M665 rework and related issues (all delta's)

- Making M665 compatible with repetier (see
http://reprap.org/wiki/G_code#M665:_Set_delta_configuration)

- M665 B also sets the radius for manual calibration menu

- Converting tower ajustment definitions to arrays - tower angle
corrections compatible with Esher 3D wizzard

- Only tower angles need to be adjustable with M665 and stored to EEPROM
- tower radius and diag rod can be adjusted in the FW only with #define
master
LVD-AC 7 years ago committed by teemuatlut
parent e66d9f1313
commit 13c8493878

@ -691,43 +691,20 @@
* Delta radius/rod trimmers/angle trimmers * Delta radius/rod trimmers/angle trimmers
*/ */
#if ENABLED(DELTA) #if ENABLED(DELTA)
#ifndef DELTA_ENDSTOP_ADJ #ifndef DELTA_CALIBRATION_RADIUS
#define DELTA_ENDSTOP_ADJ { 0 } #define DELTA_CALIBRATION_RADIUS DELTA_PRINTABLE_RADIUS - 10
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_1
#define DELTA_RADIUS_TRIM_TOWER_1 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_2
#define DELTA_RADIUS_TRIM_TOWER_2 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_3
#define DELTA_RADIUS_TRIM_TOWER_3 0.0
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#endif #endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2 #ifndef DELTA_ENDSTOP_ADJ
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 #define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 }
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0
#endif
#ifndef DELTA_TOWER_ANGLE_TRIM_1
#define DELTA_TOWER_ANGLE_TRIM_1 0.0
#endif #endif
#ifndef DELTA_TOWER_ANGLE_TRIM_2 #ifndef DELTA_TOWER_ANGLE_TRIM
#define DELTA_TOWER_ANGLE_TRIM_2 0.0 #define DELTA_TOWER_ANGLE_TRIM {0.0, 0.0}
#endif #endif
#ifndef DELTA_TOWER_ANGLE_TRIM_3 #ifndef DELTA_RADIUS_TRIM_TOWER
#define DELTA_TOWER_ANGLE_TRIM_3 0.0 #define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#endif #endif
#if ENABLED(DELTA_AUTO_CALIBRATION) #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER
#ifndef H_FACTOR #define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define H_FACTOR 1.00
#endif
#ifndef R_FACTOR
#define R_FACTOR -2.25
#endif
#endif #endif
#endif #endif

@ -302,9 +302,9 @@ float code_value_temp_diff();
extern float endstop_adj[ABC], extern float endstop_adj[ABC],
delta_radius, delta_radius,
delta_diagonal_rod, delta_diagonal_rod,
delta_calibration_radius,
delta_segments_per_second, delta_segments_per_second,
delta_diagonal_rod_trim[ABC], delta_tower_angle_trim[2],
delta_tower_angle_trim[ABC],
delta_clip_start_height; delta_clip_start_height;
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#elif IS_SCARA #elif IS_SCARA

@ -585,10 +585,10 @@ static uint8_t target_extruder;
// These values are loaded or reset at boot time when setup() calls // These values are loaded or reset at boot time when setup() calls
// settings.load(), which calls recalc_delta_settings(). // settings.load(), which calls recalc_delta_settings().
float delta_radius, float delta_radius,
delta_tower_angle_trim[ABC], delta_tower_angle_trim[2],
delta_tower[ABC][2], delta_tower[ABC][2],
delta_diagonal_rod, delta_diagonal_rod,
delta_diagonal_rod_trim[ABC], delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC], delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second, delta_segments_per_second,
delta_clip_start_height = Z_MAX_POS; delta_clip_start_height = Z_MAX_POS;
@ -5109,8 +5109,8 @@ inline void gcode_G28() {
if (probe_points >= 3) { if (probe_points >= 3) {
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
z_at_pt[0] += probe_pt( z_at_pt[0] += probe_pt(
0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), 0.1 * cos(RADIANS(180 + 30 * axis)) * (delta_calibration_radius),
0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1); 0.1 * sin(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), true, 1);
} }
center_points += 3; center_points += 3;
z_at_pt[0] /= center_points; z_at_pt[0] /= center_points;
@ -5124,8 +5124,8 @@ inline void gcode_G28() {
if (probe_points != 1) { if (probe_points != 1) {
for (uint8_t axis = start; axis < 13; axis += step_axis) for (uint8_t axis = start; axis < 13; axis += step_axis)
z_at_pt[axis] += probe_pt( z_at_pt[axis] += probe_pt(
cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), cos(RADIANS(180 + 30 * axis)) * (delta_calibration_radius),
sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1 sin(RADIANS(180 + 30 * axis)) * (delta_calibration_radius), true, 1
); );
if (probe_points == 4) step_axis = 2; if (probe_points == 4) step_axis = 2;
@ -5308,7 +5308,7 @@ inline void gcode_G28() {
} }
SERIAL_EOL; SERIAL_EOL;
if (zero_std_dev >= test_precision) if (zero_std_dev >= test_precision)
SERIAL_PROTOCOLLNPGM("Save with M500"); SERIAL_PROTOCOLLNPGM("save with M500 and/or copy to configuration.h");
} }
else { // forced end else { // forced end
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
@ -7546,12 +7546,13 @@ inline void gcode_M205() {
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
if (code_seen('R')) delta_radius = code_value_linear_units(); if (code_seen('R')) delta_radius = code_value_linear_units();
if (code_seen('S')) delta_segments_per_second = code_value_float(); if (code_seen('S')) delta_segments_per_second = code_value_float();
if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units(); if (code_seen('B')) delta_calibration_radius = code_value_float();
if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units(); if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units(); if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); if (code_seen('Z')) { // rotate all 3 axis for Z = 0
if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); delta_tower_angle_trim[A_AXIS] += code_value_linear_units();
if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units(); delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
}
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
/** /**
@ -10555,15 +10556,17 @@ void ok_to_send() {
* settings have been changed (e.g., by M665). * settings have been changed (e.g., by M665).
*/ */
void recalc_delta_settings(float radius, float diagonal_rod) { void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower delta_tower[A_AXIS][X_AXIS] = -cos(RADIANS(30 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); delta_tower[A_AXIS][Y_AXIS] = -sin(RADIANS(30 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(30 - delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); delta_tower[B_AXIS][Y_AXIS] = -sin(RADIANS(30 - delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]); delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]); delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
} }
#if ENABLED(DELTA_FAST_SQRT) #if ENABLED(DELTA_FAST_SQRT)

