Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into Marlin_v1

master
Bernhard 13 years ago
commit 12e8edcac3

@ -170,6 +170,7 @@ const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0 #define X_ENABLE_ON 0
@ -279,8 +280,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#ifdef ADVANCE #ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .3 #define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7 #define D_FILAMENT 2.85
#define STEPS_MM_E 65 #define STEPS_MM_E 836
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)

@ -529,6 +529,8 @@ FORCE_INLINE void process_commands()
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
feedmultiply = 100; feedmultiply = 100;
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i]; destination[i] = current_position[i];
} }
@ -564,6 +566,9 @@ FORCE_INLINE void process_commands()
HOMEAXIS(Z); HOMEAXIS(Z);
current_position[2]=code_value()+add_homeing[2]; current_position[2]=code_value()+add_homeing[2];
} }
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate; feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply; feedmultiply = saved_feedmultiply;

@ -200,7 +200,6 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
// block->accelerate_until = accelerate_steps; // block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps; // block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy. if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps; block->accelerate_until = accelerate_steps;
@ -484,7 +483,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count <=dropsegments) { return; }; if (block->step_event_count <=dropsegments) { return; };
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
@ -725,7 +724,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
else { else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
block->advance = advance; block->advance = advance;
if(acc_dist == 0) { if(acc_dist == 0) {
block->advance_rate = 0; block->advance_rate = 0;
@ -734,6 +733,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->advance_rate = advance / (float)acc_dist; block->advance_rate = advance / (float)acc_dist;
} }
} }
/*
SERIAL_ECHO_START;
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE #endif // ADVANCE

