Naming and code comments

master
Scott Lahteine 10 years ago
parent c05b347617
commit 09d60e0128

@ -247,7 +247,7 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
extern float homing_feedrate[];
extern bool axis_relative_modes[];
extern int feedmultiply;
extern int feedrate_multiplier;
extern bool volumetric_enabled;
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
@ -309,8 +309,8 @@ extern int fanSpeed;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
#endif
extern millis_t starttime;
extern millis_t stoptime;
extern millis_t print_job_start_ms;
extern millis_t print_job_stop_ms;
// Handling multiple extruders pins
extern uint8_t active_extruder;

@ -67,136 +67,149 @@
#include <SPI.h>
#endif
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home one or more axes
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
// M112 - Emergency stop
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M120 - Enable endstop detection
// M121 - Disable endstop detection
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - Set additional homing offset
// M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 - Set speed factor override percentage: S<factor in percent>
// M221 - Set extrude factor override percentage: S<factor in percent>
// M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - Set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M380 - Activate solenoid on active extruder
// M381 - Disable all solenoids
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Display measured filament diameter
// M500 - Store parameters in EEPROM
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
// M666 - Set delta endstop adjustment
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
/**
* Look here for descriptions of G-codes:
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G-codes online:
* - http://reprap.org/wiki/G-code
* - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
*/
/**
* Implemented Codes
* -------------------
*
* "G" Codes
*
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - Home one or more axes
* G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
* G30 - Single Z Probe, probes bed at current XY location.
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
*
* "M" Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
* syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
* Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move,
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M112 - Emergency stop
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - display message
* M119 - Output Endstop status to serial port
* M120 - Enable endstop detection
* M121 - Disable endstop detection
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - Set additional homing offset
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 - Set speed factor override percentage: S<factor in percent>
* M221 - Set extrude factor override percentage: S<factor in percent>
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C<contrast value> (value 0..63)
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M380 - Activate solenoid on active extruder
* M381 - Disable all solenoids
* M400 - Finish all moves
* M401 - Lower z-probe if present
* M402 - Raise z-probe if present
* M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
* M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
* M406 - Turn off Filament Sensor extrusion control
* M407 - Display measured filament diameter
* M500 - Store parameters in EEPROM
* M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
* M666 - Set delta endstop adjustment
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
*
* ************ SCARA Specific - This can change to suit future G-code regulations
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
* M365 - SCARA calibration: Scaling factor, X, Y, Z axis
* ************* SCARA End ***************
*
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
*/
#ifdef SDSUPPORT
CardReader card;
@ -210,12 +223,16 @@ static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
static int cmd_queue_index_r = 0;
static int cmd_queue_index_w = 0;
static int commands_in_queue = 0;
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply;
int feedrate_multiplier = 100; //100->1 200->2
int saved_feedrate_multiplier;
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
@ -234,9 +251,6 @@ const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float offset[3] = { 0 };
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static int bufindr = 0;
static int bufindw = 0;
static int buflen = 0;
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
@ -247,10 +261,10 @@ const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
millis_t previous_cmd_ms = 0;
static millis_t max_inactive_time = 0;
static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
millis_t starttime = 0; ///< Print job start time
millis_t stoptime = 0; ///< Print job stop time
millis_t print_job_start_ms = 0; ///< Print job start time
millis_t print_job_stop_ms = 0; ///< Print job stop time
static uint8_t target_extruder;
bool CooldownNoWait = true;
bool no_wait_for_cooling = true;
bool target_direction;
#ifdef ENABLE_AUTO_BED_LEVELING
@ -357,7 +371,7 @@ bool target_direction;
#endif
#ifdef FILAMENT_RUNOUT_SENSOR
static bool filrunoutEnqued = false;
static bool filrunoutEnqueued = false;
#endif
#ifdef SDSUPPORT
@ -410,8 +424,10 @@ void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P);
}
#endif //!SDSUPPORT
//Injects the next command from the pending sequence of commands, when possible