@ -92,12 +92,10 @@
* 360 M665 R delta_radius (float) * 360 M665 R delta_radius (float)
* 364 M665 L delta_diagonal_rod (float) * 364 M665 L delta_diagonal_rod (float)
* 368 M665 S delta_segments_per_second (float) * 368 M665 S delta_segments_per_second (float)
* 372 M665 A delta_diagonal_rod_trim[A] (float) * 372 M665 B delta_calibration_radius (float)
* 376 M665 B delta_diagonal_rod_trim[B] (float) * 376 M665 X delta_tower_angle_trim[A] (float)
* 380 M665 C delta_diagonal_rod_trim[C] (float) * 380 M665 Y delta_tower_angle_trim[B] (float)
* 384 M665 I delta_tower_angle_trim[A] (float) * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
* 388 M665 J delta_tower_angle_trim[B] (float)
* 392 M665 K delta_tower_angle_trim[C] (float)
* *
* Z_DUAL_ENDSTOPS: 48 bytes * Z_DUAL_ENDSTOPS: 48 bytes
* 348 M666 Z z_endstop_adj (float) * 348 M666 Z z_endstop_adj (float)
@ -412,8 +410,8 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats EEPROM_WRITE(delta_calibration_radius); // 1 floats
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f; dummy = 0.0f;
@ -780,8 +778,8 @@ void MarlinSettings::postprocess() {
EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim); // 3 floats EEPROM_READ(delta_calibration_radius); // 1 floats
EEPROM_READ(delta_tower_angle_trim); // 3 floats EEPROM_READ(delta_tower_angle_trim); // 2 floats
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj); EEPROM_READ(z_endstop_adj);
dummy = 0.0f; dummy = 0.0f;
@ -1068,13 +1066,12 @@ void MarlinSettings::reset() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ, const float adj[ABC] = DELTA_ENDSTOP_ADJ,
drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 }, dta[2] = DELTA_TOWER_ANGLE_TRIM;
dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 };
COPY(endstop_adj, adj); COPY(endstop_adj, adj);
delta_radius = DELTA_RADIUS; delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
COPY(delta_diagonal_rod_trim, drt); delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
COPY(delta_tower_angle_trim, dta); COPY(delta_tower_angle_trim, dta);
home_offset[Z_AXIS] = 0; home_offset[Z_AXIS] = 0;
@ -1473,19 +1470,18 @@ void MarlinSettings::reset() {
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS])); SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> ABC<diagonal_rod_[123]_trim>"); SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod)); SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius)); SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS])); SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
SERIAL_ECHOPAIR(" S", delta_segments_per_second); SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", LINEAR_UNIT(delta_diagonal_rod_trim[A_AXIS])); SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius);
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_diagonal_rod_trim[B_AXIS])); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(delta_diagonal_rod_trim[C_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
SERIAL_ECHOPAIR(" I", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); SERIAL_ECHOPAIR(" Z", 0.00);
SERIAL_ECHOPAIR(" J", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); SERIAL_EOL;
SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -459,40 +459,40 @@
//#define DELTA_CARRIAGE_OFFSET 22.0 // mm //#define DELTA_CARRIAGE_OFFSET 22.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS 100.59 //mm // get this value from auto calibrate #define DELTA_RADIUS 100.90 //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 298.95 // get this value from auto calibrate #define DELTA_HEIGHT 296.38 // get this value from auto calibrate
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 90.0 #define DELTA_PRINTABLE_RADIUS 85.0
// Delta calibration menu // Delta calibration menu
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
#define DELTA_CALIBRATION_MENU #define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
#define DELTA_ENDSTOP_ADJ { -0.05, -0.00, -0.02 } // get these from auto calibrate #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -472,28 +472,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
//#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -461,28 +461,30 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -461,28 +461,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -448,28 +448,30 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -466,28 +466,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-2,1-7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { -0.00, -0.00, -0.00 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { -0.00, -0.00 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0.0, 0.0, 0.0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -1805,20 +1805,14 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(_lcd_calibrate_homing); lcd_goto_screen(_lcd_calibrate_homing);
} }
#if ENABLED(DELTA_AUTO_CALIBRATION)
#define _DELTA_TOWER_MOVE_RADIUS DELTA_CALIBRATION_RADIUS
#else
#define _DELTA_TOWER_MOVE_RADIUS DELTA_PRINTABLE_RADIUS
#endif
// Move directly to the tower position with uninterpolated moves // Move directly to the tower position with uninterpolated moves
// If we used interpolated moves it would cause this to become re-entrant // If we used interpolated moves it would cause this to become re-entrant
void _goto_tower_pos(const float &a) { void _goto_tower_pos(const float &a) {
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5; current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(_DELTA_TOWER_MOVE_RADIUS); current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(delta_calibration_radius);
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (_DELTA_TOWER_MOVE_RADIUS); current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (delta_calibration_radius);
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
current_position[Z_AXIS] = 4.0; current_position[Z_AXIS] = 4.0;

Loading…
Cancel
Save