_PIN
#undef Y_MAX_PIN
#undef Z_MAX_PIN
#define X_MAX_PIN -1 #define X_MAX_PIN -1
#define Y_MAX_PIN -1 #define Y_MAX_PIN -1
#define Z_MAX_PIN -1 #define Z_MAX_PIN -1
#undef Y2_STEP_PIN
#undef Y2_DIR_PIN
#undef Y2_ENABLE_PIN
#define Y2_STEP_PIN -1 #define Y2_STEP_PIN -1
#define Y2_DIR_PIN -1 #define Y2_DIR_PIN -1
#define Y2_ENABLE_PIN -1 #define Y2_ENABLE_PIN -1
#undef Z2_STEP_PIN
#undef Z2_DIR_PIN
#undef Z2_ENABLE_PIN
#define Z2_STEP_PIN -1 #define Z2_STEP_PIN -1
#define Z2_DIR_PIN -1 #define Z2_DIR_PIN -1
#define Z2_ENABLE_PIN -1 #define Z2_ENABLE_PIN -1
@ -19,11 +29,14 @@
#define E1_DIR_PIN 34 #define E1_DIR_PIN 34
#define E1_ENABLE_PIN 30 #define E1_ENABLE_PIN 30
#undef SDPOWER
#define SDPOWER 1 #define SDPOWER 1
#undef FAN_PIN
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#define PS_ON_PIN 12 #define PS_ON_PIN 12
#undef HEATER_1_PIN
#define HEATER_1_PIN 7 // EXTRUDER 2 #define HEATER_1_PIN 7 // EXTRUDER 2
#if defined(ULTRA_LCD) && defined(NEWPANEL) #if defined(ULTRA_LCD) && defined(NEWPANEL)

@ -4,5 +4,8 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#undef FAN_PIN
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#undef HEATER_1_PIN
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1

@ -59,6 +59,8 @@
#define TEMP_1_PIN -1 #define TEMP_1_PIN -1
#define TEMP_2_PIN -1 #define TEMP_2_PIN -1
////LCD Pin Setup////
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 8 #define SDSS 8
#define LED_PIN -1 #define LED_PIN -1
@ -86,3 +88,24 @@
//not connected to a pin //not connected to a pin
#define SDCARDDETECT -1 #define SDCARDDETECT -1
#endif // ULTRA_LCD && NEWPANEL #endif // ULTRA_LCD && NEWPANEL
#if defined(VIKI2) || defined(miniVIKI)
#define BEEPER 32 //FastIO
// Pins for DOGM SPI LCD Support
#define DOGLCD_A0 42 //Non-FastIO
#define DOGLCD_CS 43 //Non-FastIO
#define LCD_SCREEN_ROT_180
//The encoder and click button (FastIO Pins)
#define BTN_EN1 26
#define BTN_EN2 27
#define BTN_ENC 47 //the click switch
#define SDSS 45
#define SDCARDDETECT -1 // FastIO (Manual says 72 I'm not certain cause I can't test)
#ifdef TEMP_STAT_LEDS
#define STAT_LED_RED 12 //Non-FastIO
#define STAT_LED_BLUE 10 //Non-FastIO
#endif
#endif

@ -22,6 +22,17 @@
#endif #endif
#endif #endif
#undef X_MS1_PIN
#undef X_MS2_PIN
#undef Y_MS1_PIN
#undef Y_MS2_PIN
#undef Z_MS1_PIN
#undef Z_MS2_PIN
#undef E0_MS1_PIN
#undef E0_MS2_PIN
#undef E1_MS1_PIN
#undef E1_MS2_PIN
#define X_STEP_PIN 37 #define X_STEP_PIN 37
#define X_DIR_PIN 48 #define X_DIR_PIN 48
#define X_MIN_PIN 12 #define X_MIN_PIN 12
@ -75,6 +86,7 @@
#define E1_MS1_PIN 63 #define E1_MS1_PIN 63
#define E1_MS2_PIN 64 #define E1_MS2_PIN 64
#undef DIGIPOTSS_PIN
#define DIGIPOTSS_PIN 38 #define DIGIPOTSS_PIN 38
#define DIGIPOT_CHANNELS {4,5,3,0,1} // X Y Z E0 E1 digipot channels to stepper driver mapping #define DIGIPOT_CHANNELS {4,5,3,0,1} // X Y Z E0 E1 digipot channels to stepper driver mapping
@ -148,6 +160,26 @@
#endif // ULTRA_LCD #endif // ULTRA_LCD
#if defined(VIKI2) || defined(miniVIKI)
#define BEEPER 44
// Pins for DOGM SPI LCD Support
#define DOGLCD_A0 70
#define DOGLCD_CS 71
#define LCD_SCREEN_ROT_180
//The encoder and click button
#define BTN_EN1 85
#define BTN_EN2 84
#define BTN_ENC 83 //the click switch
#define SDCARDDETECT -1 // Pin 72 if using easy adapter board
#ifdef TEMP_STAT_LEDS
#define STAT_LED_RED 22
#define STAT_LED_BLUE 32
#endif
#endif // VIKI2/miniVIKI
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
//Filip added pin for Filament sensor analog input //Filip added pin for Filament sensor analog input
#define FILWIDTH_PIN 3 #define FILWIDTH_PIN 3

