|
|
|
@ -30,81 +30,30 @@
|
|
|
|
|
#include <avr/io.h>
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
|
|
extern float destination[XYZE];
|
|
|
|
|
|
|
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
|
|
|
inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
|
|
|
#else
|
|
|
|
|
extern void set_current_from_destination();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static void debug_echo_axis(const AxisEnum axis) {
|
|
|
|
|
if (current_position[axis] == destination[axis])
|
|
|
|
|
SERIAL_ECHOPGM("-------------");
|
|
|
|
|
else
|
|
|
|
|
SERIAL_ECHO_F(destination[X_AXIS], 6);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void debug_current_and_destination(const char *title) {
|
|
|
|
|
|
|
|
|
|
// if the title message starts with a '!' it is so important, we are going to
|
|
|
|
|
// ignore the status of the g26_debug_flag
|
|
|
|
|
if (*title != '!' && !g26_debug_flag) return;
|
|
|
|
|
|
|
|
|
|
const float de = destination[E_AXIS] - current_position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
if (de == 0.0) return; // Printing moves only
|
|
|
|
|
|
|
|
|
|
const float dx = destination[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
dy = destination[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
|
xy_dist = HYPOT(dx, dy);
|
|
|
|
|
|
|
|
|
|
if (xy_dist == 0.0) return;
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOPGM(" fpmm=");
|
|
|
|
|
const float fpmm = de / xy_dist;
|
|
|
|
|
SERIAL_ECHO_F(fpmm, 6);
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOPGM(" current=( ");
|
|
|
|
|
SERIAL_ECHO_F(current_position[X_AXIS], 6);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
SERIAL_ECHO_F(current_position[E_AXIS], 6);
|
|
|
|
|
SERIAL_ECHOPGM(" ) destination=( ");
|
|
|
|
|
debug_echo_axis(X_AXIS);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
debug_echo_axis(Y_AXIS);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
debug_echo_axis(Z_AXIS);
|
|
|
|
|
SERIAL_ECHOPGM(", ");
|
|
|
|
|
debug_echo_axis(E_AXIS);
|
|
|
|
|
SERIAL_ECHOPGM(" ) ");
|
|
|
|
|
SERIAL_ECHO(title);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
#if !UBL_SEGMENTED
|
|
|
|
|
|
|
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
|
|
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
|
|
|
|
|
/**
|
|
|
|
|
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
|
|
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will
|
|
|
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
|
|
|
|
*/
|
|
|
|
|
const float start[XYZE] = {
|
|
|
|
|
current_position[X_AXIS],
|
|
|
|
|
current_position[Y_AXIS],
|
|
|
|
|
current_position[Z_AXIS],
|
|
|
|
|
current_position[E_AXIS]
|
|
|
|
|
},
|
|
|
|
|
end[XYZE] = {
|
|
|
|
|
destination[X_AXIS],
|
|
|
|
|
destination[Y_AXIS],
|
|
|
|
|
destination[Z_AXIS],
|
|
|
|
|
destination[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
|
|
|
// For skew correction just adjust the destination point and we're done
|
|
|
|
|
float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
|
|
|
|
|
end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
|
|
|
|
|
planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
|
|
|
|
|
planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
const float (&start)[XYZE] = current_position,
|
|
|
|
|
(&end)[XYZE] = destination;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
|
|
|
|
|
cell_start_yi = get_cell_index_y(start[Y_AXIS]),
|
|
|
|
@ -112,13 +61,13 @@
|
|
|
|
|
cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag) {
|
|
|
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]);
|
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
|
|
|
@ -134,11 +83,11 @@
|
|
|
|
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
|
|
|
// a reasonable correction would be.