//Return false if and only if no command was pending
/**
* Inject the next command from the command queue, when possible
* Return false only if no command was pending
*/
static bool drain_queued_commands_P() {
if (!queued_commands_P) return false;
@ -434,45 +450,46 @@ static bool drain_queued_commands_P() {
return true;
}
//Record one or many commands to run from program memory.
//Aborts the current queue, if any.
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueuecommands_P(const char* pgcode) {
queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible)
}
//adds a single command to the main command buffer, from RAM
//that is really done in a non-safe way.
//needs overworking someday
//Returns false if it failed to do so
bool enqueuecommand(const char *cmd)
{
if(*cmd==';')
return false;
if(buflen >= BUFSIZE)
return false;
//this is dangerous if a mixing of serial and this happens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
/**
* Copy a command directly into the main command buffer, from RAM.
*
* This is done in a non-safe way and needs a rework someday.
* Returns false if it doesn't add any command
*/
bool enqueuecommand(const char *cmd) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
// This is dangerous if a mixing of serial and this happens
char *command = command_queue[cmd_queue_index_w];
strcpy(command, cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueing);
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOPGM(MSG_Enqueueing);
SERIAL_ECHO(command);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue++;
return true;
}
void setup_killpin()
{
void setup_killpin() {
#if HAS_KILL
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN, HIGH);
#endif
}
void setup_filrunoutpin()
{
void setup_filrunoutpin() {
#if HAS_FILRUNOUT
pinMode(FILRUNOUT_PIN, INPUT);
#ifdef ENDSTOPPULLUP_FIL_RUNOUT
@ -482,8 +499,7 @@ void setup_filrunoutpin()
}
// Set home pin
void setup_homepin(void)
{
void setup_homepin(void) {
#if HAS_HOME
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN, HIGH);
@ -491,15 +507,13 @@ void setup_homepin(void)
}
void setup_photpin()
{
void setup_photpin() {
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
void setup_powerhold() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
@ -512,15 +526,13 @@ void setup_powerhold()
#endif
}
void suicide()
{
void suicide() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
void servo_init() {
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servos[0].attach(SERVO0_PIN);
#endif
@ -547,6 +559,24 @@ void servo_init()
#endif
}
/**
* Marlin entry-point: Set up before the program loop
* - Set up the kill pin, filament runout, power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for:
* temperature
* planner
* watchdog
* stepper
* photo pin
* servos
* LCD controller
* Digipot I2C
* Z probe sled
* status LEDs
*/
void setup() {
setup_killpin();
setup_filrunoutpin();
@ -587,7 +617,7 @@ void setup() {
#ifdef SDSUPPORT
for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
#endif // !SDSUPPORT
#endif
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings();
@ -628,36 +658,54 @@ void setup() {
#endif
}
/**
* The main Marlin program loop
*
* - Save or log commands to SD
* - Process available commands (if not saving)
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
*/
void loop() {
if (buflen < BUFSIZE - 1) get_command();
if (commands_in_queue < BUFSIZE - 1) get_command();
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if (buflen) {
if (commands_in_queue) {
#ifdef SDSUPPORT
if (card.saving) {
if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
card.write_command(cmdbuffer[bufindr]);
char *command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
else {
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
process_commands();
process_commands(); // The card is saving because it's logging
else
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
else {
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
}
else
process_commands();
#else
process_commands();
#endif // SDSUPPORT
buflen--;
bufindr = (bufindr + 1) % BUFSIZE;
commands_in_queue--;
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
}
// Check heater every n milliseconds
manage_heater();
@ -666,12 +714,20 @@ void loop() {
lcd_update();
}
/**
* Add to the circular command queue the next command from:
* - The command-injection queue (queued_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
*/
void get_command() {
if (drain_queued_commands_P()) return; // priority is given to non-serial commands
while (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
serial_char = MYSERIAL.read();
if (serial_char == '\n' || serial_char == '\r' ||
serial_count >= (MAX_CMD_SIZE - 1)
) {
@ -680,16 +736,17 @@ void get_command() {
if (!serial_count) return; // shortcut for empty lines
cmdbuffer[bufindw][serial_count] = 0; // terminate string
char *command = command_queue[cmd_queue_index_w];
command[serial_count] = 0; // terminate string
#ifdef SDSUPPORT
fromsd[bufindw] = false;
fromsd[cmd_queue_index_w] = false;
#endif
if (strchr(cmdbuffer[bufindw], 'N') != NULL) {
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
if (strchr(command, 'N') != NULL) {
strchr_pointer = strchr(command, 'N');
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
if (gcode_N != gcode_LastN + 1 && strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) {
if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
SERIAL_ERRORLN(gcode_LastN);