@ -4,5 +4,8 @@
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#undef FAN_PIN
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#undef HEATER_1_PIN
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1

@ -342,7 +342,7 @@ void planner_recalculate_trapezoids() {
// b. No speed reduction within one block requires faster deceleration than the one, true constant // b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration. // acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if // 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true // a. The speed increase within one block would require faster acceleration than the one, true
// constant acceleration. // constant acceleration.
// //
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
@ -701,12 +701,12 @@ float junction_deviation = 0.1;
int moves_queued = movesplanned(); int moves_queued = movesplanned();
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
#if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2; bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
#ifdef OLD_SLOWDOWN #ifdef OLD_SLOWDOWN
if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE; if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
#endif #endif
#ifdef SLOWDOWN #ifdef SLOWDOWN
// segment time im micro seconds // segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second); unsigned long segment_time = lround(1000000.0/inverse_second);
@ -720,7 +720,7 @@ float junction_deviation = 0.1;
} }
} }
#endif #endif
// END OF SLOW DOWN SECTION #endif
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0

@ -80,21 +80,37 @@ extern volatile unsigned char block_buffer_tail;
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING) #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
#if defined(ENABLE_AUTO_BED_LEVELING) #if defined(ENABLE_AUTO_BED_LEVELING)
#include "vector_3.h" #include "vector_3.h"
// this holds the required transform to compensate for bed level
// Transform required to compensate for bed level
extern matrix_3x3 plan_bed_level_matrix; extern matrix_3x3 plan_bed_level_matrix;
// Get the position applying the bed level matrix if enabled
/**
* Get the position applying the bed level matrix
*/
vector_3 plan_get_position(); vector_3 plan_get_position();
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimeters. Feed rate specifies the speed of the motion. /**
* Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in
* millimeters. Feed rate specifies the (target) speed of the motion.
*/
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
// Set position. Used for G92 instructions.
/**
* Set the planner positions. Used for G92 instructions.
* Multiplies by axis_steps_per_unit[] to set stepper positions.
* Clears previous speed values.
*/
void plan_set_position(float x, float y, float z, const float &e); void plan_set_position(float x, float y, float z, const float &e);
#else #else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder); void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
void plan_set_position(const float &x, const float &y, const float &z, const float &e); void plan_set_position(const float &x, const float &y, const float &z, const float &e);
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
void plan_set_e_position(const float &e); void plan_set_e_position(const float &e);

@ -607,7 +607,6 @@ double dnrm2 ( int n, double x[], int incx )
double norm; double norm;
double scale; double scale;
double ssq; double ssq;
double value;
if ( n < 1 || incx < 1 ) if ( n < 1 || incx < 1 )
{ {