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
|
|
|
|
|
set_current_from_destination();
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag)
|
|
|
|
|
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
@ -178,10 +127,10 @@
|
|
|
|
|
*/
|
|
|
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag)
|
|
|
|
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
|
|
|
|
|
|
|
|
|
|
set_current_from_destination();
|
|
|
|
|
return;
|
|
|
|
@ -269,7 +218,7 @@
|
|
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
|
|
|
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
|
|
|
|
* happens, it might be best to remove the check and always 'schedule' the move because
|
|
|
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
|
|
|
* the planner.buffer_segment() routine will filter it if that happens.
|
|
|
|
|
*/
|
|
|
|
|
if (ry != start[Y_AXIS]) {
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
@ -282,12 +231,12 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag)
|
|
|
|
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|
|
|
@ -333,7 +282,7 @@
|
|
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
|
|
|
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
|
|
|
|
* that happens, it might be best to remove the check and always 'schedule' the move because
|
|
|
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
|
|
|
* the planner.buffer_segment() routine will filter it if that happens.
|
|
|
|
|
*/
|
|
|
|
|
if (rx != start[X_AXIS]) {
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
@ -346,12 +295,12 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag)
|
|
|
|
|
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
|
|
|
|
|
|
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
|
|
|
goto FINAL_MOVE;
|
|
|
|
@ -408,7 +357,7 @@
|
|
|
|
|
e_position = end[E_AXIS];
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
planner._buffer_line(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
current_yi += dyi;
|
|
|
|
|
yi_cnt--;
|
|
|
|
|
}
|
|
|
|
@ -436,7 +385,7 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
current_xi += dxi;
|
|
|
|
|
xi_cnt--;
|
|
|
|
|
}
|
|
|
|
@ -445,7 +394,7 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (g26_debug_flag)
|
|
|
|
|
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
|
|
|
|
|
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
|
|
|
|
|
|
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
|
|
|
goto FINAL_MOVE;
|
|
|
|
@ -453,29 +402,21 @@
|
|
|
|
|
set_current_from_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if UBL_DELTA
|
|
|
|
|
|
|
|
|
|
// macro to inline copy exactly 4 floats, don't rely on sizeof operator
|
|
|
|
|
#define COPY_XYZE( target, source ) { \
|
|
|
|
|
target[X_AXIS] = source[X_AXIS]; \
|
|
|
|
|
target[Y_AXIS] = source[Y_AXIS]; \
|
|
|
|
|
target[Z_AXIS] = source[Z_AXIS]; \
|
|
|
|
|
target[E_AXIS] = source[E_AXIS]; \
|
|
|
|
|
}
|
|
|
|
|
#else // UBL_SEGMENTED
|
|
|
|
|
|
|
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
|
|
|
static float scara_feed_factor, scara_oldA, scara_oldB;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
|
|
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) {
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
|
|
|
|
|
|
DELTA_RAW_IK();
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
|
|
|
|
|
|
@ -488,11 +429,11 @@
|
|
|
|
|
scara_oldB = delta[B_AXIS];
|
|
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
|
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
|
|
|
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
@ -511,15 +452,23 @@
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
|
|
|
|
* This calls planner._buffer_line multiple times for small incremental moves.
|
|
|
|
|
* This calls planner.buffer_segment multiple times for small incremental moves.
|
|
|
|
|
* Returns true if did NOT move, false if moved (requires current_position update).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) {
|
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&in_target)[XYZE], const float &feedrate) {
|
|
|
|
|
|
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
|
|
if (!position_is_reachable(in_target[X_AXIS], in_target[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
|
|
|
// For skew correction just adjust the destination point and we're done
|
|
|
|
|
float rtarget[XYZE] = { in_target[X_AXIS], in_target[Y_AXIS], in_target[Z_AXIS], in_target[E_AXIS] };
|
|
|
|
|
planner.skew(rtarget[X_AXIS], rtarget[Y_AXIS], rtarget[Z_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
const float (&rtarget)[XYZE] = in_target;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
const float total[XYZE] = {
|
|
|
|
|
rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
@ -564,6 +513,10 @@
|
|
|
|
|
current_position[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
|
|
|
planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
|
while (--segments) {
|
|
|
|
@ -670,6 +623,6 @@
|
|
|
|
|
} // cell loop
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // UBL_DELTA
|
|
|
|
|
#endif // UBL_SEGMENTED
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
|