@ -699,11 +756,11 @@ void get_command() {
return;
}
if (strchr(cmdbuffer[bufindw], '*') != NULL) {
if (strchr(command, '*') != NULL) {
byte checksum = 0;
byte count = 0;
while (cmdbuffer[bufindw][count] != '*') checksum ^= cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
while (command[count] != '*') checksum ^= command[count++];
strchr_pointer = strchr(command, '*');
if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
SERIAL_ERROR_START;
@ -728,7 +785,7 @@ void get_command() {
//if no errors, continue parsing
}
else { // if we don't receive 'N' but still see '*'
if ((strchr(cmdbuffer[bufindw], '*') != NULL)) {
if ((strchr(command, '*') != NULL)) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
@ -737,8 +794,8 @@ void get_command() {
}
}
if (strchr(cmdbuffer[bufindw], 'G') != NULL) {
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
if (strchr(command, 'G') != NULL) {
strchr_pointer = strchr(command, 'G');
switch (strtol(strchr_pointer + 1, NULL, 10)) {
case 0:
case 1:
@ -755,24 +812,24 @@ void get_command() {
}
// If command was e-stop process now
if (strcmp(cmdbuffer[bufindw], "M112") == 0) kill();
if (strcmp(command, "M112") == 0) kill();
bufindw = (bufindw + 1) % BUFSIZE;
buflen += 1;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue += 1;
serial_count = 0; //clear buffer
}
else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0 && buflen < BUFSIZE) {
if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
cmdbuffer[bufindw][serial_count++] = serial_char;
command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
// otherwise do nothing
}
else { // its not a newline, carriage return or escape char
if (serial_char == ';') comment_mode = true;
if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
}
@ -785,9 +842,9 @@ void get_command() {
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering = false;
if (buflen == 0) stop_buffering = false;
if (commands_in_queue == 0) stop_buffering = false;
while (!card.eof() && buflen < BUFSIZE && !stop_buffering) {
while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
int16_t n = card.get();
serial_char = (char)n;
if (serial_char == '\n' || serial_char == '\r' ||
@ -796,9 +853,9 @@ void get_command() {
) {
if (card.eof()) {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
stoptime = millis();
print_job_stop_ms = millis();
char time[30];
millis_t t = (stoptime - starttime) / 1000;
millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
int hours = t / 60 / 60, minutes = (t / 60) % 60;
sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
SERIAL_ECHO_START;
@ -813,18 +870,18 @@ void get_command() {
comment_mode = false; //for new command
return; //if empty line
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
// if (!comment_mode) {
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
fromsd[cmd_queue_index_w] = true;
commands_in_queue += 1;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
// }
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else {
if (serial_char == ';') comment_mode = true;
if (!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
}
@ -854,7 +911,7 @@ long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
bool code_seen(char code) {
strchr_pointer = strchr(cmdbuffer[bufindr], code);
strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
@ -1023,7 +1080,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
void prepare_move_raw() {
refresh_cmd_timeout();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
set_current_to_destination();
}
#endif
@ -1176,8 +1233,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
static void setup_for_endstop_move() {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
saved_feedrate_multiplier = feedrate_multiplier;
feedrate_multiplier = 100;
refresh_cmd_timeout();
enable_endstops(true);
}
@ -1187,7 +1244,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
}
@ -1610,12 +1667,12 @@ static void homeaxis(AxisEnum axis) {
#define SLED_DOCKING_OFFSET 0
#endif
//
// Method to dock/undock a sled designed by Charles Bell.
//
// dock[in] If true, move to MAX_X and engage the electromagnet
// offset[in] The additional distance to move to adjust docking location
//
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* dock[in] If true, move to MAX_X and engage the electromagnet
* offset[in] The additional distance to move to adjust docking location
*/
static void dock_sled(bool dock, int offset=0) {
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
@ -1649,9 +1706,10 @@ static void homeaxis(AxisEnum axis) {
inline void gcode_G0_G1() {
if (IsRunning()) {
get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT
if (autoretract_enabled)
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
@ -1661,7 +1719,9 @@ inline void gcode_G0_G1() {
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
}
@ -1758,8 +1818,8 @@ inline void gcode_G28() {
#endif
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
saved_feedrate_multiplier = feedrate_multiplier;
feedrate_multiplier = 100;
refresh_cmd_timeout();
enable_endstops(true);
@ -2013,7 +2073,7 @@ inline void gcode_G28() {
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
endstops_hit_on_purpose(); // clear endstop hit flags
}
@ -2659,7 +2719,7 @@ inline void gcode_M17() {
*/
inline void gcode_M24() {
card.startFileprint();
starttime = millis();
print_job_start_ms = millis();
}
/**
@ -2691,7 +2751,7 @@ inline void gcode_M17() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(codepos, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