@ -0,0 +1,186 @@
#!/usr/bin/python3
# This file is for preprocessing gcode and the new G29 Autobedleveling from Marlin
# It will analyse the first 2 Layer and return the maximum size for this part
# After this it will replace with g29_keyword = ';MarlinG29Script' with the new G29 LRFB
# the new file will be created in the same folder.
# your gcode-file/folder
folder = './'
my_file = 'test.gcode'
# this is the minimum of G1 instructions which should be between 2 different heights
min_g1 = 3
# maximum number of lines to parse, I don't want to parse the complete file
# only the first plane is we are interested in
max_g1 = 100000000
# g29 keyword
g29_keyword = 'g29'
g29_keyword = g29_keyword.upper()
# output filename
output_file = folder + 'g29_' + my_file
# input filename
input_file = folder + my_file
# minimum scan size
min_size = 40
probing_points = 3 # points x points
# other stuff
min_x = 500
min_y = min_x
max_x = -500
max_y = max_x
last_z = 0.001
layer = 0
lines_of_g1 = 0
gcode = []
# return only g1-lines
def has_g1(line):
return line[:2].upper() == "G1"
# find position in g1 (x,y,z)
def find_axis(line, axis):
found = False
number = ""
for char in line:
if found:
if char == ".":
number += char
elif char == "-":
number += char
else:
try:
int(char)
number += char
except ValueError:
break
else:
found = char.upper() == axis.upper()
try:
return float(number)
except ValueError:
return None
# save the min or max-values for each axis
def set_mima(line):
global min_x, max_x, min_y, max_y, last_z
current_x = find_axis(line, 'x')
current_y = find_axis(line, 'y')
if current_x is not None:
min_x = min(current_x, min_x)
max_x = max(current_x, max_x)
if current_y is not None:
min_y = min(current_y, min_y)
max_y = max(current_y, max_y)
return min_x, max_x, min_y, max_y
# find z in the code and return it
def find_z(gcode, start_at_line=0):
for i in range(start_at_line, len(gcode)):
my_z = find_axis(gcode[i], 'Z')
if my_z is not None:
return my_z, i
def z_parse(gcode, start_at_line=0, end_at_line=0):
i = start_at_line
all_z = []
line_between_z = []
z_at_line = []
# last_z = 0
last_i = -1
while len(gcode) > i:
try:
z, i = find_z(gcode, i + 1)
except TypeError:
break
all_z.append(z)
z_at_line.append(i)
temp_line = i - last_i -1
line_between_z.append(i - last_i - 1)
# last_z = z
last_i = i
if 0 < end_at_line <= i or temp_line >= min_g1:
# print('break at line {} at heigth {}'.format(i, z))
break
line_between_z = line_between_z[1:]
return all_z, line_between_z, z_at_line
# get the lines which should be the first layer
def get_lines(gcode, minimum):
i = 0
all_z, line_between_z, z_at_line = z_parse(gcode, end_at_line=max_g1)
for count in line_between_z:
i += 1
if count > minimum:
# print('layer: {}:{}'.format(z_at_line[i-1], z_at_line[i]))
return z_at_line[i - 1], z_at_line[i]
with open(input_file, 'r') as file:
lines = 0
for line in file:
lines += 1
if lines > 1000:
break
if has_g1(line):
gcode.append(line)
file.close()
start, end = get_lines(gcode, min_g1)
for i in range(start, end):
set_mima(gcode[i])
print('x_min:{} x_max:{}\ny_min:{} y_max:{}'.format(min_x, max_x, min_y, max_y))
# resize min/max - values for minimum scan
if max_x - min_x < min_size:
offset_x = int((min_size - (max_x - min_x)) / 2 + 0.5) # int round up
# print('min_x! with {}'.format(int(max_x - min_x)))
min_x = int(min_x) - offset_x
max_x = int(max_x) + offset_x
if max_y - min_y < min_size:
offset_y = int((min_size - (max_y - min_y)) / 2 + 0.5) # int round up
# print('min_y! with {}'.format(int(max_y - min_y)))
min_y = int(min_y) - offset_y
max_y = int(max_y) + offset_y
new_command = 'G29 L{0} R{1} F{2} B{3} P{4}\n'.format(min_x,
max_x,
min_y,
max_y,
probing_points)
out_file = open(output_file, 'w')
in_file = open(input_file, 'r')
for line in in_file:
if line[:len(g29_keyword)].upper() == g29_keyword:
out_file.write(new_command)
print('write G29')
else:
out_file.write(line)
file.close()
out_file.close()
print('auto G29 finished')