@ -56,9 +56,9 @@ static long counter_x, // Counter variables for the bresenham line tracer
volatile static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static short old_advance = 0; static long old_advance = 0;
#endif #endif
static short e_steps; static long e_steps;
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
@ -79,13 +79,20 @@ static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false; static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false; static bool old_z_max_endstop=false;
static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
//=========================================================================== //===========================================================================
//=============================functions ============================ //=============================functions ============================
//=========================================================================== //===========================================================================
#ifdef ENDSTOPS_ONLY_FOR_HOMING
#define CHECK_ENDSTOPS if(check_endstops)
#else
#define CHECK_ENDSTOPS
#endif
// intRes = intIn1 * intIn2 >> 16 // intRes = intIn1 * intIn2 >> 16
// uses: // uses:
@ -191,6 +198,11 @@ void endstops_hit_on_purpose()
endstop_z_hit=false; endstop_z_hit=false;
} }
void enable_endstops(bool check)
{
check_endstops = check;
}
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
// / | | \ /| |\ | // / | | \ /| |\ |
@ -254,6 +266,9 @@ FORCE_INLINE void trapezoid_generator_reset() {
#ifdef ADVANCE #ifdef ADVANCE
advance = current_block->initial_advance; advance = current_block->initial_advance;
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif #endif
deceleration_time = 0; deceleration_time = 0;
// step_rate to timer interval // step_rate to timer interval
@ -261,6 +276,17 @@ FORCE_INLINE void trapezoid_generator_reset() {
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
OCR1A_nominal = calc_timer(current_block->nominal_rate); OCR1A_nominal = calc_timer(current_block->nominal_rate);
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
@ -295,82 +321,100 @@ ISR(TIMER1_COMPA_vect)
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR); WRITE(X_DIR_PIN, INVERT_X_DIR);
count_direction[X_AXIS]=-1; count_direction[X_AXIS]=-1;
#if X_MIN_PIN > -1 CHECK_ENDSTOPS
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); {
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { #if X_MIN_PIN > -1
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
endstop_x_hit=true; if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
step_events_completed = current_block->step_event_count; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
} endstop_x_hit=true;
old_x_min_endstop = x_min_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_x_min_endstop = x_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR); WRITE(X_DIR_PIN,!INVERT_X_DIR);
count_direction[X_AXIS]=1; count_direction[X_AXIS]=1;
#if X_MAX_PIN > -1 CHECK_ENDSTOPS
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); {
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ #if X_MAX_PIN > -1
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
endstop_x_hit=true; if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
step_events_completed = current_block->step_event_count; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
} endstop_x_hit=true;
old_x_max_endstop = x_max_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_x_max_endstop = x_max_endstop;
#endif
}
} }
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR); WRITE(Y_DIR_PIN,INVERT_Y_DIR);
count_direction[Y_AXIS]=-1; count_direction[Y_AXIS]=-1;
#if Y_MIN_PIN > -1 CHECK_ENDSTOPS
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); {
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { #if Y_MIN_PIN > -1
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
endstop_y_hit=true; if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
step_events_completed = current_block->step_event_count; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
} endstop_y_hit=true;
old_y_min_endstop = y_min_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_y_min_endstop = y_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR); WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
#if Y_MAX_PIN > -1 CHECK_ENDSTOPS
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); {
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ #if Y_MAX_PIN > -1
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
endstop_y_hit=true; if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
step_events_completed = current_block->step_event_count; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
} endstop_y_hit=true;
old_y_max_endstop = y_max_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_y_max_endstop = y_max_endstop;
#endif
}
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR); WRITE(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS]=-1;
#if Z_MIN_PIN > -1 CHECK_ENDSTOPS
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); {
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { #if Z_MIN_PIN > -1
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
endstop_z_hit=true; if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
step_events_completed = current_block->step_event_count; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
} endstop_z_hit=true;
old_z_min_endstop = z_min_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_z_min_endstop = z_min_endstop;
#endif
}
} }
else { // +direction else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR); WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
count_direction[Z_AXIS]=1; count_direction[Z_AXIS]=1;
#if Z_MAX_PIN > -1 CHECK_ENDSTOPS
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); {
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { #if Z_MAX_PIN > -1
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
endstop_z_hit=true; if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
step_events_completed = current_block->step_event_count; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
} endstop_z_hit=true;
old_z_max_endstop = z_max_endstop; step_events_completed = current_block->step_event_count;
#endif }
old_z_max_endstop = z_max_endstop;
#endif
}
} }
#ifndef ADVANCE #ifndef ADVANCE
@ -383,6 +427,9 @@ ISR(TIMER1_COMPA_vect)
count_direction[E_AXIS]=-1; count_direction[E_AXIS]=-1;
} }
#endif //!ADVANCE #endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
@ -391,19 +438,12 @@ ISR(TIMER1_COMPA_vect)
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
CRITICAL_SECTION_START;
e_steps--; e_steps--;
CRITICAL_SECTION_END;
} }
else { else {
CRITICAL_SECTION_START;
e_steps++; e_steps++;
CRITICAL_SECTION_END;
} }
} }
// Do E steps + advance steps
e_steps += ((advance >> 16) - old_advance);
old_advance = advance >> 16;
#endif //ADVANCE #endif //ADVANCE
counter_x += current_block->steps_x; counter_x += current_block->steps_x;
@ -462,6 +502,11 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate; advance += advance_rate;
} }
//if(advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif #endif
} }
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
@ -486,8 +531,10 @@ ISR(TIMER1_COMPA_vect)
for(int8_t i=0; i < step_loops; i++) { for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate; advance -= advance_rate;
} }
if(advance < final_advance) if(advance < final_advance) advance = final_advance;
advance = final_advance; // Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif //ADVANCE #endif //ADVANCE
} }
else { else {
@ -508,7 +555,7 @@ ISR(TIMER1_COMPA_vect)
// Timer 0 is shared with millies // Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) ISR(TIMER0_COMPA_vect)
{ {
old_OCR0A += 25; // ~10kHz interrupt old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A; OCR0A = old_OCR0A;
// Set E direction (Depends on E direction + advance) // Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;) { for(unsigned char i=0; i<4;) {
@ -520,7 +567,7 @@ ISR(TIMER1_COMPA_vect)
e_steps++; e_steps++;
WRITE(E_STEP_PIN, HIGH); WRITE(E_STEP_PIN, HIGH);
} }
if (e_steps > 0) { else if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR); WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--; e_steps--;
WRITE(E_STEP_PIN, HIGH); WRITE(E_STEP_PIN, HIGH);
@ -649,6 +696,13 @@ void st_init()
e_steps = 0; e_steps = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE #endif //ADVANCE
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#else
enable_endstops(true);
#endif
sei(); sei();
} }

@ -44,6 +44,8 @@ void st_wake_up();
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops(); void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
void enable_endstops(bool check); // Enable/disable endstop checking
void checkStepperErrors(); //Print errors detected by the stepper void checkStepperErrors(); //Print errors detected by the stepper
void finishAndDisableSteppers(); void finishAndDisableSteppers();

Loading…
Cancel
Save