@ -2714,7 +2774,7 @@ inline void gcode_M17() {
card.closefile();
char* starpos = strchr(strchr_pointer + 4, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
@ -2728,8 +2788,8 @@ inline void gcode_M17() {
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
stoptime = millis();
millis_t t = (stoptime - starttime) / 1000;
print_job_stop_ms = millis();
millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
int min = t / 60, sec = t % 60;
char time[30];
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
@ -2769,7 +2829,7 @@ inline void gcode_M31() {
card.startFileprint();
if (!call_procedure)
starttime = millis(); //procedure calls count as normal print time.
print_job_start_ms = millis(); //procedure calls count as normal print time.
}
}
@ -2779,7 +2839,7 @@ inline void gcode_M31() {
inline void gcode_M928() {
char* starpos = strchr(strchr_pointer + 5, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
@ -3185,8 +3245,8 @@ inline void gcode_M109() {
LCD_MESSAGEPGM(MSG_HEATING);
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R')) {
no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) {
float temp = code_value();
setTargetHotend(temp, target_extruder);
#ifdef DUAL_X_CARRIAGE
@ -3218,7 +3278,7 @@ inline void gcode_M109() {
while((!cancel_heatup)&&((residency_start_ms == -1) ||
(residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
#endif //TEMP_RESIDENCY_TIME
{ // while loop
@ -3258,7 +3318,7 @@ inline void gcode_M109() {
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
refresh_cmd_timeout();
starttime = previous_cmd_ms;
print_job_start_ms = previous_cmd_ms;
}
#if HAS_TEMP_BED
@ -3269,8 +3329,8 @@ inline void gcode_M109() {
*/
inline void gcode_M190() {
LCD_MESSAGEPGM(MSG_BED_HEATING);
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R'))
no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R'))
setTargetBed(code_value());
millis_t temp_ms = millis();
@ -3278,7 +3338,7 @@ inline void gcode_M109() {
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
millis_t ms = millis();
if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
temp_ms = ms;
@ -3371,7 +3431,7 @@ inline void gcode_M140() {
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/
inline void gcode_M81() {
disable_heater();
disable_all_heaters();
st_synchronize();
disable_e0();
disable_e1();
@ -3803,7 +3863,7 @@ inline void gcode_M206() {
default:
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHO(command_queue[cmd_queue_index_r]);
SERIAL_ECHOLNPGM("\"");
return;
}
@ -3849,7 +3909,7 @@ inline void gcode_M206() {
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedmultiply = code_value();
if (code_seen('S')) feedrate_multiplier = code_value();
}
/**
@ -4485,7 +4545,7 @@ inline void gcode_M503() {
#endif
#ifdef FILAMENT_RUNOUT_SENSOR
filrunoutEnqued = false;
filrunoutEnqueued = false;
#endif
}
@ -4619,6 +4679,9 @@ inline void gcode_M999() {
FlushSerialRequestResend();
}
/**
* T0-T3: Switch tool, usually switching extruders
*/
inline void gcode_T() {
int tmp_extruder = code_value();
if (tmp_extruder >= EXTRUDERS) {
@ -5208,7 +5271,7 @@ void process_commands() {
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHO(command_queue[cmd_queue_index_r]);
SERIAL_ECHOLNPGM("\"");
}
@ -5216,7 +5279,7 @@ void process_commands() {
}
void FlushSerialRequestResend() {
//char cmdbuffer[bufindr][100]="Resend:";
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
@ -5226,7 +5289,7 @@ void FlushSerialRequestResend() {
void ClearToSend() {
refresh_cmd_timeout();
#ifdef SDSUPPORT
if (fromsd[bufindr]) return;
if (fromsd[cmd_queue_index_r]) return;
#endif
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
@ -5470,7 +5533,7 @@ void prepare_move() {
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
@ -5489,7 +5552,7 @@ void prepare_move() {
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
}
#endif // SCARA
@ -5502,7 +5565,7 @@ void prepare_move() {
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return;
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
@ -5516,7 +5579,7 @@ void prepare_move() {
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedmultiply/100.0, active_extruder);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
}
#endif // DELTA
@ -5556,16 +5619,16 @@ void prepare_move() {
#endif // DUAL_X_CARRIAGE
#if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves
// Do not use feedrate_multiplier for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination();
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
return;
#else
line_to_destination(feedrate * feedmultiply / 100.0);
line_to_destination(feedrate * feedrate_multiplier / 100.0);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)
@ -5577,7 +5640,7 @@ void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
@ -5762,7 +5825,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
filrunout();
#endif
if (buflen < BUFSIZE - 1) get_command();
if (commands_in_queue < BUFSIZE - 1) get_command();
millis_t ms = millis();
@ -5898,7 +5961,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
void kill()
{
cli(); // Stop interrupts
disable_heater();
disable_all_heaters();
disable_all_steppers();
@ -5919,18 +5982,18 @@ void kill()
}
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout()
{
if (filrunoutEnqued == false) {
filrunoutEnqued = true;
void filrunout() {
if (!filrunoutEnqueued) {
filrunoutEnqueued = true;
enqueuecommand("M600");
}
}
#endif
void Stop()
{
disable_heater();
void Stop() {
disable_all_heaters();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart

@ -110,7 +110,7 @@
// Serial Console Messages (do not translate those!)
#define MSG_Enqueing "enqueing \""
#define MSG_Enqueueing "enqueueing \""
#define MSG_POWERUP "PowerUp"
#define MSG_EXTERNAL_RESET " External Reset"
#define MSG_BROWNOUT_RESET " Brown out Reset"

@ -269,8 +269,8 @@ static void lcd_implementation_status_screen() {
}
u8g.setPrintPos(80,48);
if (starttime != 0) {
uint16_t time = (millis() - starttime) / 60000;
if (print_job_start_ms != 0) {
uint16_t time = (millis() - print_job_start_ms) / 60000;
lcd_print(itostr2(time/60));
lcd_print(':');
lcd_print(itostr2(time%60));
@ -337,7 +337,7 @@ static void lcd_implementation_status_screen() {
lcd_print(LCD_STR_FEEDRATE[0]);
lcd_setFont(FONT_STATUSMENU);
u8g.setPrintPos(12,49);
lcd_print(itostr3(feedmultiply));
lcd_print(itostr3(feedrate_multiplier));
lcd_print('%');
// Status line

@ -110,7 +110,7 @@
// Serial Console Messages (do not translate those!)
#define MSG_Enqueing "enqueing \""
#define MSG_Enqueueing "enqueueing \""
#define MSG_POWERUP "PowerUp"
#define MSG_EXTERNAL_RESET " External Reset"
#define MSG_BROWNOUT_RESET " Brown out Reset"

@ -219,7 +219,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_heater(); // switch off all heaters.
disable_all_heaters(); // switch off all heaters.
if (extruder < 0)
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
@ -458,11 +458,11 @@ inline void _temp_error(int e, const char *msg1, const char *msg2) {
}
void max_temp_error(uint8_t e) {
disable_heater();
disable_all_heaters();
_temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
}
void min_temp_error(uint8_t e) {
disable_heater();
disable_all_heaters();
_temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
}
void bed_max_temp_error(void) {
@ -579,6 +579,14 @@ float get_pid_output(int e) {
}
#endif
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void manage_heater() {
if (!temp_meas_ready) return;
@ -623,7 +631,7 @@ void manage_heater() {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
disable_all_heaters();
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
}
#endif // TEMP_SENSOR_1_AS_REDUNDANT
@ -637,6 +645,21 @@ void manage_heater() {
}
#endif
// Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
if (vm < 0.01) vm = 0.01;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif //FILAMENT_SENSOR
#ifndef PIDTEMPBED
if (ms < next_bed_check_ms) return;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
@ -653,22 +676,22 @@ void manage_heater() {
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
#elif defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
soft_pwm_bed = MAX_BED_POWER >> 1;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
#else // BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
soft_pwm_bed = MAX_BED_POWER >> 1;
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_bed = 0;
@ -676,21 +699,6 @@ void manage_heater() {
}
#endif
#endif //TEMP_SENSOR_BED != 0
// Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
if (vm < 0.01) vm = 0.01;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif //FILAMENT_SENSOR
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
@ -709,23 +717,18 @@ static float analog2temp(int raw, uint8_t e) {
kill();
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
if (e == 0) return 0.25 * raw;
#endif
if(heater_ttbl_map[e] != NULL)
{
if (heater_ttbl_map[e] != NULL) {
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][0]) > raw)
{
for (i = 1; i < heater_ttbllen_map[e]; i++) {
if (PGM_RD_W((*tt)[i][0]) > raw) {
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
@ -749,10 +752,8 @@ static float analog2tempBed(int raw) {
float celsius = 0;
byte i;
for (i=1; i<BEDTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
{
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
@ -816,11 +817,11 @@ static void updateTemperaturesFromRawValues() {
#endif
void tp_init()
{
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void tp_init() {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=BIT(JTD);
@ -1059,7 +1060,7 @@ void setWatch() {
SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
if (heater_id < 0) SERIAL_ERRORLNPGM("bed"); else SERIAL_ERRORLN(heater_id);
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY);
disable_heater();
disable_all_heaters();
disable_all_steppers();
for (;;) {
manage_heater();
@ -1070,7 +1071,7 @@ void setWatch() {
#endif // HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
void disable_heater() {
void disable_all_heaters() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0);
@ -1208,11 +1209,15 @@ static void set_current_temp_raw() {
temp_meas_ready = true;
}
//
// Timer 0 is shared with millies
//
/**
* Timer 0 is shared with millies
* - Manage PWM to all the heaters and fan
* - Update the raw temperature values
* - Check new temperature values for MIN/MAX errors
* - Step the babysteps value for each axis towards 0
*/
ISR(TIMER0_COMPB_vect) {
//these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0;
static TempState temp_state = StartupDelay;
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
@ -1414,6 +1419,7 @@ ISR(TIMER0_COMPB_vect) {
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
// Prepare or measure a sensor, each one every 12th frame
switch(temp_state) {
case PrepareTemp_0:
#if HAS_TEMP_0
@ -1587,11 +1593,11 @@ ISR(TIMER0_COMPB_vect) {
if (curTodo > 0) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
babystepsTodo[axis]--; //fewer to do next time
}
else if (curTodo < 0) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
babystepsTodo[axis]++; //fewer to do next time
}
}
#endif //BABYSTEPPING