@ -85,17 +85,31 @@ static volatile bool endstop_z_hit = false;
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif #endif
static bool old_x_min_endstop = false, #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
old_x_max_endstop = false, static bool old_x_min_endstop = false;
old_y_min_endstop = false, #endif
old_y_max_endstop = false, #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
old_z_min_endstop = false, static bool old_x_max_endstop = false;
#ifndef Z_DUAL_ENDSTOPS #endif
old_z_max_endstop = false; #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
#else static bool old_y_min_endstop = false;
old_z_max_endstop = false, #endif
old_z2_min_endstop = false, #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
old_z2_max_endstop = false; static bool old_y_max_endstop = false;
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
static bool old_z_min_endstop = false;
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
static bool old_z_max_endstop = false;
#endif
#ifdef Z_DUAL_ENDSTOPS
#if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
static bool old_z2_min_endstop = false;
#endif
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
static bool old_z2_max_endstop = false;
#endif
#endif #endif
#ifdef Z_PROBE_AND_ENDSTOP #ifdef Z_PROBE_AND_ENDSTOP
@ -449,7 +463,7 @@ ISR(TIMER1_COMPA_vect) {
#ifdef COREXY #ifdef COREXY
// Head direction in -X axis for CoreXY bots. // Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis // If DeltaX == -DeltaY, the movement is only in Y axis
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
if (TEST(out_bits, X_HEAD)) if (TEST(out_bits, X_HEAD))
#else #else
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot) if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
@ -477,9 +491,10 @@ ISR(TIMER1_COMPA_vect) {
} }
} }
#ifdef COREXY #ifdef COREXY
}
// Head direction in -Y axis for CoreXY bots. // Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis // If DeltaX == DeltaY, the movement is only in X axis
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
if (TEST(out_bits, Y_HEAD)) if (TEST(out_bits, Y_HEAD))
#else #else
if (TEST(out_bits, Y_AXIS)) // -direction if (TEST(out_bits, Y_AXIS)) // -direction
@ -494,6 +509,9 @@ ISR(TIMER1_COMPA_vect) {
UPDATE_ENDSTOP(y, Y, max, MAX); UPDATE_ENDSTOP(y, Y, max, MAX);
#endif #endif
} }
#ifdef COREXY
}
#endif
} }
if (TEST(out_bits, Z_AXIS)) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
@ -1227,7 +1245,7 @@ void microstep_init() {
pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT);
const uint8_t microstep_modes[] = MICROSTEP_MODES; const uint8_t microstep_modes[] = MICROSTEP_MODES;
for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++) for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
microstep_mode(i, microstep_modes[i]); microstep_mode(i, microstep_modes[i]);
#endif #endif
} }

@ -83,6 +83,17 @@ unsigned char soft_pwm_bed;
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif #endif
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
static bool thermal_runaway = false;
#if TEMP_SENSOR_BED != 0
static int thermal_runaway_bed_state_machine;
static unsigned long thermal_runaway_bed_timer;
#endif
#endif
//=========================================================================== //===========================================================================
//=============================private variables============================ //=============================private variables============================
//=========================================================================== //===========================================================================
@ -586,7 +597,9 @@ void manage_heater() {
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
unsigned long ms = millis(); unsigned long ms = millis();
#endif
// Loop through all extruders // Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) { for (int e = 0; e < EXTRUDERS; e++) {
@ -1098,8 +1111,8 @@ void disable_heater() {
} }
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250 #define MAX6675_HEAT_INTERVAL 250u
long max6675_previous_millis = MAX6675_HEAT_INTERVAL; unsigned long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000; int max6675_temp = 2000;
static int read_max6675() { static int read_max6675() {

@ -146,16 +146,10 @@ void disable_heater();
void setWatch(); void setWatch();
void updatePID(); void updatePID();
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 void PID_autotune(float temp, int extruder, int ncycles);
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
static int thermal_runaway_state_machine[4]; // = {0,0,0,0}; void setExtruderAutoFanState(int pin, bool state);
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0}; void checkExtruderAutoFans();
static bool thermal_runaway = false;
#if TEMP_SENSOR_BED != 0
static int thermal_runaway_bed_state_machine;
static unsigned long thermal_runaway_bed_timer;
#endif
#endif
FORCE_INLINE void autotempShutdown() { FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP #ifdef AUTOTEMP
@ -167,9 +161,5 @@ FORCE_INLINE void autotempShutdown() {
#endif #endif
} }
void PID_autotune(float temp, int extruder, int ncycles);
void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();
#endif #endif