@ -129,7 +129,7 @@ HOTEND_ROUTINES(0);
#endif
int getHeaterPower(int heater);
void disable_heater();
void disable_all_heaters();
void setWatch();
void updatePID();

@ -152,10 +152,10 @@ static void lcd_status_screen();
* lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
* menu_action_function(lcd_sdcard_pause)
*
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedmultiply, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedmultiply, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedmultiply, 10, 999)
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
*
*/
#define MENU_ITEM(type, label, args...) do { \
@ -328,28 +328,28 @@ static void lcd_status_screen() {
#ifdef ULTIPANEL_FEEDMULTIPLY
// Dead zone at 100% feedrate
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100)) {
if ((feedrate_multiplier < 100 && (feedrate_multiplier + int(encoderPosition)) > 100) ||
(feedrate_multiplier > 100 && (feedrate_multiplier + int(encoderPosition)) < 100)) {
encoderPosition = 0;
feedmultiply = 100;
feedrate_multiplier = 100;
}
if (feedmultiply == 100) {
if (feedrate_multiplier == 100) {
if (int(encoderPosition) > ENCODER_FEEDRATE_DEADZONE) {
feedmultiply += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
feedrate_multiplier += int(encoderPosition) - ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
else if (int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE) {
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
feedrate_multiplier += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
}
else {
feedmultiply += int(encoderPosition);
feedrate_multiplier += int(encoderPosition);
encoderPosition = 0;
}
#endif // ULTIPANEL_FEEDMULTIPLY
feedmultiply = constrain(feedmultiply, 10, 999);
feedrate_multiplier = constrain(feedrate_multiplier, 10, 999);
#endif //ULTIPANEL
}
@ -456,7 +456,7 @@ void lcd_set_home_offsets() {
static void lcd_tune_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif

@ -550,7 +550,7 @@ static void lcd_implementation_status_screen() {
lcd.setCursor(0, 2);
lcd.print(LCD_STR_FEEDRATE[0]);
lcd.print(itostr3(feedmultiply));
lcd.print(itostr3(feedrate_multiplier));
lcd.print('%');
#if LCD_WIDTH > 19 && defined(SDSUPPORT)
@ -567,8 +567,8 @@ static void lcd_implementation_status_screen() {
lcd.setCursor(LCD_WIDTH - 6, 2);
lcd.print(LCD_STR_CLOCK[0]);
if (starttime != 0) {
uint16_t time = millis()/60000 - starttime/60000;
if (print_job_start_ms != 0) {
uint16_t time = millis()/60000 - print_job_start_ms/60000;
lcd.print(itostr2(time/60));
lcd.print(':');
lcd.print(itostr2(time%60));

Loading…
Cancel
Save