@ -25,10 +25,6 @@ int absPreheatFanSpeed;
unsigned long message_millis = 0; unsigned long message_millis = 0;
#endif #endif
#ifdef ULTIPANEL
static float manual_feedrate[] = MANUAL_FEEDRATE;
#endif // ULTIPANEL
/* !Configuration settings */ /* !Configuration settings */
//Function pointer to menu functions. //Function pointer to menu functions.
@ -43,10 +39,13 @@ char lcd_status_message[LCD_WIDTH+1] = WELCOME_MSG;
#include "ultralcd_implementation_hitachi_HD44780.h" #include "ultralcd_implementation_hitachi_HD44780.h"
#endif #endif
/* Different menus */ // The main status screen
static void lcd_status_screen(); static void lcd_status_screen();
#ifdef ULTIPANEL #ifdef ULTIPANEL
extern bool powersupply; extern bool powersupply;
static float manual_feedrate[] = MANUAL_FEEDRATE;
static void lcd_main_menu(); static void lcd_main_menu();
static void lcd_tune_menu(); static void lcd_tune_menu();
static void lcd_prepare_menu(); static void lcd_prepare_menu();
@ -67,14 +66,14 @@ static void lcd_sdcard_menu();
#ifdef DELTA_CALIBRATION_MENU #ifdef DELTA_CALIBRATION_MENU
static void lcd_delta_calibrate_menu(); static void lcd_delta_calibrate_menu();
#endif // DELTA_CALIBRATION_MENU #endif
#if defined(MANUAL_BED_LEVELING) #if defined(MANUAL_BED_LEVELING)
#include "mesh_bed_leveling.h" #include "mesh_bed_leveling.h"
static void _lcd_level_bed(); static void _lcd_level_bed();
static void _lcd_level_bed_homing(); static void _lcd_level_bed_homing();
static void lcd_level_bed(); static void lcd_level_bed();
#endif // MANUAL_BED_LEVELING #endif
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
@ -210,12 +209,12 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
/** Used variables to keep track of the menu */ /** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD #ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. volatile uint8_t buttons; // Bits of the pressed buttons.
#else #else
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values volatile uint8_t buttons_reprapworld_keypad; // The reprapworld_keypad shift register values
#endif #endif
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons. volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif #endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc; uint32_t blocking_enc;
@ -224,6 +223,7 @@ uint32_t encoderPosition;
#if (SDCARDDETECT > 0) #if (SDCARDDETECT > 0)
bool lcd_oldcardstatus; bool lcd_oldcardstatus;
#endif #endif
#endif // ULTIPANEL #endif // ULTIPANEL
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */ menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
@ -520,22 +520,21 @@ void _lcd_preheat(int endnum, const float temph, const float tempb, const int fa
void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#if TEMP_SENSOR_1 != 0 //2nd extruder preheat #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0 //more than one extruder present
#if TEMP_SENSOR_1 != 0
void lcd_preheat_pla1() { _lcd_preheat(1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla1() { _lcd_preheat(1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs1() { _lcd_preheat(1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs1() { _lcd_preheat(1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //2nd extruder preheat #endif
#if TEMP_SENSOR_2 != 0
#if TEMP_SENSOR_2 != 0 //3 extruder preheat
void lcd_preheat_pla2() { _lcd_preheat(2, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla2() { _lcd_preheat(2, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs2() { _lcd_preheat(2, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs2() { _lcd_preheat(2, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //3 extruder preheat #endif
#if TEMP_SENSOR_3 != 0
#if TEMP_SENSOR_3 != 0 //4 extruder preheat
void lcd_preheat_pla3() { _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla3() { _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs3() { _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs3() { _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //4 extruder preheat #endif
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //more than one extruder present
void lcd_preheat_pla0123() { void lcd_preheat_pla0123() {
setTargetHotend0(plaPreheatHotendTemp); setTargetHotend0(plaPreheatHotendTemp);
setTargetHotend1(plaPreheatHotendTemp); setTargetHotend1(plaPreheatHotendTemp);
@ -548,7 +547,8 @@ void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTem
setTargetHotend2(absPreheatHotendTemp); setTargetHotend2(absPreheatHotendTemp);
_lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed);
} }
#endif //more than one extruder present
#if TEMP_SENSOR_0 != 0
void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, absPreheatHPBTemp, absPreheatFanSpeed); }
@ -557,18 +557,16 @@ static void lcd_preheat_pla_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H1, lcd_preheat_pla0); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H1, lcd_preheat_pla0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H2, lcd_preheat_pla1); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H2, lcd_preheat_pla1);
#endif //2 extruder preheat #endif
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H3, lcd_preheat_pla2); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H3, lcd_preheat_pla2);
#endif //3 extruder preheat #endif
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H4, lcd_preheat_pla3); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H4, lcd_preheat_pla3);
#endif //4 extruder preheat #endif
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123); MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123);
#endif //all extruder preheat
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_BEDONLY, lcd_preheat_pla_bedonly); MENU_ITEM(function, MSG_PREHEAT_PLA_BEDONLY, lcd_preheat_pla_bedonly);
#endif #endif
@ -579,23 +577,24 @@ static void lcd_preheat_abs_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H1, lcd_preheat_abs0); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H1, lcd_preheat_abs0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H2, lcd_preheat_abs1); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H2, lcd_preheat_abs1);
#endif //2 extruder preheat #endif
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H3, lcd_preheat_abs2); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H3, lcd_preheat_abs2);
#endif //3 extruder preheat #endif
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H4, lcd_preheat_abs3); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H4, lcd_preheat_abs3);
#endif //4 extruder preheat #endif
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123); MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123);
#endif //all extruder preheat
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly); MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly);
#endif #endif
END_MENU(); END_MENU();
} }
#endif
#endif // more than one temperature sensor present
void lcd_cooldown() { void lcd_cooldown() {
setTargetHotend0(0); setTargetHotend0(0);
@ -618,7 +617,7 @@ static void lcd_prepare_menu() {
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets); MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0")); //MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM(submenu, MSG_PREHEAT_PLA, lcd_preheat_pla_menu); MENU_ITEM(submenu, MSG_PREHEAT_PLA, lcd_preheat_pla_menu);
MENU_ITEM(submenu, MSG_PREHEAT_ABS, lcd_preheat_abs_menu); MENU_ITEM(submenu, MSG_PREHEAT_ABS, lcd_preheat_abs_menu);
#else #else

@ -19,8 +19,6 @@
void lcd_setcontrast(uint8_t value); void lcd_setcontrast(uint8_t value);
#endif #endif
static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x)) #define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
#define LCD_ALERTMESSAGEPGM(x) lcd_setalertstatuspgm(PSTR(x)) #define LCD_ALERTMESSAGEPGM(x) lcd_setalertstatuspgm(PSTR(x))

@ -43,7 +43,7 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val)
#define ST7920_NCS() {WRITE(ST7920_CS_PIN,0);} #define ST7920_NCS() {WRITE(ST7920_CS_PIN,0);}
#define ST7920_SET_CMD() {ST7920_SWSPI_SND_8BIT(0xf8);u8g_10MicroDelay();} #define ST7920_SET_CMD() {ST7920_SWSPI_SND_8BIT(0xf8);u8g_10MicroDelay();}
#define ST7920_SET_DAT() {ST7920_SWSPI_SND_8BIT(0xfa);u8g_10MicroDelay();} #define ST7920_SET_DAT() {ST7920_SWSPI_SND_8BIT(0xfa);u8g_10MicroDelay();}
#define ST7920_WRITE_BYTE(a) {ST7920_SWSPI_SND_8BIT((a)&0xf0);ST7920_SWSPI_SND_8BIT((a)<<4);u8g_10MicroDelay();} #define ST7920_WRITE_BYTE(a) {ST7920_SWSPI_SND_8BIT((uint8_t)((a)&0xf0u));ST7920_SWSPI_SND_8BIT((uint8_t)((a)<<4u));u8g_10MicroDelay();}
#define ST7920_WRITE_BYTES(p,l) {uint8_t i;for(i=0;i<l;i++){ST7920_SWSPI_SND_8BIT(*p&0xf0);ST7920_SWSPI_SND_8BIT(*p<<4);p++;}u8g_10MicroDelay();} #define ST7920_WRITE_BYTES(p,l) {uint8_t i;for(i=0;i<l;i++){ST7920_SWSPI_SND_8BIT(*p&0xf0);ST7920_SWSPI_SND_8BIT(*p<<4);p++;}u8g_10MicroDelay();}
uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg)

Loading…
Cancel
Save